
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

FEASIBILITY OF SIDE-CHANNEL ATTACKS ON

MICROCONTROLLERS & FPGAs

Diploma Thesis

Tragoudaras Antonios

Supervisor: George Stamoulis

Volos, February 2022

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

FEASIBILITY OF SIDE-CHANNEL ATTACKS ON

MICROCONTROLLERS & FPGAs

Diploma Thesis

Tragoudaras Antonios

Supervisor: George Stamoulis

Volos, February 2022

iii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΥΛΟΠΟΙΣΗΜΟΤΗΤΑ ΕΠΙΘΕΣΕΩΝ ΠΛΕΥΡΙΚΟΥ

ΚΑΝΑΛΙΟΥ ΣΕ ΜΙΚΡΟΕΛΕΧΤΕΣ & FPGAs

Διπλωματική Εργασία

Αντώνιος Τραγουδάρας

Επιβλέπων: Γεώργιος Σταμούλης

Βόλος, Φεβρουάριος 2022

v

Approved by the Examination Committee:

Supervisor George Stamoulis

Professor,

Department of Electrical and Computer Engineering,

University of Thessaly

Member Nestor Evmorfopoylos

Associate Professor,

Department of Electrical and Computer Engineering,

University of Thessaly

Member Nikolaos Moondanos

Associate Professor,

Department of Electrical and Computer Engineering,

University of Thessaly

vii

Acknowledgements

First and foremost, Ι would like to express my deepest gratitude to my supervisor, Prof.

Georges Stamoulis for allowing me to work on a captivating topic and for playing a crucial

role in shaping my academic interests during my undergraduate studies. It was his careful

guidance and proficiency that enabled me to successfully carry out the challenging tasks in-

corporated in completing this thesis.

Last but not least, I would like to thank my beloved family members and friends for their

unconditional love and support all these years.

ix

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work / con-

tributions of third parties for which the permission of the authors / beneficiaries is required

and are not a product of partial or complete plagiarism, while the sources used are limited

to the bibliographic references only and meet the rules of scientific citing. The points where

I have used ideas, text, files and / or sources of other authors are clearly mentioned in the

text with the appropriate citation and the relevant complete reference is included in the bib-

liographic references section. I also declare that the results of the work have not been used

to obtain another degree. I fully, individually and personally undertake all legal and admin-

istrative consequences that may arise in the event that it is proven, in the course of time, that

this thesis or part of it does not belong to me because it is a product of plagiarism».

The declarant

Tragoudaras Antonios

xi

Abstract

All electronic devices are prone to unintentionally reveal information pertinent to the under-

going operations and real-time data processing, taking place in their processing cores through

indirect sources, to some extent. The most common sources, mentioned as side-channels, are

power consumption, electromagnetic emissions, computations timing. Side-channel attacks

sample the information leaked through these inherent sources/channels, aiming at the inter-

pretation of the collected data in order to extract invaluable information, critical for under-

mining the security of the device under attack.

This Thesis employs two of the most dominant form of Side-Channel attacks, namely Power

Analysis and Fault Injection, against cryptographic schemes implemented to be used both for

FPGA andmicrocontroller targets respectively. Issues arising from the feasibility and efficacy

of the aforementioned attack techniques are addressed by proposing countermeasures for our

own demonstrated attacks when possible.

xiii

Περίληψη

Όλες οι ηλεκτρονικές συσκεύες είναι επιρρεπείς στην ακούσια αποκάλυψη πληροφορίας συ-

σχετιζόμενη με τις υποτρέχουσες λειτουργίες και την επεξεργασία δεδομένων σε πραγματικό

χρόνο, που πραγματοποιούνται στους πυρήνες επεξεργασίας τους διαμέσου πλευρικών πη-

γών, ως ένα βαθμό. Οι πιο συνηθισμένες πηγές, που συχνά αναφέρονται και ως πλευρικά

κανάλια, είναι οι εξής: κατανάλωση ενέργειας, ηλεκτρομαγνητικές εκπομπές, χρονική διάρ-

κεια υπολογισμών. Οι επιθέσεις πλευρικού καναλιού δειγματολειπτούν τη πληροφορία που

διαφεύγει διαμέσου των εγγενών αυτών πήγων/καναλίων, με στόχο την διερμηνία των συλ-

λεχθέντων δεδομένων, προκειμένου να εξαχθεί κρίσημα πληροφρία που θα χρησιμοποιηθεί

στη συνέχεια για την υπονόμευση της ασφάλειας της συσκεύης υπό επίθεση.

Αυτή η διπλωματική κάνει χρήση των δύο πιο κυρίαρχων μορφών πλευρικών επιθέσεων,

πιο συγκεκριμένα την ανάλυση ισχύος & έγχυση σφάλματος, ενάντια σε αλγορίθμους κρυ-

πτογράφησης, σχεδιασμένοι να χρησιμοποιηθούν σε στόχους υλοποιημένους για FPGA και

μικροελεγκτές. Τα ζητήματα που προκύπτουν από την αποτελεσματικότητα και υλοποιη-

σημότητα των ανωτέρων τεχνικών επίθεσης, αντιμετωπίζονται με την πρόταση αντίμετρων

πάνω στις δικές μας επιθέσεις επίδειξης, όπου αυτό κατέστη δυνατό.

xv

Table of contents

Acknowledgements ix

Abstract xiii

Περίληψη xv

Table of contents xvii

List of figures xix

List of tables xxi

Abbreviations xxiii

1 Introduction 1

1.1 Thesis Objective & Contribution . 2

1.2 Thesis Outline . 2

2 Background in Side-Channel-Attacks(SCAs) 5

2.1 Power Analysis . 7

2.1.1 Differential Power Analysis (DPA) 8

2.1.2 Correlation Power Analysis (CPA) 11

2.2 Fault Injection . 12

2.2.1 Single Bit Fault Analysis . 14

2.2.2 Differential Fault Analysis . 16

3 Power Analysis Attacks 21

xvii

xviii Table of contents

3.1 Power Analysis attacks against software-based implementations of crypto-

graphic schemes . 22

3.1.1 DPA against AES block cipher on XMEGA uC 23

3.1.2 CPA against AES block cipher on XMEGA uC 29

3.1.3 Bootloader AES-256 . 31

3.2 Power Analysis attacks against hardware-based implementation of crypto-

graphic schemes . 34

3.2.1 CPA against AES block cipher on Artix7 35

3.2.2 Whitebox Attack against Elliptic Curve Cryptography 41

3.3 Countermeasures . 43

4 Fault Injection Attacks 45

4.1 DFA attack using phoenixAES/Clock glitching settings 46

4.2 Shortcomings of clock glitching / Countermeasures 50

5 Conclusion and Future Work 51

5.1 Conclusion & Contributions . 51

5.2 Future Work . 52

Bibliography 53

ChipWhisperer Platform/Tools 59

1 Artix FPGA board w/ Capture Lite board 59

2 XMEGA microcontroller w/ Capture Lite board 60

List of figures

2.1 Evolution of SCAs (Figure from [1]) . 5

2.2 Categorization of SCAs as illustrated in [1] 6

2.3 Attack on a single key-byte, the distinct spikes occurs at the time event(namely

the first S-Box transformation) where the microprocessor is fusing key bytes

with intermediate state bytes together. The green spikes represent the correct

guess for second key byte, whereas the red ones represent a random-false

key-guess . 10

2.4 Demonstration of linearity connection between average current and Ham-

ming Weight of leakage model’s result C, of a single-byte data manipula-

tion occurring during the S-Box transformation of the first AES-128 round.

ChipWhisperer-Lite Capture board was used during the power measurements 12

2.5 Fault attack illustrated . 15

2.6 Single bit fault attack injected in the last round key-addition, namely XOR

operation between intermediate state 10th round-key bits 16

2.7 AES encryption structure(picture’s source: [2]) 17

3.1 A collected power trace illustrating the ’signature’ of 10 AES rounds. . . . 23

3.2 Using ChipWhisperer Analyzer for analysis phase, which utilizes Pandas

DataFrames. 31

3.3 Difference between the average of all power traces and a single different

power trace at a time, each illustrated with a different color to represent a

different possible signature-value. The large red peak represents the differ-

ence between the mean of all power traces and the correct key guess of the

first signature byte. The peak occurs at the point in time where the signature

check takes place. 33

xix

xx List of figures

3.4 Difference between the average of all power traces and a single different

power trace at a time, each illustrated with a different color to represent a

different possible signature-value. 35

3.5 High-Level illustration of the targeted hardwareAES implementation(figure’s

source: CW305 Whitepaper) . 36

3.6 Utilize LASCAR python module to diminish CPA calculation time. 38

3.7 Plotting the best correlation achieved for all single key-byte guesses at a given

time/sample. 39

3.8 PGE over the number of power traces used so far. 40

3.9 Colored waves represent the best key guess, black waves illustrate the second

best key guess. 40

4.1 Block diagram of glitching ’sub-module’ of Capture Lite Board(picture’s

source: ChipWhisperer ReadtheDocs) . 45

4.2 Capture all ten rounds of AES to visualize the point where fault need to be

injected. 47

4.3 The red vertical line illustrates the 13000th sample around which the glitches

are inserted. 48

4.4 Glitch results of our ’campaign-attack’ after sweeping through the glitch-

parameters values provided in the text. 49

List of tables

2.1 Meaning of symbols used in Pearson Correlation Coefficient equation2.2 . 12

2.2 Meaning of symbols in detailed PearsonCorrelationCoefficient calculations2.3(taken

from [1]) . 13

3.1 Encrypted data format sent to the bootloader through a serial port with baud

rate of 38400. 32

3.2 Incorrect guesses for a given distinguisher as the power traces acquisition is

decreasing . 43

xxi

Abbreviations

SCA Side-Channel Attack

AES Advanced Encryption Standard

ECC Elliptic Curve Cryptography

RSA Rivest–Shamir–Adleman public-key cryptosystem

FPGA Field Programmable Gate Array

uC Microcontroller

IC Integrated Circuit

VLSI Very Large - Scale Integration

SAD Sum of Absolute Differences

SPA Simple Power Analysis

CPA Correlation Power Analysis

DPA Differential Power Analysis

DFA Differential Fault Analysis

CW ChipWhisperer

IoT Internet of Things

CPU Central Processing Unit

ARM ARM Ltd.

EM Electromagnetic

S-Box Substitution Box

LSB Least significant Bit

AC Alternating current

ADC Analog-to-digital converter

LNA Low Noise Amplifier

PGE Partial Guessing Entropy

CBC Cipher Block Chaining

xxiii

xxiv List of tables

IV Initialization Vector

ECB Electronic Code Book

LASCAR Ledger’s Advanced Side-Channel Analysis Repository

PCB Printed Circuit Board

TVLA Test Vector Leakage Assessment

PnR Place and Route

DoM Difference of Means

Chapter 1

Introduction

As modern computing systems tend to get faster due to breakthroughs made in the broader

discipline of Computer Engineering during the course of the last decades, cyber attacks are

considered the despairs of digital era compromising data confidentiality and resulting in fi-

nancial losses. Software-based, Zero Day attack implications can be mitigated with security

patches and software updates; however resolving attack impacts, which exploit vulnerabil-

ities entrenched in hardware is extremely difficult if not a doomed task, since there is no

equivalent to a security-fix hardware-wise, meaning that the effects of such Zero Day at-

tacks will be propagated across many device for an extended period in time, or even a full

’hardware-lifecycle’. During the first quarter of 2018, both Google Project Zero team and

individual security analysts reported Spectre [3] and Meltdown [4] , two vulnerabilities af-

fecting several modern CPUs and uCs. Spectre refers to a broad family of potential weak-

nesses of whichMeltdown is one. Both exploit CPU’s architecture performance optimizations

techniques, namely speculative execution/evaluation and out-of-order execution , resulting

in jeopardizing security implications, ranging from violating process isolation boundaries to

exfiltrate data from kernel memory space or even breach browser sandboxing. This was just

a reminder of how far side-channel attacks have come since originally introduced in the mid

’90s [5], followed by works leveraging physical information, such as power consumption [6]

and electromagnetic emissions [7] the next few years.

The immense usage of ICs in consumer electronics aligned with the continuous growth of

IoT market and their application realm, create back-doors for larger attacks that will not only

influence the operation of a single device rather than a greater interconnected network [8].

1

2 Chapter 1. Introduction

It would be reasonable for one to suggest that state of the art electronic devices would have

some level of protection against attacks that have been publicly disclosed for almost 23 years.

Well the latter is far from truth since variants of the aforementioned side channel attacks are

still very powerful to this day.

1.1 Thesis Objective & Contribution

This work intends to demonstrate the capabilities of power analysis and fault injection tech-

niques to recover sensitive data, typically that being secret keys, used during the encryp-

tion/decryption operations in otherwise impenetrable well-known cryptographic schemes,

running both on modern uC and FPGAs used in a variety of IoT applications. The intimate

knowledge obtained from our experiments, allows us to propose alterations on these crypto-

routines implementation-wise, in order to impede such attacks from undermining the security

of modern consumer electronics powered by similar ICs as the ones used in this thesis. All the

tools used in this study are open-source, low-cost and part of the ChipWhisperer open-source

project. This thesis can also be considered as a survey of Power Analysis & Fault Injection

attacks and their existing countermeasures.

1.2 Thesis Outline

The rest of this Thesis is organized in the following Chapters:

• Chapter 2: An in-depth dive in Side-Channel Attacks, where we focus on demystifying

the theoretical framework behind Power Analysis & Fault Injection attacks. The ob-

jective of this chapter is to provide profound knowledge needed for a comprehensive

understanding of our hands-on experiments, carried-out in Chapters 3&4.

• Chapter 3: Demonstration of power analysis attacks against different crypto-routine&target

combinations.

• Chapter 4: Exhibition of fault injection attacks against different crypto-routine&target

combinations.

1.2 Thesis Outline 3

• Chapter 5: Conclusion of our work and its findings/contributions; proposal for fu-

ture/prospective work as an extension of this thesis.

Chapter 2

Background in

Side-Channel-Attacks(SCAs)

Undeniably, P. Kocher’s works [5, 6] were groundbreaking and had a seminal influence to

hardware security research field, however the first ever mention to a Side-Channel Attack

dates back to mid 60’s. Back then, British Intelligence Agency utilized the sound produced

by a cryptographic rotor-type machine to fully derive the secret key [9]. As illustrated in 2.1

modern attacks have evolved over time, refining the way information inherent in physical

channels is utilized.

Figure 2.1: Evolution of SCAs (Figure from [1])

Side-Channel attacks can be divided into two major categories :

• Passive: The functionality of the targeted device is not interfered in any way by the at-

tacker party. We just assume that the attacker has access to the device under attack and

5

6 Chapter 2. Background in Side-Channel-Attacks(SCAs)

is able to monitor some kind of physical information generated under normal operating

circumstances. In the context of cryptographic implementations on such devices, the

implicit presence of intermediate values (i.e. intermediate computation results, fusing

plaintext and key together), in the form of Side-Channel leakage(i.e. a power consump-

tion, EM radiation), typically needed to be computed during the ciphertext generation,

can provide enough ’clue’ for the secret key to be extracted.

• Active: This kind of attacks require the attacker to be able to explicitly alter the standard

operation of the ’prey’ device on demand. By doing so the attacker usually will be able

to force functional errors influencing the ’final’ computation outcome(ciphertext in

cryptographic context), ultimately leading to a very specific Side-Channel leakage that

will allow him/her to obtain confidential ’intelligence’. Such attacks require proficient

knowledge related to the computations which take place during the device operation

and cannot be performed using a black-box approach.

The figure below 2.2 groups the attacks into dedicated categories based on the origin of

the physical channel information, namely: Power, EM, timing, Fault Injection. Each of the

previous SCAs classified under the Passive Attacks category can be further divided according

to either the statistical analysis/methods applied to the acquired physical measurements(in

case of Power and EM analysis) or how the attack was driven in the first place(in case of

timing analysis). Fault injection attacks typically get splitted using the physical component

(clock pins i.e.), which gets disturbed to create faulty behaviour, as a reference.

Figure 2.2: Categorization of SCAs as illustrated in [1]

Our work focuses both on Power Analysis and Fault Injection attacks mainly against symmet-

ric cryptography, but there is also a small sectionwhere public-key cryptography is addressed.

Fault Injection attacks fitting in the semi-invasive category are out of the scope of this Thesis

2.1 Power Analysis 7

(i.e. physical probing and other attacks requiring ’on-chip’ modifications [10, 11]), as only

clock & voltage glitching techniques are employed. Also for the rest of this study we assume

the reader to be familiar with Advanced Encryption Standard (AES) and Elliptic Curve Cryp-

tography (ECC), especially with AES as it is extensively used throughout our experiments in

Chapter3 & Chapter4 and is the all-time favorite victim of SCAs.

2.1 Power Analysis

Power Analysis attacks are considered amongst many researches a very dominant form of

Side-Channel attacks if not the most, while they have been utilized utterly since their origi-

nal introduction by no other than P.Kocher in 1999 [6]. This type of attacks are well known

for their effectiveness in breaking both hardware and software implementations of crypto-

graphic schemes/routines. For instance, the AES key can be derived easily in a few minutes

time by applying such power analysis methods. The three most known methods are depicted

in figure 2.2 under the power analysis branch.

Independently of which analysis method is used an attacker needs to monitor the power con-

sumption of the target device1, during encryption/decryption operations, prior to applying

some type of statistical analysis to the collected traces2 The latter action is critical, since the

power consumed by an IC is directly dependent on the operations taking place on this digital

electronic. The very same principal was exploited in [6] by applying a SPA to successfully

break the RSA cryptography in late 90’s. In this Thesis we mostly use CPA & DPA as these

types of analysis are a great match for breaking AES ’variants’ implementations for FPGA

and uC targets(referred earlier as hardware and software respectively), exhaustively exam-

ined in Chapter3.

1The acquisition of power signals in this study is done through the utilization of ChipWhisperer-Lite Capture

board. The process of collecting power traces for the sake of our experiments is discussed concisely in Chapter3
2A power trace is defined as the recorded power consumption of the our ’victim’ device, starting at the

beginning of a(n) encryption/dectyprion ’run’ and lasting until the very end of the same ’run’. Usually every

cryptographic algorithm is known to have a distinctive power signature, revealing sensitive information such

discrete operation executed by our target in ’real-time’.

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard#High-level_description_of_the_algorithm
https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication

8 Chapter 2. Background in Side-Channel-Attacks(SCAs)

2.1.1 Differential Power Analysis (DPA)

Although SPA utilizes the information leakage related to the type of computations executed

during digital electronic operation, through the physical power channel, it’s shortcoming lies

to the fact the this property alone is not effectively enough to break an AES implementation.

Amore powerful approachwas also initiated in [6], where the authors claimed that power side

channels encapsulate/enclose information about the data (secret keys & plaintexts) ’manip-

ulated’ on the target device, rather that merely the undergoing discrete cryptographic opera-

tions. This is mainly due to the dynamic power consumed by an IC caused from the switching

activity of the transistors and their capacitive behavior. The author of [12] illustrated the lat-

ter in a very pellucid manner:

”A data bus on a digital device is driven high or low to transmit signals between nodes. The

bus line can be modeled as a capacitor, and we can see that changing the voltage (state) of a

digital bus line takes some physical amount of energy, as it effectively involves changing the

charge on a capacitor”[12].

”Microcontrollers set their internal buses to a constant state before the final value is loaded”[12].

DPA takes full advantage of the aforementioned power dependency on sensitive data, namely

the cryptographic-key, while it is applicable in a variety of devices running the AES [13].

In this paragraph we explain our attack model for DPA based on the original attack [6] in

detail, so we do not need to repeat our selves later in Chapter3. Assume an attack point in

time , where an intermediate operation f fuses/mixes known input P (plaintext) with secret

data K (key) together, where

C = f(P,K) (2.1)

is the net result of this operation. Due to power consumption implicit correlation to the com-

puted data on the device, it is anticipated that this will also be noticeable on the recorded

power traces. Then we proceed to capture N traces of equivalent AES complete encryp-

tion/decryption runs, where a fixed unknown K is used and some random input P is given

every run. If we achieve to generateC ′ = f(P,K ′)’ where K’ is representing all possible key

values of the actual K, while K used during the initial power trace acquisition , it is feasible

to make a comparison between our recorder power trace and the hypothetical/generated ones

in order to determine the best key guess. The following properties are hard-requirements for

the success of our DPA model:

2.1.1 Differential Power Analysis (DPA) 9

• It is crucial for f to depend only on a single byte of the actual key K, as this defines

a computational feasible search key-space of 28. In order to recover the full key one

should just repeat the attack for each byte of the 16-byte key in case of AES-128 variant.

• f, which typically is called leakage model by the research community, ideally has to

be a non-linear function. For that reason, plus the single key-byte dependency require-

ment mentioned in the ’bullet’ above, the S-Box transformation of the first/last AES

round is considered a very effective choice. Even a guess K’with only a single bit fault

(compared to K) will result in multiple ”wrong bit” values at the output of S-BoxC’, as

S-Box transformation perfectly meets the non-linearity properties needed. As a result

this will allow the attacker to readily distinguish the golden/best key guess during his

comparisons.

Yet we have not discussed a convenient way/metric to compare our hypothetical leakage C’

to the actual leakage C(which is implicitly embedded into our recorded power traces). Most

works adopted a technique originally proposed in [6] or at least some alteration in it. So the

fundamental principal behind most DPAs is divided in the following delineated steps:

1. Group the acquired power traces based on a single bit of the targeted key ’sub-byte’

(usually the LSB) of C’ for all possible key-combinations.

2. Calculate the (Absolute) Difference of means between the two groups generated in the

previous step, for all possible C’(and implicitly for all different K’).

3. For all incorrect guesses we anticipate a low and similar difference of means , since

the groups have been classified randomly. On the other hand if our guess is correct we

should see a point in time where there is a large spike. This spike occurs due to power

traces have been correctly divided in groups where the hypothetical leakage matched

with the actual power leakage.

4. The point in time where the spike occurs corresponds to the time-event of data getting

manipulated by our leakage model f.

In our experiments we have followed these steps scrupulously. One known artifact of this

approach is retrieving the largest ’part’ of the key successfully but not all(resulting in 1 or

2 wrong/faulty bytes). This problem is typically referred as ghost peaks(which lead to the

10 Chapter 2. Background in Side-Channel-Attacks(SCAs)

wrong sub-key guesses) and has been tackled ingeniously in [14, 15]. However this requires

a lot of rethinking and in order to get rid of ghost peaks we simply make a small alteration

in steps 1 & 2 of the ’conventional’ approach, previously used in our attacks against AES.

Instead of grouping the traces once, based on a single bit (LSB) of the targeted subkey-byte

we simply repeat this for all bits of the targeted byte, leaving us with 8 sets(each consisting of

two groups1). Then we need to calculate the difference of means across all groups of all sets

and base our decision for the best key-guess on the average difference of means of all sets,

essentially taking into account the contribution of all 8-bits in power consumption, instead of

single, in a single byte attack scenario. This will lead to always recover the full-key correctly.

Figure2.3 illustrates an attack against the second key sub-byte ofAES-128(running onXMEGA

uC, more on Chapter3) with our ’refined’ DPA approach.

Figure 2.3: Attack on a single key-byte, the distinct spikes occurs at the time event(namely the

first S-Box transformation) where the microprocessor is fusing key bytes with intermediate

state bytes together. The green spikes represent the correct guess for second key byte, whereas

the red ones represent a random-false key-guess

1the groups have the same property as in the ’conventional approach’

2.1.2 Correlation Power Analysis (CPA) 11

2.1.2 Correlation Power Analysis (CPA)

Usually DPAs require a large amount of power traces to be collected, while the ’refined’ ap-

proach discussed earlier needs to spend almost ×7 more minutes1 for the statistical analysis

calculations2 phase when compered to the conventional approach. A more powerful Power

Analysis attack against AES implementations is CPA, proposed in 2004 [16]. CPA’s attack

model exploits the correlation between power and data set in the bus , namely intermedi-

ate data computations, more effectively by default. Usually such attacks needs far less power

traces than DPA, while the statistical analysis computations2.2 require a considerable smaller

time to be completed, resulting in fully deriving a cryptographic key in less than a minute or

even in seconds in some of our experiment cases(Chapter3).

CPA is based on the assumption that there is a linear relationship between the power consump-

tion and the Hamming Weight3 of leakage model’s result, namely C in 2.1. In other words

CPA models account for the contribution of each bit of the of the leakage model f result to

the power consumption inherently. In Figure2.4 this linear connection of Hamming Weight

and the power consumption is validated for an AES implementation running on XMEGA uC,

extensively used in our experiments.

The CPA uses the Pearson Correlation Coefficient 2.2 to compare the relationship between

the Hamming Weight hypothetical leakage of C’ denoted as Y and the recorder power traces

denoted as X . A wrong key guess K’ will result in low coefficient values, whereas our best

guess for the key is the single-byte value of K’ with a sharp peak in the calculated values2.3

at some point in time, where the S-Box transformation/computation is taking place. Since we

attack a single byte of the key at a time we can recover the full cryptographic key, as this is

again a tractable problem of search-space 28 needed to be repeated 16 times.

r =
cov(X,Y)

σXσY

=
E[(X − µX)(Y − µY)]√
E[(X − µX)2(Y − µY)2

(2.2)

1Conventional DPA: 5 minutes, Refined DPA 3.1.1: 35 minutes(Calculations performed on a typical x86

laptop processor)
2Difference of Means
3The number of bits set to one in a single byte in our case

12 Chapter 2. Background in Side-Channel-Attacks(SCAs)

Figure 2.4: Demonstration of linearity connection between average current and Hamming

Weight of leakage model’s result C, of a single-byte data manipulation occurring during the

S-Box transformation of the first AES-128 round. ChipWhisperer-Lite Capture board was

used during the power measurements

Symbol Meaning

cov(X,Y) covarience between X and Y

σX standard deviation of X

σY standard deviation of Y

E Expectation

µX mean of X

µY mean of Y

Table 2.1: Meaning of symbols used in Pearson Correlation Coefficient equation2.2

ri,j =

∑D
d=1(td,j − Tj)(hd,i −Hi)√

(
∑D

d=1td,j − Tj)2(
∑D

d=1 hd,i −Hi)2
(2.3)

2.2 Fault Injection

Fault attacks was firstly conceived in late 90’s [17] almost aligned with the emergence of

Power Analysis attacks. The authors of [17] built theoretical methods that could pose a seri-

ous threat for RSA and other cryptographic schemes at the time. Since then, these methods

2.2 Fault Injection 13

Equation Value

d current trace

D total number of trace collected

i key guess

j sample point in time

h Hamming-Weight of hypothetical leakage C’

H Mean of all Hamming Weight values for a given key guess

t a single power trace

T Mean of power traces values for a given sample point in time

Table 2.2: Meaning of symbols in detailed Pearson Correlation Coefficient calcula-

tions2.3(taken from [1])

were able to be tested practically against AES[18], DES[19], RSA[20] running on custom

IC explicitly/specifically designed for facilitating fault injection attacks. The [21] is a survey

that includes fault injection attacks against AES and RSA.

In contrast to Power Analysis attack techniques, fault injection attacks can be utilized to target

a wider range of application, running on embedded systems, rather than only cryptographic

cores/routines. For instance in [22] voltage glitching via USB allowed a hardware engineer to

dump a firmware image out of custom IC. In general, fault injection attacks cause electronic

devices to behave unexpectedly, which includes tampering computation results, programs

skipping instructions, corrupting the data saved in memory regions etc. The two most com-

mon forms of fault injection attacks are clock & voltage glitching.

• ClockGlitching: These attacks try to generate a noisy/glitchy sharp edge near falling/ris-

ing edges in the normal-reliable clock signal fed to the device under attack. The latter

creates setup/hold violation ultimately allowing the attacker party to apply some type

of ’post-analysis’ in the faulty ’output’ of a system to fulfil the attack’s purpose/ moti-

vation.

• Voltage Glitching: Electronic devices operate in specific voltage input levels, if for

some reason these levels are not met during their operation malfunctions occur. By

being able to disrupt the voltage supply to an operating hardware chip by ’under-

14 Chapter 2. Background in Side-Channel-Attacks(SCAs)

voltaging’ it, this is certain to cause faults in turn leading to a chain-reaction of events

which propagate these fault across all device’s computations. Again such fault can avail

attackers in terms of undermining the security of a device by revealing information that

can be exploited in the same way as with clock glitching ’post-analysis’.

Our work focuses mainly on two clock glitching attacks1 both targeting the AES block

cipher:

• A software AES implementation running on XMEGA uC

• A hardware AES implementation running on Artix-35T, Xilinx’s 7-series FPGA

Avid readers are referred to our Github repo,2 where apart from clock glitching attacks we

also examine voltage glitching for bypassing password checks & dumping firmware out of

memory (for a simplified systems).

In the following subsections we examine the attack models used after successfully injecting

a voltage/clock glitch in order to recover the secret key of AES. Specifically the logic behind

Differential Fault Analysis, which is demystified in 2.2.2, is of great importance as it allowed

us to break the software & hardware implementations mentioned earlier.

2.2.1 Single Bit Fault Analysis

Asmentioned in the beginning of this chapter, fault injection attacks require thorough knowl-

edge of the design that is about to be attacked as black box approaches is not applicable in

these cases. The success of fault injection attacks is highly dependent on attackers ability to

inject fault with precise timing at the right moment, especially in our work where we study

attacks against AES block cipher.

In order to understand the most practical & applicable DFA2.2.2, we firstly need to build a

solid understanding of how simpler Fault Analysis attack work. The basic idea behind fault
1The generation of clock glitches in this work is done through the ChipWhisperer-Lite Capture board. The

process of generating & injecting clock glitches in our targets for the sake of our experiments is briefly discussed

in Chapter4
2Note that this is a forked repository. Our experiments were greatly influenced by the knowledge obtained

from the open-source ChipWhisperer Project

https://github.com/antragoudaras/chipwhisperer-jupyter/tree/tragos_dev/sections/fault101
https://github.com/newaetech/chipwhisperer-jupyter

2.2.1 Single Bit Fault Analysis 15

attacks is illustrated in Figure2.5. The first assumption made is that the attacker party has

the capability of sending messages (plaintext) to be encrypted by the desired device under

attack, while being able to collect the encrypted results (chiphertexts). If the attacker is able

to induce faults that influence the encryption result’s integrity this would lead to a so called

faulty ciphertext. So the objective here for the attacker is to find a way to exploit the differ-

ence between a faulty and a faulty-free encrypted message, both generated with an identical

plaintext, which will allow him/her to obtain the secret key used during the encryption. As

stated before the fault generation is discussed in Chapter4.

Figure 2.5: Fault attack illustrated

A single bit fault attack, otherwise known as stuck-at-zero fault, against the AddRoundKey

operation of the last round of AES is considered in Figure2.6. In a normal full-run of AES

block cipher C represents the final generated ciphertext, where c0 is the result of 0th bit XOR

operation s01⊕k0). Let’s consider the case where the attacker is able to inject a stuck-at-zero

fault in the s0, this will result in k0 always getting propagated to the chiphertext bit, which

is the single-bit ⊕ result, essentially meaning that c0 = k0. By repeating this stuck-at-zero

fault injection attack for all 128-bit separately(s0, s1, ..., s127) at ⊕ last-round key-addition,

the 16-byte value of 10-th round key will be trivially obtained. Since AES key_scedule is

publicly disclosed the attacker can recover the 0th key round, by inverting the key-expansion

operations, which is identical to the AES secret key.

10th Intermediate state bit before last round’s key-addition

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard#The_AddRoundKey_step
https://en.wikipedia.org/wiki/AES_key_schedule

16 Chapter 2. Background in Side-Channel-Attacks(SCAs)

The shortcoming of this fault analysis method to be practical and applicable in real applica-

tions, is the fact the injecting a fault precisely at the time where the last AddRoundKey is

taking place, while also ’manipulating’ exactly one bit is extremely difficult as it is require

precise fault induction ’control’, while fault attacks affecting a single bit only are considered

infeasible.

Figure 2.6: Single bit fault attack injected in the last round key-addition, namely XOR oper-

ation between intermediate state 10th round-key bits

2.2.2 Differential Fault Analysis

Since the simple fault analysis model discussed above is quite an impracticable approach,

several works tried to reduce the number of faults required to recover the key of a crypto-

graphic scheme, while also relaxing the constraints for the fault model, namely the fault in-

jection attacks can affect several bytes over a larger scope of encryption rounds instead of a

very specific bit manipulation at a very particular operation(like in stuck-at-zero fault model).

In this subsection, the fault model of choice used in the fault analysis part of our experiments

is explained adequately. Our work adopts the Differential Fault Analysis initially published

in [18]. While this analysis is heavily based on mathematical formalism behind Galois Finite

Fields and require some level of familiarity with AES operations, we will try to convey a

higher-level understanding/description of DFA. The Differential Fault Analysis on White-

box AES Implementations1 is an eloquent article for an in-depth examination of DFA.

1As mentioned earlier fault injection attacks cannot be performed using a black-box approach.

https://en.wikipedia.org/wiki/Finite_field_arithmetic
https://en.wikipedia.org/wiki/Finite_field_arithmetic
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://blog.quarkslab.com/differential-fault-analysis-on-white-box-aes-implementations.html
https://blog.quarkslab.com/differential-fault-analysis-on-white-box-aes-implementations.html

2.2.2 Differential Fault Analysis 17

The prerequisites for our attack model to work is the following:

1. We have to be able to repeatedly trigger complete ’runs’ of the AES block cipher, with

the same input/plaintext. The attack will still work for an unrevealed plaintext as long

as it is constant throughout the encryption runs.

2. The output/ciphertext has to be monitored/saved in same way, since the difference be-

tween a faulty and a faulty-free ciphertext is crucial for the Differential Analysis.

All the attacker party needs to do now is to corrupt a single byte of the intermediate state

anywhere between the last two MixColumns AES operation. This attack is also known as

9th Round MixColumns fault attack. As seen in Figure2.7 the single byte fault attack can be

injected in any of the following operation candidates:

• AddRoundKey
⊕

with 8th key-round (K8)

• SubBytes/S-Box 9th Round

• ShiftRows 9th Round

Figure 2.7: AES encryption structure(picture’s source: [2])

One can easily realize that the fault model has already been relaxed noticeably since the only

requirement for the fault is to be inserted between the time window of the last MixColumns

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard#The_MixColumns_step

18 Chapter 2. Background in Side-Channel-Attacks(SCAs)

& after the penultimate MixColumns, while affecting a single byte of AES state.

Consider the AES state of a faulty free encryption run to be the following, just before the last

MixColumns operation1 :


S0 S4 S8 S12

S1 S5 S9 S13

S2 S6 S10 S14

S3 S7 S11 S15



While the fault-injected AES state exactly at the same time is:


X S4 S8 S12

S1 S5 S9 S13

S2 S6 S10 S14

S3 S7 S11 S15


The remaining operations needed to be applied in the states above until the generation of both

the fault-free and the faulty cihpertext are the following :

1. 9th roundMixColumns

2. AddRoundKey
⊕

with 9th key-round (K9)

3. SubBytes/S-Box Last Round

4. ShiftRows Last Round

5. AddRoundKey
⊕

with 10th key-round (K10)

Since the MixColumns is the only operation that mixes multiple byte of the state, bytes of

the same column to be precise, together it is anticipated that the faulty ciphertext will have

four faulty bytes in the following state indices : {0, 7, 10, 13}2.

Assume C0 represents the ’zeroth’ byte of fault-free cipgertex and C ′
0 of the faulty one

correspondingly. So we have the following equations (note that multiplication and addi-

tions(essential
⊕
) here are done in GF(28)) :

C0 = SBox(2S0 + 3S1 + S2 + S3 +K9,0) +K10,0 (2.4)
1The fault could also occur earlier, but for the simplicity of our demonstration we assume it occurs right

before the last MixColumns operations
2The state-matrix is enumerated column-wise, while the reordering/spread of the four faulty bytes in all four

columns, originally multiplied ×4 due to MixColumns, arises after the ShiftRows operations.

2.2.2 Differential Fault Analysis 19

C ′
0 = SBox(2X + 3S1 + S1 + S3 +K9,0) +K10,0 (2.5)

So if we combine together, which is the reason behind the analysis is called differential, by

XORing1 them: 2.4
⊕

2.5 we get:

C0 + C ′
0 = SBox(2S0 + 3S1 + S2 + S3 +K9,0) +K10,0 + SBox(2X + 3S1 + S2 + S3 +K9,0) +K10,0

C0 + C ′
0 = SBox(2S0 + 3S1 + S2 + S3 +K9,0) + SBox(2X + 3S1 + S2 + S3 +K9,0)

C0 + C ′
0 = SBox(2S0 + 3S1 + S2 + S3 +K9,0) + SBox(2X + 2S0 + 2S0 + 3S1 + S2 + S3 +K9,0)

Assume:

Y0 = 2S0 + 3S1 + S2 + S4 +K9,0

Z = S0 +X

Then we have:

C0 + C ′
0 = SBox(Y0) + SBox(Y0 + 2Z)

Similarly for the remaining affected bytes we can write:

C7 + C ′
7 = SBox(Y1) + SBox(Y1 + 3Z)

Y1 = 3S0 + S1 + S2 + 2S3 +K9,3

C10 + C ′
10 = SBox(Y2) + SBox(Y2 + Z)

Y2 = S0 + S1 + 2S2 + 3S3 +K9,2

C13 + C + 13′ = SBox(Y3) + SBox(Y3 + Z)

Y3 = S0 + 2S1 + 3S2 + S3 +K9,1

Only a set of Z satisfy these equation for eachCn +C ′
n pair, while for each Yn we can similarly

find the following key candidates:

K10,0 = SBox(Y0) + C0

K10,7 = SBox(Y1) + C7

K10,10 = SBox(Y2) + C10

K10,13 = SBox(Y3) + C13

1Addition in GF(28)

20 Chapter 2. Background in Side-Channel-Attacks(SCAs)

It is proved that the system of equations above is easier to be solved with a quick brute force

technique, by trying all possible values for Z & Yn and using ’short-circuiting’ to discard

values as soon as they fail to meet any of the above equations. In our Github repo there

is a proof of concept1 of the latter in the form of Jupyter Notebook, where we prove that

the injection of two successive random byte faults in the same column, following the 9th

Round MixColumn model, is enough to determine four bytes of the 10th round key (i.e. with

2 successive byte faults at the first column we recover {K10,0, K10,7, K10,10, K10,13}). To

recover the full-key we need to do this repeatedly for the reaming columns. In total 4 × 2

such successive faults are needed to successfully obtain the fullK10.

1Note that this is a forked repository. Our work is an extension of the contributions to ChipWhisperer open-

source repo. For completing the tutorial you do not need either a capture or a target board.

https://github.com/antragoudaras/chipwhisperer-jupyter/blob/tragos_dev/sections/fault201/Lab%201_3A%20-%20DFA%20Attack%20Against%20Final%20MixColumns.ipynb
https://github.com/newaetech/chipwhisperer-jupyter/graphs/contributors
https://github.com/newaetech/chipwhisperer-jupyter/graphs/contributors

Chapter 3

Power Analysis Attacks

Before moving forward with the actual attacks, since we have already described in detail the

fundamental principles behind DPA & CPA (Chapter2), we are going to deal with the power

traces acquisition. Instead of using a high-end oscilloscope for this purpose, the progress

made in embedded security field thanks to ChipWhisperer Project and his creator Colin

O’Flynn, allowed us to work with low-cost open-source tools. ChipWhisperer-Lite Capture

board has all the hardware components needed 1 for monitoring the connected device under

attack. The capture board is compatible with a variety of ’victim’ devices2, while pretty much

any modern electronic powered by some type of processor unit, like a Raspberry Pi, can be

modified to interface with the Capture board. Another shortcoming when collecting power

traces to be used in Power Analysis attacks is that all measurements are in accordance to

the oscilloscope’s internal clock. This requires usually a large number of data/traces to be

collected also in a very high sampling rate for them to be exploitable in the power analysis

phase. This problem is resolved with ChipWhisperer’s architecture [23], which supports syn-

chronous sampling and clock recovery [24], allowing all our measurements to be in phase

with target’s clock source 3. The authors of [24] proved ChipWhisperer’s ’superiority’ even

with reduced sample rate; much less power traces needed to be captured for achieving the

same success rate metric4 of SCAs.

1ADC-10bit at 105MS/s, AC-coupled analog-input with LNA, see ChipWhisperer-Lite Hardware Specifi-

cations.
2such as uC(AVR’s XMEGA(8-bit), ARM’s STM32F(32-bit)), FPGAs(Xilinx’s Artix7-35T). For all target

boards see ChipWhiserer Victims.
3even if the target uses an internal oscillator, demonstrated also in Chapter 5 of [12].
4Average PGE (Partial Guessing Entropy).

21

https://rtfm.newae.com/Capture/ChipWhisperer-Lite/
https://rtfm.newae.com/Capture/ChipWhisperer-Lite/
https://rtfm.newae.com/Targets/

22 Chapter 3. Power Analysis Attacks

All interactions both with capture & victim boards is possible through ChipWhisperer Soft-

ware. The ChipWhisperer API is a detailed documentation of all available Python classes and

methods providing invaluable help with both capture and analysis tasks, while taking care all

serial communication between the user/attacker workstation and capture/victim boards.

3.1 Power Analysis attacks against software-based imple-

mentations of cryptographic schemes

For all our experiments described in the relevant subsections we need to acquire some power

traces monitoring the device power consumption during complete runs of the targeted imple-

mentation, which can be explicitly triggered in demand, for arbitrary inputs (plaintexts), as

mentioned in Chapter2. The source code and all the binary files(.hex)1 that are used to config-

ure the XMEGA microcontroller are provided in ChipWhisperer Github repo. The commu-

nication with our ’victims’ boards is facilitated by the SimpleSerial protocol adoption, while

the programming of the XMEGAmicrocontroller is done utilizing the XMEGAPDI(Program

and Debug Interface) programmer existent in ChipWhisperer-Lite capture board architecture.

Describing in detail how to interact with the capture & and target board is pointless in the

scope of this thesis, as related information can be found in ChipWhisperer comprehensive

documentation.

In this section we just need to apply in practice the theoretical DPA & CPA models in 3.1.1

and 3.1.2 respectively for the targeted device, which is an AVR’s 8-bit microcontroller. Both

DPA&CPA attack the AES-128 software implementation ofavr-cryptolib. However, in 3.1.3

we aim to the replication of the attack’s results of [25], which is a more realistic attack against

a bootloader2, which sole purpose is the de-ciphering of ’trusted’ encrypted firmware using

the AES-256 CBC mode of operation, meaning that for a successful attack the attacker be-

sides the 32-byte key needs to recover also an authentication signature and an Initialization

Vector (IV)3. In the last part of 3.1.3 a countermeasure is proposed against the signature-

1We rebuild our firmware in our experiments using the https://www.gnu.org/software/make/ just to make

sure that any changes in the source code are in effect, needed mostly for bootloader attack 3.1.3 proposed

countermeasures.
2The source-code of bootloader is provided by the authors of [25] and is also available in the ChipWhis-

perer’s Github repo.
3The reader of 3.1.3 should be familiar with AES CBC mode of operation.

https://github.com/antragoudaras/chipwhisperer/tree/tragos_dev/software
https://github.com/antragoudaras/chipwhisperer/tree/tragos_dev/software
https://chipwhisperer.readthedocs.io/en/latest/api.html
https://github.com/newaetech/chipwhisperer/tree/develop/hardware/victims/firmware
https://chipwhisperer.readthedocs.io/en/latest/api.html#simple-serial-v2-target
https://rtfm.newae.com/Capture/ChipWhisperer-Lite/#schematic
https://github.com/cantora/avr-crypto-lib/tree/master/aes
https://www.gnu.org/software/make/
https://github.com/newaetech/chipwhisperer/tree/develop/hardware/victims/firmware/bootloader\protect \discretionary {\char \hyphenchar \font }{}{}aes256
https://github.com/newaetech/chipwhisperer/tree/develop/hardware/victims/firmware/bootloader\protect \discretionary {\char \hyphenchar \font }{}{}aes256
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

3.1.1 DPA against AES block cipher on XMEGA uC 23

recovery attack/method studied in [25].

3.1.1 DPA against AES block cipher on XMEGA uC

In this experiment we capture N power traces, each representing a complete AES-128 ECB

run. We assume for each encryption individual run of total N runs to be fed with a random

plaintext(input), while the encryption key of the AES is considered unknown and well se-

cure1. In Figure3.12 the repetitive ’power behavior’ of each AES round(a total of ten rounds)

is easily distinguishable. This is due to the fact that round consists of the same transforma-

tions3(except for the last one). As discussed in Chapter2 our leakage model f is selected to

be the S-Box transformation of the first AES round.

Figure 3.1: A collected power trace illustrating the ’signature’ of 10 AES rounds.

So the DPA model is the one explicitly described in the previous chapter, where we need to

generate the hypothetical leakage C’, split our power traces in sets of groups based on C’ sin-
1The ChipWhisperer target boards can be configured by the key of our choice through the SimpleSerial

Python methods, but in our evaluation we do not ’cheat’ by any means. We just use this information after the

end of our analysis model to evaluate if our guess for the key was correct or not.
2The Y axis of the power trace is proportional to the AC-coupled consumption, also dependent on the gain

settings of the Capture board amplifier and target board’s shunt resistor.
3S-Box ShiftRows, MixColumns, AddRoundKey.

24 Chapter 3. Power Analysis Attacks

gle byte, calculate the difference of means across all groups of all sets and base our decision

for the best key-guess on the average difference of means of all set(all steps exhaustively de-

scribed in 2.1.1). The following function does exactly the latter, while taking in consideration

the contribution of all 8-bits in power consumption, instead of single, in a single byte attack

scenario (which resolves the ghost peaks problem 2.1.1).

1 def calculate_diffs_totaly(guess, byteindex=0):

2 grouped_byte_traces = []

3 for bit in range(8):

4 grouped_bit_traces = [], []

5 for trace_index in range(numtraces):

6 hypothetical_leakage = aes_internal(guess, textin_array[

trace_index][byteindex])

7

8 #Mask off the requested bit

9 if hypothetical_leakage & (1<<bit):

10 grouped_bit_traces[0].append(trace_array[trace_index])

11 else:

12 grouped_bit_traces[1].append(trace_array[trace_index])

13

14 grouped_byte_traces.append(grouped_bit_traces)

15 diffs = []

16 for i in range(8):

17 means = np.average(grouped_byte_traces[i][0], axis=0), np.average

(grouped_byte_traces[i][1], axis=0)

18 diffs.append(abs(means[1] - means[0]))

19

20 diffs = np.average(diffs, axis=0)

21

22 return np.array(diffs)

Since we are attacking each byte of the key separately our attack needs to repeated for 16

times, while our best guess for each sub-byte is the key guess with the largest spike in the

already calculated absolute average difference of means of all sets. The following Python

listing, does exactly that by calling the previous defined function, taking care of all Difference

ofMeans calculations needed. As expected the attack obtained the full 16-bytes key correctly.

1 from tqdm import trange

2 import numpy as np

3.1.1 DPA against AES block cipher on XMEGA uC 25

3

4 #Store your key_guess here, then compare to known_key

5 key_guess = []

6 known_key = [0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7,

0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c]

7

8 full_diffs_list = []

9

10 for subkey in trange(0, 16, desc=”Attacking Subkey”):

11

12 max_individual_diffs = [0] * 256

13 full_diffs = [0] * 256

14 for guess in range(256):

15 diffs = calculate_diffs_totaly(guess,byteindex=subkey)

16 max_individual_diffs[guess] = np.max(diffs)

17 full_diffs[guess] = diffs

18

19 top_diffs = np.argsort(max_individual_diffs)[::-1]

20

21 key_guess.append(top_diffs[0])

22

23 full_diffs_list.append(full_diffs[:])

24 print(’Subkey {:d} - most likely {:X} (actual {:X})’.format(subkey,

top_diffs[0], known_key[subkey]))

25

26 print(”Top 5 guesses:”)

27 for g in top_diffs[0:5]:

28 print(’{:0X} - Diff = {:f}’.format(g, max_individual_diffs[g]))

1 Attacking Subkey: �6%| | 1/16 [02:17<34:26, 137.78s/it]Subkey 0

- most likely 2B (actual 2B)

2 Top 5 guesses:

3 2B - Diff = 0.011724

4 2A - Diff = 0.004716

5 22 - Diff = 0.003240

6 FB - Diff = 0.003207

7 40 - Diff = 0.003137

8 Attacking Subkey: █�12%| | 2/16 [04:41<33:00, 141.45s/it]Subkey 1

- most likely 7E (actual 7E)

26 Chapter 3. Power Analysis Attacks

9 Top 5 guesses:

10 7E - Diff = 0.012125

11 8E - Diff = 0.005620

12 AE - Diff = 0.005615

13 4C - Diff = 0.005426

14 68 - Diff = 0.005243

15 Attacking Subkey: █�19%| | 3/16 [07:00<30:25, 140.39s/it]Subkey 2

- most likely 15 (actual 15)

16 Top 5 guesses:

17 15 - Diff = 0.008247

18 14 - Diff = 0.004608

19 A1 - Diff = 0.002908

20 5E - Diff = 0.002820

21 83 - Diff = 0.002739

22 Attacking Subkey: ██▌25%| | 4/16 [09:15<27:35, 137.98s/it]Subkey 3

- most likely 16 (actual 16)

23 Top 5 guesses:

24 16 - Diff = 0.009201

25 17 - Diff = 0.005000

26 EC - Diff = 0.002889

27 11 - Diff = 0.002839

28 EA - Diff = 0.002832

29 Attacking Subkey: ███�31%| | 5/16 [11:33<25:18, 138.07s/it]Subkey 4

- most likely 28 (actual 28)

30 Top 5 guesses:

31 28 - Diff = 0.009258

32 29 - Diff = 0.004705

33 43 - Diff = 0.003090

34 2 - Diff = 0.003054

35 42 - Diff = 0.003034

36 Attacking Subkey: ███�38%| | 6/16 [13:46<22:44, 136.48s/it]Subkey 5

- most likely AE (actual AE)

37 Top 5 guesses:

38 AE - Diff = 0.009590

39 AF - Diff = 0.004485

40 4A - Diff = 0.002488

41 8E - Diff = 0.002397

42 5B - Diff = 0.002338

43 Attacking Subkey: ████�44%| | 7/16 [15:59<20:15, 135.09s/it]Subkey 6

3.1.1 DPA against AES block cipher on XMEGA uC 27

- most likely D2 (actual D2)

44 Top 5 guesses:

45 D2 - Diff = 0.011497

46 2 - Diff = 0.005522

47 14 - Diff = 0.005398

48 65 - Diff = 0.005376

49 C4 - Diff = 0.005073

50 Attacking Subkey: █████50%| | 8/16 [18:06<17:42, 132.79s/it]Subkey 7

- most likely A6 (actual A6)

51 Top 5 guesses:

52 A6 - Diff = 0.008035

53 A7 - Diff = 0.004575

54 1A - Diff = 0.002415

55 8F - Diff = 0.002399

56 93 - Diff = 0.002281

57 Attacking Subkey: █████�56%| | 9/16 [20:21<15:33, 133.37s/it]Subkey 8

- most likely AB (actual AB)

58 Top 5 guesses:

59 AB - Diff = 0.005787

60 AA - Diff = 0.004893

61 B1 - Diff = 0.002271

62 E0 - Diff = 0.002236

63 7D - Diff = 0.002177

64 Attacking Subkey: ██████�62%| | 10/16 [22:37<13:24, 134.03s/it]Subkey

9 - most likely F7 (actual F7)

65 Top 5 guesses:

66 F7 - Diff = 0.009309

67 F6 - Diff = 0.004516

68 2 - Diff = 0.002518

69 A4 - Diff = 0.002246

70 71 - Diff = 0.002208

71 Attacking Subkey: ██████�69%| | 11/16 [24:50<11:09, 133.81s/it]Subkey

10 - most likely 15 (actual 15)

72 Top 5 guesses:

73 15 - Diff = 0.012953

74 14 - Diff = 0.004700

75 20 - Diff = 0.003531

76 F1 - Diff = 0.003413

77 8 - Diff = 0.003184

28 Chapter 3. Power Analysis Attacks

78 Attacking Subkey: ███████▌75%| | 12/16 [27:09<09:01, 135.50s/it]Subkey

11 - most likely 88 (actual 88)

79 Top 5 guesses:

80 88 - Diff = 0.011863

81 58 - Diff = 0.005388

82 4E - Diff = 0.005314

83 B3 - Diff = 0.005137

84 B2 - Diff = 0.005064

85 Attacking Subkey: ████████�81%| | 13/16 [29:19<06:41, 133.86s/it]Subkey

12 - most likely 9 (actual 9)

86 Top 5 guesses:

87 9 - Diff = 0.005463

88 8 - Diff = 0.004577

89 9C - Diff = 0.003188

90 9D - Diff = 0.003082

91 4A - Diff = 0.002966

92 Attacking Subkey: ████████�88%| | 14/16 [31:27<04:24, 132.12s/it]Subkey

13 - most likely CF (actual CF)

93 Top 5 guesses:

94 CF - Diff = 0.006228

95 CE - Diff = 0.004728

96 D6 - Diff = 0.002323

97 D5 - Diff = 0.002154

98 92 - Diff = 0.002095

99 Attacking Subkey: █████████�94%|| 15/16 [33:40<02:12, 132.21s/it]Subkey

14 - most likely 4F (actual 4F)

100 Top 5 guesses:

101 4F - Diff = 0.008088

102 4E - Diff = 0.004635

103 B8 - Diff = 0.002548

104 DA - Diff = 0.002530

105 BA - Diff = 0.002448

106 Attacking Subkey: ██████████100%|| 16/16 [35:51<00:00, 134.48s/it]Subkey

15 - most likely 3C (actual 3C)

107 Top 5 guesses:

108 3C - Diff = 0.009924

109 3D - Diff = 0.004569

110 FA - Diff = 0.002768

111 21 - Diff = 0.002761

3.1.2 CPA against AES block cipher on XMEGA uC 29

112 60 - Diff = 0.002655

3.1.2 CPA against AES block cipher on XMEGA uC

It is obvious that the Analysis of the DPA needs a considerable amount of time for the key-

recovery, as demonstrated in 3.1.1, especially for the refined approach proposed in Chapter2.

Although the conventional analysis of DPA reduced the time duration analysis down to 5

minutes, the problem of ghost peaks arises meaning that some sub-bytes of the key will be

’off’ when compared to the actual key. For that reason CPA attacks are considered more pow-

erful, as a typical analysis of this attack model usually requires up to 2 minutes, contrarily

to the time consuming analysis of CPA. In 2.1.2 we proved the linear connection between

the Hamming weight of C and the Power Consumption, while also discussed the reasoning

behind finding the best sub-key guess(single byte attack) using the Pearson Correlation Co-

efficient.

So our attack is pretty straightforward; as before, the power consumption precedes the analy-

sis phase. Note that this time 50 power traces1, each representing a complete AES-128 ECB

run, is enough for our attack to successfully obtain the encryption key, which is a signif-

icant improvement over the 5000 traces captured for the DPA3.1.1. The reasoning behind

2.1.2our best sub-key guess is concluded in the following Python listing, which is based on

the correlation coefficient calculations for all possible key values of search space:28.

1 import numpy as np

2 from tqdm import trange

3 guess = [0] * 16

4 guess_corr = [0] * 16

5 trace_avg = np.average(trace_array, axis=0)

6 trace_std_dev = std_dev(trace_array, trace_avg)

7

8 for sub_byte in trange(0, 16, desc=’Attacking full key’):

9 max_correlation = [0] * 256

10 for key_guess in range(0, 256):

11 hypothetical_hw = np.array([[HW[aes_internal(plaintext[sub_byte],

key_guess)] for plaintext in textin_array]]).transpose()

1We assume for each encryption individual run of total N runs to be fed with a random plaintext(input),

while the encryption key of the AES is considered unknown and well secure.

30 Chapter 3. Power Analysis Attacks

12 hypothetical_hw_avg = mean(hypothetical_hw)

13 hypothetical_std_dev = std_dev(hypothetical_hw,

hypothetical_hw_avg)

14 correlation = covar(X=trace_array, X_mean=trace_avg, Y=

hypothetical_hw, Y_mean=hypothetical_hw_avg)

15 cpaoutput = correlation / (hypothetical_std_dev * trace_std_dev)

16 max_correlation[key_guess] = max(abs(cpaoutput))

17

18 guess[sub_byte] = np.argmax(max_correlation)

19 guess_corr[sub_byte] = max(max_correlation)

20

21 print(’Key recovered as: ’, bytearray(guess))

22 print(’Correlations: ’, guess_corr)

1 Attacking full key: ██████████100%|| 16/16 [00:11<00:00, 1.43it/s]Key

recovered as: CWbytearray(b’ea 79 79 20 c8 71 44 7d 46 62 5f 51 85 c1

3b cb’)

2 Correlations: [0.876890415823039, 0.9261106049043423,

0.8973921377237717, 0.8372741847284866, 0.9224813418582386,

0.846444254334692, 0.8867622695106585, 0.7960763670512547,

0.8909071967830633, 0.8634827804943137, 0.8523419213570385,

0.7686746618067549, 0.878731192512089, 0.8977224254636939,

0.8433309286719519, 0.7967759353977893]

Note that, ChipWhisperer software also provides Python classes and methods for a variety of

leakage models f, facilitating all the CPA calculations1, while also providing real time corre-

lation calculations for the traces processed at the time2. Figure3.2 illustrates an ’automated’

attack run against AES, utilizing ChipWhisperer Analyzer classes and methods calls on the

generated ’attack’ object. The table is refreshed every five power traces with new correlation

values, over the current number of traces processed so far. However the ChipWhisperer An-

alyzer is not as optimized as LASCAR, which provides acceleration over conventional anal-

ysis calculations. In a latter sub-sections (3.2.1) we exploit LASCAR’s analysis performance

capabilities during the analysis phase of CPA attack against a hardware implementation of

AES, as this will decrease the computation time, over thousands collected power traces, by

1So there is no need for a user/evaluator to write his own code as we did.
2This is done by calling the run(callback, update_interval) method. The callback uses pandas DataFrames

for visualization of the results, update_interval defines the number of traces to use (cumulative) before updating

the correlation values of the sub-bytes.

https://github.com/newaetech/chipwhisperer/tree/develop/software/chipwhisperer/analyzer
https://github.com/Ledger-Donjon/lascar

3.1.3 Bootloader AES-256 31

Figure 3.2: Using ChipWhisperer Analyzer for analysis phase, which utilizes Pandas

DataFrames.

a factor of almost ×1001.

3.1.3 Bootloader AES-256

Bootloaders are simple programs that run on almost every microcontroller. Typically when

a uC receives a command sequence, it is forced to enter the bootloader mode. So bootloader

main objective is to ’authenticate’ firmware updates/patches for an uC. This will ensure that

an untrusted party cannot modify the contents of uC’s flash memory or change its behaviour,

causing protection/security issues. To prevent this from happening the already encrypted

code is padded with a signature. The bootloader now has a way of authenticating the incom-

ing firmware and discarded it if an inconsistency is found between the deciphered signature

part/’domain’ and bootloader’s stored signature . So for a successful attack one needs to re-

cover the encryption key, the Initialization Vector (IV) and the signature, in order to fake a

’trusted’ firmware2.

In this subsection we replicated the work of [25], where essentially we extended our CPA

attack from AES-128 3.1.2 to AES-256, applied a DPA attack to recover the Initialization

vector used in AES CBC mode of operation, utilized SPA techniques to recover the Signa-

ture used as authentication by the bootloader. Last but not least we proposed an effective

countermeasure to prevent attackers from recovering the signature. By doing so the whole

attack is compromised, since the bootloader will discard the ’fake’ encrypted firmware sent

1compared to the ’conventional’ analyzer approach.
2Given that the bootloader uses AES CBC operation mode encryption.

32 Chapter 3. Power Analysis Attacks

by the attacker party since the authentication check will fail. The communication protocol

to interact with the attacker is illustrated in Table3.1. Note that a single 4-byte key is used

instead of a hashed firmware1, due to bootloader’s constraints in size. Although the same

4-byte key data can be used to check the integrity of the transmitted data (data corruption

occurred during transmissions ’errors’ over the serial port), a separate 2 byte checksum is

used in order to limit attack’s surface, as an attacker cannot acknowledge that the firmware

sent was accepted by the bootloader or not2.

Header fixed (1-byte) Signature (4-byte) Encrypted Data (12 bytes) CRC(2 bytes checksum)

Table 3.1: Encrypted data format sent to the bootloader through a serial port with baud rate

of 38400.

To prove the reproducibility of our results we created our own Jupyter Notebok, based on the

seminal work’s [25] notebook, which is also an open-source contribution to the ChipWhis-

perer’s project. Essentially this notebook also works as a tutorial where the whole attack is

explained thoroughly, while proposing a very effective countermeasure against key recovery,

as discussed above, is the main task of the present sub-section.

From this point on we shift our attention to the signature recovery method and how an evalu-

ator can prevent the realization of this attack. To comprehend the proposed countermeasure,

one should be familiar with the SPA attack against the signature. For this reason we first

demonstrate and analyze the timing attack against the signature ourselves in the following

pages. After the bootloader has decrypted the incoming encrypted firmware, the received

signature is checked against the bootloader’s pre-saved signature. In case of a match, the new

data are accepted and the uC source code is updated, otherwise the data are discarded. So the

following pseudocode reveals how the received signature authentication is implemented in

the bootloader’s source code.

1 if (received_signature[0] == KNOWN_SIGNATURE_BYTE1) &&

2 (received_signature[1] == KNOWN_SIGNATURE_BYTE2) &&

3 (received_signature[2] == KNOWN_SIGNATURE_BYTE3) &&

4 (received_signature[3] == KNOWN_SIGNATURE_BYTE4)){

1This is also not a public-key encryption where one can combine his private key with the hashed encrypted

data.
2The bootloader only responds with two byte codes indicating data’s integrity/validity.

https://github.com/antragoudaras/chipwhisperer-jupyter/blob/tragos_dev/sections/sca201/Lab%203_1A%20-%20AES256%20Bootloader%20Attack.ipynb

3.1.3 Bootloader AES-256 33

5 accept the received firmware file

6 }

As this boolean expression will be short-circuited in C, this introduces a time dependency of

how each of the 4-byte signature is checked. The time dependency is anticipated to be also

propagated on the power consumption of the device, since as soon as a miss-match occurs on

a single received signature byte all nested evaluations will not be executed affecting the power

consumed by the bootloader. Essentially this is a SPA timing attack through power analysis.

If the attacker has the capability to monitor the power consumption of the bootloader while

the signature check is happening he/she should be able to visualize this time dependency

mentioned on the power trace. Specifically 256 power traces are needed to be captured to

recover the first byte of the signature, each trace is associated with a possible byte guess. The

power trace representing the correct signature byte-guess is expected to be different from

all other guesses. One way to make the latter property distinguishable is by calculating the

difference between the average of all power traces and a power trace associated with a single

byte guess. In Fig3.3 the latter statement is readily validated.

Figure 3.3: Difference between the average of all power traces and a single different power

trace at a time, each illustrated with a different color to represent a different possible

signature-value. The large red peak represents the difference between the mean of all power

traces and the correct key guess of the first signature byte. The peak occurs at the point in

time where the signature check takes place.

If the above approach is repeated for the remaining 3 signature bytes, the complete signature

34 Chapter 3. Power Analysis Attacks

can be obtained in 3 seconds. Our notebook also introduces a different metric for determin-

ing our best guess for a signature byte. The power trace associated with the correct signature

guess is anticipated to have the lowest correlation to the mean of all traces.

As the attack described above is solely based on the time dependent signature checks, forcing

the signature byte-checks to become time independent will result in attack’s total failure. The

following listing demonstrates our proposed solution for forcing signature-check evaluations

to be time-independent.

1 store_sig0 = ((tmp32[0] == SIGNATURE1) ? 1:0);

2 store_sig1 = ((tmp32[1] == SIGNATURE2) ? 1:0);

3 store_sig2 = ((tmp32[2] == SIGNATURE3) ? 1:0);

4 store_sig3 = ((tmp32[3] == SIGNATURE4) ? 1:0);

5 store_result = store_sig0 & store_sig1 & store_sig2 & store_sig3;

6 if(store_result){

7 accept_the_received_firmware_file();

8 }

Listing 3.1:Modification of bootloader’s source code as our proposed countermeasure against

SPA attack on signature

If the attacker party attempts the SPA attack as demonstrated above, there is no evidence

indicating a power trace with a deviance, to be selected as our best guess for a given signature-

byte as illustrated in Figure3.4. Similarly the correlation between mean of all power traces

and any given power trace representing a possible signature byte-value, will be identical and

close to 1.0. This is pretty normal as independently of the incoming signature the bootloader

will evaluate all 4 signature bytes, without ’exiting’ prematurely resulting in similar power

consumption for all possible signature byte-values.

3.2 Power Analysis attacks against hardware-based imple-

mentation of cryptographic schemes

For all our experiments described in the relevant subsections we need to acquire some power

traces monitoring the device power consumption during complete runs of the targeted im-

plementation, which can be explicitly triggered in demand, for arbitrary inputs (plaintexts),

as mentioned in Chapter2. As in this section we are examining attacks against cryptographic

3.2.1 CPA against AES block cipher on Artix7 35

Figure 3.4: Difference between the average of all power traces and a single different power

trace at a time, each illustrated with a different color to represent a different possible

signature-value.

schemes implemented onXilinx’s Artix FPGA, the board requires a bitstream file to be loaded

in the device for its configuration. The bitstream files used in our experiments were gener-

ated using the Vivado toolchain and the RTL-description files (Verilog) provided from vari-

ous sources for the crypto-core1, while the bitstreams can also be obtained from ChipWhis-

perer relavant Github Repo. A great guide for anyone interested for a deep-dive in interacting

with the Artix FPGA, often referred as CW305 in ChipWhisperer’s targets environment, is

CW305_Hardware_Documentation.

3.2.1 CPA against AES block cipher on Artix7

In Chapter2 we have underlined the importance of selecting a suitable leakage model f for

providing enough information through the power side-channel for a successful attack. For

the CPA attack against a software implementation of AES, we proved that the first S-Box

transformation is the ideal leakage model for mounting the attack. The reason for select-

ing the S-Box transformation in the first place, besides its non-linear properties, was that

” the power consumption of a typical uC is directly related to the intermediate values that

1AES:AES_Google_Vault, ECC: CryptTech_ecdsa256.

https://github.com/newaetech/chipwhisperer/tree/develop/hardware/victims/cw305_artixtarget/fpga/vivado_examples
https://github.com/newaetech/chipwhisperer/tree/develop/hardware/victims/cw305_artixtarget/fpga/vivado_examples
https://rtfm.newae.com/Targets/CW305%20Artix%20FPGA/
https://rtfm.newae.com/Targets/CW305%20Artix%20FPGA
https://github.com/newaetech/chipwhisperer/tree/develop/hardware/victims/cw305_artixtarget/fpga
https://github.com/newaetech/chipwhisperer/tree/develop/hardware/victims/cw305_artixtarget/fpga/cryptosrc/cryptech/ecdsa256-v1

36 Chapter 3. Power Analysis Attacks

are required to be loaded from some type of memory into a data bus with a certain capaci-

tive behavior”, meaning that all the side-channel information needed will be embedded into

the power traces associated with the S-Box transformation, while the search space for this

demonstrated single-byte attack is computationally feasible(28). On the other hand hardware

implementation of AES usually are much faster than software implementation having direct

implication on our leakage model of choice for a successful attack. In particular the crypto-

target/hardware-accelerator implementation of AES_Google_Vault meant to be mapped in

our FPGA resources, is able to execute a complete AES_128 round in single cycle, contrarily

to any given software-implementation requiring in the best case hundreds of clock cycles for

a single AES round. Although, this significantly lower latency is generally preferable, from

the attackers perspective this new model has dire consequences for the conventional leakage

model of S-Box described in Chapter2 and utilized in 3.1.2. Figure3.5 is a high-level descrip-

tion of the our implementation under attack, where a AES round to complete takes exactly

one clock cycle.

Figure 3.5: High-Level illustration of the targeted hardware AES implementation(figure’s

source: CW305 Whitepaper)

http://media.newae.com/appnotes/NAE0010_Whitepaper_CW305_AES_SCA_Attack.pdf

3.2.1 CPA against AES block cipher on Artix7 37

You may probably already wondered if the Hamming Weight of S-Box is still capable of

providing us with the side-channel leakage needed for a successful CPA attack. Well the an-

swer is that this time the linear relationship between power and first round S-Box’s Hamming

Weight illustrated is heavily diminished as the power consumption of a single cycle, namely

a single round is mainly affected by the storing operation of an intermediate round result to

the state register. So for an effective CPA attack we need to shift our focus to the state register

of Figure3.5. Also note that in order for power to be consumed, the state register needs to be

refreshed with a different value compared to the one currently latched/stored. For instance,

in case of a register holding some arbitrary single-byte value linked with the state-result after

the execution of 5th AES(let that be 0xCE), power will be consumed only if the state result

of the next round is not equal to 0xCE. This consideration is interpreted in our model by

selecting the Hamming distance between the previous and new state register value. The only

thing left to find which two AES round states should be selected for our leakage model. Re-

call that in the last round of AES the MixColumns operation/transformation is absent. This

is exactly what we need, namely the hamming distance between the output1 and the input2

of the last round. The reason behind the fact that the Hamming Distance between the first

round input and output is not ideal, is due to the existence of MixColumns operation between

the register transition. This operations brings diffusion of multiple byte of the intermediate

AES state together3, resulting in an infeasible search space of 232, as now the attacker has to

evaluate four bytes of the key simultaneously. To make things even worse this ’search’ has

to be repeated four times, one for each AES state-column.

The CPA attack against the AES running on the FPGA is actually no different from the one

demonstrated in 3.1.2, except that we altered our leakage model of choice. However we need

to capture up to 5000 power traces to be sure that our attack will be successful, as the power

spikes of the Last Round’s Hamming Distance tend to be quite small4.

After acquiring 5000 traces let’s move on to the analysis phase. This time around we are

going to use LASCAR, taking advantage of this repository optimized correlation coefficient

1ciphertext
2SBox−1(ShiftRows−1(ciphertext⊕ 10_th_Round_Key)).
3Mixing 4 bytes of the same state column together
4Capturing that much traces also help with the noise.

https://en.wikipedia.org/wiki/Hamming_distance
https://github.com/Ledger-Donjon/lascar

38 Chapter 3. Power Analysis Attacks

calculations the 10th-round key can be recovered in 12 seconds as seen in Figure3.6. LAS-

CAR/ChipWhisperer integration already provides the appropriate pythonmethod to select the

HammingDistance between the input (SBox−1(ShiftRows−1(ciphertext⊕10_th_Round_Key))

) and output(ciphertext) of the last round as exhibited in the following listing.

Figure 3.6: Utilize LASCAR python module to diminish CPA calculation time.

1 def lastround_HD_gen(byte):

2 def selection_with_guess(value, guess):

3 INVSHIFT_undo = [0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1,

6, 11]

4 st10 = value[INVSHIFT_undo[byte]]

5 st9 = inv_sbox[value[byte] ^ guess]

6 return hamming(st9 ^ st10)

7 return selection_with_guess

Listing 3.2: Source-code origin:ChipWhisperer Repo

The Figure3.7 visualizes the ’final’ correlation coefficients after processing all 5000 power

traces. The colored ’waves’ are associated with our best key guess correlation at each point

in time. There are 16 distinct colors each representing the correlation for a single byte, while

the peaks all occur concurrently at the point in time where the last round is executed, which

is anticipated given our selected leakage model(Hamming Distance of last round). The non-

colored waves represent the maximum correlation, both positive and negative, ’achieved’ at

the given point in time/sample.

https://github.com/newaetech/chipwhisperer/blob/develop/software/chipwhisperer/common/api/lascar.py

3.2.1 CPA against AES block cipher on Artix7 39

Figure 3.7: Plotting the best correlation achieved for all single key-byte guesses at a given

time/sample.

An interesting task, from the attacker’s perspective, is to figure out the least amount of traces

needed to be acquired, that would still lead to successful key recovery without any problem.

For that reason PGE (Partial Guess Entropy) is used. PGE is a way of defining how far is our

best key guess from the actual key. A PGE of one for a given byte-guess means that there

is only one sub-key guess1 with a higher correlation than the actual sub-key. As a result for

a successful attack we need for all single byte guesses a PGE of zero. In Figure3.8 we plot

all sixteens PGEs associated with our best guess for the key, while increasing the number of

power traces used in our calculations. From this plot we can easily deduce that a thousand

of power traces will always satisfy the requirements for a victorious attack. However the

PGE cannot be calculated if the attacker does not have knowledge of the actual key from the

beginning of the attacks. So how can we still find out the minimum number of traces need

for the attack to succeed?

The figure3.9 depict the deviation between the best key guess and the second best key guess,

considering the number power traces used for calculating this deviation in the first place. By

observing the graph we can assuredly pose that a thousand traces are enough, which also

validates our observations made using the PGE metric.

1Based on our correlation calculation over a certain number of power traces.

40 Chapter 3. Power Analysis Attacks

Figure 3.8: PGE over the number of power traces used so far.

Figure 3.9: Colored waves represent the best key guess, black waves illustrate the second

best key guess.

Before moving on, we should mention that hardware implementations of AES may vary sig-

nificantly from each other, as a result different leakage model may arise as the most suitable

3.2.2 Whitebox Attack against Elliptic Curve Cryptography 41

according to the given implementation. For instance, in [26, 27] a different approach is fol-

lowed, where some bytes of the plaintext are held constant while the attack is launched during

MixColumns first operation1. For a hand-on attack curious readers are refereed to Chapter 9

of CW305 Whitepaper also accompanied with a hands-on tutorial explicitly demonstrating

the feasibility of this attack.

3.2.2 Whitebox Attack against Elliptic Curve Cryptography

In this experiment we replicated a Power Analysis attack presented in [28], against ECDSA

public-key based, signature generation algorithm. The target board for this attack is Artix,

ChipWhisperer’s ’FPGA-based’, while the capture board used, once again, is ChipWhisperer-

Lite capture board (see Appendix). The reproducibility of the results in the aforementioned

work was made possible thanks to the apparent intention of the authors to make their study

disclosed, while also serving a seminal role for interested feature academic endeavors.

Dissimilarly to other cryptographic implementations, the one evaluated in this subsection

leaks only a relative small exploitable information through the power side-channel. On top

of that, this information is not spread throughout the full width of the collected power traces,

meaning that it is concentrated in certain power samples in time. This is vividly demon-

strated in the Jupyter notebooks used during this proof-of concept evaluation. Particularly

Test Vector Leakage Assessment (TVLA) [29, 30] criterion, the most common metric used

on applications/implementations for their side-channel resistance/ evaluation, was employed

to confirm the latter. Note since the cryptographic operations related to the signature gen-

eration requires a consistent number of clock cycles to complete, while also each bit of the

secret key (decisive for the signature generation) is processed in a fixed amount of cycles as

well, timing attacks2 are doomed. However the same principle allows the attacker party to

obtain knowledge relevant to precise ’occurrence’ of each single scalar key-bit processing.

In this attack such knowledge was obtained successfully, through post PnR simulation of the

dedicated public-key cryptographic core, eventually allowing us to recover ECDSA key used

for the signature generation, by utilizing the obtained intelligence on the power analysis ap-

plied to the acquired traces respectively. Since our attack is based on obtaining critical details

about the cryptographic operations timing relevant to scalar key-manipulations, such attack

11st AES Round MixColumns transformation.
2Through power traces analysis.

http://media.newae.com/appnotes/NAE0010_Whitepaper_CW305_AES_SCA_Attack.pdf
https://github.com/newaetech/chipwhisperer-jupyter/blob/master/courses/sca201/Lab%202_3%20-%20Attacking%20Across%20MixColumns.ipynb
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://github.com/antragoudaras/chipwhisperer-jupyter/tree/tragos_dev/demos/CW305_ECC

42 Chapter 3. Power Analysis Attacks

is considered as aWhitebox approach.

Table 3.2 illustrates the power traces required for a successful key recovery campaign, by

comparing the number of incorrect single bit-guesses generated when applying the DoM &

Correlation1 power analysis approaches respectively. It should be noted that, this experiment

does not reflects a real-world problem where the signature is refreshed after every signature-

generation run; as in our evaluation the scalar-key value was kept fixed for the acquisition of

all power traces, each representing a full signature-generation run.

Meaning that a real-attack can not average over several traces acquired to recover the key

used for the signature generation. However by repetitively performing a single trace attack

we figured out that on average only 45 scalar key-bits out of 256-bits were incorrect2. Al-

though this may not seem to be an encouraging sign for this stand-alone attack at first glance,

the Hidden Number Problem3 allows us to recover the scalar-keys used during each signature

generation runs. As described in [31] it is possible to recover the full 256-bit key used during

ECDSA-P256 signature generation if in our single trace attack only a few successive/con-

secutive bits were guessed correctly. For the correct successive guessed-bits, if the criteria in

[31] stand true, all 256-bits can be obtained within feasible computations and in a reasonable

amount of time.

1Comprehensive implementation details about the DoM & correlation analysis method can be found on the

accompanied Jupyter Notebook.
2Using the more ’efficient’ DoM approach during the power analysis phase.
3Solving the Hidden Number Problem is not a trivial task but also not infeasible.

https://github.com/antragoudaras/chipwhisperer-jupyter/tree/tragos_dev/demos/CW305_ECC

3.3 Countermeasures 43

Traces DoM Correlation

20 0 1

19 0 2

18 0 3

17 0 3

16 0 3

15 0 2

14 0 3

13 0 6

12 0 5

11 0 6

10 0 6

9 0 6

8 0 8

7 1 11

6 1 15

5 2 14

4 6 38

3 11 118

2 20 118

1 30 118

Table 3.2: Incorrect guesses for a given distinguisher as the power traces acquisition is de-

creasing

3.3 Countermeasures

Before closing this chapter once and for all we are going to discuss a few countermeasures

that can be applied in any of the above attacks examined. The countermeasure we proposed in

3.1.3 is implementation specific, but recall the effectiveness of making all signature checks

evaluation not to exit prematurely. A more generic approach/suggestions for undermining

the effectiveness of the proposed attacks against AES is the following. Inserting a random

delay in the intermediate AES transformation/operation, often referred as jitter, will most

44 Chapter 3. Power Analysis Attacks

probably lead in attack’s failure. This is due to the fact that our attack is based on the premise

that the information leaked from the side channel occurs at identical samples1 in all power

traces acquired. However this jitter can be bypassed by using ’synchronization techniques’

which were also utilized, although not discussed in this thesis2, in the CPA attack against the

bootloader.

Other approaches [32, 33, 34] propose alterations to a typical VLSI design flow, in order

to eliminate the correlation between the power consumption for a given operation and the

processed data values. However such implementation typically require increased area &

power sources. AESmasking have shown promising results, providing ’enhanced’ protection

against CPA & DPA attacks, throughout the years [35, 36, 37]. Only recently there have been

works employing Neural Network [38] and Machine Learning [39] approaches for attack-

ing secure masked AES implementations, aligned with the popularity of the latter disciplines

over the past few years. On the other hand quantum computing may pose a prospective threat

against public-key cryptography as elucidated in [40, 41].

1Points in time.
2Refer to our tutorial if interested in learning more on synchronization techniques.

https://github.com/antragoudaras/chipwhisperer-jupyter/blob/tragos_dev/sections/sca201/Lab%203_1A%20-%20AES256%20Bootloader%20Attack.ipynb

Chapter 4

Fault Injection Attacks

Before moving forward with the actual attacks, since we have already described in detail

the fundamental principles behind Differential Fault Analysis (Chapter2), which will be our

attack model for our experiments, we are going to address the matter of clock glitch gener-

ation for our targets as described in Chapter2. We have already described the implication of

glitches both in voltage supply and in the clock signal of a device. In Figure4.1 the glitching

architecture of ChipWhisperer-Lite’s Capture board is delineated.

Figure 4.1: Block diagram of glitching ’sub-module’ of Capture Lite Board(picture’s source:

ChipWhisperer ReadtheDocs)

In [23] the creator of ChipWhisperer Capture-Lite board demystifies the design of the clock

glitching generation circuitry, which is based on using effectively the Digital Clock Man-

ager of the capture’s board FPGA in combination with Partial Reconfiguration techniques.

So for the attacks examined the capture board feds the device target under attack with a

45

https://chipwhisperer.readthedocs.io/en/latest/api.html#chipwhisperer.scopes.OpenADC.glitch

46 Chapter 4. Fault Injection Attacks

glitchy clock. Three parameters are important for delivering a clock glitch precisely in the

desired point in time1. These parameters have to be configured appropriately, depending the

device/implementation combination under attack, which are the following2:

• glitch width

• glitch offset

• glitch external offset.

Contrarily to the Power Analysis attacks examined in Chapter3, there are minor differences

between attacks against hardware & software implementations. This is due to the fact that

injecting two faults in each column of the AES state just before3 the last MixColumns opera-

tion, will always provide the faulty ciphertexts needed to apply the Differential Fault Analysis

afterwards. This simple principle remain the same no matter if attacking a software or hard-

ware AES implementation. For that reason we are not going to examine the attack against

AES ’mounted’ on our FPGA target separately from the attack on XMEGA microcontroller,

since we only need to ’fine-tune’ the three itemized important clock-glitching parameters

above for our target/implementation combination judiciously. Finding the ’sweet-spot’ pa-

rameters for injecting precisely the faults needed, for the last MixColumns attack-model, is

a little more complicated and difficult when launching an attack against FPGA/AES combi-

nation. This is due to the fact that a single AES round has a duration of only one clock-cycle,

thus the clock-glitching parameters have to be handle delicately.

4.1 DFA attack using phoenixAES/Clock glitching settings

So there are two steps in our attack:

1. Find the most suitable clock-glitch parameters.

2. Use the faulty ciphertexts for the Differential Analysis Phase.
1For instance as seen in Chapter2 a successful fault-injection attempt causes a byte ’corruption’ in the inter-

mediate AES state anywhere between the last two MixColumns AES operation.
2See figure4.1 to understand the notion of width and offset, while every parameter is exhaustively docu-

mented in glitch documentation.
3Actually the fault can occur anywhere in-between the penultimate/8th Round MixColumns and last Mix-

Columns operations.

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard#The_MixColumns_step
https://chipwhisperer.readthedocs.io/en/latest/api.html#chipwhisperer.scopes.OpenADC.glitch

4.1 DFA attack using phoenixAES/Clock glitching settings 47

The first step is actually trivial since we just need to ’search’ in the ’sea’ of feasible clock-

glitch settings in order to inject faults just before the last MixColumns operation. In order to

not sound repetitive let’s jump directly to the attack against XMEGA uC. Before ’handing

out’ the parameter used, lets visualize what we are trying to achive. In Figure?? the power

consumption for a complete AES-128 encryption is captured. This figure is very indicative

Figure 4.2: Capture all ten rounds of AES to visualize the point where fault need to be injected.

for which values can work for the external offset glitch parameter. A external offset off zero

will result the glitch to be inserted right in the 0th sample, given that the ’power capture

module’ work with the same clock frequency. A external offset with a value of 13000 will

delay the glitch by 13000 samples from the original trigger point, see Figure4.3. So a good

starting point for our attack is sweeping the external offset value from 13000 to 14000. Width

and offset parameters1 tende to require different settings for a given uC/AES combination.

So we can sweep between all possible value once, which is going to take some time, but then

we can get a feedback about which value actually injected the required fault.

1The value given to width and offset represent the shape of the glitch pulse to be generated in terms of

percentage relative to one clock period.

48 Chapter 4. Fault Injection Attacks

Figure 4.3: The red vertical line illustrates the 13000th sample around which the glitches are

inserted.

For our experiments a a glitch pulse of -6%, -5% width and -44%, -42% generated hundreds

of faults for each column as illustrated in Figure4.4. Classifying which column was influ-

enced by looking at the faulty output generated is a trivial task1. So step 1 everything good

so far. Now we move to the more difficult part, the DFA phase. Here things get a little more

complicated as proved when we inspected how Differential Analysis work in 2.2.2. No-one

wants to deal with solving a non-linear system, so we mentioned how to discard incorrect

solutin with short-circuting in code. Thanks to Philippe Teuwen for developing the phoenix-

AES python script; a script dedicated for DFA whitebox implementation, that can recover

AES last round’s key in a matter of some thousands milliseconds.

1There is a python method in our Github Repo, taking care of the ciphertext classification either as faulty or

as ’golden’.

https://github.com/SideChannelMarvels/JeanGrey/tree/master/phoenixAES
https://github.com/SideChannelMarvels/JeanGrey/tree/master/phoenixAES
https://github.com/antragoudaras/chipwhisperer-jupyter/blob/tragos_dev/demos/Glitch_Attack_AES_FPGA.ipynb

4.1 DFA attack using phoenixAES/Clock glitching settings 49

Figure 4.4: Glitch results of our ’campaign-attack’ after sweeping through the glitch-

parameters values provided in the text.

So the key recovery becomes trivial by calling the crack_bytes method (defined in phoenix-

AES module) and giving the following parameters as input:

• r9faults: a list (or any other Sequence Type in Python) containing the faulty chipher-

texts.

• ref: the ’golden’/correct cihpertext for a normal encryption run.

This method will return the correct AES last round-key, saving us from all the intense math-

formalism.Again the some fundamental principals are applied in the glitch/DFA attack against

the FPGA/AES attack.

Note that phoenixAES script also supports the attack model of 8th round MixColumn, ref-

ered as DFA R8. To make a long story ’short’ suppose that a fault is injected just before

the penultimate MixColumn operation (in 8th AES round). The faulty output genereted by

the fault in the encryption will result in a ciphertext with sixteen faulty bytes1. In our Clock

Glitch attack against FPGA/AES combination target we purposely injected faults before the

8th round MixColumns and used the convert_r8faults_bytes method ultimately leading in

last round’s key recovery2.
1compared to the ’golden’ ciphertext.
2When passing the new faulty outputs to the convert_r8faults_bytes method, this call results in the well-

known faulty outputs just as if the conventional 9th Round MixColumns attack-model was used.

https://github.com/antragoudaras/chipwhisperer-jupyter/blob/tragos_dev/demos/Glitch_Attack_AES_FPGA.ipynb
https://github.com/antragoudaras/chipwhisperer-jupyter/blob/tragos_dev/demos/Glitch_Attack_AES_FPGA.ipynb

50 Chapter 4. Fault Injection Attacks

4.2 Shortcomings of clock glitching / Countermeasures

The major drawback of the clock glitching attacks, as the one examined during the last sec-

tion is the following. More complex devices use a Phase Locked Loop to acquire a new clean

’clock’ signal instead of just using the external clock or if internal oscillators are selected as

the clock source in the first place, the whole clock glitching approach is infeasible. So using

the aforementioned components for obtaining a fault-free clock signal is effective against

clock glitching attacks, for all device meeting the above clock ’recovery’ requirements. For

the clock glitching attack, we developed as part of this work, against the Artix FPGA dis-

cussed earlier, the glitchy clock signal fed to the device was provided by the Capture-Lite

board. However the Artix board has its own internal oscillator and PLLs1 so with the right

configuration our target now has a way of building immunity to clock glitching. However

ChipWhisperer capture board also has its own circuitry[42] that facilitates voltage glitching

with the crowbar technique which introduces a ringing effect on device power line to gener-

ate faults[43]. To the best of our knowledge, during the time this thesis was written, there has

not been yet a successful and consistent attack against Artix ChipWhisperer’s ’FPGA-based’

board using voltage glitches generated with the Capture-Lite board. So we have come close

to achieving the latter, but still our voltage glitching parameters need to be searched in a ’sea’

from successful & unsuccessful values, hopefully enabling us to be the first to demonstrate

the attack and even open a pull request to contribute in ChipWhisperer Github tutorial repos-

itory. Defending against voltage glitching is a challenging task. The existence of few works,

surveyed in [44], typical provide system-specific solutions. This may be an indication that

voltage glitching may hunt us for a long time until a definite solution is given.

1Input to the PLL can originate from the its crystal oscillator.

https://github.com/newaetech/chipwhisperer-jupyter

Chapter 5

Conclusion and Future Work

5.1 Conclusion & Contributions

In this thesis we proved how powerful Side-Channel attacks are, as they pose a serious threat

for the security of cryptographic cores implemented on both software and hardware running

on uC and FPGA respectively. All the attacks performed in this work underline the impor-

tance of security in embedded devices, while should motivate the industry to take the security

for the devices built more seriously; especially since any individual can have access to the

low-cost attack-equipment1 as the one used in this Thesis (see Appendix). Hardware Security

& Trust has non-ending capabilities for research as a newly established discipline.

Our study works as a reference for anyone interested in begging his journey to the world of

Side-Channel attacks, as the fundamental principles and the theoretical background needed

for Power Analysis & Fault Injection Attacks are concisely conveyed through Chapter2. In

Chapters 3 & 4 we replicate real world attacks, disclosed in the relevant cited publications.

Our main contributions to the existing work lies in the countermeasure proposed against

the signature recovery thoroughly presented in 3.1.3; additionally a refined approach was

proposed for DPA attacks, described in 2.1.1 and demonstrated in 3.1.1. Finally at the time

this thesis was written, we have come close to achieving a functional and consistent voltage

1The cost of buying all the equipment fromNewAE Technology Inc./Colin ’O Flynn’s startup. can be further

abated by printing your own ChipWhisperer clone board, through an inexpensive PCB manufacturer, as the

board layout can be derived from the ’original’ schematic, which is publicly disclosed as part of the broader

open-source project. Actually the schematics of all boards are available

51

https://www.newae.com/purchase
https://rtfm.newae.com/Capture/ChipWhisperer-Lite/#schematic

52 Chapter 5. Conclusion and Future Work

glitching attack(see4.2).

5.2 Future Work

Nevertheless, most works in academia focus mainly on attacking the symmetric encryption.

Our thesis barely touched the concept/topic of a power analysis attack against a public-key

cryptography algorithm in 3.2.2, while the immense growth of deep learning can be aligned

with the prospective ’research orientation’ of Side Channel attacks. As deep learning ap-

proaches [45] only recently started to be used as an alternative and hopefully a more efficient

approach in Power Analysis Attacks, eliminating the need for using any artificial/hypothetical

approximation model during the analysis phase. A compelling extension of the present thesis,

would include employing deep learning methods for side channel attacks against public-key

cryptography. Conceivably any knowledge obtained by such attacks may then exploited for

defending against quantum computing implications to public-key cryptography.

Bibliography

[1] Swarup Bhunia and Mark Tehranipoor. Chapter 8 - side-channel attacks. In Swarup

Bhunia and Mark Tehranipoor, editors, Hardware Security, pages 193–218. Morgan

Kaufmann, 2019.

[2] Frank Kagan Gürkaynak. GALS system design: side channel attack secure crypto-

graphic accelerators. PhD thesis, ETH Zurich, 2006.

[3] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner Haas,

Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,

and Yuval Yarom. Spectre Attacks: Exploiting Speculative Execution. In 40th IEEE

Symposium on Security and Privacy (S&P’19), 2019.

[4] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders

Fogh, JannHorn, StefanMangard, Paul Kocher, Daniel Genkin, Yuval Yarom, andMike

Hamburg. Meltdown: Reading Kernel Memory from User Space. In 27th USENIX

Security Symposium (USENIX Security 18), 2018.

[5] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,

and Other Systems. In Advances in Cryptology—CRYPTO ’96, pages 104–113, Berlin,

Heidelberg, 1996. Springer Berlin Heidelberg.

[6] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In Advances

in Cryptology — CRYPTO’ 99, pages 388–397, Berlin, Heidelberg, 1999. Springer

Berlin Heidelberg.

[7] Jean-Jacques Quisquater and David Samyde. ElectroMagnetic Analysis (EMA): Mea-

sures and Counter-measures for Smart Cards. In Smart Card Programming and Secu-

rity, pages 200–210, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

53

54 Bibliography

[8] Eyal Ronen, Colin O’Flynn, Adi Shamir, and Achi-Or Weingarten. IoT Goes Nuclear:

Creating a ZigBee Chain Reaction. Cryptology ePrint Archive, Report 2016/1047,

2016. https://ia.cr/2016/1047.

[9] YongBin Zhou and DengGuo Feng. Side-Channel Attacks: Ten Years After Its Publi-

cation and the Impacts on Cryptographic Module Security Testing. Cryptology ePrint

Archive, Report 2005/388, 2005. https://ia.cr/2005/388.

[10] Sergei P. Skorobogatov and Ross J. Anderson. Optical Fault Induction Attacks. In

Revised Papers from the 4th International Workshop on Cryptographic Hardware and

Embedded Systems, CHES ’02, page 2–12, Berlin, Heidelberg, 2002. Springer-Verlag.

[11] Ross Anderson and Markus Kuhn. Tamper resistance: A cautionary note. In Pro-

ceedings of the 2nd Conference on Proceedings of the Second USENIX Workshop on

Electronic Commerce - Volume 2, WOEC’96, pages 1–11, USA, 1996. USENIX Asso-

ciation.

[12] Colin O’Flynn. A framework for embedded hardware security analysis. 2017.

[13] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks: Re-

vealing the secrets of smart cards, volume 31. Springer Science & Business Media,

2008.

[14] Jing Pan, Jasper GJ Van Woudenberg, Jerry I den Hartog, and Marc F Witteman. Im-

proving dpa by peak distribution analysis. In International Workshop on Selected Areas

in Cryptography, pages 241–261. Springer, 2010.

[15] Juncheng Chen, Jun-Sheng Ng, Nay Aung Kyaw, Ne Kyaw Zwa Lwin, Weng-Geng

Ho, Kwen-Siong Chong, Zhiping Lin, Joseph Sylvester Chang, and Bah-Hwee Gwee.

Normalized differential power analysis-for ghost peaks mitigation. In 2021 IEEE In-

ternational Symposium on Circuits and Systems (ISCAS), pages 1–5. IEEE, 2021.

[16] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with a

leakage model. In International workshop on cryptographic hardware and embedded

systems, pages 16–29. Springer, 2004.

https://ia.cr/2016/1047
https://ia.cr/2005/388

Bibliography 55

[17] Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the importance of check-

ing cryptographic protocols for faults. In International conference on the theory and

applications of cryptographic techniques, pages 37–51. Springer, 1997.

[18] Pierre Dusart, Gilles Letourneux, and Olivier Vivolo. Differential fault analysis on

AES. In International Conference on Applied Cryptography and Network Security,

pages 293–306. Springer, 2003.

[19] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems. In

Annual international cryptology conference, pages 513–525. Springer, 1997.

[20] Jörn-Marc Schmidt and Christoph Herbst. A practical fault attack on square and multi-

ply. In 2008 5th Workshop on Fault Diagnosis and Tolerance in Cryptography, pages

53–58. IEEE, 2008.

[21] Alessandro Barenghi, Luca Breveglieri, Israel Koren, and David Naccache. Fault in-

jection attacks on cryptographic devices: Theory, practice, and countermeasures. Pro-

ceedings of the IEEE, 100(11):3056–3076, 2012.

[22] Micah Elizabeth Scott. Glitchy Descriptor Firmware Grab - scanlime:015. https:

//www.youtube.com/watch?v=TeCQatNcF20, https://github.com/

scanlime/facewhisperer, 2016.

[23] Colin O’Flynn and Zhizhang (David) Chen. ChipWhisperer: An Open-Source Plat-

form for Hardware Embedded Security Research. Cryptology ePrint Archive, Report

2014/204, 2014. https://ia.cr/2014/204.

[24] Colin O’Flynn and Zhizhang (David) Chen. Synchronous Sampling and Clock Re-

covery of Internal Oscillators for Side Channel Analysis. Cryptology ePrint Archive,

Report 2013/294, 2013. https://ia.cr/2013/294.

[25] Colin O’Flynn and Zhizhang Chen. Side Channel Power Analysis of an AES-256

Bootloader. Cryptology ePrint Archive, Report 2014/899, 2014. https://ia.cr/

2014/899.

[26] Amir Moradi and Tobias Schneider. Improved side-channel analysis attacks on Xilinx

bitstream encryption of 5, 6, and 7 series. In International Workshop on Constructive

Side-Channel Analysis and Secure Design, pages 71–87. Springer, 2016.

https://www.youtube.com/watch?v=TeCQatNcF20
https://www.youtube.com/watch?v=TeCQatNcF20
https://github.com/scanlime/facewhisperer
https://github.com/scanlime/facewhisperer
https://ia.cr/2014/204
https://ia.cr/2013/294
https://ia.cr/2014/899
https://ia.cr/2014/899

56 Bibliography

[27] Aurelien Vasselle and AntoineWurcker. Optimizations of Side-Channel Attack on AES

MixColumns Using Chosen Input. Cryptology ePrint Archive, 2019.

[28] Jean-Pierre Thibault, Colin O’Flynn, and Alex Dewar. Ark of the ECC: An open-source

ECDSA power analysis attack on a FPGA based Curve P-256 implementation. Cryp-

tology ePrint Archive, 2021.

[29] Benjamin Jun Gilbert Goodwill, Josh Jaffe, Pankaj Rohatgi, et al. A testing methodol-

ogy for side-channel resistance validation. In NIST non-invasive attack testing work-

shop, volume 7, pages 115–136, 2011.

[30] Michael Tunstall and Gilbert Goodwill. Applying TVLA to public key cryptographic

algorithms. Cryptology ePrint Archive, 2016.

[31] Victor Lomne and Thomas Roche. A Side Journey to Titan. IACR Cryptol. ePrint Arch.,

2021:28, 2021.

[32] Kris Tiri, Moonmoon Akmal, and Ingrid Verbauwhede. A dynamic and differen-

tial CMOS logic with signal independent power consumption to withstand differential

power analysis on smart cards. In Proceedings of the 28th European solid-state circuits

conference, pages 403–406. IEEE, 2002.

[33] Kris Tiri and Ingrid Verbauwhede. A VLSI design flow for secure side-channel attack

resistant ICs. In Design, Automation and Test in Europe, pages 58–63. IEEE, 2005.

[34] Yuval Ishai, Amit Sahai, and DavidWagner. Private circuits: Securing hardware against

probing attacks. In Annual International Cryptology Conference, pages 463–481.

Springer, 2003.

[35] Weize Yu and Selçuk Köse. A lightweight masked AES implementation for securing

IoT against CPA attacks. IEEE Transactions on Circuits and Systems I: Regular Papers,

64(11):2934–2944, 2017.

[36] Johannes Blömer, Jorge Guajardo, and Volker Krummel. Provably secure masking

of AES. In International workshop on selected areas in cryptography, pages 69–83.

Springer, 2004.

Bibliography 57

[37] ANSSI-FR. Masked AES implementations for Cortex M3/M4 microcontrollers.

https://github.com/ANSSI-FR/SecAESSTM32, 2019.

[38] Richard Gilmore, Neil Hanley, and Maire O’Neill. Neural network based attack on a

masked implementation of AES. In 2015 IEEE International Symposium on Hardware

Oriented Security and Trust (HOST), pages 106–111. IEEE, 2015.

[39] A machine learning approach against a masked AES, author=Lerman, Liran and Bon-

tempi, Gianluca and Markowitch, Olivier. Journal of Cryptographic Engineering,

5(2):123–139, 2015.

[40] Lily Chen, Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray

Perlner, and Daniel Smith-Tone. Report on post-quantum cryptography, volume 12. US

Department of Commerce, National Institute of Standards and Technology …, 2016.

[41] Vasileios Mavroeidis, Kamer Vishi, Mateusz D Zych, and Audun Jøsang. The impact of

quantum computing on present cryptography. arXiv preprint arXiv:1804.00200, 2018.

[42] Colin O’Flynn. Fault injection using crowbars on embedded systems. Cryptology ePrint

Archive, 2016.

[43] Loic Zussa, Jean-Max Dutertre, Jessy Clediere, and Bruno Robisson. Analysis of the

fault injection mechanism related to negative and positive power supply glitches using

an on-chip voltmeter. In 2014 IEEE International Symposium on Hardware-Oriented

Security and Trust (HOST), pages 130–135. IEEE, 2014.

[44] Alessandro Barenghi, Luca Breveglieri, Israel Koren, and David Naccache. Fault in-

jection attacks on cryptographic devices: Theory, practice, and countermeasures. Pro-

ceedings of the IEEE, 100(11):3056–3076, 2012.

[45] Debayan Das, Anupam Golder, Josef Danial, Santosh Ghosh, Arijit Raychowdhury,

and Shreyas Sen. X-DeepSCA: Cross-device deep learning side channel attack. In

Proceedings of the 56th Annual Design Automation Conference 2019, pages 1–6, 2019.

https://github.com/ANSSI-FR/SecAESSTM32

Appendix

ChipWhisperer Platform/Tools

1 Artix FPGA board w/ Capture Lite board

59

60 Appendix . ChipWhisperer Platform/Tools

2 XMEGA microcontroller w/ Capture Lite board

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Introduction
	Thesis Objective & Contribution
	Thesis Outline

	Background in Side-Channel-Attacks(SCAs)
	Power Analysis
	Differential Power Analysis (DPA)
	Correlation Power Analysis (CPA)

	Fault Injection
	Single Bit Fault Analysis
	Differential Fault Analysis

	Power Analysis Attacks
	Power Analysis attacks against software-based implementations of cryptographic schemes
	DPA against AES block cipher on XMEGA uC
	CPA against AES block cipher on XMEGA uC
	Bootloader AES-256

	Power Analysis attacks against hardware-based implementation of cryptographic schemes
	CPA against AES block cipher on Artix7
	Whitebox Attack against Elliptic Curve Cryptography

	Countermeasures

	Fault Injection Attacks
	DFA attack using phoenixAES/Clock glitching settings
	Shortcomings of clock glitching / Countermeasures

	Conclusion and Future Work
	Conclusion & Contributions
	Future Work

	Bibliography
	ChipWhisperer Platform/Tools
	Artix FPGA board w/ Capture Lite board
	XMEGA microcontroller w/ Capture Lite board

