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ABSTRACT 

Biological analytics and more advanced data analysis techniques have made remarkable 

advancements as the area of machine learning continues to grow. More specifically, genetic 

modeling and neural network building are gaining interest as it becomes a fundamental piece of 

most model building we see today. We propose a Knowledge-Based Artificial Neural Network 

(KBANN) to predict phenotype while providing insight to effected subsystems. Within KBANN, 

the input layers are a single or group of Gene Ontology (GO) terms while each layer’s input is a 

single number between 0 and 1, explaining how expressed the given term is. The expression 

number provides an average of the number of copies that a gene is producing at its current age 

compared to that over the average of its entire lifespan. Preliminary results show that KBANN 

model can potentially be used to predict lifespan phenotype using the Genotype-Tissue Expression 

data. 
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CHAPTER 1 
 

INTRODUCTION 

1.1 Background 

Throughout the years of technological advancements, increased interest has grown around 

machine learning as a method of data analysis. Machine learning creates a wide branch under the 

artificial intelligence umbrella which has created a way, when enough data is entered, to teach 

systems to identify patterns and eventually make sound decisions without the need for human 

intervention. Similar to the way in which your brain processes in and out information synaptically 

firing across neurons, a neural network takes artificial neurons and connects them through 

computational modeling to aid in the decision-making process [1]. Introducing large amounts of 

data into these networks allows ample opportunity for the system to get an idea of predicted 

outcomes and provide reliable conclusions for future predictions. 

 1.1.1 Basic Neural Network 

A simple neural network, similar to the one below in Figure 1.1, functions with an initial 

input layer that sends signaling through what is referred to as a hidden layer. This hidden layer 

processes the provided information through various boolean arguments which in turn provide a 

pathway for decision-making specific to each input. Once the end of hidden arguments is reached, 

a final result is provided. Given the basis of the model training, this result should have undergone 

extensive empirical tests to ensure the result is a significant and reliable finding. As systematic 
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neural networking expands, it was found that there are many ways to construct these models and 

train them to achieve desired results [2]. 

 

 
 

Figure 1.1 Basic neural-network structure 

 1.1.2 KBANN 

Knowledge-based artificial neural network (KBANN) architecture takes the fundamentals 

of neural network modeling and uses them to create a dense map of problem-specific hidden 

pathways. The greater complexity of these models allows for the processing of propositional logic 

and providing of redefined results through backpropagation. [3]. Backpropagation specifically 

focuses on training the model utilizing errors in each run to communicate back to the network the 

areas which need to be strengthened. This works similarly to a feedback loop, adapting the model 

for future inputs [4]. KBANN methodology has two major components: symbolic learning and 
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empirical learning. In other words, the model processes data which represents logical methods, 

symbolic, and then learns through past training or results, empirical. Through the processing of 

both types of learning the model can backpropagate during training and then provides a fully 

functioning trained network. 

 1.1.3 Gene Ontology Database 

As the various methods of data analysis continue to provide monumental findings across 

numerous platforms, biological research specifically has shown increased support for the use of 

machine learning. Suddenly, it becomes crucial to have a localized standard for computational 

modeling of biological systems. Gene Ontology (GO) provides a way to unify the vast array of 

biological data with a comprehensive database for the range of molecular to organism levels of 

species. An ontology in itself represents an array of knowledge for a given domain characterizing 

pieces of information under categories as well as noting the relations functioning between them 

[5]. With GO annotation, this concept can be applied to genetic markers. 

The biological domain separates genes into three categories: Molecular Function, Cellular 

Component, and Biological Process. These categories create a means of characterization across 

commonalities. Molecular Function encompasses the molecular-level functions executed by the 

resulting biochemical material, either RNA or protein, from gene expression. This category 

focuses specifically on molecular functions instead of the molecular make-up or complexes which 

execute these actions. GO molecular function wording is typically followed by the word “activity” 

to further stress this fact. Cellular Component describes the locations for which the function is 

executed by a gene product. Most areas of GO focus on processes, however cellular component 

focuses more closely on the cellular anatomy. Biological Process identifies larger processes which 
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are executed through various molecular functions [5]. This is the largest category and has the 

greatest density of terms which will be seen again later on. 

The GO vocabulary is designed to be species-agnostic which aids in the effort to provide a 

diverse array of identifications by providing non-biased species-specific biological identifiers. The 

structure of GO biological computation loosely resembles a network or hierarchy, where the child 

terms receive a higher specialization than that of the parent term [6]. The three GO domains serve 

as the root of this network. With the help of GO, networks gain a standard for species prediction, 

and creates a way to consolidate input data through the advanced filtering of node connectivity. 

Both neural network modeling and GO can together be applied to further strengthen the ideas 

underlying many genetic and biological computation studies [7]. GO term filtering and network 

model assembly can in fact be executed without a strong understanding of biological processes, 

however the effectiveness and accuracy of the model can only be strengthened when the concept 

of gene expression is thoroughly understood. 

You may ask yourself: “How does a gene know when to express itself?” or “How do the 

various types of cells found within the human body know which proteins must be produced and 

when?”. These very questions can be answered based on knowledge of gene expression. It all 

begins when a strand of DNA is converted into RNA. RNA provides instructions to then create a 

functional product, proteins [8]. There are two fundamental processes which go into creating a 

protein. These processes are known as transcription and translation. Transcription takes the DNA 

strand within a gene and copies it to create a new RNA transcript strand called messenger 

RNA, mRNA. RNA is very similar to DNA. DNA is composed of four bases: adenine (A), guanine 

(G), cytosine (C), and thymine (T). RNA has these same bases except for one: thymine becomes 
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uracil (U). The process of creating mRNA is undergone by an enzyme, RNA polymerase. RNA 

polymerase utilizes available bases found in the nucleus to form mRNA. Translation is the next 

step in protein formation. Translation takes place once the newly created mRNA has delivered the 

transcription message to RNA binder and transfer centers, ribosomes. mRNA is processed a codon, 

three letters, at a time. Each codon signifies an amino acid. Once each amino acid is read and 

moved to a ribosome, it is bound to its codon pair within the mRNA molecule. This amino acid is 

then released and recombined with other amino acid pairs creating a chain known as a polypeptide 

[9]. This process continues looping until a protein is completely formed. The resulting protein 

holds one of many, various active functions of the working cell. 

 1.1.4 Aging/Lifespan is a Complex Trait 

Honing in on data processing and its role in genetics specifically aging and lifespan, clear 

distinctions can be made between two types of genetic traits. Most genetic traits can be 

characterized as either monogenic or complex. 

Monogenic traits are strongly influenced by pathogenic variation within a single gene and 

are recognized by their classic patterns of inheritance within families. While monogenic traits 

formed the basis for “classic” genetics, it has become clear that conditions whose inheritance 

patterns are clear cut and identical across varying individuals is extremely rare [10]. These very 

rudimentary ideas of genetics seem to blur as we gain a deeper understanding into greater varieties 

of organism genetic makeups. 

Complex traits are believed to result from variation within multiple genes and their 

interaction with behavioral and environmental factors. They do not follow the more predictable 
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patterns of inheritance [10]. This idea and inference into the effects of aging as a complex trait 

provides way for development of more gene-based deep neural networks (complex networks) 

compared to traditional use of simple mathematical models. 

 
 

Figure 1.2 Most basic understanding of factors which greatly impact effects of aging/lifespan 
 

As mentioned, complex traits are results of the interaction between both genetic and 

environmental factors. Each have their own ways to increase the timeline of aging. Genetic factors 

consider many things such as DNA repair defects and genetic abnormalities. These instances result 

in the accumulation of mutations and typically abnormal signs of cellular signaling. When it comes 

to environmental factors, more and more emphasis is being placed on the importance of being 

aware of how greatly the environment impacts an organisms natural aging cycle. Factors such as 
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free radical mediated damage and abnormal proteasomal activity have seen to greatly have an 

impact on the accumulation of damaged proteins and organelles. 

 1.1.5 GTEx 

As knowledge continues to grow in the area of gene expression, greater insight is being 

gained into the various ways in which genes are affected and the factors which cause these changes. 

Understanding the correlations between genotype and tissue-specific gene expression has proven 

to show significance identifying regions within the genome which play a role in the ways a gene 

is expressed [8]. Aspects such as inherited disease risk-factors become a major driving force for 

this kind of research. 

The Genotype-Tissue Expression, GTEx, project has worked to create a database which 

provides community-wide research human gene expression data allowing for areas such as gene 

regulation, expression, and variation to be studied. The database is comprised of various human 

tissues obtained from donors which have been extensively genotyped. With this information, 

genetic variation found in the individual’s genome is identified providing an in-depth background 

for the database. The project works to identify links between genetic variation and variations 

within gene expression as eQTLs, expression quantitative trait loci. With the help of the genome 

wide association studies, GWAS, genetic changes are being linked to many human diseases such 

as heart disease, cancer, diabetes, asthma, and stroke [11]. However, it continues to prove difficult 

to identify the specific gene which is being affected and the mechanism which is inducing this 

change. These changes typically are found elsewhere than the protein-coding regions of the genes. 

They can even be found outside of the gene itself. With the help of the established eQTLs, the 

ability to find the genetic variation can be gained, and with that identify the gene’s which 
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expression has been affected further providing basis for the study of gene regulation mechanisms 

[12]. 

1.2 Research Proposition & Objectives  

In the effort to grasp a greater understanding of the conserved molecular mechanism of 

aging and lifespan regulation, a KBANN architecture can be utilized. By utilizing a database of 

Genotype-Tissue Expression (GTEx) data, the KBANN can be trained using a variety of tissue 

and cell types to further predict the normalized lifespan. Multi-view techniques allow for the 

integration of genotypic data which in turn aids in the accounting for the likely increased flexibility 

in the gene expression data set. Particularly, the interest in cellular lifespan lies in the principle 

that cell birth and death provide a vast array of insight into public health challenges not to mention 

there is still a lot unknown regarding increased/decreased lifespans. It is proposed that a knowledge 

based neural network model will be designed in the effort to infer the conserved mechanisms for 

lifespan regulation using the GTEx data sets. With this network, heterogeneous data sets will be 

integrated and utilized to train the neural network model with various traits. In doing so, multi-

head will be utilized to fit the KNN to tissue type, cell type, and normalized lifespan. Finally, it is 

hoped that this model in the future will be utilized beyond human genome and to other various 

organisms.  
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CHAPTER 2 
 

MATERIALS 

2.1 GTEx Project 

 
 2.1.1 Area of Study 

In obtaining the biospecimen for the GTEx database, sampling sites were not restricted to 

one specific area of the human body. As seen in Figure 2.1, the entirety of the body was analyzed 

across samples. 

 

 
 

Figure 2.1 Diagram and visual representation of the biospecimen source sampling sites for the 
sampled tissues from postmortem/obtained organ specimens for the GTEx project 
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That being said, areas which provided viable specimen was dependent on the subject itself 

and the conditions of post morbidity donation. The distribution of specimens based on the sampling 

site can be seen in Figure 2.2 below.  

 

 

Figure 2.2 Tissue sample count for the various sampling areas 

It was observed that white blood and skeletal muscle samples held the greatest number of 

samples to contribute to the study with lower leg sun exposed skin following closely behind. Areas 

such as the cervix and fallopian tubes contributed the least to the study. This could be due to gender 

distribution across the samples. This is an area which could prove to provide significant insight 

into future steps of this study. Across 948 donors, a total of 17,382 samples were taken. After 

eQTL analysis a total of 15,201 viable samples were designated to be utilized for this study with 

a total of 49 different tissues from 838 donors. 
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 2.1.2 Methods of Data Acquisition 

Genes for GTEx’s project were selected based on the standard of an expression threshold 

of > 0.1 TPM (transcript per million) and ≥ 6 reads in a minimum of 20% of samples taken and 

were assessed largely through parallel sequencing of RNA. The gene expression values found 

within the data set were normalized using transfer-matrix method, TMM, carried out through 

edgeR differential analysis of sequence read count data, and using inverse normal transform. 

Inverse normal transformation, INT, further aids in the counteracting of variances from normality. 

For the genotype data utilized in the eQTL measures, 838 donors were included in which each all 

had significant RNA-sequence data available [11]. GTEx biospecimen were obtained one of two 

ways from selected donors: autopsy or organ and tissue transplant.  

 

Table 2.1 GTEx Analysis Release V8 
 

 

 

In addition to these samples, peripheral blood samples were taken in the effort to create a 

database of DNA for whole-genome analysis to detect single nucleotide polymorphisms (SNPs) 

as well as duplication of copy number variant (CNV) genotyping and identify lymphoblastoid cell 

lines [13]. The raw data from these analyses were taken and placed in to a genotypic and 

phenotypic database (dbGaP) to be updated regularly. All work was carried out under the Cancer 

Human Biobank of the National Cancer Institute (caHUB) which maintains heavily monitored 
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contracts with Biospecimen Source Sites (BSSs), a Comprehensive Biospecimen resource (CBR), 

and a Comprehensive Date Resource (CDR), all performed by certified pathologists and quality 

management teams through out every step of sample acquisition and data analyses [13]. 

 
 2.1.3 Deciphering Sample IDs 

Each piece of RNA sequence or genotypic data logged within the created databases was 

provided a sample specific ID which was formatted as GTEX-[donor ID]-[tissue site ID]-

SM[aliquot ID]. Each portion of this ID provides the viewer with a greater understanding of each 

piece of the database. The donor ID portion is utilized to provide a connection between the RNA 

sequence data and the genotype samples which were taken from a singular donor. The tissue site 

ID in principle identifies the region in which the sample was taken, however it was noted that this 

served as the least reliable key of the sample ID. In the event of human error of sample mix up, 

this ID remained unaltered and created a duplication of a few sample regions. Due to this factor, a 

Tissue Site Detail Field (SMTSD) was created to provide accurate tissue site information for all 

samples. Aliquot ID identifies the RNA or DNA aliquot ID utilized for sequencing [11]. 

 

2.2 Preparing the Data 

 2.2.1 Identifying the Importance of Age Grouping 

In obtaining the samples, various aspects were decided on to maintain the integrity of the 

samples as well as ensuring a wide enough range to draw conclusions from. Specimen eligibility 

was restricted to ages 21-70 with the specimen acquisition within 24 hours of death [11]. 

Distribution of samples was slightly skewed based on the fact that as to be assumed older 

specimens are simply easier and more likely to obtain. 
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Figure 2.3 Tissue samples by age 
 
 

In the realm of genetic modeling and cellular aging, it is known that specific gene 

combinations aid in the determination of cellular life span. Age directly affects physiological 

functions and genetic variation in average lifespan and has ultimately suggested that aging is 

greatly affected by damage caused on the repair systems and compromise stem cell functioning 

[14]. With the help of a greater range of aging data, focus can move to how gradual aging, parsing 

into age ranges, has great effect on tissue-cellular functioning [15]. 

From the point of acquisition, various categories were created, one being the age of the 

specimen. The sample was allocated into two age ranges, young and old ages. As seen in Figure 

2.3, age distribution was largely skewed to older ranges. While this requires efforts to 

counterbalance this factor, it does provide a true representation of the study in that tissue damage 

typically will not begin to genetically display until later in the life. In the effort to better understand 
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the effects of aging on this study, the designed neural network was trained to take in the data set 

and categorize the data based on two distinctions of age: young ages and old ages. Young ages 

were defined as samples from age ranges 20-55. This range group was composed of 14,777 

samples. Old ages took the remaining samples, ages 55-70, and was composed of 15,726 samples. 

It is important to note that each sample contained two values for the gene count. These 

values were not averaged out. Instead, these values were combined as two separate samples, 

explaining why the values presented are higher. This ultimately doubled the data set explaining 

the variances between GTEx sample size seen in Table 2.1 and ones presented in the model. 

Samples were filtered to down sample. It is presented that 100 percent of the dataset was utilized 

but after matching ages groups to the lowest, not all sample sites were used. 

 
 2.2.2 Data Set Restriction Guidelines 

While NCBI offers a current release public database via the GTEx Portal for casual 

viewing, it proved great importance to gain clearance to the V8 protected data in the efforts to 

obtain all necessary information required to fully create and test the functionality proposed of the 

neural network. The public database is way less extensive and does not provide great detail as far 

as data specifics. This is largely due to HIPPA factors with the dataset holding information about 

the donors. The GTEx V8 protected data requires approval via the dbGaP application. The 

application process requires a brief synopsis of the proposed study as well as clear description of 

all parties which will require access to the data set. 

Once approved, the users then gain access to the AnVIL repository with proper dbGaP 

application clearance as well as access to the full file system of the V8 database. AnVIL is the 

NHGRI’s new genomic data repository. Once access to the GTEx V8 on dbGaP is granted, access 
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is further supported in AnVIL to obtain the repository key. The repository key is required to 

decrypt and analyze the file systems. Having an account via Terra platform makes this process 

much easier. After the user’s account has been created via AnVIL, the eRA Commons ID will 

need to be linked to the user’s Terra account. Once completed, the data sets which access has been 

granted to view become available. DbGAP authorization also becomes visible. The data for GTEx 

V8 will appear via the database work space [11]. 
 
 
 2.2.3 Restricted Network Viewing 

It is important to further note again that this is a restricted database, and therefore it is noted 

within the authorization contract that the protected data sets are not to be exported from the Terra 

work space. NCBI offers a Gen3 platform which allows for download of the data set. Furthermore, 

the viewing and analysis to be posed on the data set should be within a protected VPN and never 

to be accessed via a personal computer. Accessing of the data set is to be done only by those which 

access has been authorized, and this is to be monitored by the main researcher which has been 

identified as an authorized user.  
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CHAPTER 3 
 

METHODS 

3.1 GTEx Dataset 

Once access was permitted for the implementation of the GTEx data set from NCBI, files 

supplied held a .enc file type and required the work of file decryption. Luckily, NCBI supplies a 

toolkit which works to simplify this process. In the effort to begin decryption, the toolkit was 

downloaded from the NCBI website. It was crucial to maintain the standards of the discretion 

contract contingencies of this data usage, therefore all work was conducted under an authorized 

VPN and only designated users were given access to the viewing of any data. 

Once the download was complete, the scp command was utilized to copy the downloaded 

repository key for the data set from local system to the remote system. Scp command is reliant on 

ssh, command which supplies a secure encrypted connection between two hosts, to transfer data, 

therefore a ssh key or password must be supplied to aid in the authentication factor on the remote 

system. Once the key was relocated to the remote system, an integrated development environment, 

a conda environment, was created to centralize all editing and executing of the decryption software. 

The NCBI toolkit, sratoolkit was then installed within the environment via conda install –c daler 

sratoolkit. 



17 

 
 

Figure 3.1 Steps to decrypting the encrytped file types provided by NCBI for GTEx 
 
 

The vdb-config file was utilized to access the option to import the repository key for toolkit 

accessing. Once the repository key was imported, the directory was then moved to the file where 

the key was located. Decryption processing is then run with the path to the encrypted files. This is 

done with the command line as follows: 

vdb-decrypt/path/ 

Once the run completed, files were then decrypted and readable to the average human. In 

the effort to make future accessing expedited, files were then copied to an easier path still within 

the secure shell. via the cp –R command. 

 3.1.1 Age Group–Where Did We Split? 

For the GTEx data set, there were various tissues sampled. All samples were obtained 

postmortem. Across 948 donors, 17, 382 samples were taken. After eQTL analysis a total of 15,201 

viable samples were designated to be utilized for this data set. this resulted in a total of samples 

from 49 different tissues from 838 donors. Samples were filtered to down sample from the old age 

groups as that held the majority of the data in the effort to remove data in the event that the data 

set was skewed. This resulted in a standard 80/20 split for test and training data. Of the training 

data, just 20% is validation and the rest is actual training. During the training phase, split size was 
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18,912 samples. During validation, split size was 4,730 samples. During testing, the split size was 

5,912 samples. 

 
Figure 3.2 Age distribution across samples identifying the necessary proportional data set split for 

our model to eliminate any biases 
 
 

Figure 3.2 below depicts the percentage of samples across age groups (grouped by 

increments of 10 years). The GTEx data was restricted to ages 20-70 within 24 hours of death. 

Even though the age groups were relatively balance, it is seen that the older age groups hold the 

majority of the data. That being said, all sample data was still 100% utilized, but to avoid any bias 

towards one group we down sampled to match the size of the young age group. Once down 

sampled, not all sample data pieces were utilized. Two distinct categories were created, young 

ages and old ages. This resulted in a split almost directly down the center. Young ages were 

separated for years 20-55 and held 14,777 samples. Old ages took the remaining years 55-70 and 

held 15,726. 
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3.2 KBANN Assembly 

 3.2.1 Model Class Creation: GO Term Filtering 

To begin, the GO term list was implemented and then filtered into smaller subsets which 

held the characterization of not being inferred by genetic interaction. Prior to any filtering, it was 

found that 47,314 GO terms were identified within the Gene Ontology Database. The first attempts 

at filtering utilizing a model based on Keras a machine learning library from Google created layers 

for the network based on the GO term hierarchy. With Keras, all layers gain the ability to feed 

directly into one another ultimately doing most of the work. The model is dependent on correct 

order within layers in order to manually call layers and pass on the output to another. A topological 

sort from the input layers was utilized in order to obtain the correct order to call layers. This attempt 

allowed for greater understanding of the functions of GO terms, however this was prior to the 

filterization based on connectivity. This created an ultra-dense network which can be seen in 

Figure 3.3 below. Later, it was learned that topological sort from the input layer provided greater 

results sorting input data. This input data specifically comes from GO terms which do not possess 

“children”. By this, it is meant that each node which is not characterized as an input possesses a 

direct link between an input node or another node value. 

A model class was created to manipulate the appropriate loaded GO terms through were 

loaded and filtered. GO annotation files, GAFs, were loaded via pub/databases/GO/goa/HUMAN/ 

goa human.gaf.gz. The system was then prompted to check if the file GAF exists within the 
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Figure 3.3 Network built prior to filtering of GO terms connected genes grouped into the three 

biological domain categories 
 
 
system. By logging into a file transfer protocol, FTP, server, we were able to gain access to the 

GAF file. Here, the data was formatted via various column categories: ’DB’, ’DB Object ID’, 

’DB Object Symbol’, ’Qualifier’, ’GO ID’, ’DB:Reference (DB:Reference)’, ’Evidence Code’, 

’With (or) From’, ’Aspect’, ’DB Object Name’, ’DB Object Synonym (—Synonym)’, ’DB Object 

Type’, ’Taxon(—taxon)’, ’Date’, ’Assigned By’, ’Annotation Extension’, ’Gene product form id’. 

GO strings were then converted to GO terms. Gene map and gene index were loaded with the GO 

terms from the file. Both features were fixed at the creation of the model and were used to know 

which value in the input array match which gene. Further filtering was added to supply both the 
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Figure 3.4 Resulting network after filtering of GO terms connected genes grouped into the three 

biological domain categories 
 
 
ontology term as well as a shorthand for the organism’s name. The gene list is a collection of genes 

where the order is crucial. The gene index is every GO term with every input gene that coordinates 

with it in the form of an index that points directly to a gene on the gene map. Cross-checking to 

ensure only real GO terms exist, current terms were then updated to the deeply filtered GO terms. 

Every GO term without a child was designated as the input layer, and every GO term without a 

parent, the output layer. Phenotype layer was then ended, concatenating all outputs. In the effort 

to reiterate this design an adjacency matrix was utilized to iterate until no children remain. Its 

function allows for the obtaining of the next “child” at the closest depth to the term and then adds 

it to the adjacency matrix. Ultimately, this piece of the puzzle is a topological sort. First, an 

adjacency matrix is utilized, calculating the order which a layer will be called when passing in 
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data. Finally, the input size for each term and output size were calculated. The output layer was 

then determined, and a NumPy array was created for gene indexing with a local variable. Because 

of the format of the gene indexing only containing a list of indexes pointing to the gene map, 

NumPy creates greater ease in indexing. For each input layer, it is simply necessary to index the 

input array by the term’s gene index list. The dataset can now be passed through the model. 

This filterization of terms presented a higher functioning model which is presented in Figure 3.4. 
 
 

3.2.2 Drawing the Model 
 

The drawing of the model was created based on a hierarchical structure using simple 

recursive programming. This was set in place based on the following assumption: if the created 

graph presents in a tree-like structure then the model will return the positions to plot in a 

hierarchical layout (Joel, 2015). The formation of the model was based on several factors: root, 

width, vertical gap, vertical location, and center. The root node of the current branch is placed 

specifically under certain conditions: if the tree is directed but not given as such, the root will be 

found and used; if the tree is directed and given as such, then the positions will be just for the 

descendants of this node; if the tree is undirected but not given as such, then a random choice will 

be utilized. The width describes the horizontal space allocated for the given branch. The width 

functions work to avoid any overlap between any given branch and another branch. In addition, 

the vertical gap function creates gaps between levels of hierarchy. Leaving vertical location and 

center functions to create the proper placement, both vertical and horizontal respectively, of the 

root node. 

In addition to properly placing the root node, it is important to have functions in place for 

identifying the edges of the model as well as assigning the proper weight to achieve the desired 
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hierarchical layout. Strategic placement of the nodes is important in creating the proper processing 

of data to reach our desired phenotypic output. Both edges and weights were determined using the 

zip function which merges iterable data pieces into a single tuple providing a new object of stored 

iterables. Network attributes were then set in place identifying labels, node shape and color, edge 

color, and edge minimum and maximum. Together, these attributes work to create a more clearly 

and organized display. 

For each new data entry, a new node position is required. The position is found via 

mathematical function: 

(r*math.cos(theta), r*math.sin(theta)) 

creating a hierarchical cluster with radial expansion. Once functions and attributes have been 

established, the gene count variable creates our model based on the values of the gene map 

variable. The make dot function utilizes gene count to finalize the model drawing. 

 
 3.2.3 Training of the Model 

With a filtered and properly formatted model, fine tuning the details of the model can begin, 

which moves the next steps towards hyperparameter tuning. The functionality wished to be gained 

from this model required the performing of hyperparameter tuning for the number of neurons 

present at each GO term. This allows for the more complicated terms present in the ontology to 

gain the ability to gather greater amounts of information, further aiding in the training of the model 

and the accuracy of its predictions. 

In the effort to train the built neural network, the GTEx data set is loaded into the model. 

Here, parameters were set which highlights on one of the main focuses of this project, aging. The 
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ages throughout the data set varied, however it was sen that there was a significant skew towards 

ages over 50. Therefore to try and create a non-skewed grouping, two groups were created, young 

ages (Ages 20-55) and old ages (Ages 55-70). Model weights were reset from initial build and a 

loop cycle was created to obtain the list of inputs. Statistical analyses were set in place to grasp an 

understanding of the accuracy of the model. This can be viewed in the following section. 

Following the training of the model, a statistical test was run on prediction. This again 

begins to strengthen the understanding of the model’s accuracy. For each input, the data was 

evaluated to determine accuracy in terms of predicted value vs. the actual presented value. The 

data point was then assigned either a correct or incorrect value. From there, the accuracy of the 

model was determined by taking a total of appearances of the “Correct” value dividing that by the 

total number of values. 

By obtaining a tally total for not only correct vs. incorrect values but also within age groups, 

a greater understanding of the performance accuracy of the model is gained. Tally values were 

taken for correct, correct young, incorrect young, correct old, incorrect old, incorrect, and total. 

Classification of the accuracy of the model during testing phases created a means of target for 

future modeling and identified both what was to be expected (target) and prediction values. 
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CHAPTER 4 
 

RESULTS 

4.1 Build 

In the effort to grasp a better understanding not only of deep learning KBANN but also 

prediction accuracy of phenotypic expression when pressed for genotypic information, the trials 

of network creation resulted in a foundation for multi-organism aging model using transfer 

learning and backpropagation methods. The main goal for this model was to create a VNN which 

predicts a phenotype while displaying how the subsystems are affected. The input layers inserted 

were a single or group of GO terms leaving each layer’s input categorized by a single number 

between zero and one to identify how expressed that term is. The expression number is an average 

of how many proteins a given gene is producing at its current age compared to its age over its 

entire lifespan average between all genes which make up the GO term. 

In the effort to remain transparent, the designed model displays clear, traceable, and 

transparent processing as it moves from input to output. This focus allows for the avoidance of 

black box methodology where model creation by computation is foreshadowed providing little 

transparency to the processing of data throughout the model. A typical scaled model will provide 

anywhere from three to four layers. The created system wide deep learning model has 

approximately twelve layers further stressing the increased complexity and thorough data vetting 

which leads to any given output. 
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4.2 Train 

Once the model was trained and repetitively tested for accuracy and validity, predictive 

components were pushed to focus on fast vs slow aging. Honing in on this portion of the study and 

functionality of the created neural network proved to provide greater insight into the genetic effects 

of aging. Further diving into this idea, model changes at the GO term can be evaluated and 

compared against the entire dataset. This allows for the ability to determine how GO terms interact 

as well as evaluate the impact that any given gene has on the system. 

For this model, an input dimension was established based on the gene’s expression 

associated with GO term inputs. This number varies and is very large, so providing a blanket 

number does not really apply in this instance. As far as the output dimension, the desired result is 

arriving at a single phenotypic result which means a singular node. In artificial neural networks, 

the activation function of a node defines the output of that node given a set of inputs. A standard 

integrated circuit of activation functions can be seen as either ON or OFF depending on the input. 

Activation begins as a tan h function. This is a hyperbolic tangent, a type of function which allows 

for a range into both positive and negative functions. The activation function ends up being a 

sigmoid linear unit or SiLU which is another hyperbolic tangent, a more S-shaped curve [16]. As 

mentioned, the model has twelve layers, unlike most models which will only have three or four. 

This further supports the complexity of the efforts to build such a dense model and the processing 

power which is required to process these BIG data sets. The learning rate is a tuning parameter in 

an optimization algorithm that determines the step size at each iteration while moving toward a 

minimum of a loss function. Our learning rate ended up being 0.001 which is relatively small and 



27 

could ultimately slow the training process, but this allows for very little adjustments as far as the 

weight within the network. 

In the most recent run, it was attempted to look into training at a smaller number of epochs 

to see if insight can be gained into accuracy on much larger runs. It was seen that at ten accuracy 

is reached around estimation. However once fifteen epochs is reached, higher than the 0.5 

threshold is achieved. This run provided enough trending support to believe that greater accuracy 

may be met after a longer run. This is placed within future work and will be tested as the next step 

for this project. 

The training of the KBANN model proved to be quite extensive and labor intensive. Over 

a hundred versions of the model at each stage were trained in the effort to remove the tendency to 

overfit. Batch size started at one, because it was believed to be a crucial parameter of training. It 

was known that if the batch size got too large errors would arise, however the model was able to 

train across a range of 1-256, which still represented the differing data across the various genes. 

The extensive training allows for the model to gain the ability to identify when overfitting begins 

and rolls back to the previous version. This further supports the models back propagation 

functionality. 

Figure 4.1 depicts the results comparing loss vs. iteration for our model training. Validation 

itself only helps overfitting and once validation is reached, the model begins checking for errors. 

Optimization is what fixes these discovered errors. In validation, this means big change and can 

explain the spikes presented here below. When training loss is seen to be greater than  

iteration, it is understood that the model is overfit. If the optimizer changes in a negative way, the 

model performs worse. 
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Figure 4.1 Training data results for value of loss vs. observed for all predicted outputs 
 

4.3 Validate 

Still remaining in the phases of model fine tuning, hyper parameter tuning has arrived this 

research at the most current version. Continuing to work through bugs and moving towards 

optimization, movement even further towards fully functioning VNN is made which will then be 

able to supply phenotypic insight into aging and lifespan. In the efforts to validate the model for 

accuracy, the presented observations were not only analyzed as simply correct or incorrect but 

even further to identify correct/incorrect young and the same for old ages. Further understanding 

accuracy aids in the setting of targets for the model. In Figure 4.2 below, a simple visualization 
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was created to display the total correct vs. total incorrect for a subset of the GTEx data, Whole 

Blood Tissue. This homogeneous subsection provides an easily displayed insight into how well 

the model is performing. As shown, model accuracy is currently around 58% and continues to 

improve as the model is further trained. 

 

 
 

Figure 4.2 Test prediction percent model for accuracy of total correct and total incorrect for a 
subset of GTEx data: Whole Blood Tissue 

 
 
4.4 A Brief Display 
 

The constructed model is very large and ultimately would be extremely difficult to display 

in this setting, however a small subset of about half of the total network layers was taken to display 

a portion of the model, the DNA repair model network. This highlights the complexity not only in 

the entirety of the network composition but also in the backpropagation function of the network 

layers. In Figure 4.3, this model is displayed, and the efforts to display clear, traceable, and 

transparent processing from input to output can be seen. This model provides a insight into just 

one small section of the entire model.  Again, it is worth noting that a typical neural network would 
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only be three to four layers. The created network being twelve increases the complexity and makes 

it more applicable across various organisms. 
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CHAPTER 5 
 

DISCUSSION AND CONCLUSIONS 

5.1 Assessment of Objections 

As with any study, real-world application introduces its fair share of trials as these 

outcomes are not quite as easily predicted. It was found that the created model is in a place of 

greater testing. With this in mind, the neural network was created with a greater complexity to 

account for higher density within our database. GTEx is BIG data and therefore requires dense 

analyzation to provide accurate predictions/conclusions. The efforts in areas such as GO term 

filtering and thorough model training help to account for any areas of weakness. Furthermore, all 

of the presented work further aids in future capabilities to identify conserved lifespan mechanisms 

across various species. 

5.2 Summary of Findings 

Through the process of model creation, it was important to find the most efficient and 

effective criteria to narrow down the number of GO terms for optimized processing. Keeping this 

in mind further aids the throughput and consumption of the model and provides increased accuracy 

when it comes to inter-connectivity between proteins. Using previous findings from that of the [6] 

study as a model for filtration processes further aided the ease of replication within this study and 

further supports the advancements within the created model. In the work presented thus far, it was 

found that filtering proved the greatest importance. This was a huge portion of the early model 
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building and continues to play a major role in providing support for model functionality. In the 

beginning prior to GTEx restricted data set authorization, efforts were made to look into model 

building with yeast. This allows for the incorporation of both single and double gene mutations. 

With this understanding of increased mutations, a greater understanding into the essential 

connectivity within nodes of the model is gained. This further increased accuracy in the inter-

connectivity between proteins. With the functionality of yeast data processing within the model, 

further preparations can be made for advancements applying the model to various other organisms. 

 

5.3 Conclusions 

As genetic modeling increasingly grows as an area of interest in both genomics and deep 

learning, models such as the KBANN created prove to hold great significance in the community 

for not only research settings but also practical and professional settings across various fields of 

study/interest. With this type of complex modeling, greater integration of more learning strategies 

can be tapped into. Previously, machine learning had for the most part focused on single strategy 

systems, however as advancements and more experimentation with model building and training 

continue to be made, an expansion in interest of creating models which integrate two or greater 

learning strategies is beginning to be seen [4]. Preliminary results presented here gain a greater 

footing in being able to move forward to the proposed end goal of being able to provide greater 

insight into the ability to predict lifespan phenotype. 
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5.4 Recommendations for Future Work 

With the created model still in the training phases, there are plenty of avenues which can 

be focused on for future work. Since completing hyper parameter tuning, plans are being set in 

place to identify the optimized model which properly combats overfitting. Once this model is 

identified, the model can move into the testing phases with the GTEx dataset and begin to 

extrapolate genomic based phenotypic outcome and its effects on slow vs. fast aging. The 

incorporation of increased mutations can only further aid in adding more complex genetic makeups 

from other organisms. Finally, this work cannot move on without mentioning cross validation, 

which will provide greater support for the model by assessing how the results of statistical analyses 

will generalize to an independent data set ultimately providing insight into how accurately a 

predictive model will perform in practice. 

Expanding on the proposed goal to increase application of this model, it is worth noting the 

areas which will allow for various organism data to be processed. Briefly mentioned earlier, it was 

found that in principle tissue specificity does not matter. In other words, when predicting age, it 

was found that a more generalized data set increased functionality and only aided in the model’s 

ability to be applied to other organisms. Transfer learning is a machine learning technique, and by 

creating a transfer model greater application of our model can be made within biological machine 

learning. Expanding on this application and a greater backing for increased complexity in the 

model, the evolution principle shows that shared evolution origin suggests some common 

mechanisms of lifespan regulation among different organisms. This principle supports the 

application of transfer learning. 
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In the efforts to accomplish everything mentioned, next steps in this work require the taking 

of a subset of yeast and human data to train for the created human model first. It is then planned 

to freeze this layer. Input and output layers can then be sliced to create ability within to model to 

then insert yeast genes. From this, conclusions can begin to be made comparing not only the 

functionality of the model but also the accuracy in its prediction. This can then expand onto other 

organisms if this method deems reliable.  
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