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Abstract

There is a great interest in increasing proteins’ stability to widen their usability in numerous biomedical and
biotechnological applications. However, native proteins cannot usually withstand the harsh industrial environment, since
they are evolved to function under mild conditions. Ancestral sequence reconstruction is a well-established method for
deducing the evolutionary history of genes. Besides its applicability to discover the most probable evolutionary ancestors of
the modern proteins, ancestral sequence reconstruction has proven to be a useful approach for the design of highly stable
proteins. Recently, several computational tools were developed, which make the ancestral reconstruction algorithms
accessible to the community, while leaving the most crucial steps of the preparation of the input data on users’ side.
FireProtASR aims to overcome this obstacle by constructing a fully automated workflow, allowing even the unexperienced
users to obtain ancestral sequences based on a sequence query as the only input. FireProtASR is complemented with an
interactive, easy-to-use web interface and is freely available at https://loschmidt.chemi.muni.cz/fireprotasr/.
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Introduction
Proteins are widely used in numerous biomedical and biotechno-
logical applications. Native proteins have mainly evolved under
mild intracellular conditions [1]. Therefore, their applicability is
often limited in the harsh industrial environments characterized
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by inhospitable temperature, extreme pH, high pressure or the
presence of organic co-solvents. As a result, there is a continu-
ous interest in increasing protein stability. New approaches in
the field of protein engineering, such as fluorescence-activated
cell sorting and microfluidics, have widened the throughput of
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directed evolution experiments. However, saturation mutagen-
esis of all positions and systematic re-combinations of many
single-point mutations of the protein of interest is often out of
reach.

In the past decades, various computational methods were
designed to unburden costly and laborious experimental work by
narrowing down the search space for potential stabilizing muta-
tions. Most of those methods can be assigned to one of the three
categories: (i) machine learning, (ii) force-field-based predictions
and (iii) molecular evolution. Each category has its advantages
and shortcomings [2]. Machine-learning methods are able to
unearth hidden features and dependencies overreaching the
current state of expert knowledge, while still struggling with the
insufficient size, quality and diversity of the experimental data,
essential for training and validation of statistically significant
models. Force-field-based approaches are a robust solution for
the prediction of protein stability; however, they rely on the high-
resolution protein structures that are available for only a small
fraction of the known proteins. Evolution-based approaches do
not suffer from these limitations due to the rapid growth of the
sequence databases. However, this continuous growth widens
the search space and increases noise in the data, requiring
laborious and time-demanding manual corrections from the
side of the user with expert knowledge of the system of interest.
Inexperienced user may not therefore utilize evolution-based
methods effectively to obtain accurate and reliable results.

The two most widely used evolution-based methods for
stability engineering are ancestral sequence reconstruction
(ASR) and consensus design. Both methods start with the
multiple-sequence alignment (MSA) of the set of relevant
homolog sequences. Consensus design relies on the simple
analysis of the conservation of the amino acids on the individual
positions in the sequence alignment. As a result, it cannot
account for the coevolution of the residues located in the
sites responsible for the protein’s activity [3] and is utilized
mostly as a part of the hybrid workflows [4, 5]. In comparison,
ASR goes much further by also considering evolutionary
information depicted by the phylogenetic tree. This inclusion
of the evolutionary distances inscribed into the phylogenetic
tree is mostly negligent at the positions with low Shannon
entropy; however, the discrepancies grow stronger with noisy
MSA [6]. ASR is a probabilistic method that explores the deep
evolutionary history of homolog sequences to reassemble
protein’s evolutionary trajectory [7]. ASR is able to unearth
sequences of the long-extinct genes and organisms from which
the current ones evolved and is, therefore, an invaluable tool
in the field of evolutionary biology [8, 9]. ASR has also been
shown to be a very effective strategy not only for thermostability
engineering [10, 11], but also for improving other protein’s
characteristics such as specificity [12], activity, or expression
[13]. Furthermore, ASR was previously proven to be an effective
strategy for the stabilization of prokaryotic proteins [10, 11],
as well as for the improvement of significantly more complex
eukaryotic proteins such as cytochrome P450 [14, 15]. Two main
algorithms, maximum-likelihood [16, 17] (ML) and Bayesian
inference [18] (BI) were designed to infer ancestral sequence
from MSA and phylogenetic tree. Many tools were built over the
years to make those algorithms accessible to the community.
However, the requirement of the MSA of carefully selected
homologs and the rooted phylogenetic tree are still huge limiting
steps for the general use of ASR method by the non-expert users.

FireProtASR addresses those limitations by introducing one-
stop-shop solution for the ancestral sequence reconstruction.
It covers all steps of ancestral inference including search for

homolog sequences, selection of the biologically relevant sub-
set of the sequences, construction of the multiple-sequence
alignment, construction and rooting of the phylogenetic tree
and finally the ancestral inference with the use of ML. Our
computational workflow is fully automated and removes the
need for extensive expert knowledge of the system of interest
as well as employed bioinformatics tools. Furthermore, a novel
algorithm based on the localized weighted back-to-consensus
analysis was utilized to resolve an issue of the ancestral gaps
reconstruction. Assembled workflow and developed web server
were thoroughly validated using: (i) in-house laboratory experi-
ments, (ii) detailed comparison with three previously published
studies and (iii) a large number of proteins representing struc-
turally and functionally different families. FireProtASR does not
require installation and settings of any software packages as the
method is implemented in the interactive web interface freely
available at: https://loschmidt.chemi.muni.cz/fireprotasr/.

Methods
Workflow description

The basic workflow of the FireProtASR method is outlined in
Figure 1. To infer ancestral sequences representing all ancestral
nodes of the evolutionary tree in a fully automated way, a
set of biologically relevant homologous sequences must be
collected from genomic databases and reduced to a suitable
size (Phase 1). With the initial set of homologous sequences in
hand, several state-of-the-art methods are utilized to construct
a multiple-sequence alignment and a phylogenetic tree, which
are then used to support the inference of ancestral nodes
and reconstruction of ancestral gaps (Phase 2). The FireProtASR

workflow requires no user intervention beyond providing
a query sequence and (in the case of enzymes) selecting
catalytic residues used to identify a biologically relevant set
of homologous sequences. However, it is also possible to start
a calculation with a user-defined initial set of homologous
sequences, MSA, or even a phylogenetic tree instead of a single
sequence, thus skipping the first phase of the calculation.

Phase 1: collection of the initial set of homologous
sequences

The query sequence of the target protein in plain text or FASTA
format is the only input required from the side of the user.
Once the query sequence has been uploaded to the server and
checked for validity, searches for the catalytic residues are per-
formed automatically using SwissProt [19] and the Catalytic Site
Atlas [20]. The user can also specify the catalytic residues by
themselves if no/incorrect catalytic residues are found. Once the
catalytic residues and query sequence have been specified, an
in-house tool called EnzymeMiner [21] is used to collect an initial
set of homologous sequences. EnzymeMiner first performs two
rounds of PSI-BLAST [22] against the NCBI nr database [23]
and then filters out all sequences lacking the designated cat-
alytic residues, thereby ensuring the biological relevance of the
remaining homologs. EnzymeMiner searches can yield up to tens
of thousands of homologous sequences for large families. If no
catalytic residues were selected or provided by the user, BLAST
[24] will be used instead of EnzymeMiner, to obtain an initial set
of homologous sequences with potentially lower quality.

Next, the FireProtASR reduces the set of homologous sequences
to the required number, which is set to 150 sequences by default.
Several filters are applied during this process. First, all homologs

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/4/bbaa337/6042664 by M

asarykova U
niverzita user on 07 M

arch 2022

https://loschmidt.chemi.muni.cz/fireprotasr/


FireProtASR 3

Figure 1. Workflow diagram for the FireProtASR method. The workflow has two phases: (1) collection of the initial set of homologous sequences and (2) ancestral

sequence reconstruction. Colour coding: yellow denotes intermediate results and blue denotes computational tools. Grey and green denote inputs and outputs of the

calculations, respectively.

with sequence lengths 20% higher or lower than that of the
query sequence are excluded from the initial set. This sequence
length normalization is done to remove potential outliers that
could lead to a construction of a noisy MSA with many gaps.
Second, all homologs whose sequence identity to the query

falls outside a certain range are removed from the initial set.
By default, the upper and lower similarity limits are set to 90
and 30%, respectively. This step ensures that the phylogenetic
tree is unbiased towards the query sequence while removing
distant homologs that would degrade the quality of the sequence
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alignment. Third, USEARCH [25] is used to cluster the remaining
sequences with 90% sequence identity, and a single sequence is
randomly selected from each cluster.

Applying these filters produces a diverse set containing hun-
dreds to thousands of homologous sequences. An initial phylo-
genetic tree is quickly constructed with the PASTA software suite
[26], using MAFFT [27] and the swift neighbour-joining algorithm
implemented in FastTree 2.0 [28]. The resulting phylogenetic tree
is then forwarded to Treemmer [29], which iteratively prunes
leaves from the input tree until a specific number of leaves
remains, while minimizing the loss of genetic diversity. The
pruned tree is then displayed to the user via the interactive
user interface, allowing the user to choose to exclude selected
branches or even whole subtrees of the phylogenetic tree from
further calculations.

Phase 2: ancestral sequence reconstruction

In the second phase, the ancestral sequences are inferred from
the initial set of up to 150 homologs approved by the user. To
begin with, a new MSA is constructed from the reduced set of
homologous sequences. For this task, ClustalΩ [30] is utilized
by default, but other methods will be available in upcoming
versions of FireProtASR. For inference of the final phylogenetic
tree, the best-fitting evolutionary matrix must be selected. This
is done using one of the modules of the IQTREE package [31].
Alternatively, if the user prefers a specific evolutionary matrix
for the biological system of interest, the appropriate model
and all the relevant modifiers can be specified manually when
setting up the calculation.

The evolutionary model and its parameter settings along
with the MSA are then forwarded into RAxML [17], which is used
to construct a robust phylogenetic tree. By default, fifty boot-
straps are performed at the start of the maximum-likelihood
search; since no outgroup is provided, the resulting phylogenetic
tree is unrooted. Automated outgroup sequence selection is
not straightforward, especially for prokaryotic proteins due to
the high frequency of horizontal gene transfers. Rooting of the
tree is therefore performed using a minimal ancestor deviation
algorithm, which was shown to achieve comparable levels of
accuracy to outgroup rooting in trees describing the evolution of
eukaryotes, and to surpass both outgroup and midpoint rooting
in the case of prokaryotes [32].

The MSA constructed with ClustalΩ, the selected evolution-
ary model, and the rooted phylogenetic tree from RAxML are
used as inputs for the Lazarus method [33], which is imple-
mented using the PAML software package [16]. The Lazarus
method was re-implemented for FireProtASR to enable calcu-
lations to be performed without specifying outgroup. Conse-
quently, ancestral sequences of all ancestral nodes are parsed
from their posterior probabilities and provided to users in sep-
arate files in FASTA format. Additionally, BLASTp [24] is used
to search for a template in the PDB database [34], and a model
structure of the query sequence is constructed by homology
modelling using the ProMod3 program [35]. This model is shown
in the web interface to allow users to visualize the differences
between the query sequence and the selected ancestor.

Finally, due to the large number of undesirable ancestral
gaps inserted into ancestral sequences by Lazarus, a novel algo-
rithm for ancestral gap reconstruction was designed for use in
FireProtASR. This algorithm is based on the principle of local-
ized weighted back-to-consensus because consensus analysis
has proven to be an effective approach for increasing proteins’
thermal stability [36–38]. To begin with, each terminal node of

the phylogenetic tree is assigned a binary vector of length equal
to the length of the corresponding sequence in the MSA. Each
position in this vector is assigned a value of −1 or 1, indicating
the presence of a gap or standard amino acid, respectively, at
the corresponding position of the relevant sequence. On moving
from the terminals towards the root of the tree, the probability
of a gap in ancestral node An at position i is calculated as Ani

=
Aki

∗t1∗+Ali
∗t2

t1+t2
, where Ak, Al are the child nodes of An and t1, t2 are the

evolutionary distances between An and its child nodes. Taking
t3 to be the evolutionary distance between An and its parental
node, its value can be updated based on the values of t1 and
t2 as follows: t3_new = t3 + t1+t2

2 . This new value is computed
before proceeding with the calculation for the parental node; its
use increases the relative impact of well-branched subtrees and
therefore limits the impact of lone sequences and small subtrees
compared to that of well-represented ones. Finally, ancestral
sequences are reconstructed based on the scores in the corre-
sponding vector. Positions with values lower than 0 are assigned
as gaps, and the remaining amino acids are selected based on
their posterior probabilities as estimated by Lazarus. The nature
of inconclusive positions with scores in the interval <−0.1, 0.1>

is determined based on the frequencies of gaps in the global
alignment and the state of the parental node. To include the
ancestral gap, frequencies of gaps in the global alignment should
reach over 60%, or over 40% if the ancestral gap is present in the
parental node sequence. The model case for a single position in
the sequence alignment is shown in Figure 2.

Experimental validation

The workflow was experimentally validated using haloalkane
dehalogenases as a model enzyme. This enzyme was selected
as a typical representative of the α/β superfamily, counting over
100 000 proteins. The sequence of the haloalkane dehalogenase
DhaA (UniProt ID P0A3G2) was used as the sole input for the
calculation. Six different ancestral sequences were selected and
experimentally characterized.

Chemicals and growth media

1-bromobutane and LB medium were purchased from Sigma-
Aldrich Co. (St. Louis, MO, USA). IPTG was purchased from
Duchefa Biochemie B.V. (Haarlem, The Netherlands). All
chemicals used in this work were of analytical grade.

Expression in Escherichia coli BL21 (DE3)

Escherichia coli Dh5α cells were obtained from Invitrogen and
Escherichia coli BL21 (DE3) from New England Biolabs. The
genes for the ancestral dehalogenases were synthesized and
subcloned into the expression vector pET21b. The generated
plasmids were transformed into chemo-competent E.coli BL21
(DE3) cells. Obtained colonies were used to prepare precultures
by inoculation into 10 ml of LB medium (with 100 μg/ml
ampicillin) followed by overnight incubation at 37◦C and
180 rpm. For expression of each variant, 1 l of LB medium
supplemented with 100 μg/ml ampicillin was inoculated with
5 mL of the appropriate pre-culture (1/200). The flasks were
incubated at 37◦C and 180 rpm until OD600 0.6–0.8 was reached,
then incubated at 20◦C for 30 min. β-D-1-thiogalactopyranoside
(IPTG, 0.2 mM) was then added for induction, and the culture
was incubated at 20◦C and 180 rpm overnight. Finally, the culture
was harvested by centrifugation at 4500 × g, 4◦C for 15 min, after
which the cell pellets were frozen at −80◦C until further use.
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Figure 2. Ancestral gaps reconstruction algorithm. Green colour denotes the initial branch lengths of the phylogenetic tree. Black numbers indicate the values of the

vectors of the terminal and the ancestral sequences at the given position in the multiple sequence alignment. Red values show the modified branch lengths that are

updated after the calculation of the underlying ancestral node.

Protein purification

The cell pellets were suspended in 50 ml of equilibration buffer
(20 mM phosphate buffer pH 7.5 containing 0.5 M NaCl and
10 mM imidazole) and disrupted by sonication with a Hielscher
UP200S ultrasonic processor (Hielscher, Germany) four times for
4 min each. Disrupted cells were centrifuged at 13 000 × g and 4◦C
for 1 h (Laborzentrifugen, Germany). The crude extract was then
collected, filtered and loaded onto a Ni-NTA Superflow Cartridge
(Qiagen, Germany) in equilibration buffer. Unbound and weakly
bound proteins were washed out using increasing imidazole
concentrations. The target enzyme was eluted with purification
buffer containing 300 mM of imidazole. The eluted protein was
dialyzed three times overnight against 50 mM of phosphate
buffer (pH 7.5), after which its purity was checked by SDS–
polyacrylamide gel electrophoresis (SDS–PAGE). About, 15% poly-
acrylamide gels were stained with Instant Blue (Fluka, Switzer-
land). Protein concentrations were determined by NanoDrop
(Sigma-Aldrich, USA). The enzymes were lyophilized using a
vacuum pump system for long-term storage.

Circular dichroism (CD) spectroscopy

CD spectra were recorded at 20◦C using a spectropolarimeter
Chirascan (Applied Photophysics, United Kingdom). Data were
collected from 190 to 260 nm, at 100 nm/min with a 1-s response
time and 1-nm bandwidth using a 0.1-cm quartz cuvette. Each
spectrum shown is the average of five individual scans and was
corrected for absorbance caused by the buffer. Collected CD data
were expressed in terms of the mean residue ellipticity (ΘMRE),
which was calculated using the equation:

ΘMRE = Θobs · Mw · 100
n · c · l

where Θobs is the observed ellipticity in degrees, Mw is the protein
molecular weight, n is number of residues, l is the cell path
length, c is the protein concentration (0.2 mg/ml) and the factor
100 originates from the conversion of the molecular weight to
mg/dmol.

Thermal denaturation

Thermal unfolding was followed by monitoring the ellipticity at
224 nm over the temperature range of 20–94◦C, with a resolution
of 0.1◦C at a heating rate of 1◦C/min. Recorded thermal denatura-
tion curves were roughly normalized to represent signal changes
between approximately 1 and 0 and fitted to sigmoidal curves
using Origin 6.1 (OriginLab Corporation, USA). The melting tem-
perature (Tm) was evaluated as the midpoint of the normalized
thermal transition.

Enzymatic haloalkane dehalogenase activity

Dehalogenation activity was assayed using the colorimetric
method of Iwasaki et al. [49]. The release of halide ions was
analyzed spectrophotometrically at 460 nm using an Eon
microplate reader (BioTek, USA) after reaction with mercuric
thiocyanate and ferric ammonium sulfate. The reactions were
performed at 37◦C in 25-ml Reacti Flasks closed with Mininert
Valves. The reaction mixtures consisted of 10 ml 100 mM glycine
buffer (pH 8.6) and 10 μl of the substrate 1-bromobutane.
Reactions were initiated by adding the enzyme to a final
concentration of 0.01 (DhaA 172Loc), 0.0065 (DhaA 172Glob),
0.0052 (DhaA 230Glob), 0.028 (DhaA 238Loc) or 0.014 mg/ml
(DhaA 238Glob). Reactions were monitored by withdrawing 1 ml
of samples from the reaction mixture after 0, 5, 10, 15, 20 and
30 min. The samples were immediately mixed with 0.1 ml of 35%
nitric acid to stop the reaction. Dehalogenation activities were
quantified as rates of product formation over time. Each activity
was measured in three independent replicates.

Enzymatic luciferase activity

Luminescence activity measurements were performed with a
FLUOstar OPTIMA Microplate reader (BMG Labtech, Germany)
using coelenterazine as the substrate at 37◦C. A 25 μl of sample
of purified enzyme at a concentration of about 1 mg/ml was
placed into a microtiter plate well. After baseline collection for
10 s, the luminescence reaction was initiated by adding 225 μl
of 8.8 μM coelenterazine in reaction buffer (100 mM potassium
phosphate buffer, pH 7.5). Luminescence was recorded for 72.5 s,
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and each sample was measured in at least three independent
experiments. The areas of the resulting luminescence intensity
peaks in relative luminescence units (RLU) were converted into
values in units of RLU/mg/s.

Results
Web server input

The only required input to the web server is a query sequence
of the target protein in plain text or FASTA format. Alternatively,
one can upload a FASTA file containing an initial set of sequence
homologs or a multiple sequence alignment (MSA). Rooted and
unrooted phylogenetic trees in the standard Newick format can
also be provided. When performing calculations in basic mode,
only the table containing the essential residues is available
to the user. Essential residues are identified automatically by
searching in SwissProt [19] and mCSA [20]. However, the initial
selection can be changed by the user. The default values and
settings of individual computational tools are optimized to pro-
vide reliable results for most systems. Operating in advanced
mode expands the list of modifiable parameters to include those
related to: (i) the thresholds of the homolog identity filters and
sequence clustering, (ii) selection of the evolutionary model and
(iii) construction of the phylogenetic tree. Advanced mode allows
experts to fine-tune the calculation’s parameters based on the
studied biological system, which may be useful when dealing
with particularly small or large protein families.

Selection and reduction

Upon submission, a unique identifier is assigned to each job to
track the calculation. The ‘calculation browser’ informs the user
about the status of the individual steps in the ancestral sequence
reconstruction workflow. Once the first phase of the job is fin-
ished, the initial phylogenetic tree is displayed to the user using
a strongly updated adaptation of PhyloTree library (Figure 3A)
[39], together with the table of removed sequences (Figure 3B).
By clicking on the individual leaves of the phylogenetic tree, the
user can exclude selected sequences from future calculations.
Furthermore, whole subtrees can be removed by choosing this
option in the menu of the selected ancestral node. The MSA of
the homologous sequences can be also visualized by switching
to the multiple sequence alignment tab. This mode is intended
for the expert users with the greater knowledge of the system
of interest as it allows for the removal of the noise and outliers
from the initial set of homolog sequences. If the expert mode
is utilized, it is recommended to exclude the sequences that do
not share the function similar to the query protein or that cause
a significant disturbance in the MSA.

Web server output

The calculation’s progress can be tracked in the ‘calculation
browser’ similarly to the selection step. Once finished, users
can either download the results in the zipped archive directly
from the calculation page or navigate to the ‘Result page’ for
further analysis. The ‘Result page’ is organized into several pan-
els allowing users to interactively visualize and design ancestral
enzymes.

Protein visualization

The homology model of the query protein predicted by ProMod3
is interactively visualized in the web browser using the JSmol

applet [40] (Figure 3D). Users can switch between different visu-
alization styles such as backbone, wireframe or cartoon and
change the quality of the visualized structure. It is also possible
to visualize the differences between the query and the selected
ancestral sequence on the modelled protein structure: substi-
tutions and deletions are shown in blue and red, respectively,
while insertions are indicated by regions between red and yellow
residues.

Ancestral tree panel

The ‘ancestral panel’ shows the final phylogenetic tree con-
structed by RAxML [17] along with further information about the
precalculated ancestral sequences (Figure 3E). By selecting any
of the ancestral nodes, it is possible to either (i) visualize the dif-
ferences between a wild-type protein and the selected ancestor
node on the protein structure or (ii) open a new window pro-
viding an overview of the posterior probabilities for individual
amino acids in the sequence of the selected ancestor (Figure 3G).
Posterior probabilities are shown in the bar-styled sequence logo
together with the percentages for each considered amino acid,
and each bar is expanded with information about the charge and
hydrophobicity of the most probable amino acids. The bar repre-
sentation was in part derived from the SequenceLogo library [41].
The user can edit the ancestral sequence and store it as a new
user-defined ancestor (Figure 3F). This option is useful for the
experts with more in-depth knowledge of the system of interest
and allows to force some specific mutations, e.g., the mutations
with the previously known effect on proteins stability, into the
constructed ancestral sequence. It can also be used to bring
some biological insight into the positions with noisy posterior
probabilities. Furthermore, the ancestral sequences’ MSA can be
visualized in the multiple sequence alignment tab for further
analysis.

Sequence designer

The ‘Sequence designer’ panel allows users to manage and edit
user-defined ancestral sequences. Additionally, new sequences
can be created by modifying existing custom ancestors
(Figure 3C). Differences between the query sequence and custom
ancestors can also be visualized on the protein structure in this
panel. All prepared designs can be downloaded in one zipped
archive together with the original ancestors and the structure
prepared by homology modelling.

Web server experimental validation

In one of our previous studies, we have presented experimental
characterizations of six inferred ancestral proteins from
haloalkane dehalogenase subfamily II [10]. Relative to their
contemporary counterparts, these ancestral proteins exhibited
higher thermal stability (by 8–24◦C), improved yields and
broadened substrate specificity. Those ancestral sequences
were reconstructed by clustering an initial set of homologous
sequences that was reduced by inspection in the sequence-
editing program BioEdit [42]. A multiple sequence alignment
was then manually curated using a structure-guided alignment
of eight proteins from HLD-II and poorly conserved regions were
removed from the alignment. The topology of the phylogenetic
tree was optimized by subtree pruning and re-grafting, and
the tree’s root was established using outgroup selected on the
basis of expert judgement. Finally, the ancestral sequences and
positioning of gaps were refined by manual inspection.
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FireProtASR 7

Figure 3. The FireProtASR graphical user interface showing results obtained for the haloalkane dehalogenase DhaA (UniProt ID P0A3G2, PDB ID 4E46). (A) The sequence-

filtering panel allows users to exclude selected branches from the calculation. (B) The reduction table shows the list of removed sequences. (C) The sequence designer

allows users to download and edit ancestral sequences. (D) The JSmol viewer provides interactive protein visualization. (E) The mutations panel contains all designed

ancestral sequences in the ancestral tree. (F) The edit window enables amino acid substitutions at individual positions. (G) The sequence information window shows

detailed information on selected ancestral sequences.

As part of the validation of FireProtASR, we tried to replicate
these results by using the sequence of haloalkane dehalogenase
DhaA (UniProt ID P0A3G2) as the only input query. All steps
of the calculation, including homologous sequence selection,
multiple sequence alignment construction, phylogenetic rooting

and ancestral reconstruction were carried out automatically.
Three pairs of ancestral sequences were selected, each pair
containing one ‘global’ and one ‘local’ ancestral node (Figure 4A).
Global ancestor (Glob) represents ancestral sequence obtained
directly from the fully automated workflow, while local ancestor
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8 Musil et al.

Figure 4. Results provided by the FireProtASR workflow using haloalkane dehalogenase DhaA as an input query. (A) Phylogenetic tree of the HLD-II constructed by

the FireProtASR strategy with indicated three global ancestors reconstructed within this study. (B) Phylogenetic tree for the local ancestor of the ancestral node 172.

(C) Phylogenetic tree for the local ancestor of ancestral node 230. (D) Phylogenetic tree for the local ancestor of ancestral node 238. (E) Multiple sequence alignment

comparing the query sequence with the suggested ancestral sequences and the result of the back-to-consensus analysis.

(Loc) was constructed by carrying out FireProtASR workflow for a
second time using only the sequences included in the subtree
beneath the selected ancestral node. Local ancestor therefore
represents a root of a phylogenetic tree constructed from only
the sequences most relevant to the selected ancestral node.
Node 238 (Figure 4D) is an ancestor of only five leaves and
was selected because of its close proximity to luciferase and
dehalogenase, providing a fair comparison to the previously
published ancestors. Similar comparison can be also achieved
with node 172 (Figure 4B), having several stable dehalogenases
in its progeny. Finally, node 230 (Figure 4C) was highlighted as a

more distant ancestor of both luciferase and dehalogenase. No
pruning, curation or re-grafting was performed in the process.
Selected ancestral sequences were then subjected to the exper-
imental validation. MSA of the query protein, selected ances-
tors, and the sequence provided by executing back-to-consensus
analysis is attached in Figure 4E.

Although the selected sequences have high implied sequence
similarity (92–97%) with the inferred ancestors, experimental
validation showed that the ancestors’ thermal stability was 20–
26◦C higher than that of wild-type DhaA (Table 1). The ancestral
proteins also exhibited high expressibility, solubility, yields and
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Table 1. Characteristics of reconstructed and experimentally characterized ancestral haloalkane dehalogenases

Protein code Expression (% of
total protein)

Solubility (%) Yield (mg/l) Tm (◦C) HLD act.
(μmol/mg·s)

LUC act.
(RLU/mg·s)

DhaA wt 17 83.1 91.1 50.56 ± 2.4 0.032 ± 0.0059 n.a.
DhaA 172Loc 23 85.5 74.9 71.60 ± 0.7 0.038 ± 0.0002 1.41 ± 0.26
DhaA 172Glob 21 65.2 88.2 70.04 ± 1.5 0.061 ± 0.0045 n.a.
DhaA 230Loc 20 n.d. n.d. n.d. n.d. n.d.
DhaA 230Glob 23 84.8 108.5 72.14 ± 0.4 0.061 ± 0.0118 n.a.
DhaA 238Loc 23 63.2 74.9 70.36 ± 0.6 0.014 ± 0.0021 353.5 ± 14.58
DhaA 238Glob 19 83.3 94.4 76.19 ± 0.2 0.030 ± 0.0012 3.18 ± 0.33

Notes: DhaA, haloalkane dehalogenase from Rhodococcus rhodochrous NCIMB 13064; wt, wild type; Loc, ancestral protein inferred from local alignment; Glob, ancestral
protein inferred from global alignment; Tm, melting temperature; HLD act., haloalkane dehalogenases activity; LUC act., luciferase activity; n.d., not determined due
to poor solubility of this protein; n.a., not active under tested conditions.

catalytic activity. Moreover, inference based on both haloalkane
dehalogenases and luciferases led to the discovery of the very
interesting enzyme ancHLD-Rluc, which exhibits dual dehaloge-
nase and monooxygenase activity. This experimental validation
provides direct experimental evidence of the good functionality
and reliability of the fully automated version of FireProtASR.

Additionally, results obtained using FireProtASR were thor-
oughly and quantitatively compared to three previously
published experimental studies. For this purpose, Euclidean
distance [43], and the Subtree prune and regraft distance
[44] were calculated to compare the trees obtained from
the FireProtASR and published literature. The two trees were
also graphically compared using the Jaccard index utilizing
ColorBrewer [45] scheme. Detailed comparison of all three
experimental studies with the results produced by FireProtASR

server is attached in Supplementary Data 1–3, available online at
https://academic.oup.com/bib. Finally, the robustness and relia-
bility of the FireProtASR server was tested using 60 diverse pro-
teins from various protein families (see Supplementary Data 4
available online at https://academic.oup.com/bib).

Discussion
ASR has been shown to be a very effective strategy for the protein
thermostability engineering and as such was implemented in
various computational tools using maximum-likelihood (FastML
[46], RaxML [17], Ancestors [47]) or Bayesian inference (Han-
dAlign [48], MrBayes [18]) methods. However, a significant limita-
tion of those methods is that they require complex input data to
be uploaded by the users. Those requirements are reaching from
a simple set of homolog sequences to the MSA or even rooted
phylogenetic tree, leaving the most crucial and laborious parts
of the calculation in the hands of the users. Non-expert users
without the deep knowledge of the bioinformatics tools and the
system of interest are therefore hindered from the successful use
of the ASR method.

FireProtASR is a web server that aims to provide users with
one-stop-shop solution for the ancestral sequence reconstruc-
tion. FireProtASR requires minimal input from the users, and
the whole calculation can be processed from a single protein
sequence, set of homolog sequences, MSA and phylogenetic tree.
All steps of the calculation, including the search for biologi-
cally relevant homolog sequences, dataset reduction and the
ancestral reconstruction are automated. Moreover, a novel algo-
rithm based on localized weighted back-to-consensus analysis is
implemented to resolve an issue with ancestral gap reconstruc-
tion. FireProtASR web server is also complemented by an easy-
to-use web interface that allows users to interactively analyze

sequences of the individual ancestral nodes together with the
ability to design their own ancestral sequences based on the
posterior probabilities of the existing nodes.

The robustness and reliability of the results produced by the
FireProtASR workflow was evaluated by experimental character-
ization of six ancestral sequences of haloalkane dehalogenase
from HLD-II subfamily. With the exception of the local variant
of the ancestral node 230, all designed ancestral sequences are
soluble and also retain high expressibility and yields on the
levels comparable to the DhaA wild type. However, the thermal
stability has increased by over 20◦C and global variants 172 and
230 have also increased the HLD activity by two-fold. Increase in
HLD activity cannot be observed in the constructed local variants
that utilize smaller subsets of homolog sequences, and thus
only a limited amount of evolutionary information. This would
encourage the usage of the global variants for the design of
highly stable and active proteins. However, more focused view
using a localized variants of the ancestral nodes can provide
some useful results as can be observed in the local variant of the
node 238 that shows both dehalogenase and monooxygenase
activity. High thermal stabilization was also achieved in those
variants.

Finally, the results provided by the FireProtASR web server are
consistent with the designs presented in the published literature
as the fully automatized designs obtained by FireProtASR method
maintain high sequence similarity (>90%) with the manually
designed and curated ancestors. Finally, the comprehensive
analysis of approximately 60 different proteins from various
protein families have proven the robustness and reliability of
the presented method.

The full automation of the FireProtASR method eliminates the
need to select, install and evaluate individual tools, optimize
their parameters and interpret intermediate results. Together
with its general applicability for a wide range of protein fami-
lies, FireProtASR makes the procedure of ancestral reconstruction
accessible to the users without any prior expertise in bioin-
formatics, and the intuitive web interface allows for a further
analysis utilizing both sequence and structural information.

Key Points
• FireProtASR is a web service for a fully automated

design of stable proteins using ancestral sequence
reconstruction and is accompanied by an interactive
and easy-to-use interface.
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• FireProtASR allows users to utilize ancestral recon-
struction without prior knowledge of the necessary
bioinformatics tools and the biological system.

• The robustness and reliability of the FireProtASR

method were thoroughly tested by both laboratory
experiments and by comparing predictions with the
results published in scientific literature.

• Laboratory characterization of the ancestral designs
showed up to 26◦C improvement in thermostability
and some of the proteins poses even dual catalytic
activity.

Data availability

All data validating the robustness and accuracy of our ser-
vice are available in the Supplementary materials 1-4. Web
service and tutorials are freely available at https://loschmi
dt.chemi.muni.cz/fireprotasr/.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.
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