pAONRS

Fotis E. Alexakos

[Evalua‘rion of multiple slices and tiles in

HEVC video encoding]

Supervisor: Dr. Maria G. Koziri, Computer Science
Department, University of Thessaly, Lamia

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

«YrmevBuvn AnAwaon pn AoyokAomnig kat avainng mpoowrikng euBuvng»

Me mAfRpn enilyvwon TwV CUVETIELWV TOU VOHOU Tiepl MVEUUATIKWY SIKALWUATWY, Kal
yvwpilovtag T OUVEMELEC TNG AoyokAomng, SnAwvw umelBuva kol evumoypadwg OTL N
nopovoa epyaocia pe titho «Evaluation of multiple slices and tiles in HEVC video encoding»
amoteAel MPOIOV QUOTNPA TPOOWTIKAG €pyaciag Kol OAeC¢ oL TinyéG amd TIC OTOieg
xpnotwuormnoinoa edopéva, 16€eg, ppAoelg, MPoTAoels N A€eLg, elte emakplBwg (OMwg umapyxouv
OTO TPWTIOTUTO I petadpoocpéveg) eite pe mapdadpacn, €xouv dnNAwOel katdAAnAa Kot
€USLAKPLTA OTO KEWEVO HE TNV KATAAANAN TTOPOTTOUTTH KOL N OXETIKN avadopd eplhappavetal
oTO TUNUa TwV BLBAloypadikwy avadopwyv pe TARpN Teplypadr (katd to mpdtumo IEEE 2006).
Avalappavw TANPWCE, OTOULKA KOL TIPOCWTTLKA, OAEC TLG VOULKEG KOl SLOIKNTLKEG CUVETTELEG TIOU
Suvatal va mpokUPouv oTnv MEPIMTWOn Katd tnv omoia anodswyBei, Sloxpovikd, OTL N epyacia
ouTn A TUAKA TG SV pou avhkel SLOTL elval tpoidv AoyokAomc.

25 louviou 2018

O AHAQN

QOwtng E. A\e€dkog

“Affirmation of no plagiarism and responsibility assumption”

Having full awareness of copyright laws and plagiarism consequences, | hereby
responsibly declare and sign that this present work bearing the title “Evaluation of multiple
slices and tiles in HEVC video encoding” is strictly the fruit of my own personal labour. Also,
every source of information, ideas or wording used (either as they are or with edits) is clearly
referenced appropriately in the text, while a full list of the above mentioned sources is to be
found at the end of this work (IEEE 2006 style). Finally, I, the undersigned, fully assume all the
legal and administrative consequences that might arise in the case that this work or parts of it
will be proved to infringe copyright or be a product of plagiarism, either today, or in the future.

June 25™ 2018

Sincerely,

Fotis E. Alexakos

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Contents

JAY o1 4 - Tot S0 PIN 1
CHAPTER 1: Brief Introduction to Video Codingccccccecvvecennnnnn. 1
1 o 1T T T =TSSR 1
Video Coding standards @VOIULIONc..uiiieiiie it e e e e e ate e e e 2
Digest of a Video Coding Standards COMPAriSONcccceeeieiiiieieiiee e cciiee et 4
CHAPTER 2: Overview of the HEVC standardccccceeevenrennenee 7
T e Yo [0 4 T o PSR 7
FEATUIES OF H.2B5eiiieiee ettt ettt et e e s s e e st e s aae e sateesbaeesnseeeneesanseessneenns 7
HEVC Computational ComMPIEeXityeeiiiuiiriiiiiie ettt e e e e s svae e s ssabeeeesanes 11

CHAPTER 3: An overview of available parallelization methods in

INEFOAUCTION ..ttt et e b e bt e s bt e sbe e st e et e e beesbeesbeesaeesanenas 13
Exploitation of data level parallelisSmcoociiiiiiiiiie e e 14
Wavefront Parallel ProCESSING.......uuiiiiieii ettt ettt e et e e e ate e e e s raee e e aneees 15
SIICES ettt et e bbb sre e st e san e s ne e n e sanenane 15
LI =TT OO OOV UPURRRRPRRTR 16
SIICES AN LIES ..ttt s sttt et e b e 17
CHAPTER 4: Evaluation of multiple slices and tiles................... 19
I OAUCTION ..ttt ettt ettt e be bt e bt e s bt e sbe e st e e beenbeesbeesbeesaeesanenas 19
The HEVC TeSt MOAEI (HIM)eeiiie ettt ettt ettt e it e e e e ette e e e eaba e e e senbaeaeenraeaaeeans 19
Description of our testing eNVIrONMENTccuviii i e 20
Result collection and analySiS.......uuieei e e e e e e e e tre e e e eaae e s sertaee e eaes 33
Conclusion and ideas for further research ..o 42
References

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

List of figures

Figure 1: Evolution of Video Coding Standardscoccuuieiiiiiiieiriiieee st sscieee e e e e ssaeee s 3
Figure 2: Block diagram of an HEVC encoder (with greyed decoder modules)ccccecvvevveennnenn. 7
Figure 3: CTB 0 CB PartiniONiNg.......cooeueiiiiiiiieeeiieiettee ettt ettt e e e s s st re e e e e e s aeneeeeeees 8
Figure 4: Coding Unit partitioningcoccueei ittt e s e e s saae e e s saree e en 9
Figure 5: Splitting of CUs to PUs and then into TUSccuiiiiiiiiiiiiiiec e 9
Figure 6: Prediction Units and Prediction BlOCKS SizeS........cccccuieieiiiieeiciiieee e 10
Figure 7: An example of arranging TUs in @n LCU.ccccuiiiiiiiiiie et 10
Figure 8:Encoding time of various HEVC configurations vs. MPEG4ccccooiiiiniinninnienne 14
Figure 9: Execution Time Analysis of the HEVC ENCOEr.......cuuviieciieiicciee e 14
Figure 10: Demonstration of WPP using five (5) threads.......ccccceecieeiccciee e, 15

Figure 11: A slice-based partitioned frame with CTBs following a raster scan order within it.... 16

Figure 12: An example of Tiles partitioning using four columns and three rowscccceeeuu..e. 17
Figure 13: Example of slice segment partitioning of a frame.....cccccoeviveiieiiciii i, 17
Figure 14: Example of tile segment partitioning of @ frame.......ccccveeieeceeiiciie e, 18
Figure 15: Sample header of an HEVC .cfg file ...ciivuiiiiiiiiie e 22
Figure 16: Slicing options configuration Sampleccocciieiiiiiiie i 23
Figure 17: Tiling options configuration Samplec.ueeeviieeiiiiiie e 23
Figure 18: Division of a full-HD frame (1920x 1080 pixels) into 10 tilesccccecveevveevcreeecrreenne. 25
Figure 19: A tile with "dimensions" of 10 X 9 CTUSccccuiiiieiiiiee et 26
Figure 20: A tile with "dimensions" of 10 X 5 CTUScccccuiiiieiiiee et e e 27
Figure 21: Directory structure of our testing environment..........ccccceveeecieeicciiie e, 28
Figure 22: Bash script to initiate teSt FUNS......ccocciiiieeee e e 28
Figure 23: Exhibiting slices in a P frame of 'Traffic' sequencCe.......ccovveeccieeiecciie e, 29
Figure 24: Exhibiting tiles in "Traffic' frame ... 30
Figure 25: Slicing AND tiling in "Traffic'.......oe oo e 30
Figure 26: Output data collection for QP=27ooeiiiieeiiiiee e e e 33
Figure 27: Output data fOr QP=37ccooiiiiiciiee ettt e e e s e s aae e e e aae e e s s rae e e e aaeeas 34
Figure 28: Impact of QP on coding effiCienCy.....ccccciiiiiiiiiieccee e 34
Figure 29: R-D curves demonstrating coding efficiencycccccueeeeiieiiccciee i, 36
Figure 30: Sample R-D curve that shows the use of 'mode' parameter in bjontegaard2()........... 37
Figure 31: Summary of encoder output data........cccveiieiiieiiiiiiee e e 38

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Figure 32: All the calculated BD VAIUEScooveiiiiiriiieicieee ettt e et

Figure 33: Bjontegaard metric barChartsccccceveciieiiiiies e s

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

List of Tables

Table 1: Load balancing achieved with regard to frame partitioningcccecvevivvieeiincien e, 18
Table 2: Explanation of HEVC encoder configuartions.......cccccveveveiieiiniieee s 20
Table 3: Two of the sequences used for HEVC teSting.......ccoovvieiiiiiieiiciieee e 24
Table 4: Partitioning ParameEters... ... ittt e s e e e st e e e bae e e e sareeeeenareees 27

Table 5: Some of the first lines produced by the encoder with info about test conditions used. 31

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Abstract

The ever growing demand for even better and better video quality have driven the
development of sophisticated video coding techniques with High Efficiency Video
Coding (HEVC) being the most recent standard. HEVC (known also as H.265) provides
for great compression without perceivable loss in image quality. This standard is about to
replace its predecessor H.264, widely known as MPEG-4. Yet, this efficiency of H.265
comes at the cost of a (much) increased coding complexity algorithm. In other words,
coding time mainly, but also decoding time are higher.

In order to deal with the above issue, H.265 standard is designed so as to promote
code parallelization at a high grade. Thus, one can choose between the following two
high level parallelization methods:

i. Frame segmentation in slices or/and tiles and
ii. Wavefront parallelization

Purpose of this thesis is to evaluate various segmentation ways, trying to conclude
about the best segmentation in slices and tiles in order to achieve the most efficient
parallelization keeping the highest coding efficiency possible.

Structure of this essay is as follows: First, we present shortly and briefly compare the
most common video coding standards that have been developed until today. Next, we
delve into HEVC with reference to various slicing and tiling methods used to improve its
performance via parallelization strategies. We continue presenting HEVC Reference
Software and the Test Model [1], [2] we used for our tests and experiments. Finally, we
describe in details several “runs” of HEVC encoder whose output naturally leads to
specific conclusions.

CHAPTER 1: Brief Introduction to Video Coding

Preliminaries

Traditionally, digital video has always been the most space demanding Computer
Science application. This is because, a movie is in fact too much information in the form
of thousands and thousands images presented as “frames”. Each one of these frames
needs several bytes to be described depending on its resolution (in pixels), colour bit
depth and so on. Also, people’s demand concerning video quality has grown significantly
lately. Thus, having started with —say- CGA [3] resolutions of 320x200 pixels with 4-bit
colour depth back in the ‘80s, we tend to use High Definition(HD) and Ultra High
Definition(UHD) Video of such resolutions as 3840x2160 and 10-bits colours, or even
4K and 8K standards etc. Moreover, increased traffic caused by applications such as
video-on-demand, video apps for mobile devices (smartphones, tablets) and so on,

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Video Encoding principles

impose severe challenge on today’s networks. Also, there is increased desire for higher
quality and resolutions in mobile applications [4].

As a result, there was an early need for algorithms to compress video so as to
reduce needed storage capacity or/and bandwidth and transmission time accordingly.
Today, in the ICT business, we distinguish between two types of data compression
algorithms: Lossy and lossless. According to Wikipedia, the term lossy or irreversible
compression describes algorithms that encode data either discarding part of them or by
using inexact approximations to convey the content [5]. On the other hand, the term
lossless compression refers to techniques that encode data in a way that they can be
decompressed precisely to their original form and size; while we would get an
approximation only of the prototype data in case lossy compression were chosen. Of
course this “approximation” used in lossy compression strategies leads to higher
compression rates (i.e. smaller files). [6]

Run Length Encoding (RLE) and Lempel-Ziv-Welch (LZW) are lossless
compression examples, with H.264 and H.265 being lossy compression algorithms. Now,
Video Compression is an application of data compression and its objective is to remove
redundant information from a video and to omit those parts of the video that will not be
noticed by a human eye [7].

Typically video compression algorithms are based on the fact that most pixels in a
frame are highly correlated with others in the same frame or adjacent (previous or next)
ones. Therefore, we can reduce the amount of data required to represent a video by
removing any redundancy inside the frame (intra-frame) or in-between them (inter-frame)

[7].

We can broadly classify redundancy in a video as follows:

e Spatial redundancy: Or Intra-Frame Redundancy. This term is attributed to
redundant information existing within the frame. Since a video frame is
simply a picture that can be independently processed, we can remove such
redundancies by applying various digital image compression algorithms on
each frame.

e Temporal redundancy: It is natural for frames that are captured within
hundredths of a second to be highly correlated. In other words: They are
adjacent (in time) and present extremely few differences. This is called
Temporal or Inter-Frame redundancy. [7]

An encoder uses intra-prediction methods to eliminate spatial redundancy and
inter- to remove temporal one. In order to optimize predictions, several settings have to
be applied on the encoder. In general, we divide frames in three categories: I(Intra),
P(Predicted) and B(Bidirectional). For P and B frames, both inter- and intra-predictions
can be used, while we apply only intra- for I frames. (The prefix ‘infer’ has the meaning

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Video Encoding principles

of ‘between frames’ while ‘intra’ stands for ‘in a frame’). Also, a P frame is predicted
from a reference one preceeding it, while a B frame can be either predicted from a
preceding or subsequent one. For inter-prediction purposes, the encoder reorders frames
as they arrive. [8].

Nowadays, any modern video compression standard uses similar basic steps to
encode a video [7]:

1) Divide each frame of the video into blocks of pixels
2) Identify and remove spatial redundancies within each frame
3) Exploit temporal redundancies between the adjacent frames and remove
those redundancies.
4) Identify and remove the remaining spatial redundancies using quantization,
transformation and entropy encoding.
We will see more about the above techniques in the discussion about the HEVC
standard [9].

We are going to discuss about various Video Coding standards here. Most of them
have appeared since the early ‘90s and were developed by the ITU-T and ISO
organizations about which we talk below. The following figure shows their evolution
until today.

Figure 1: Evolution of Video Coding Standards

ITU-T is the Telecommunication Standardization Sector of ITU which in turn
stands for International Telecommunication Union. ISO is the acronym of the

3

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Video Encoding principles

International Organization for Standardization. ITU-T is also known as Video Coding
Experts Group (VCEG) while ISO can also be found as Moving Picture Experts Group
(MPEG). ITU-T since its formation in 1997 aims at maintaining prior video coding
standards and developing modern ones, as today there is high demand for moving
pictures services, either conversational and non-conversational. On the other hand, VCEG
was founded earlier (in 1988) to provide for video and audio coding standards to serve
applications such as video distribution and digital storage media. In 2001, both
organizations merged to the Joint Video Team (JVT) to develop a new International
Standard (Recommendation) today known as the H.264 Recommendation/MPEG-4 part
10 standard [10].

H.261

The first video coding standard developed by ITU-T immediately after its
formation was the H.261 one. Actually, this came to be just the first member of a whole
codecs family under the naming standard of H.26x. It was also the first well spread and
used standard, i.e. with major support. At first it aimed to serve the need for video
transmission over ISDN lines supporting one or more 64Kbps channels. In fact, the
standard only describes the decoder allowing the encoder design to use any motion
compensation method as long as the output could be handled properly by the decoder. In
any case, a 16x16 block called macroblock is the main processing unit. Inter- and intra-
predition is supported while the 8x8 Discrete Cosine Transformation(DCT) was
introduced followed by rounding the coefficients (scalar quantization). Consequently,
they are scanned in a zig-zag run and coded (variable length coded is supported) to
remove redundant information. Any international video coding standard which has been
introduced since then is closely based on the same mechanisms. [10]

MPEG-1

MPEG-1 was developed by the homonymous Group during 1993 in order to cater
for the compression of VHS digital video and video CDs. It supports input sources with
resolutions of 352x288 (PAL) or 352x240 (NTSC) processed at 1.5Mbps. At higher bit
rates MPEG-1 provides better video quality than H.261. [10]

H.262/MPEG-2

The successor of the above standards were H.262, also known as MPEG-2. It was
developed by ITU-T and MPEG together in 1992. It outclasses MPEG-1 as it supports
interlaced video (used in older TV systems) and offers better performance at bitrates
greater or equal to 3Mbps. Backwards compatibility with MPEG-1 is also supported for
consistency purposes. This means that an MPEG-2 player can decode both MPEG-2 and
MPEG-1 videos. [10]

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Video Encoding principles

H.263, H.263+ and H.263++

The descendant of H.262 standard was naturally H.263 and its enhancements
(versions 2 and 3). It was developed (ver. 1) in 1995 by ITU-T. H.263 is quite efficient in
conferencing as it offers double quality at any bit rate compared to its predecessors.
Compared to H.261 it supports:

* DCT coefficients are coded using 3-D variable length code

* Bi-directional prediction

* Arithmetic entropy coding.

* Median motion vector prediction
H.263+ is another name for the version 2 of H.263 which was presented at early 1998.
This update offered support for features such as flexible and custom video formats, error
robustness and Supplemental Enhancement Information(SEI). Finally, in 2000 an
H.263++ version (or version 3) was released that supported an improved compression
efficiency over H.263, better picture quality, packet loss concern, even more resilience to
errors and additional SEI [10].

MPEG-4

MPEG-4 standard was developed by MPEG (Moving Picture Experts Group) in
late 1998. It acquired the formal International Standard Status of MPEG-4 ver. 2 at the
very beginning of the millennium. This standard supports various applications which can
be surveillance cameras with poor resolutions or HDTV broadcasting and DVDs. MPEG-
4 Part 2 has about 21 profiles. Some of these sophisticated profiles are:

v Simple Face Animation
Simple FBA
Scalable Texture
Advanced Core
N-Bit
Hybrid
Advanced Coding Efficiency
Advanced Real Time Simple [10].

N N NI NI N NN

H.264/MPEG-4 Part 10/AVC

H.264/MPEG-4 AVC released in 2003 is a joint project done by ITU-T Video
Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group
(MPEQG). These standards show significant improvement in intra coding and inter coding
efficiency. It presents enhanced error robustness, and increased flexibility. It has efficient
motion compensation and reduced bit-rate. Different block sizes are used for performing
motion compensation which results in better video quality. The basic processing unit is
16x16 pixel macro blocks. The two entropy encoding methods used are CAVLC and
CABAC. For all syntax elements, Context-Adaptive Variable-Length Coding (CAVLC)
uses a single codeword set. RLE is used to code the transformation coefficient. In
Context-Adaptive Binary Arithmetic coding, information entropy (from symbols coded in
the near past) is exploited for encoding. It also uses arithmetic coding for transmission.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Video Encoding principles

Some of the current applications for AVC are: Internet Video (.mp4 files), High
Definition TV, Video Conference etc [7].

In comparison to prior video coding standards, H.264 saves almost half the bit
rate while increasing greatly the compression percentage. This standard supports
organization of coded info plus flexibility in coding and thus can increase resilience to
errors. One have to notice though that the increased coding efficiency and flexibility
suffers a penalty of increased complexity (i.e. execution time) compared with older
standards [10]. The same seems to be valid for the most contemporary video coding
standard —H.265- described in the pages that follow.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

The H.265/HEVC standard

CHAPTER 2: Overview of the HEVC standard

Introduction

In January 2010 the ITU-T/VCEG and MPEG organizations jointly issued a Call
for Proposals (CfP) that led to the formal launch of the HEVC project. Since a project to
create another video coding standard that would offer the best compression-to-quality
ratio ever was quite bold, both ITU-T and MPEG had already studied its feasibility.
Today the project outcome is formally standardized as ITU-T Recommendation H.265 or
MPEG-H part 2. Although, there was a first version of HEVC available from the
beginning of 2013 still, the new standard was not defined officially until April 2013 [9].

Features of H.265

The figure below illustrates the architecture of the HEVC transcoder. We present
briefly H.265 features in the following paragraphs, based on [4] and [11].

o General Control
4 Data

Sealing & Inverse
~ Transform

Input
Video Signal

B

(Split into
CTuUs)

Quantized Transform l
Coefficients

v l Coded

Bitstream

Intra
Prediction

. / / /

.
Filter Control /

Data /
. Deblocking & SAQ
Motion LS Motion /

‘Compensation
i .
i
|
| 1

Intra-Picture I

~ Prediction

Intrafinter
selection

. Qutput Video
» Signal

Decoded
Picture
Buffer

Figure 2: Block diagram of an HEVC encoder (with greyed decoder modules)

The basic block in HEVC is known as the largest coding unit (LCU) and can be
recursively split into smaller coding units (CUs), which in turn can be split into small
prediction units (PUs) and transform units (TU). These concepts are explained below.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

The H.265/HEVC standard

1) Coding tree units (CTUs) consisting of coding tree blocks (CTBs) : Previous
standards (such as MPEG-4), used macroblocks as basic coding units. Each
macroblock was composed of 16x16 strictly sized blocks of luminance samples and
two 8x8 blocks with the corresponding chroma samples (that is in the case of 4:2:0
color sampling, which is the most common). Its HEVC analogous is the coding tree
unit (CTU). Its size is selected by the encoder and can be larger than 16x16. There
is a -rather important- naming convention here: In texts concerning the HEVC
standard, when a term ends with ‘unit’, a logical unit is indicated which will be
eventually encoded in a bit stream. On the other hand, if a term ends with ‘block’, a
portion of video frame buffer to be processed by a module is implied. Thus, a
coding tree unit (CTU) is a logical unit that consists of three coding tree blocks
(CTBs). One CTB for luminance (luma) and two for the corresponding chroma
samples. Syntax elements are also included. A luma CTB can have sizes of 16x16,
32x32 or 64x64 samples. The larger the size, the better the compression. Now, each
CTB can be split into smaller Coding Blocks (CBs) with multiple ways in a tree-
like structure (‘quadtree’) to help decide the prediction type (inter- or intra-picture).
(Figure 3).

CB 64x64

CB | CB
CTB(64x64) A oy 32x32

ce |ce|cB| co
B |cB | cB| B
B | cB | ce | ca |16x16
CB | CB | CB| B

TE[CE[CE[CE[CE[CE | CE]CB
CE|CE|CE|CE|CE|CE|CE|CE
TE[CE[CE[CE[TR [TE | TB|CB
TE[CE[CE [CE[TR TR | B[B
TE[TE[CE|CE|[CE[CE[TE[TE| 8X8
TE[CE[CE[CE[TR [TE | TB|CB
CE|CE|CE|CE|CE|CE|CE|CE
TE[CE[CE[CE[CE[TE | CB B

Figure 3: CTB to CB partinioning

2) Coding units (CUs) and coding blocks (CBs): A Coding Unit (CU) is used to code
the prediction type. Each CU consists of a luma (Y) CB and two chroma ones (Cb
and Cr) with the associated syntax elements. The size and positions of CBs are
specified by that quadtree CTU syntax mentioned before, with the root being the
CTU itself. Thus, the largest size a luma CB can have, is that of the luma CTB. We
can have CUs with size up to 64x64 pixels, which is the Largest Coding Unit
(LCU) size. This makes the LCU 16 times larger than the macroblock the core of
the coding layer of AVC/MPEG4. CTU is concurrently split into CBs. One or
many CUs form a CTB while CUs are further partitioned into Prediction Units
(PUs) that form tree-like structures of Transform Units (TUs).(Figures 4 and 5).

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

The H.265/HEVC standard

Prediction mode (intra- o inter-) can be
toggled at CU boundary

Figure 4: Coding Unit partitioning

Figure 5: Splitting of CUs to PUs and then into TUs

3) Prediction units and prediction blocks (PBs): As mentioned above, CUs (being
formed by CBs) are the decision points for the prediction type. For this to work,
CBs are also partitioned to prediction blocks (PBs) according to spatial (intra-) or

temporal (inter-) predictability. PB sizes may vary from 4x4 to as much as 64x64
samples. (Figure 6).

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

The H.265/HEVC standard

Example of a Quad tree in HEVC

64¥64 CTU (=Largest CU)

HOoOoD ol B B a8

Figure 6: Prediction Units and Prediction Blocks sizes

4) TUs and transform blocks: A Coding Unit forms the root of a Transform Unit
(TU). Transform Blocks (TBs) are, essentially, blocks of signal samples upon
which the same transform is applied. A luma or chroma CB may have the size of
a single corresponding (Y, Cb or Cr) TB or may be further split to smaller TBs.
Integer arithmetic transformations akin to DCT (Discrete Cosine Transform) or
DST (Discrete Sine Transform) are applied to TBs with sizes of 4x4, 8x8, 16x16
or 32x32 (squares) with DST preferred for luma intra (spatial) prediction
residuals. (Fig. 7).

4x4

Figure 7: An example of arranging TUs in an LCU.

10

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

The H.265/HEVC standard

5) Motion vector signaling: By using data from adjacent Prediction Blocks (PBs)
and the reference frame, the best candidates are derived. This is called Advanced
Motion Vector Prediction (AMVP). HEVC also supports a merge mode for
Motion Vector coding that allows the inheritance of MVs from spatially or
temporally or spatially neighboring PBs.

6) Motion compensation: Motion Vectors use quarter—sample precision and
interpolation of fractional-sample positions is achieved via 7 or 8 —tap filters. As
in its predecessor standard, HEVC can use multi reference pictures and uni- or
bipredictive (that “looks” back and forth) coding. This is achieved by transmitting one
or two MVs respectively for each PB. Weighted prediction is supported too by
applying offset and scaling operations to the prediction signals.

7) Intra-picture prediction: HEVC uses samples of adjacent block borders in the same
picture as reference for spatial prediction requirements. This is chosen when inter
prediction is not applied. Two (2) planar modes are supported (namely Intra Planar
and Intra DC) and 33 angular, thus providing for 35 prediction modes. Prediction
mode selection is based on those modes of adjacent PBs decoded previously.

8) Quantization control: The H.265 standard uses uniform reconstruction quantization
(URQ) as its predecessor. Numerous scaling matrices support the available TB
sizes. The quantization step (Qstep) value is determined by an integer Quantization
Parameter (QP). QP is in the range [0,51] for 8-bit sequences. [12]

9) Entropy coding: HEVC uses an improved version of Context Adaptive Binary
Arithmetic Coding (CABAC) scheme for entropy coding. Although it shares the
same basic idea as the algorithm in MPEG-4 (a variant of arithmetic coding
offering lossless compression) [13], CABAC is now optimized for improved
utilization of parallel architectures (yielding better speed efficiency), less usage of
context memory and better compression ratios.

10)/n-loop deblocking filtering: In order to smooth several discontinuities that are
often observed at the boundaries of PBs and TBs, a parallelization friendly
deblocking filter is used, very much like the one in MPEG-4. Besides the
enhancements concerning parallelism, its decision-making and filtering mechanism
are also simpler. The filter is operated after the inverse quantization process and its
output is fed to the Sample Adaptive Offset filter described below.

11)Sample adaptive offset (SAO): To further improve the quality of reconstructed
frames and thus optimizing the decoder’s output, a SAO filter is operated after the
deblocking one. It aims to reduce sample distortion and that is generally achieved
by mapping offsets to reconstructed samples according to their classification in
several categories. The appropriate offsets are then to be added to each sample
depending on its category. [14]

As we have already mentioned, the high coding efficiency achieved by H.265
standard, comes at the cost of higher computational complexity, i.e. increased encoding
and decoding (mainly encoding) time. We are going to present this problem in some
detail here, because it is this increased computational complexity that has motivated

11

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

The H.265/HEVC standard

research in exploring ways to speed up the whole trancoding processes.

In [15] (Chapter 4) one can find an extensive study of HEVC’s computational
complexity in comparison to that of its predecessor H.264/AVC. Nevertheless, we
conducted our own tests to compare execution time of HEVC (for specific
configurations) with that of its predecessor H.264/AVC. A sample lies below, where two
(2) different H.265 encoding configurations have been tested for four (4) Quantization
Parameter (QP) values each. Two (2) of the usual test sequences (Kimono and Traffic)
were encoded using both H.265 and H.264 reference software (HM 16.14 for H.265 and
IM 19.0 for H.264: Will be further described later). The available hardware utilized was
an Intel Core 2 Duo E8400 CPU running 64-bit Ubuntu Linux. Execution times are
depicted in the barcharts below. As can be clearly seen the computational complexity of
HEVC is quite higher than this of H.264/AVC.

Kimono Lowdelay Kimono RandomAccess
encodingtime (secs) encodingtime (secs)
20000 20000
15000 15000
10000 I I 10000 I I I
5000 I 5000
a T T T T ._\ 0 T T T T ._\
A A
& & & & & & & &
& & & & g £ & & & A
& & & > & & & >
TrafficLowdelay TrafficRandomAccess
encodingtime (secs) encodingtime (secs)
20000 20000
15000 15000
10000 10000
5000 I I 5000 I
ﬂ T T T T I 0 T T T T I
& & & & G RUSF G SO
& & & & n s & & & & &
& S & & R H & & e b

Figure 8:Encoding time of various HEVC configurations vs. MPEG4 for the Kimono and Traffic sequences

Finally, other researchers like in [16] have also measured the ratio of coding
complexity increase in HEVC, always compared with that of H.264/AVC. For the
purposes of the above mentioned paper, HEVC encoder and decoder were run under
several configurations described as: All-intra (AI), random access (RA), low-delay B
(LB) and low-delay P (LLP). Those test runs proved that H.265 takes up to triple the time
that H.264 needs (on average) to encode the same sequence. Especially when only intra
prediction is selected, HEVC is 3.2 times slower than MPEG4.

12

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Parallelization methods in HEVC

CHAPTER 3: An overview of available parallelization methods in HEVC

Introduction

Before we delve into HEVC and its parallelization, we have to explain the term
“coding efficiency” which has been and will be used many times in the present thesis. So,
by the term coding efficiency we denote the maximum video quality we can achieve
keeping the bit rate at a desirable low level. In other words, coding efficiency has to do
with how much can a coder compress a sequence (i.e. decrease its bit rate) without
noticeable degradation in quality, or even with no quality loss. [17] Now, in order to
estimate coding efficiency, two significant metrics are employed: Bit rate (commonly
written as one word:bitrate) and Peak Signal to Noise Ratio(PSNR).

Bitrate, as the word implies, is the number of bits of information that are
processed per time unit (usually per second). When we deal with video, this number is
normally expressed in Kbits per second or Kbps.

Peak Signal to Noise Ratio — PSNR expresses the comparison (ratio) of the
maximum possible value of a signal to that of the noise that corrupts it, where the term
noise generally denotes “unwanted signal” that disrupts the original. We use the decibel
logarithmic scale to measure PSNR. When we talk about video transcoding, PSNR is a
metric of the difference between the original (raw) video and that played by a decoder.
Thus, low PSNR characterizes a poor quality, “noisy” signal. Another important
particularity about video is that PSNR is computed for both luma and chroma samples.
Yet, as the human visual system is more sensitive to luminance (brightness), Y-PSNR (or
luma-PSNR) is the preferred metric. [18].

As we have already stated, while HEVC offers much better coding efficiency
compared to H.264/AVC, this great improvement suffers the penalty of increased
computational complexity. Unfortunately, although hardware becomes more powerful by
the day, all these advances in CPU, bus, memory technology etc. cannot cope with the
above stated problem. Therefore, several computer scientists all over the globe
continuously work on researching the acceleration of HEVC algorithms. In fact, this great
HEVC computational complexity was expected since the standard was conceived, thus
leading HEVC developers to make the software easy to be parallelized from the
beginning. On the other hand, parallelization in MPEG4 was only an afterthought. [19].
According to several researchers, parallel computing is the means to accelerate HEVC
processing. Therefore, high-level parallelization is supported by some HEVC features
like wavefront parallel processing (WPP) [20], [21], slices and tiles [19], [22], [23], [24]
and some features which allow low-level parallelization (inside the encoding process),
such as local parallel method which allows parallel motion estimation [24]. Exploiting
CPU features like SIMD, MISD, MIMD etc. (e.g. Intel’s SSE, SSSE3, AVX etc.
instructions) has also been extensively studied as a way to achieve faster encodings [25],
[26].

Before we focus on parallelization based on frame segmentation to slices and
tiles, we shall briefly refer to some of the aforementioned other methods and tools
employed to speed up the encoding process.

CHAPTER 3: An overview of available parallelization methods in HEVC
13

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Parallelization methods in HEVC

Exploitation of data level parallelism

Today’s CPUs (at least most of them) provide media instructions. A typical
example on common server platform is the Intel and AMD SSE/MMX technologies,
which are based on the single-instruction-multiple-data (SIMD) methods. By exploiting
the significant data-level parallelism, SIMD technologies provide a series of effective
approaches for fast algorithm implementation, which brings useful guidance to optimize
the computational performance [27]. Several works address performance improvement of
audio/video signal processing using NEON compiler intrinsic on ARM platforms, and
SSE or AVX intrinsics on Intel platforms [25].

Now, if we examine and test HEVC using some version of the reference software
and also utilizing an appropriate profiler, it has been shown that the most time-consuming
modules are (in descending order):

i. Motion Compensation
ii. Hadamard transform
iii. SAD & SSD calculations (Sum of Absolute Differences, Sum of Square
Differences)
iv. Integer transforms
v. Rate-Distortion Optimizated Quantization (RDOQ)
vi. Memory operations

(The above are depicted in the chart below).

Therefore, we can speed up encoding by improving for example the existing MC
implementation using SSSE3 instructions like PMADDUBSW to compute the required
vector products [26], [27].

Execution time analysis

m MC mHadamard m Other SAD/SSD mRDOQ = Memory m Integer Transf.

35

12.986 12.931

8.806 8.706

PERCENTAGE OF PARTICIPATION IN TIME COMPLEXITY

Figure 9: Execution Time Analysis of the HEVC Encoder

CHAPTER 3: An overview of available parallelization methods in HEVC
14

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Parallelization methods in HEVC

Wavefront Parallel Processing

Another method used to speed up the whole encoding process is Wavefront
Parallel Processing (denoted as WPP from now on). The idea here is to partition a frame
into ‘treeblocks’ organized as rows that can be processed each one by a different
execution thread. It has been proved that in such a case we have only low coding losses.
Of course, any coding dependency is to be preserved. To elaborate on this last statement:
In order to freely process a treeblock, we need to have ready the top-left, left and top-
right treeblocks for predictions to work as expected. So we must “interpose” two
treeblocks (at least) between consecutive treeblocks rows we process in parallel. Due to
this, heavy communication between CPU-cores is required (something that is not needed
if we use tiling without cross border filtering). Fortunately, modern CPUs include many
cores which can easily communicate with each other, thus making WPP well suited for
today’s hardware, especially when the last one is supported by appropriate software
libraries. Another advantage of WPP is that it can be implemented almost out-of-the-box.
That is because several operations as predictive and entropy coding, or in-loop filtering
can be performed in one processing cycle and WPP has no impact on the single step
processing capability. We can find examples of WPP utilization in streaming HD video
over broadband (e.g. fiber optic) channels and in applications where delays are
unacceptable. (Though in the last case, WPP should be combined with dependent slices).

[28].
1
. LCU that is already encoded
|£| LCU that is currently being encoded by thread #
«— ® CABACdependecncy
Figure 10: Demonstration of WPP using five (5) threads
Slices

Besides rows of ‘treeblocks’, slices are another way to partition a frame in order
to parallelize its coding or decoding. By ‘slices’ we describe frame partitions that can be
transcoded separately (alone- by a single CPU thread). This means that we don’t need any
information from other such slices in order to process a specific one. Therefore, a slice
cannot use Coding Units from neighboring ones for prediction (intra or inter). It is also
obvious that the number of CUs composing a slice should be an integer one. Of course, a
slice can never extend to multiple frames. We use the notation /-slice to refer to a slice
that consists of intra-prediction CUs only, P-slices are slices that can contain both inter-
prediction and intra-prediction CUs but in the case of inter-prediction it is unidirectional,

CHAPTER 3: An overview of available parallelization methods in HEVC
15

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Parallelization methods in HEVC

while slices that can contain intra- and bidirectional inter-prediction are refered as B-
slices (B stands for ‘B’idirectional). Thus, while Motion Estimation and Motion
Compensation in a B-slice can use up to two blocks in different reference frames, in a P-
slice, only one reference frame can be used by its CUs [29].

Network parameters such as the largest protocol unit that can be transferred (or
Maximum Transmission Unit (MTU)) or graphic specific constraints such as the
maximum number of Coding Tree Blocks that can be contained in a slice can greatly
affect slice partitioning. To elaborate on this, we use Fig. 12. We can see here that
partitioning occurs if we follow the raster-scan order within the picture thus yielding less
spatial correlation within the frame. [22]

Slice #1
¥
1 {2 i3 {415 6! 71819110} 1112
131 14] 15! 16 slice #2 22 | Slice #3
o Slice #3 "
Slice #3 Slice #4
slice #5
Slice #5 Slice #6
slice #6 | slice #7
Slice #7

Figure 11: A slice-based partitioned frame with CTBs following a raster scan order within it

We also have to notice that every slice includes additional information in the form
of a header. Of course, this increases its size and produces overhead that we cannot
ignore at lower bitrates. This extra information, combined with the aforementioned
reduced spatial correlation, also harms coding efficiency. To put it in a nutshell: Using
many slices improves parallelism but may lead to non-negligible coding losses. On the
other hand, if we choose only one or few slices per frame, decoder might not be able to
perform in real-time. This is because, the number of slices is determined during encoding
time, but the decoder counts on them to improve its performance [19].

Besides slices, tiles are another structure used to facilitate parallel processing. As
we have seen, each frame is partitioned into CTBs in a rows x columns manner. A tile
can be thought of as the rectangular region formed by the intersection of a row and
column. With tiles, there can be uniform spacing in row and column boundaries
specification, or not. Generally, tile partitioning is considered to be more flexible than
slicing. This i1s mostly because as tiles share the same boundaries with CTBs, they are
more compact (spatially) than a slice containing the same number of CTBs. This yields
higher pixel correlation with regard to slices. Moreover, there is no tile header info in
contrary to slice headers. Although each tile can contain different number of CTBs, their
number is always integer. A raster scan order is followed when processing LCUs in each

CHAPTER 3: An overview of available parallelization methods in HEVC
16

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Parallelization methods in HEVC

tile and the same order (raster scan) is followed when processing tiles in a frame [30](Fig.

11). To make a long story short: Tile partitioning of pictures, combined with parallel
processing seems to really improve coding speed. Yet, as with slices, there is a price to be

paid: A degradation in coding efficiency. [31]

Column boundaries

52|

a3] 94| a5] 96| 7] 95

16

101

11| 12 13| 14 15
21 22 23] 24 5

26

ZE| 29|

30y 51 52| 53] 34| 55| 36| 57| 56| 50| 60§ B1) E2| B3] B4| B5) 86| B7| 5B| 59| coOf 111

1132

113) 114] 115) 116] 117] 11E|

121 122(123| 124 125

126

151] 152 181 211

241| |

351

Row boundaries

Figure 12: An example of Tiles partitioning using four columns and three rows

It is also possible that both tile and slice segments coexist in the same picture; in
which case rules have to be set on the way tiles relate to slices. Specifically, no CTB in a
tile can span multiple slices and no CTB in a slice can span multiple tiles. [19]. When
such conditions are met, the only way that a segment of a slice or even a whole one can
span multiple tiles, is its starting point to coincide with that of a tile. (Fig. 14, 15 below)

/__.

9.
independent
slice segment

dependent slice

segment

| border

Figure 13: Example of slice segment partitioning of a frame

CHAPTER 3: An overview of available parallelization methods in HEVC

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

slice segment

17

Parallelization methods in HEVC

Tile1 Tile 2 Tile 3 Tile4
} } | |
AR IEEEEEEEEEEONEE EC RN
-' Slice 1 ’
L _l_;'-_-:‘_l__'"“_l__-“-'—__l_- ECRERREE
Tile.5 — Slice 2 tues
Tile 9 — Slice 3

T

Tile12

Figure 14: Example of tile segment partitioning of a frame

The benefits and drawbacks of the above approaches are examined in detail in
[24]. There we can find tables that assess the degree of CPU (or CPU cores’) utilization,
in terms of load balancing percentage (with 100% being excellent); depending on the
frame resolution and the layout of the chosen partitioning scheme (in a ‘slice X tiles’
pattern).

Part of such a table is presented below as Table 2. (Where: AvgCTU is the average
number of CTUs per tile/slice and MaxCTU is the number of CTUs in the biggest tile/slice
of the frame partition).

Num. of Layout AvgCTU MaxCTU Load Balance
Processors (100%)
2560x1600 (40x25 CTUs)
4 1x4 250 280 89
2x2 250 260 96
4x1 250 250 100
6 1x6 166.7 200 83
2x3 166.7 180 93
3x2 166.7 182 92
6x1 166.7 175 95

Table 1: Load balancing achieved with regard to frame partitioning

CHAPTER 3: An overview of available parallelization methods in HEVC
18

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Evaluation of multiple slices and tiles

CHAPTER 4: Evaluation of multiple slices and tiles

Introduction

Now that we have explained both the need for code optimization in HEVC so as

to speed up processing and a way to achieve this by partitioning each frame to slices and
tiles; we can proceed to present in detail the main goal of this thesis. The idea —in simple
words- was to experiment with various frame segmentation ways, trying to objectively
measure HEVC’s coding efficiency in each case. This means that we had to run the
H.265 encoder several times with different configurations collecting and evaluating any
output. Here, “output” consists of both the encoded bitstream (.bin files) and the various
metrics and statistics produced by the encoder. Thus, we are going to present below how
these experiments were conducted and some conclusions we think were drawn.

The HEVC Test Model (HM)

The reference software for HEVC is called HM (HEVC Test Model) and,

as

stated in the manual that accompanies the downloadable zip file, its main purpose is to
provide a platform for researchers to experiment with. (e.g. Test different coding tools
and evaluate performance accordingly). It is neither optimized in any way, nor claimed to
be a super efficient implementation. Also, it is not suitable for any particular use. [2]

The software is developed in C++ and it is documented in details with the
utilization of the Doxygen package. HM can be downloaded from the site:
http://hevc.info/ in the form of a .zip file which contains the following:

% HM software: Support for the following profiles:

>

vV VV V V VY

>

the Main, Main 10, and Main Still Picture profiles

the Monochrome, Monochrome 12 and Monochrome 16 profiles
the Main 12 profile

the Main 4:2:2 10 and Main 4:2:2 12 profiles

the Main 4:4:4, Main 4:4:4 10, and Main 4:4:4 12 profiles

the Main 4:4:4 Still Picture and Main 4:4:4 16 Still Picture profiles

the Main Intra, Main 10 Intra, Main 12 Intra, Main 4:2:2 10 Intra, Main 4:2:2 12
Intra, Main 4:4:4 Intra, Main 4:4:4 10 Intra, Main 4:4:4 12 Intra, and Main 4:4:4
16 Intra profiles

the High Throughput 4:4:4 16 Intra profile

+¢ SHM software: Support for the Scalable Main, the Scalable Main 10, Scalable
Monochrome, Scalable Monochrome 12, Scalable Monochrome 16, and Scalable
Main 4:4:4 profiles

« HTM software: Support for the Multiview Main and 3D Main profiles

% HM+SCC software: Support for the following profiles:

CHAPTER 4: Evaluation of multiple slices and tiles

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

19

http://hevc.info/

Evaluation of multiple slices and tiles

» Screen-Extended Main and Screen-Extended Main 10 profiles
» Screen-Extended Main 4:4:4 and Screen-Extended Main 4:4:4 10 profiles

» Screen-Extended High Throughput 4:4:4, Screen-Extended High Throughput
4:4:4 10, and Screen- Extended High Throughput 14 profiles
The profiles mentioned above are supported via specific configuration files that exist in

the directory named ¢fg/ and we are going to discuss about some of them in the
paragraphs that follow. Yet, table 3 below provides a brief explanation about the
aforementioned configurations [18].

Name Configurations

main Uses InternalBitDepth of 8

mainl0 Uses InternalBitDepth of 10

Intra_main, intra_mainl0 All frames are | frames

lowdelay P main, lowdelay P _mainl10 Uses an I frame followed by P frames. GOP
size 1s 4

lowdelay main, lowdelay mainl0 Uses an I frame followed by B frames. GOP
size is 4

randomaccess_main, An I frame is inserted every 32 frames. All

randomaccess mainl(other frames are B frames. GOP size is 8

Table 2: Explanation of HEVC encoder configuartions

Description of our testing environment

We used HEVC Test Model (HM) 16.14 for our purposes, which was downloaded
from https://hevc.hhi.fraunhofer.de/ and installed on several Linux boxes (Ubuntu 16.04,
64-bits). We found out that the software was executed quite faster in Linux O/S compared
to Windows 7, 10 and macOS Sierra. (Surveying the reasons is beyond the scope of this
work). Three (3) machines were used to run the encoder which allowed us to execute this
number of tests simultaneously. We will present here a description of the experiments
and how they were set.

We worked with the contents folder named “HM-16.14". Building both the
encoder and the decoder for Linux OS is quite simple. One needs just to type ‘make’ in
HM-16.14/build/linux directory. Yet, we had to alter the ‘makefiles’ in order to make use
of LLVM’s clang and clang++ compilers (initially made to be used by CERN) which
seem to produce executables that run faster, especially with the —O4 switch [32]. The
executables built are left in HM-16.14/bin. The encoder (which we actually ran) is under
the filename: TAppEncoderStatic. There are several sample configuration files for testing
purposes located in HM-16.14/cfg and they are distinguished in three main groups. The
ones that contain the string ‘Intra’, those with ‘LowDelay in their filename and others
with filenames containing ‘RandomAccess and they are to be used for intra-prediction
only, random-access and low-delay conditions respectively [33].

CHAPTER 4: Evaluation of multiple slices and tiles
20

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Evaluation of multiple slices and tiles

The above mentioned parameter groups define different testing conditions for the
encoder that can be roughly described as follows:

All Intra: Only intra prediction is used for coding. In other words only information from
within the frame is exploited for ME purposes. No previous or subsequent frames are
involved. This leads to extremely poor execution time, so we will avoid using this
configuration and prefer inter-prediction instead.

Low Delay: Frames are coded in the same order as their transmission. This configuration
applies mostly to live video with interaction support, where delays are not tolerable while
random access is not compulsory. To assess ‘low delay’ configuration we use either B
frames with bi- and uni-prediction or P ones with unidirectional prediction only.

Random Access: This configuration is chosen when we want the best compression
efficiency with ability to begin decoding at almost any second. In this case, pictures are
not transmitted in the same order as coded, which means that a structural delay is urged.
We use ‘random access’ in applications like video podcasting or streaming. [34].

A discrete Group of Pictures (GOP) structure is defined for each one of the above
configurations. Namely, an intra_main .cfg file has to cater that each single frame is
coded only in intra-prediction mode. A lowdelay main configuration will code only the I-
frame (initial frame) using intra-prediction and all the others using P or B inter- modes.
For randomaccess configurations, sequences of either I or B frames are periodically used
in a form like IBBB....BBI. [8]

Among the numerous settings one can experiment with, there are some that must
be edited according to the properties of the video to be encoded. Thus, parameters we had
to change for each test point are [33], [11]:

e InputFile that contains the path of the source video sequence on the system to test

e FrameRate which obviously defines the frame rate of the sequence to be encoded

o SourceWidth and SourceHeight are accordingly- the width and height (in pixels)
of the input video

o FramesToBeEncoded: How many frames of the input sequence we wish to encode

e (P or Quantization Parameter (will be explained later)

e InputBitDepth: How many bits are used for color (e.g 8-bit, 10-bit high color etc)

Most of the above parameters are to be found at the header of each configuration file.
Below is a sample of the ones we used.

CHAPTER 4: Evaluation of multiple slices and tiles
21

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Evaluation of multiple slices and tiles

f======== File I[/Q =====================

InputFile : ~/HEVC/ReferenceSoftware/bin/Kimono_1920x1080_Z24. yuv
BitstreamFile ! kimono 2 =slice.bin

ReconFile I recd.yuv

InputEitDepth HE= # Input hitdepth

InputChromaFormat To4z0 # Ratio of luminance to chrominance samples
FrameRate : 24 # Frame Rate per sSecond

Frame3kinp HEi| # Number of frames to ke skipped in input
JourceWidth 1 1920 # Input frame width

SourceHeight + 1080 # Input freame height

FrawmesToBeEncoded T 240 # Nunbher of frawes to be coded

Figure 15: Sample header of an HEVC .cfqg file

Besides the above, we had to tamper with some other parameters specific to the
purposes of our work which will elaborate below. The rest were left with their default
values.

Our experiments had to do with slicing and tiling options and also with quantization.
For each video sequence four quantization parameter (QP) values were to be used: 22, 27, 32
and 37. These values define the QP values used for the | and P-frames in a sequence
(configuration files further define QP values used for other frames). Yet, most of our concern
had to do with slicing and tiling parameters which we explain here.

The parameters which one has to modify in slice mode, are as follows:

= SliceMode defines whether the input video will be partitioned into slices or not
and how exactly will those slices be cut. It offers four options: 0 (no slices at all),
1 for setting a maximum number of Largest Coding Units (LCUs) in a slice, 2 for
setting a maximum number of bytes in a slice and 3 to cut slices so as to ensure a
maximum number of tiles in a slice. We have to assign tile partitioning
parameters, in order to take into account mode 3 of SliceMode and allocate the
tiles to each slice.

= SliceArgument is an option relative with SliceMode value. If SliceMode value is
0, nothing happens. If SliceMode value is 1, one has to edit the maximum number
of blocks that each slice will contain. If SliceMode value is 2, the user has to
insert the maximum number of bytes per each slice. If SliceMode value is 3, we
have to provide the maximum number of tiles per slice.

* LFCrossSliceBoundaryFlag sets whether in-loop filters, like Adaptive Loop
(ALF) and Deblocking, will be applied across or not across the slice boundary. It
takes value 0 for not across and value 1 for across.

CHAPTER 4: Evaluation of multiple slices and tiles
22

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Evaluation of multiple slices and tiles

SliceMode 1 3 0: Disable all slice options.

1: Enforce maximun nuwber of LCT in an slice,

2: Enforece maximuan nuwber of bytes in an 'slice!

3: Enforce maximum numwber of tiles in a slice

Argument for 'SliceMode’.

If 2liceMode==1 it represents max. SliceGranularity-sized blocks per slice.
If ZliceMode==2 it represents max. bytes per slice.

If SliceMode==3 it represents max. Ciles per slice.

Slicelrgument HE

HOH: H: H: H: H: H:

LFCross3liceBoundaryFlag @ 1 In-loop filtering, including ALF and DE, is across
or not across slice boundary.

O:not across, 1: across

o

Figure 16: Slicing options configuration sample
Settings concerning tiling are as follows:

* TileUniformSpacing : Can be 0 or 1. A value of 0 means that column boundaries
are assigned by TileColumnWidthArray while row ones are assigned by
TileRowHeightArray. A value of 1 implies that column and row boundaries are
assigned uniformly.

* NumTileColumnsMinusl1: If N is the number of tile columns per frame then it is
set to N-1 as C array style of tile numbering (0 to N-1) is used.

* TileColumnWidthArray defines an array that includes tile column width values
in units of CTU starting from left to right in the frame. E.g. In Kimono sequence,
each frame consists of 510 CTUs, distributed in 30 columns X 17 rows. Therefore,
if we want to partition the frame in 3 slices with 4 discrete tiles in each slice, we
can insert values 7,8 and 7 (space separated) in TileColumnWidthArray. This will
yield four tiles with 7+8+7+8=30 CTUs width respectively.

* NumTileRowsMinusl: Like NumTileColumnsMinusl mentioned above. The
number of tile rows in a frame minus 1. For instance, if a frame has to be
partitioned into 3 tile rows, NumTileRowsMinus1 will be 2.

* TileRowHeightArray: Like TileCo/umnWidthArray. Defines an array of tile row
height values in units of CTU starting from top to bottom in frame. Let’s take for
example the Traffic sample sequence (1000 CTUs per frame in 40 columns X 25
rows). If we wish to partition each frame to 3 slices by 4 tiles each, then, one way
is to set this array to contain values 8,8. Thus, three (3) tiles per column will be
produced with the first two to include 8 CTUs and a third one of 9 (8+8+9=25).

* LFCrossTileBoundaryFlag sets whether in-loop filter is across or not across the
tile boundary. It takes value 0 for not across and value 1 for across.

Tiles
TileUniformSpacing : 0 # 0: the column boundaries are indicated by TileColumnWidth array,
the rowv boundaries are indicated by TileRowHeight array
1: the coluwm and row boundaries are distributed uniformly
#

NumTileColumnsMinus1 : 3 Number of tile columns in & picture minus 1

TileColumniidthArray : 10 10 10 # Arravy containing tile column widch walues in units of CTU (from left to right in picture)
MNumTileRowsNinusl H # Number of tile rows in & picture minus 1
TileRowHeightirray 1 88 # Array containing tile row height values in units of CTU (from top to bottom in picture

LFCrossTileBoundaryF lag 1

£

In-loop filtering is across or not across tile boundary.
O:not across, 1: across

Figure 17: Tiling options configuration sample

CHAPTER 4: Evaluation of multiple slices and tiles
23

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Evaluation of multiple slices and tiles

Let’s elaborate on the above explaining the parameter values we have used. First
of all, we decided to evaluate six (6) segmentation ways for two parameter groups and
four (4) discrete QP values each. Specifically, we tested the following frame
segmentations:

1. 2 slices —no tiles
ii. 2 slices with 6 discrete tiles each (2 x 6)
mi. 3 slices
iv. 3 slices x 4 tiles
v. 4 slices and
vi. 4 slices x 3 tiles

Each tile is inside in exactly one slice and each slice can contain only whole (not parts)
tiles.

The raw videos we have dealt with are Kimono and Traffic. Their attributes are
presented in the following table [33].

Sequence Resolution | Frame Frame Bit Intra Random Low-
name count rate depth access delay
Traffic 2560x1600 | 150 30fps 8 Main/ Main/

Main10 Main10

Kimono 1920x1080 | 240 24fps 8 Main/ Main/ Main/
Main10 Main10 Main10

Table 3: Two of the sequences used for HEVC testing
As we can see above, each frame in Traffic sequence consists of
2560*1600=4096000 pixels. Thus, if one chooses MaxCUWidth and MaxCUHeight of
64 pixels each (as they are by default), we have 4096000/(64*64)=1000 CTUs per
picture. They are distributed at a 40x25 (width X height) pattern. In Kimono sequence,
respectively, there are 1920*1080/(64*64)=30*round(1080/64)=510 CTUs per frame as
illustrated below with the image being partitioned in 10 tiles [24].

CHAPTER 4: Evaluation of multiple slices and tiles
24

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Evaluation of multiple slices and tiles

CTu)|

cTu

Ty

T

£

0
2|2)2/2)aja|3|3
21213(3|2)3|3|3

21212(2)3)3|3|3

3[2]|8/2(2|3|3|4

2|2[2(3|8/3|3(3
g|2|a|a(8|3|3|3

g|8|18/2]3|3|3|3

A HEHEHEEREE BEHEEHEE
2(2/3|3|3|3|3]3]2]3(2|3|3|3|3 (3|3
EIEIEIEEIE BT ERE] EREN RN ETETENELE!
d|a|d|a|afa|afa|aya|afa(a|afa|a|s
S EIEIEIEIE EI R E] EREIEIEIEIENELE

T
o
]
s]
L]
s}
f]
Ty
T

Figure 18: Division of a full-HD frame (1920x 1080 pixels) into 10 tiles (5 columns with a width of 6 CTUs; 2 rows with a
height of 8 and 9 CTUs each)

So, if we want to partition Traffic in 3 slices containing 4 tiles each, we can define
the corresponding configuration parameters as follows:

e SliceMode=3 (enforce maximum tiles in a slice)

e SliceArgument=4 (4 tiles per slice at most)

e TileUniformSpacing=0 (TileColumnWidth indicates column boundaries and
TileRowHeightArray indicates row boundaries)

o NumTileColumnsMinus1=3 (3+1=4 tile columns per picture)

e TileColumnWidthArray=[10 10 10] (which yields 4 tiles per slice (40 CTUs div
4) with a width of 10 CTUs each)

e NumTileRowsMinus1=2 (2+1=3 rows of tiles per picture)

e TileRowHeightArray=[8 8] (which yields 3 tiles (8+8+9=25 CTUs) by height).

Using software like StreamEye, we can verify that the above configuration will
produce encoded BitStreams with frames partitioned in slices containing tiles as the one
that can be seen below.

CHAPTER 4: Evaluation of multiple slices and tiles
25

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Evaluation of multiple slices and tiles

oo

Figure 19: A tile with "dimensions" of 10 x 9 CTUs (green line separates tiles while yellow demarcates slices)

Now, let’s consider another example. We are going to setup the encoder, so as to
partition every Kimono frame to 4 slices with 3 tiles each. As we have seen, every
Kimono frame consists of 30 CTUs in width X 17 CTUs in height=510 CTUs. Thus, we
can use the following parameter set:

e SliceMode=3 (enforce maximum tiles in a slice)

e SliceArgument=3 (3 tiles per slice at most)

e TileUniformSpacing=0

e NumTileColumnsMinus1=2 (2+1=3 tile columns per picture)

o TileColumnWidthArray=[10 10] (which yields 3 tiles per slice (30 CTUs div 3)
with a width of 10 CTUs each)

e NumTileRowsMinus1=2 (2+1=3 rows of tiles per picture)

o TileRowHeightArray=[5 4 4] (which yields 4 tiles (5+4+4+4=17 CTUs) by
height).

A sample tile in a frame produced using configuration files like the above, looks like
the one in Fig. 18.

CHAPTER 4: Evaluation of multiple slices and tiles
26

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Evaluation of multiple slices and tiles

Figure 20: A tile with "dimensions" of 10 x 5 CTUs

The full list of values for the S1iceArgument, NumTileColumnsMinusl,

TileColumnWidthArray, NumTileRowsMinusl and TileRowHeightArray
parameters we had to use for the chosen six segmentations for each one of the two
sequences is cited in Table 5 below.

Kimono sequence (510 CTUs per frame)
Segmentat | SliceArgu | NumTileColumnsM | TileColumnWidth | NumTileRowsMi | TileRowHeight
ion ment inusl Array nusl Array
2 slices 255 0 irrelevant 0 0
2x6 6 3 787 2 65
3 slices 170 0 irrelevant 0 0
3x4 4 3 787 2 65
4 slices 128 0 irrelevant 0 0
4x3 3 3 787 2 65
Traffic sequence (1000 CTUs per frame)
Segmentat | SliceArgu | NumTileColumnsM | TileColumnWidth | NumTileRowsMi | TileRowHeight
ion ment inusl Array nusl Array
2 slices 500 0 irrelevant 0 0
2x6 6 3 101010 2 88
3 slices 334 0 irrelevant 0 0
3x4 4 3 1010 10 2 88
4 slices 250 0 irrelevant 0 0
4x3 3 3 1010 10 2 88

Table 4: Partitioning parameters

Now that we have explained how frame partitioning is achieved tampering with
the .cfg files, we can proceed to elaborate more on our test runs.

CHAPTER 4: Evaluation of multiple slices and tiles

Institutional Repository - Library & Information Centre - University of Thessaly

21/05/2022 09:32:45 EEST - 137.108.70.13

27

Evaluation of multiple slices and tiles

The encoder would be executed for four (4) QP values of 22, 27, 32 and 37
accordingly. Each experiment should be conducted twice: One time for the main low
delay P and one time for the random access parameter sets. Thus we had to run the
encoder 6*4*2=48 times for each sequence.

As we experimented with two (2) sequences, we had to perform 48*2=96 runs
and collect this number of output files. In order to do so, twelve (12) configuration files
had to be created for each sequence: Six to define the appropriate seqmentation for the
low-delay parameter set and six for the random-access conditions. Below is the directory
structure of our testing environment.

| ~ HEVC hin

TﬂPPE’?COdE.@EG“/ random MyCfg

/

Traffic Kimono

Figure 21: Directory structure of our testing environment

To explain the above figure, we have to say that each dozen of the appropriate
configuration files is located under MyCfg/ directory. Obviously, config files for, say,
Kimono sequence, are inside the homonymous folder. The directory named random/
contains the output of executions with random-access conditions. Low-delay executions
are left in the same directory with the encoder executable as *.txt files.

Now, in order to perform all or some of the required tests, we wrote a Bash [35]
script to do the job. It is located in the same path with TAppEncoderStatic (the encoder
executable) under the name of RunTests. We used the taskset Linux command [36] to
distribute each encoder process to a different CPU core when possible. Part of the script,
is depicted below.

echo "Kimono 4x3 Lowdelay"

taskset -c 0,1,2,3 ./TAppEncoderStatic -c MyCfg/Eimono/lowdelay P main 4 slice 3_tile.cfg > kimdx3.txt &
echo "Kimono 2 slice RandomAccess"

taskset -c 0,1,2,3 ./TAppEncoderstatic -c Mycfg/Kimono/randomaccess main 2 slice.cfg > random/kim2sl.txt
echo "Kimono 2 slice RandomAccess'™

taskset -c 0,1,2,3 ./TAppEncoderitatic -c MyCfg/Kimono/randomaccess main 3 slice.cfg > random/kim3sl.txt
echo "Kimono 4 slice RandomAccess'™

taskset -c 0,1,2,3 ./TAppEncoderitatic -c MyCfg/Kimono/randomaccess main 4 slice.cfg > random/kimdsl.txt

Figure 22: Bash script to initiate test runs

CHAPTER 4: Evaluation of multiple slices and tiles
28

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Evaluation of multiple slices and tiles

Each time we completed a full set of tests (24 runs, 12 for each sequence), we
copied the results for the specific QP value, changed the Quantization Parameter in each
.cfg file and the tests started all over. To our benefit, Linux offers a very handy stream
editor (sed) that allowed for changing QP values in all 24 configuration files with a
single command like this [37]:

sed 's /QP:22/QP:27/g" *.cfg

As stated above, we also had to use Elecard’s StreamEye program to check if the
chosen frame segmentation was indeed applied on the encoded bitstream. We present
below a frame of the Traffic sequence (rendered by StreamEye) after a 4x3 segmentation
encoding. First picture exhibits slicing, the second one shows tiling and the last exhibits
both (yellow gridlines demarcate slices while green lines are tile boundaries).

S

File Reference Wie la
Hh OvHvX‘!}ME} @'Q‘ill‘ﬂlm'xos‘@'ﬂ|f= HvHJE"EFmv|H vE|v“] K o4 » » oy ‘»‘Stream'.oHI (=3 1

decoded | predicted | unfitered | residual |
5 —

ws Mavigation Help

E .
et

o N
PR B
- A

%15 14 13 12 1 10

817

jStrm 1 Disp 1 Type P Size 2679 Offset Dx00025fes Ready

Figure 23: Exhibiting slices in a P frame of 'Traffic' sequence

CHAPTER 4: Evaluation of multiple slices and tiles
29

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Evaluation of multiple slices and tiles

S streamEye 4 D:\ Temp'traffic_4x3.bin

=18l
File Reference View Overlays Mavigation Help

Hb OvHvX‘QMB @vﬂvm“]lu.vxn‘sv@vli“: N'“]E"EFE"H v|§|v|u M a4 » » >||»|sneamvp“] (= 1Y

decoded | predicted | unfitered | residual |

stop

&
Strm 1 Disp 1 Type P Size: 2679 (Offset D=00025fee Ready

Figure 24: Exhibiting tiles in 'Traffic' frame

IS streamEye 4 D\ Temptraffic_4x3.bin

=181
File Reference Wisw Overlays Mavigation Help

[ovuvx\a“]m @‘U‘Ill‘ﬂhu‘xus‘@‘ﬂ‘f: M"HE"EFE'\H v|§|v|ﬂ KA o

Stream ¥ P |H (=10 & 1

¢
[Strm 1 Disp L Type P ize 2679 Offset 0x00025F 8= Ready

Figure 25: Slicing AND tiling in 'Traffic'

Moreover, as can be seen in the script we wrote, the encoder was executed using
Bash shell with commands and output redirections like:

./TAppEncoderStatic -c MyCfg/Traffic/lowdelay P main 2 slice 6 tile.cfg >
trafZxé6lowdelay. txt

CHAPTER 4: Evaluation of multiple slices and tiles
30

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Evaluation of multiple slices and tiles

Thus, the output was saved in a text file each time in order to be reclaimed and
studied later. The results produced by the encoder (besides the coded bitstream of course)
consist of rich information about the configuration used to run it and a great deal of
details concerning the coding of each frame. As a summary, the encoder provides
invaluable data like the number of I, P and B frames, the average BitRate, luma PSNR,
chroma PSNR, YUV-PSNR, total duration of the encoding process in seconds etc. The
frames that follow illustrate some parts of one of the many outputs we had to process.

HM software: Encoder Version [16.17] (including RExt) [Linux] [GCC
5.4.0]1[32 bit]

Input File : Kimono 1920x1080 24.yuv
Bitstream File : kimono 2x6.bin
Reconstruction File : rec.yuv

Real Format : 1920x1080 24Hz
Internal Format : 1920x1080 24Hz
Sequence PSNR output : Linear average only
Sequence MSE output : Disabled

Frame MSE output : Disabled

MS-SSIM output : Disabled
Cabac-zero-word-padding : Enabled
Frame/Field : Frame based coding
Frame index : 0 - 99 (100 frames)
Profile : main

CU size / depth / total-depth : 64 / 4/ 4

RQOT trans. size (min / max) : 4/ 32

Max RQT depth inter : 3

Max RQT depth intra : 3

Min PCM size : 8

Motion search range : 64

Intra period HEE

Decoding refresh type : 0

QP : 32

Max dQP signaling depth : 0

Cb QP Offset : 0

Cr QP Offset 0

QP adaptation : 0 (range=0)

GOP size : 4

Input bit depth : (Y:8, C:8)
MSB-extended bit depth (Y:8, C:8)

Internal bit depth (Y:8, C:8)

PCM sample bit depth (Y:8, C:8)

Intra reference smoothing Enabled

Cost function: : Lossy coding (default)
RateControl : 0

WPMethod : 0

Table 5: Some of the first lines produced by the encoder with info about test conditions used

CHAPTER 4: Evaluation of multiple slices and tiles
31

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Evaluation of multiple slices and tiles

In the above table, we deliberately choose to show an example where the total
time value is of no sense (negative). This is due to an overflow of the variable responsible
for the timing. The overflow itself happened because of the extreme execution duration in
the cases when the hardware used was not powerful enough. Allow us to notice that there
had been cases when the encoder had needed more than 12 hours to process all the frames
of a sequence. On the other hand, the process of encoding all 240 Kimono frames, took
(only ?) 621.360 sec when an Intel core-i5 CPU was utilized.

SUMMARY —————————————m——m
Total Frames | Bitrate Y-PSNR U-PSNR V-PSNR YUV-PSNR
100 a 1595.2877 37.2787 40.1721 41.7759 38.0669
I Slices————====="=="="—"="—"—"—"—"—"—"—"—" "~~~ ———
Total Frames | Bitrate Y-PSNR U-PSNR V-PSNR YUV-PSNR
1 i 7088.2560 40.4183 41.4720 42.6766 40.8927
P Slices-— """\~~~ ————
Total Frames | Bitrate Y-PSNR U-PSNR V-PSNR YUV-PSNR
99 P 1539.8032 37.2470 40.1590 41.7668 38.0460
B Slices——=———=====—==—"——"—— =~
Total Frames | Bitrate Y-PSNR U-PSNR V-PSNR YUV-PSNR
0 b -nan -nan -nan -nan -nan
RVM: 0.000
Bytes written to file: 836579 (1606.232 kbps)
Total Time: -1559.360 sec.
Summary of the encoding process
SUMMARY === == = = = o m
Total Frames | Bitrate Y-PSNR U-PSNR V-PSNR YUV-PSNR

240 a 5380.2400 41.5382 43.2229 44.7398 42.1568

Bytes written to file: 6725300 (5380.240 kbps)

Total Time: 621.360 sec.

Execution of the encoder on more powerful hardware

CHAPTER 4: Evaluation of multiple slices and tiles
32

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Evaluation of multiple slices and tiles

Thankfully, as we have seen, HEVC reference software does compute itself
metrics as PSNR and BitRate during the encoding process. Thus, upon completion of all
96 runs, we gathered the results the encoder produced as output and created a spreadsheet
like these below.

2 Kimono sequence (1920x1080, 24fps)
3 Main Low delay Main Random access
Output Output
Sh'?,.g;" Slicing | BitRate | Y-PSNR :é':R bitstream | BitRate = Y-PSNR :'SJ:R bitstream
i size (Bytes) size [Bytes)
5 1 2 slices 23237864 3943351400964 2864 315 |(20085136 396735 ! 404415¢ 2 510 BA2
] 2 2x6 23495000 39419400855 2932 736 |(20320192 | 396R30 ;404297 2 540 024
7 3 3 slices 23320808 3943291400958 29283 781 |(2017 6320 396696 ! 404375 2502 040
B8 4 Jxd 23518504 394229 400862 2953618 |(2034.0936 ¢ 396629 ;404296 2 542 K17
9 5 4 slices 2339128 3942931400919 202 711 | 20225608 | 396670 ! 404352 ¢ 2 528 201
10 B 433 23535248 13949400855 2941 906 | 20362576 ¢ 39.6R32 ;404299 2 545 307
i
12 Traffic sequence (2560x1600, 30fps)
13 Main Low delay Main Random access
Output Output
Shﬁ!ga’;" Slicing . BitRate Y-PSNR :g:ﬁ bitstream | BitRate : Y-PSNR :é':é bitstream
14 size (Bytes) size (Bytes)
15 1 2 slices S0R2 9920 386464391548 3164 370 |(51156832 ¢ 393521 (398583 : 3197 302
16 2 2x6 082 3568 3864441391489 3176473 |[51490320 ;¢ 393523 (398571 2 318 340
17 3 3 slices S0R6. 30058 386436391518 3166438 |(5122 6192 ¢ 393532 (398589 : 3201 K37
18 4 3xd S0852830 3864451391492 3173305 |[5151.8016 ;¢ 393515 (398565 2 318 948
19 5 4 slices S0726B528 3864721391536 3170408 |(5133.3744 | 393522 398578 : 13844 162
20 B 433 087 5934 3864461391492 3179748 |[5153 4096 : 393519 | 398559 ¢ 2 465905
21
22
23
24
o5
A4 r M| QP2E | OQP2T QP32 QP37 F.-Or Data B-L Matrices i
Figure 26: Output data collection for QP=27
CHAPTER 4: Evaluation of multiple slices and tiles
33

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Evaluation of multiple slices and tiles

Kimono sequence (1920x1080, 24fps)
Main Low delay Main Random access
Qutput Output
5:::_};’: Slicing | BitRate : Y-PSNR :g:ﬁ bitstream | BitRate :Y.PSHR :é':ﬁ hitstream
size {Bytes) size (Bytes)
1 2 slices 507 9704 34,4304 : 356472+ 7345973 484.0256 348909 ¢ 365.0125 ¢ BO5 032
2 2ub6 E01. 1872 34 3951 356064 1 7EA 164 A96 5360 (34 8EX5 i 359828 ¢ B20 70D
3 3 slices 59 9192 344284 1 356370 754 529 45910358 3486531 360065 ! B11,386
4 3ud B03. 4540 34,3959 ¢ 35 6061 7658 010 495 8184 : 3486241 359523 ¢ B2IE23
] 4 slices 597 3776 344193 356295 ¢ 7RO 402 49304380 348767 { 35,9984 ! B16,310
G 433 B05.5323 34,3950 355053 ¢ 756 916 S00.8608 348624 1 359523 ¢ B26 076
Traffic sequence (2560x1600, 30fps)
Main Low delay Main Random access
Qutput Output
5;::_};’: Slicing ;| BitRate : Y-PSNR :g:é bitstream | BitRate :Y.PSHR :é':é hitstream
size (Bytes) size (Bytes)
1 2 slices 1011.9120 332874 0 34,3354 ¢ G532 445 |1 1310.4336 ¢ 34.3806 : 35.3281 819,021
2 2ub 1023.8320 332702 3431771 B39BRS | 1328.7200 : 34.3663 : 35.3150 ¢ G530 450
| 3 3 slices 10155776 3324794 343265 B34 736 13162112 + 34.3721 | 35.3206 | 522 F32
4 Sud 1027 9472 32758 34 32181 R42 ARV 13317156 | 34 366E6 | 35,3155 1 532 321
5 4 slices 1020.7872 332873 34.331 637992 | 13208464 : 34,3721 3532101 825529
&) 4%3 1029 5520 32710 34 3183 ¢ B43 470 13337984 | 34 3666 1 35 31461 533 B24
QP22 | QP27 | Qr3z | QP37 | R-DData B-D Matrices @

Figure 27: Output data for QP=37

One of the first things to be noticed is the significant decline in output bitstream
size. This is a clear example of the impact that QP value has on achieved compression
rate (and therefore to coding efficiency) as cited in [18] and depicted in the graphs that

follow.

9000000

Output Bitstream size (bytes)

8000000
7000000
6000000
5000000
4000000
3000000
2000000
1000000

0

22

27

32

37

Quantization Parameter

Figure 28: Impact of QP on coding efficiency

CHAPTER 4: Evaluation of multiple slices and tiles

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Kimono

Traffic

34

Evaluation of multiple slices and tiles

Using numeric data like those of the above spreadsheets (figures 27 & 28), we got
Rate-Distortion graphs [38] as those depicted in the figures that follow.

i Kimono RandomAccess
| —m 415730
40
/rﬁssaz —o—2 slices
39
o / —— 26 slices x tiles
%38 —&— 3 slices
o 37.3756
>.37 / 3x4
36 %=1 slices
35 *Azmm—*—“-”
34
0 1000 2000 3000 4000 5000
BitRate
Kimono LowDelay
42
41
40
39
o i —@— 2 slices PSNR
2 .
a —@— 2x6 Y-PSNR
nu' 37 —@— 3 slices Y-PSNR
>
3x4 Y-PSNR
36
—@— 4 slices Y-PSNR
35 —@— 4x3 Y-PSNR
34
33

0 1000 2000 3000 4000 5000 6000
Bit Rate

CHAPTER 4: Evaluation of multiple slices and tiles

35

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Evaluation of multiple slices and tiles

Traffic RandomAccess

43

42

41

40 —@— 2 slices
[a'ss
Z 39 —@— 2x6
(Vp]
i 38 3 slices

37 3x4

36 —@— 4 slices

35

—@®— 4x3
34
1000 3000 5000 7000 9000 11000 15000
BitRate
Traffic Lowdelay
44
42

40 /.

N

Y-PSNR

36

34 J

32
0 5000 10000 15000

Bit Rate

—o— 2 slices Y-PSNR
—i— 2x6
—4&—3 slices
3x4
—¥—4 slices

—0—4x3

Figure 29: R-D curves demonstrating coding efficiency

Although we are supposed to read PSNR and bitrate differences between two
simulation conditions in these RD plots, it is obvious that the existing differences are very
hard to be distinguished. Therefore, we have to use a metric introduced in 2001 by Gisle
Bjontegaard, known as BD-PSNR [39]. Using this method, one can find the average
difference between curves such as the above. Specifically, small BD-metric values
indicate little context breaks and thus better quality. In other words the more the
picture is partitioned, more contexts are broken and greater is the BD-rate increase

[31].
CHAPTER 4: Evaluation of multiple slices and tiles

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Evaluation of multiple slices and tiles

In order to calculate BD-PSNR for our data, we used MatLab code developed by
Giuseppe Valenzise in 2010, improved by Serge Matyunin in 2013 and it is freely
available via GitHub [40]. We had simply to repeatedly call function bjontegaard2()
with our results as input for both modes (‘dsnr’ and ‘rate’). We have to explain here that
this function’s last parameter (‘mode’) offers the option to calculate either the differences
in Y-axis (PSNR), or in BitRate (X-axis). It is a string that can have two values:

'dsnr' - average PSNR difference or
'rate' - percentage of bitrate saving between data set 1 and data set 2
Figure 32 below demonstrates the use of the parameter.

‘dsnr’

rate’

PSNR (db)
=

Bitrate (kbps)
Figure 30: Sample R-D curve that shows the use of 'mode' parameter in bjontegaard2() function

We used GNU Octave [41] which interpretes and runs MatLab code to call

bjontegaard?2(). First we had to collect PSNRs and BitRates per segmentation way and
QP value in a separate worksheet. Part of this worksheet is depicted below.

CHAPTER 4: Evaluation of multiple slices and tiles
37

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Evaluation of multiple slices and tiles

T
m
(9]
o
m
ul
Ly
e
—
>
i
=

M

Save Text

Kimono (240 frames) LowDelay

apP 2 slices 2xb 3 slices Ixd 4 slices 4x3

BitRate PSNR BitRate | Y-PSNR | BitRate | Y-PSNR | BitRate | Y-PSNR | BitRate | Y-PSHR | BitRate | Y-PSNR
22| 5356.30458| 41.5406| 5380.2400) 415382) 53658312 41.5394| 5382.1808| 41.5382| 5372.1192) 41.5396| 5353.9048) 41.5382
27| Z3237864| 39.4335| 2349.5000) 394219) 2332.0805| 39.4329) Z351.9504| 39.4229| 2339.0128) 39.4293| 2353.5248) 39.4219
32| 1157.8160| 369669 1174.6016) 365471) 1163.3080| 3659657 1177.7664| 36.9472| 1168.4896) 36.9546[1179.0256) 36.9466
O | 37| £58797584| 34.4384| B01.1872) 343051 A020152| 34.4284| E03.4540| 34.3058| EOVEVVE| 344193 E05.5328) 343050

00~ M ke QD D =

12 Ki (240 frames) RandomAccess
13 QP 2 slices 2x6 3 slices 3Ixd 4 slices 423
14 BitRate | Y-PSNR | BitRate | ¥-PSNR | BitRate | Y-PSNR | BitRate | YPSNR | BitRate | Y.PSNR | BitRate | Y-PSNR

15 22| 4620.9096| 41.5811) 4645.5136| 41.5730) 4632.0168) 41.5738| 4650.4128) 41.5730| 4639.7508) 41.5785) 4652.0624| 41.5730
16 | 27| 2008.5136| 39.6735) 2032.0192| 39.6630) 2017.6320) 39.66596| 2034.0936) 39.6620| 2022.5608) 39.6670) 2036.2576| 39.6632
17 32| 5984.0744| 37.3893) 1002.05376| 37.3755) 990.4152) 37.3861| 1004.2248) 37.3757| 996.1354) 37.3514) 1006.1720| 37.3756
18 | 37| 484.0256| 34.8909) 496.5360| 34.8625) 489.1088) 34.8853| 495.8184| 34.8624| 493.0450) 34.8767| S00.8608| 34.8624

20

21 Traffic (150 frames) LowDelay

22 Qp 2 slices 2x6 3 slices 3Ixd 4 slices 423

23 BitRate | Y-.PSHR | BitRate | Y-PSNR | BitRate | Y-PSNR | BitRate | YPSNR | BitRate | Y-.PSHNR | BitRate | Y-PSNR

24 | J2|15482.7488) 41.5350| 15459.6544| 41.5359| 15455.6656| 41.5355)15491.6766| 41.53589)15452.0032| 41.5350| 15454.0400| 41.5359
25 | J7| 5062.9920| 38.6464| S052.3568| 35.6444| 5066.3003| 35.6436) 5085.2580| 35.6446| 50726528 35.6472| 5057.5984| 35.6446
26 | 32| 2129.0552) 36.0020| 2146.58704| 359953 2136.2944| 35.9990| 2149.1296| 35.9963| 2141.1696| 35.9577| 2150.8992| 35.9530
27 | 37| 1011.9120) 33.2574| 1023.58320) 332702 1015.5776| 33.2794| 1027.9472| 33.2789| 10207872 33.2573| 1029.5520| 33.2710

Figure 31: Summary of encoder output data

Then, we wrote Visual Basic macros that read BitRate and Y-PSNR vectors from the
worksheet and produce a text file with the appropriate calls to bjontegaard2() (in MatLab
syntax of course). These macros were called when clicking on button ‘Save Text’ (visible
in the above figure). Thus, several text files were produced with calls like these below.

resl=bjontegaard2 ([12717.8192 , 5115.6832 , 2509.5408 , 1310.4336 1,1
41.7775 , 39.3521 , 36.9606 , 34.3806 1,[12750.0992 , 5149.032 ,
2533.56 , 1328.72 1, 41.776 , 39.3523 , 36.9497 , 34.3663],’dsnr’);

res2=bjontegaard2 ([12717.8192 , 5115.6832 , 2509.5408 , 1310.4336 1, [
41.7775 , 39.3521 , 36.9606 , 34.3806],[12728.0832 , 5122.6192 ,
2515.9184 , 1316.2112 1,[41.7767 , 39.3532 , 36.9571 , 34.3721
1,"dsnr’);

res3=bjontegaard2 ([12717.8192 , 5115.6832 , 2509.5408 , 1310.4336 1, I
41.7775 , 39.3521 , 36.9606 , 34.3806],[12752.496 , 5151.8016 ,
2536.1888 , 1331.7136 1,[41.776 , 39.3515 , 36.9496 , 34.3668
1,"dsnr’);

res4=bjontegaard2 ([12717.8192 , 5115.6832 , 2509.5408 , 1310.4336 1, I
41.7775 , 39.3521 , 36.9606 , 34.3806],[12738.1888 , 5133.3744 ,
2522.6256 , 1320.8464 1,[41.7762 , 39.3522 , 36.9534 , 34.3721
1,"dsnr’);

resb=bjontegaard2 ([12717.8192 , 5115.6832 , 2509.5408 , 1310.4336 1, I
41.7775 , 39.3521 , 36.9606 , 34.3806],[12754.9024 , 5153.4096 ,
2539.09%96 , 1333.7984],[41.776 , 39.3519 , 36.9503 , 34.3658],’dsnr’);

Those calls were pasted into Octave and eventually we had BD-PSNR metrics for
every possible QP value and frame partinioning scheme. Figure 13 shows the data
computed, with 2 slice partitioning being the “yardstick” in the first row, 2x6 is the
reference for the second row etc. It is obvious that values at symmetric matrix positions
CHAPTER 4: Evaluation of multiple slices and tiles

38

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Evaluation of multiple slices and tiles

are of opposite sign and thus there was no need to calculate again the average difference
between, say, RD-curves of 2x6 vs. 2-sliced runs when we had done so for 2-sliced vs.

2x6 segmentation.

CHAPTER 4: Evaluation of multiple slices and tiles
39

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Evaluation of multiple slices and tiles

Bjontegaard Metric

Kimono LowDelay

S
R
i ", 3 "o o % 5
%) i) N e N)
2 slices 0 0.05966 0.01659| 0.06540| 0.03548| 0.06987
2x6 -0.05966 0 -0.04318| 0.00584| -0.02426| 0.01040
3 slices -0.01659 0.04318 0 0.04896 0.01896| 0.05346
3x4 -0.06540| -0.00584| -0.04896 0 -0.03007| 0.00457
4 slices -0.03548| 0.02426| -0.01896| 0.03007 0 0.03459
4x3 -0.06987| -0.01040| -0.05346| -0.00457| -0.03459 0
Kimono RandomAccess
S
%
2, "o, e "o, 3 "% %
?P Q® +6\ Q, +7 0\5‘ +'.?
2 slices 0 0.060035| 0.022022| 0.065745| 0.038253| 0.070920
2x6 -0.060035 0 -0.038115| 0.005816| -0.021886| 0.011084
3 slices -0.022022| 0.038115 0 0.043861| 0.016285| 0.049067
3x4 -0.065745| -0.005816| -0.043861 0 -0.027670| 0.0052872
4 slices -0.038253| 0.021886| -0.016285| 0.027670 0 0.032911
4x3 -0.070920| -0.011084| -0.049067(-0.0052872| -0.032911 0
Traffic LowDelay
S
%
i ", o N\ % o % %
%) i) S e S >
2 slices 0 0.022439| 0.0084849| 0.025030(0.012306| 0.028514
2x6 -0.022439 0 -0.013994| 0.0026518| -0.010156| 0.006159
3 slices -0.0084849| 0.013994 0 0.016606| 0.003847| 0.016275
3x4 -0.025030/-0.0026518| -0.016606 0 -0.012779| 0.0035112
4 slices -0.012306| 0.010156| -0.003847| 0.012779 0 0.016275
4x3 -0.028514| -0.006159| -0.016275(-0.0035112| -0.016275 0
| Bjontegaard Metric
Traffic RandomAccess
S
%
2, "o, 3 "o, 3 "% %
/2 B R) e S 15
2 slices 0 0.031384| 0.00854029| 0.0347364|0.0177372| 0.0369156
2x6 -0.031384 0 -0.022915| 0.0033908| -0.013703| 0.005597
3 slices -0.0085403| 0.022915 0 0.026285| 0.009223| 0.028476
3x4 -0.034736|-0.0033908| -0.026285 0 -0.017078| 0.0022102
4 slices -0.017737| 0.013703| -0.009223| 0.017078 0 0.019273
4x3 -0.036916| -0.005597| -0.028476(-0.0022102| -0.019273 0

Figure 32: All the calculated BD values

CHAPTER 4: Evaluation of multiple slices and tiles

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

40

Evaluation of multiple slices and tiles

The above data (BD-metric values) are much more readable in barchart format. So, we
decided to keep the 2 slices partitioning as a reference and produce the following graphs.

Kimono LowDelay ('dsnr')

0.06987
0.05966 0.06540

0.03548
0.01659

2x6 3slices 3x4 4slices 4x3

Kimono RandomAccess
(‘dsnr')

0.080000

0.060000
0.040000
0.020000 . I
0.000000
2x6 3slices 3x4 4slices 4x3

Traffic LowDelay ('dsnr')

0.030000

0.025000
0.020000
0.015000
0.010000
0.005000 I I
0.000000

2x6 3slices 3x4 4slices 4x3

Traffic RandomAccess (‘dsnr')

0.040000

0.030000

0.020000

0.010000 I
0.000000 I

2x6 3slices 3x4 4slices 4x3

Kimono LowDelay ('rate')

2.16771
1.84100 2.03060

1.10506
0.51203

3 slices 4 slices 4x3

Kimono RandomAccess
(‘rate")

3.00000

2.00000
1.00000 I I
0.00000 .

2x6 3slices 3x4 4slices

Traffic LowDelay ('rate’)

1.00000
0.80000

0.60000
0.40000
0.20000 I I
0.00000

2x6 3slices 3x4 4slices 4x3

Traffic RandomAccess ('rate’)

1.50000

1.00000
0.50000 I
0.00000

2x6 3slices 3x4 4slices

Figure 33: Bjontegaard metric barcharts

CHAPTER 4: Evaluation of multiple slices and tiles

41

Institutional Repository - Library & Information Centre - University of Thessaly

21/05/2022 09:32:45 EEST - 137.108.70.13

Evaluation of multiple slices and tiles

Conclusion and ideas for further research

A glance at the previously displayed barcharts shows that best coding efficiency is
achieved with either no partinioning at all, or by using only slicing (no tiles at all). Yet,
no partitioning is out of the question, since slicing and/or tiling is absolutely required to
achieve efficient code parallelization and thus best temporal performance. Moreover, if
we want to maximize parallelization, we also have to include tiles in the chosen
partitioning scheme [31], [19], [23]. Thus, it seems that 2x6 (slices X tiles) is our best
choice. In fact, load balancing is maximized if we use a hardware configuration of two
(2) CPUs with six (6) cores each (e.g. Two Intel Xeon W-2133 CPUs [42]).

As we have seen in past works like [24], several partitionings have already been
evaluated from the scope of load balancing and resource utilization in general besides the
above we chose. So, it seems attractive, as a future project to further investigate CPU
utilization achieved by our six (6) frame segmentations. In other words, a parallel
scalability analysis like the one presented in [19] would not be meaningless.

CHAPTER 4: Evaluation of multiple slices and tiles
42

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

References

[1] " Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI," 2017.
[Online]. Available: https://hevc.hhi.fraunhofer.de/.

[2] Bossen Fr., Flynn D., Sharman K., Stihring K., "JCTVC HM Software Manual," 21 1 2018.
[Online]. Available:
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/trunk/doc/software-manual.pdf.
[Accessed 3 2018].

[3] "Wikipedia (CGA)," [Online]. Available:
https://en.wikipedia.org/wiki/Color_Graphics_Adapter.

[4] Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, Thomas Wiegand, "Overview of the High
Efficiency Video Coding (HEVC) Standard," IEEE Transactions on circuits and systems for
video technology, vol. 22, no. 12, 2012.

[5] "Wikipedia Lossy compression," [Online]. Available:
https://en.wikipedia.org/wiki/Lossy _compression.

[6] "Wikipedia Lossless compression," [Online]. Available:
https://en.wikipedia.org/wiki/Lossless_compression.

[7] SruthiS., Dr. Shreelekshmi R., "Video Compression - from Fundamentals to H.264 and H.265
Standards," Int. Journal of Engineering and Computer Science ISSN:2319-7242, Vol. 4, Issue
7, pp. 13468-13473, July 2015.

[8] R.I. Chernyak, "Analysis of the Intra Predictions in H.265/HEVC," Applied Mathematical
Sciences, vol. 8, no. 148, pp. 7389-7408, 2014.

[9] M. B. Vivienne Sze, "Design and Implementation of Next Generation Video Coding Systems
(H.265/HEVC Tutorial)," ISCAS Tutorial, 2014.

[10] K. D. H. J. Rao K. R., High Efficiency Video Coding(HEVC), Dordrecht: Springer, 2014.
[11] G. Dimopoulos, "IMPLEMENTATION OF HEVC (H.265) VIDEO ANALYSIS TOOL," Lamia, 2017.

[12] Wiegand Th., Sullivan G.J., Bjontegaard G., Luthra A., "Overview of the H.264/AVC Video
Coding Standard," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO
TECHNOLOGY, July 2003.

[13] I. E. Richardson, The H.264 Advanced Video Compression Standard, 2nd ed., Wiley and
Sons, 2010.

[14] Fu Chih-Ming, Alshina Elena, Alshin Alexander, Huang Yu-Wen, Chen Ching-Yeh, and Chia-

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Yang Tsai, Chih-Wei Hsu, Lei Shaw-Min, Park Jeong-Hoon, Han Woo-Jin, "Sample Adaptive
Offset in the HEVC Standard," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO
TECHNOLOGY, vol. 22, no. 12, Dec. 2012.

[15] Corréa G., Assuncdo P., Agostini L., da Silva Cruz L.A., Performance and Computational
Complexity Assessment of HEVC. In: Complexity-Aware High Efficiency Video Coding,
Springer, Cham, 2016.

[16] M. V. T.D. H. A. H. Jarno Vanne, "Comparative Rate-Distortion-Complexity Analysis of HEVC
and AVC Video Codecs," vol. 22, no. 12, Dec. 2012.

[17] Ohm Jens-Rainer, Sullivan G. J., Schwarz H., Thiow Keng Tan Th. K., Wiegand Th.,
"Comparison of the Coding Efficiency of Video Coding Standards—Including High Efficiency
Video Coding (HEVC)," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO
TECHNOLOGY, vol. 22, no. 12, pp. 1669-1684, Dec. 2012.

[18] B. Benny, Next-Generation Video Coding and Streaming, John Wiley & Sons, 2015.

[19] Chi Ching Chi, Mauricio Alvarez-Mesa, Ben Juurlink, Gordon Clare, "Parallel Scalability and
Efficiency of HEVC Parallelization Approaches," vol. 22, no. 12, 2012.

[20] P. S. Henry F., "Wavefront Parallel Processing," in Joint Collaborative Team on Video Coding
(JCT-VC) - JCTVC-E196, Geneva, 2011.

[21] Heng Tse Kai, Asano W., Itoh Tak., Tanizawa Ak., Yamaguchi Jun, Matsuo Tak., Kodama
Tom., "A HIGHLY PARALLELIZED H.265/HEVC REAL-TIME UHD SOFTWARE ENCODER," in IEEE
International Conference on Image Processing (ICIP), Paris, 2014.

[22] K. Misra, A. Segall, M. Horowitz, S. Xu, A. Fuldseth and M. Zhou, "An overview of tiles in
HEVC," IEEE Journal of Selected Topics in Signal Processing, vol. 7, no. 6, pp. 969-977,
December 2013.

[23] Maria Koziri, P. Papadopoulos P, N. Tziritas, A. N. Dadaliaris, Thanasis . Loukopoulos, S. U.
Khan and C. Z. Xu, "Adaptive Tile Parallelization for Fast Video Encoding in HEVC," in 12th
Int. Conf. on Green Computing and Communications (GreenCom 2016), Kos, Greece, 2016.

[24] Migallon H., Pifiol P., Lopez-Granado O., Galiano I., Malumbres M.P., "Performance analysis
of frame partitioning in parallel HEVC encoders," Journal of Supercomputing, 10 Jan. 2017.

[25] Mitra G., Johnston B., Rendell A.P., McCreath E., Zhou Jun, "Use of SIMD Vector Operations
to Accelerate Application Code Performance on Low-Powered ARM and Intel Platforms," in
IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD
Forum, 2013.

[26] Yang Lu, Qi Zhang, Bin Wei, "Real-Time CPU Based H.265/HEVC Encoding with x86 Platform
Technology," in International Conference on Computing, Networking and Communications

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

(ICNC), Workshop on Computing, Networking and Communications (CNC), 2015.

[27] Chen Keji, Duan Yizhou, Yan Leju, Sun Jun, "Efficient SIMD Optimization of HEVC Encoder
over X86 Processors," Beijing 100871, China.

[28] Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI, "Wavefronts for
HEVC Parallelism," [Online]. Available:
https://www.hhi.fraunhofer.de/index.php?id=543&L=1. [Accessed March 2018].

[29] P. Pifiol, H. M. Gomis, O. M. L. Granado, M. P. Malumbres, "Slice-based parallel approach
for HEVC encoder," Journal of Supercomputing, vol. 71, no. 5, pp. 1882-1892, 2015.

[30] M. Z. Sze and Madhukar Budagavi, Parallel tools in HEVC for high-throughput processing,
vol. 8499, 2012, pp. 8499 - 8499 - 13.

[31] Malossi G., Palomino D., Diniz Cl., Susin A., Bampi S., "Adjusting Video Tiling to Available
Resources in a per-frame Basis in High Efficiency Video Coding," in New Circuits and Systems
Conference (NEWCAS), 2016 14th IEEE International, Vancouver, BC, Canada, 2016.

[32] C. Lattner, "Introduction to the LLVM Compiler System," 4 11 2008. [Online]. Available:
https://llvm.org/pubs/2008-10-04-ACAT-LLVM-Intro.pdf. [Accessed 2018].

[33] F. Bossen, "“Common Test Conditions and Software Reference Configurations”," document
JCTVC-H1100, JCT-VC, Feb. 2012.

[34] M. Wien, High Efficiency Video Coding. Coding Tools and Specification, HeidelBerg:
Springer-Verlag, 2015.

[35] "Wikipedia (BASH shell)," [Online]. Available:
https://en.wikipedia.org/wiki/Bash_(Unix_shell).

[36] "Linux manpages (taskset command)," [Online]. Available:
https://linux.die.net/man/1/taskset.

[37] Free Software Foundation - GNU project, "sed, a stream editor," GNU project, [Online].
Available: https://www.gnu.org/software/sed/manual/sed.html.

[38] S. Akramullah, Digital Video Concepts, Methods and Metrics: Quality, Compression,
Performance, and Power Trade-off Analysis, Apress, 2014.

[39] G. Bjontegaard, "Calculation of average PSNR differences between RD-Curves. Proceedings
of the ITU-T Video Coding Experts Group (VCEG)," in VCEG-33, 2001.

[40] M. S. Giuseppe Valenzise G., "GitHub (bjontegaard2)," 2013. [Online]. Available:
https://github.com/serge-m/bjontegaard2. [Accessed March 2018].

[41] Free Software Foundation - GNU project, "GNU Octave," GNU project, 2017. [Online].

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

Available: https://www.gnu.org/software/octave/.

[42] Intel Corporation, "Product Specifications," Intel, [Online]. Available:
https://goo.gl/wpzFGp.

[43] "Wikipedia (DCM)," [Online]. Available:
https://en.wikipedia.org/wiki/Discrete_cosine_transform.

[44] "Wikipedia (DSM)," [Online]. Available:
https://en.wikipedia.org/wiki/Discrete_sine_transform.

[45] J. Martinez, P. Cuenca, F. Delicado and F. Quiles, "Objective video quality metrics: A
performance analysis," 3 2018.

[46] Cebrian-Marquez G., Hernandez-Losada J. L., Martinez J.L., Cuenca P., Tang M., Wen J.,
"Accelerating HEVC using heterogeneous platforms," Journal of Supercomputing, no. 71,
2015.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 09:32:45 EEST - 137.108.70.13

