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Abstract 
 

Recently sleep has been linked to increased brain clearance through perivascular spaces 

from blood-brain barrier (BBB) externa limitans, facilitated by physiological pulsations 

such as cardiovascular and respiratory pulsations. Infraslow fluctuations (ISFs) 

characterize both fMRI BOLD signals and scalp EEG potentials. They are associated with 

both permeability fluctuations of BBB and the amplitude dynamics of faster (> 1Hz) 

neuronal oscillations. ISF together with respiration are though to synchronize with 

neural rhythms, however the directionality of these interactions has not been studied 

before. I used non-invasive measures which are necessary not to interfere the pressure 

sensitive CSF convection and BBB permeability combined with directional metrics to 

fully evaluate these relationships. I recorded full-band resting state EEG (fbEEG) during 

wakefulness and sleep and investigated whether recently shown increased brain 

clearance during sleep is followed by increased drive of neural amplitudes by the ISF and 

respiration phases. I show that ISF power increases during non-REM sleep, possibly 

reflecting altered BBB status. Furthermore, I show that ISF and respiration phase-

amplitude couple and predict neuronal brain rhythms seen especially during sleep. 

These results pave the way for understanding the mechanisms how neuronal activity is 

modulated by the slow oscillations in human brain during wakefulness and sleep. 
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List of abbreviations 
 

AAC  Amplitude-amplitude correlation 

BBB  Blood-brain barrier 

BOLD  Blood oxygen level dependent 

CFS  Cross-frequency phase synchrony 

CNS  Central nervous system  

CSF  Cerebrospinal fluid 

DC  Direct current 

ECG  Electrocardiogram 

EEG  Electroencephalogram 

FDR  False discovery rate 

FFT  Fast Fourier transform 

fMRI   Functional magnetic resonance imaging 

IC   Independent component 

ICA   Independent component analysis 

IF  Interstitial fluid   

ISF   Infraslow fluctuation 

MEG  Magnetoencephalography 

NREM   Non rapid eye movement 
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TE   Transfer entropy 
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Introduction 
 

Early sign of drowsiness in healthy adults is characterized by mild slowing of EEG alpha 

rhythm and increase in its power. As the drowsiness deepens, low voltage activity 

composed from 2-7 Hz frequencies interrupt alpha activity, until completely replacing it, 

usually referred as alpha dropout [1]. In light sleep, sleep spindles and K-complexes 

appear. Transition to deeper sleep introduces slow waves that take the place of 

dominant rhythm [2]. However, the most salient EEG power occur at the very lowest 

frequencies in full-band EEG known as infraslow fluctuations (ISF < 0.1 Hz) [3]. During 

NREM sleep, infraslow fluctuations have been shown to increase [4], [5]. 

It has been under debate where do these very slow oscillations arise. Conventional 

theories have proposed glial cells such as astrocytes . More recent experiments showed 

that spatial extent and magnitude of these oscillations likely rule out glia networks and 

proposed a new model to explain observations. This model stated blood-brain barrier 

(BBB) as a source of ISF observed with EEG [6]. BBB is a barrier mechanism found inside 

central nervous system capillaries, which maintains brain homeostasis and acts as 

physical barrier for toxins. Tight junctions found at BBB have very high electrical 

resistance which makes it possible to maintain large transcellular potentials. These tight 

junctions and especially opening of the junctions can generate millivolt scale potentials 

detectable on the scalp with EEG recordings [6], [7]. 

Sleep is known to have several immunologic and metabolic functions and has been 

recently linked to increased brain tissue washout through perivascular spaces from BBB 

externa limitans [8]. This model known as the glymphatic model, serves similar function 

as lymphatic system outside central nervous system, disposing potentially harmful 

water-soluble substances contained in CSF [9]. In the process CSF and interstitial fluid 

are interchanged as convective flux drives fluid from para-arterial toward para-venous  

spaces, where it ultimately reaches lymph nodes of the neck and is returned to systemic 

circulation. This is the main pathway for clearance [10] along with substantial clearance 

through the BBB [11], [12]. Physiological pulsations such as cardiac and respiratory 

pulsations have been shown to mediate the clearance in para-arterial spaces in the 

direction of blood flow [13]. 

It is known that BBB permeability changes are reflected into EEG ISF power [6], [7], [14] 

and that ISF is phase-amplitude coupled to cortical amplitudes over wide range of 

frequencies [15], seen during NREM sleep. However, the directionality of this  phase 

interaction is still unknown. Respiration is also known to synchronize with neural 

amplitudes [16] but as with ISF, the directionality and how sleep alters the scheme is 

still unclear. Invasive probing interferes with the sensitive CSF convection and BBB 

permeability [17]. Therefore, the assessment of both BBB permeability and interstitial 

status needs to be derived from non-invasive measures. To properly assess the 



5 
 

relationship between ISF phase and cortical amplitudes, a metric that takes 

directionality into an account is needed.  

I used 256-channel EEG system to non-invasively quantify sleep induced changes in both 
power and phase interactions between physiological and neuronal activity. I localized 

the power and coupling changes using phase-amplitude coupling (PAC) and phase 
locking value (PLV) as a metric for the synchronization. Finally, to determine the 
directionality of the interaction I used phase transfer entropy (PTE); an information 
theory-based phase-specific measure of effective connectivity. I hypothesized that if the 
BBB permeability increases in sleep, the cortical neuronal amplitudes would become 
increasingly driven by the ISF phase.  

I show that spectral power of physiological pulsatility is increased during sleep, 
especially slow-wave and infraslow frequency EEG (ISFEEG) power, implying increased 

permeability and clearance over the BBB. I demonstrate that ISF and respiration are both 
phase-amplitude coupled to cortical EEG rhythms. My analysis further revealed that ISF 
and respiration are not only coupled but also predicting the neuronal rhythms. 

 

Background 
 

Sleep 
 

Most adults require 7-8 hours of sleep on average, equalling about third of a day. This 

number varies throughout life, in a way that older people tend to sleep more lightly and 

shorter times. Since sleep as a behaviour has persisted in every animal species suggests 

that it serves purposes crucial for normal function, all of which are not known yet. It 

seems that there are multiple purposes for sleep including: metabolic, immunologic, and 

memory related reasons. For example, brain glycogen levels which are exhausted during 

the day are replenished during sleep. In humans, lack of sleep leads to impaired 

memory, declined cognitive abilities, mood swings and hallucinations. In severe cases of 

fatal insomnia, the patients die within several years of onset due inability to enter 

deeper sleep stages. [18] 

Cortical activation necessary to maintain wakefulness is supported by ascending arousal 

system. This system comprises of subcortical structures and pathways  which release 

neurotransmitters such as norepinephrine, serotonin, histamine, dopamine, 

acetylcholine, and orexin. All of these seem to be important, supporting the function of 

the ascending arousal system. For example, lack of orexin secreting cells is known to be 

responsible for narcolepsy, resulting in sleep fragmentation, cataplexy, and excessive 

sleepiness during daytime. Sleep-wake cycle is controlled by circadian pacemaker, the 

suprachiasmatic nucleus with the help of external cues i.e., the amount of light [19]. 
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Activation of suprachiasmatic nucleus evokes response in pineal gland which synthesizes 

melatonin (sleep-promoting neurohormone) from tryptophan [18]. Melatonin is 

secreted into the bloodstream where it modulates the brainstem circuits governing the 

sleep-wake cycle [18]. In addition to circadian drive also homeostatic effects drive and 

maintain sleep [19]. Sleep is not only a state of diminished brain activity, but rather a 

series of tightly controlled brain states. Suppression of ascending arousal system is 

needed to initiate sleep. This is done by inhibitory neurons located at ventrolateral 

preoptic area, which remain active throughout night to maintain sleep [2]. 

Sleep hierarchy can be split into two main components: NREM-sleep and REM-sleep that 

is associated with dreaming. NREM-sleep branches even further according to depth of 

the sleep, which can be quantified with EEG. REM and NREM sleep experience cycling 

pattern usually within intervals from 60 to 90 minutes. This is thought to be controlled 

by activation and inhibition of ‘REM-on’ cholinergic neurons found inside brainstem. [2] 

During sleep onset several physiological and behavioural changes take place. Most 

obvious change is loss of consciousness and reduced tonus of skeletal muscles. But also 

reduced breathing, heart rate, temperature, blood pressure and metabolism [18]. Many 

sensory responses are minimized during NREM sleep but can experience different 

features during REM sleep. Multiple physiological features such as blood pressure and 

heart rate suddenly increase during REM sleep [18]. Skeletal muscle activity follows 

decreasing amplitude as sleep depth increases [2].  

Changes that take place during sleep can be monitored using many different measures. 

One can measure the physiological changes in heart rate for example. Sleep laboratories  

utilize multiple measures to fully assess sleep and sleep disorders. Most comprehensive 

tool for sleep research so far has been the EEG. With the help of EEG, Kleitman and 

Aserinsky (1953) showed that sleep is not uniform but experiences different stages 

during night [20]. What they discovered was REM sleep. 

 

Field potentials and rhythms 
 

The EEG signal is generated by specialized neurons called pyramidal neurons located at 

cerebral cortex. This was experimentally shown by animal studies, which noted a 

reversal in the electrical field when passing an electrode vertically from the surface of 

the cortex to white matter [18]. It is not action potentials of neurons which generate the 

signal but rather the graded post-synaptic potentials. Pyramidal neurons are main 

contributors of signal since they are arranged perpendicular to surface of the cortex and 

parallel to each other. When simultaneously activated, this arrangement allows large 

enough extracellular current flow to be generated and measured at the scalp.  Measured 

potential is summation of longitudinal components from large population of neurons. 

The transverse components cancel each other out on a macroscopic scale [21]. Since 
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axons carrying the action potentials are not typically oriented parallel and perpendicular 

to surface in addition to short lasting of action potentials and relatively unsynchronized 

firing, strong enough signal cannot be generated even if cancelling out does not take 

place [21]. 

The extracellular potentials, commonly known as field potentials, are generated by 

postsynaptic potentials, which take place in the synaptic cleft after neurotransmitter 

release. If action potential travels along a fibre ending in excitatory synapse, an 

excitatory postsynaptic potential (EPSP) occurs in postsynaptic neuron. If the action 

potential travels to inhibitory synapse, then inhibitory postsynaptic potential (IPSP) 

takes place, resulting in hyperpolarization [3]. These two postsynaptic potentials: 

excitatory (EPSP) and inhibitory (IPSP) will lead to either outward or inward current flow 

across the membrane, depolarizing or hyperpolarizing membrane potential making the 

cell more or less likely to generate action potential [3], [21]. 

This synaptic current flow is accompanied by an opposite transmembrane flow inward 

or outward at another location in the dendritic tree, which then generates a dipole. The 

orientation of this dipole depends on the type of synaptic activity (EPSP or IPSP), and 

also the location of the synapse, whether it is superficial or deep. EPSP and IPSP create 

opposite dipoles when the location of the synapse is on the same level. Superficial EPSP 

produces a dipole with negative pole closer to surface and positive pole deeper. Deep 

EPSP creates and opposing dipole compared to superficial EPSP, with positive superficial 

pole (Figure 1). Synchronous activation of many pyramidal neurons then behaves like 

dipole layer on a macroscopic level. [21] 
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Figure 1. Generation and direction of field potentials are dependent on type and location of 

synapse. Field potentials measured by electrodes E1 and E2 are shown in the graphs. Red lines 

indicate the direction of current flow. Recreated from: Niedermeyer's electroencephalography: 

basic principles, clinical applications, and related fields. Neurophysiologic Basis of EEG and DC 

Potentials, p.4, Figure 2.5. 

 

In addition to neurons, non-neural cells such as glial cells can generate field potentials. 

Since glial cells are non-neural cells, they don’t have synapses and hence cannot 

generate action potentials. However, the membrane potential of glial cells is highly 

regulated by potassium concentration. Neuronal activation is accompanied by outflow 

of potassium, due to this glial cell membrane potential essentially follows neural 

activation. Glial cells are usually connected to each other over wide areas, enabling them 

to generate field potentials with considerable spatial extent. [3] 

Reciprocal interaction of excitatory and inhibitory neurons in circuit loops generate 

oscillations with unique frequency ranges at different brain regions  [18]. These rhythms 

can be characterized by their unique frequency range and location of appearance. But 

also, by their shape and onset circumstances. Common frequency ranges studied and 

used clinically are delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and 

gamma (>30 Hz) frequencies. They can reveal information about brain state and function 

during different tasks or arousal states. The onset of sleep drastically changes the 
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composition of EEG. Before actual NREM sleep there is a period of drowsiness, which is  

the first step into the sleep. During this period slow rolling eye movements can be seen 

which are also reflected into frontal electrodes in EEG. The first (N1) stage is 

characterized by dampening of alpha (8-13 Hz) rhythm and emergence of theta (4-8 Hz) 

rhythm. Second stage (N2) is seen as emergence of sleep spindles (11-16 Hz) and at 

frontal cortex unique shaped biphasic waves called K-complexes. Deep sleep (N3) can 

be easily identified with presence of slow delta (1-4 Hz) waves. Surprisingly the REM 

sleep can exhibit similar EEG patterns as during wakefulness in addition to sawtooth 

waves of delta frequency. [2]  

 

Glymphatic system 
 

Metabolic by-products in the body are removed by the lymphatic vessels, running in 

parallel with the blood vascular system. These vessel act as a pathway, into which excess 

fluid and proteins are disposed. As arteries deliver blood down to smallest capillaries, 

blood plasma and proteins are forced into the interstitial space, where most get 

reabsorbed by capillary venules [22]. What is left is absorbed to lymphatics capillaries, 

from where it is eventually returned back into circulatory system. Without lymph vessels 

excess plasma would start to accumulate into the interstitial spaces. While maintaining 

the proper fluid balance in tissues, lymphatics also serve as transport route for immune 

cells and interstitial proteins [22]. Lymphatic system spans throughout the whole body 

except for spinal cord and brains. The lack of lymphatic vessels in the brain is interesting, 

since neurons have high metabolic rate, which leads to high demand for disposal of 

these metabolic by-products. 

Cerebrospinal fluid (CSF), found deep inside brain at ventricles and also between the 

skull and brain in subarachnoid spaces, was though for long to serve a purpose of sink 

into which waste products can diffuse. However, long diffusion times from most parts 

of brain makes this process inefficient e.g., albumin would require over 100 hours to 

diffuse 1cm distance in brain tissue [9]. Later two-photon imaging revealed that CSF is 

exchanged rapidly with IF i.e., the fluid in the extracellular spaces of the cells. CSF enters 

trough para-arterial space surrounding the arteries. Aquaporin-4 (AQP4) water channels 

located at astrocytic endfeet facilitate this convective flow out of para-arterial spaces 

and into the interstitial space. As CSF and IF are interchanged, convective flux drives the 

waste products from the arteries toward veins (Figure 2). The IF containing waste 

products then enter para-venous spaces, from where it exits the brain along para-

venous route. Eventually it reaches the lymphatic nodes of the neck, from where it 

returns its contents into the systemic circulation, where it ultimately reaches the liver 

[9]. This model of CSF and IF interchange is called glymphatic system, where its name 

refers to lymphatic system due to their similar purpose and aquaporin channels which 

are essential to CSF and IF exchange. [23] 
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BBB refers to unique properties of the capillaries in brain endothelium. These properties  

allow vessels to tightly regulate movement of ions, molecules and even cells between 

the blood and the brain. This strict regulation and control of CNS homeostasis is crucial 

for proper neural function and protects brain from harmful toxins and pathogens. The 

walls of the blood vessels are made of endothelial cells. Astrocytic endfeet, where 

aquaporin channels are located, cover the entire capillary surface forming additional 

barrier on the capillaries. Unlike capillaries in the peripheral system, in CNS the 

endothelial cells are connected by tight junctions. Majority of BBB properties arise from 

these tight junctions. Cells surrounding the capillaries such as astrocytes or even 

neurons can also control and modulate the function of BBB. Therefore, BBB can be 

though as neurovascular unit. Before discovering of glymphatic system it was thought 

that the main route for brain clearance is through BBB. [24] 

Glymphatic system and BBB serve the same purpose in clearing interstitial metabolites, 

with overlapping mechanisms and therefore act as complementary roles. When the 

distances to BBB are too large for efficient clearance, the by-products must be cleared 

through IF flow in glymphatic system. During wakefulness the interstitial space is dense 

with relatively high resistance to convective flow (bulk flow) and CSF movement.  

However, during sleep the volume of interstitial space increases, facilitating CSF and IF 

exchange and making the glymphatic clearance more efficient. Increased convective 

flow also indirectly increases the BBB clearance by pushing the waste molecules towards 

BBB. Disruption of one these mechanism leads to protein accumulation in the brain and 

could be responsible for neurodegenerative diseases, such as Alzheimer’s disease.  [25] 

 

 

 

Figure 2. Glymphatic system of the human brain. Neuronal metabolic waste is pushed by 

convective glymphatic flux from para-arterial into the para-venous space, where it is directed 

into general circulation. From “Neuroscience. Garbage truck of the brain.” by Nedergaard, 
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Maiken, 2013, Science, vol. 340, p. 1529. Copyright: American Association for the Advancement 

of Science. Republished with permission. 

 

Infraslow EEG fluctuations 

 

Infraslow EEG fluctuations (ISF) are brain oscillatory rhythm with maximal spectral 

power in the frequencies below 0.1 Hz and irregular expression. Due its very low 

frequency expression, the time scales of one cycle can go up to several minutes. They 

are also known as DC-potentials, due to their recording setup involving DC -coupled 

amplifier, giving impression of constant baseline, which they aren’t. They were first 

discovered with rabbits using intracranial electrodes in 1957 [26]. Formerly ISFs were 

thought to arise from cortical neurons and glial cells [27], [28]. However, recent studies 

have proposed also non-neuronal mechanism mainly the blood-brain barrier. 

Conventionally EEG amplifiers have been equipped with inbuilt high-pass filters, to 

overcome the issue of slow electrode drifts that led to saturation of the amplifiers 

dynamic range. Since the development of direct current coupled amplifiers, it has been 

possible to record these infraslow frequencies. Recording of a full-band EEG (also known 

as DC-EEG) differs from conventional EEG recordings. Technical limitations are set to 

detect infraslow events, both to amplifier and electrode-skin interface. Electrode 

material needs to be nonpolarizable such as Ag/AgCl for stable DC -potential. Skin borne 

signals caused by galvanic reactions and electrode movements can be suppressed by 

short-circuiting the skin. This is achieved by scraping the surface of the skin under the 

electrode. Amplifier is required to be DC-coupled, meaning that recording is carried out 

using infinite time constant. Also, high input impedance, dynamic range preferably in 

range ±100mV are needed. Different time constants used in DC-EEG amplifiers 

compared to conventional EEG measurements, might also lead to distortion of faster 

potential components in the time domain. [3], [29]  

ISFs are especially seen during NREM sleep [4], [5]. They are known to modulate the 

amplitude of cortical rhythms most notably delta (1-4 Hz) and sigma (10-20 Hz) bands 

[15], [30] which are also major components of non-REM sleep. Modulations have been 

also reported in theta [15], [31], alpha [31], and gamma [32] frequency bands. Since ISF 

phase modulates neural amplitudes over wide range of frequencies they reflect 

fluctuations of gross cortical excitability [15]. 

Until recent years it was thought that ISFs are mainly generated by cortical neurons and 

glial cells [27], [28], and they were measured in various events including epileptic 

discharges [28], [33] and spreading depression [34]. However, during epileptic 

discharges and spreading depression the brain pH changes. It has been confirmed many 

times that between CSF and blood there is a large pH sensitive trans-endothelial  

potential with humans and animals [35]–[37]. Therefore, during epileptic discharges and 



12 
 

spreading depression changes in brain pH makes it difficult to evaluate the weight of 

neurons/glia versus pH to the recorded ISF potentials. Using different ventilation 

manoeuvres such as hyperventilation, brain pH can be altered. During these tasks large 

ISF within brain tissue and in extracranial EEG were seen, confirming that change in brain 

pH elicits ISFEEG potentials [38]. 

Hyperventilation decreases partial pressure of CO2 and causes pH changes in 

extracellular fluid. This leads to arterial vasoconstriction and therefore lowers cerebral 

blood flow. ISFs have been shown to correlate with changes in cerebral blood flow [6], 

[39]. Animal studies with invasive measures [28] have shown that ISF are often absent 

with intracortical current loops responsible for higher rhythmical EEG activity, possibly 

indicating different generation mechanism. Hyperventilation induced ISFEEG changes are 

in the millivolt range, which is several orders larger than conventional brain rhythms and 

far too large to be achieved by purely neuronal generators  [6]. In humans disrupting the 

BBB with hyperosmolar intra-arterial mannitol infusion induces 2 mV ISF potential shift. 

These human treatments were made in deep anaesthesia with absent neuronal activity 

[7], implying that neuronal activation is not needed in ISF generation. In addition, large 

spatial spread and the duration of ISFs favour the involvement of subcortical structures  

[6]. It is therefore likely that ISF potential involves non-neuronal generator, mainly 

permeability changes of BBB. 

 

Blind source separation 
 

EEG recordings are always capturing signal from multiple sources simultaneously and 

due to way, which electrical fields transmit through various tissue layers such as such as 

skull and scalp causes multiple electrodes to record signal from the same source with 

different weights. The signal is always weighted sum of activity over larger and even 

multiple areas. It is possible to separate this mixed signal using computational methods 

to observe the underlying original phenomena. Commonly used methods are principal 

component analysis (PCA) and independent component analysis  (ICA) and they are 

commonly used in various fields including finance, medical imaging, and seismology 

(Figure 3). Classical example is the ‘cocktail party problem’ which gives concise way of 

understanding the problem: There is a group of people talking in the room 

simultaneously. Several microphones are placed at various locations, all picking up 

mixed signals with different weights. Blind source separation techniques can be applied 

for mixed signals to extract individual speech tracks. With EEG there are several 

advantages of using blind source separation techniques. Common practice is to study 

the independent components with limitation that precise spatial location is lost in the 

process. Second way is used to improve signal quality where artificial components are 

identified and then removed from the mixed signal. [40] 
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ICA is a probabilistic method for determining linear transformation of a random vector. 

ICA searches components for which the independence and non-normality is maximized. 

Since it is data-driven method, there is no need to categorize the data in any way. Let 

𝑥𝑖(𝑡), 𝑖 = 1, … , 𝑛 be the observed variables over the time interval 𝑡 = 1, … , 𝑇. The signal 

𝑥𝑖(𝑡) represents the measured signal, that is the mixed signal, in my case the EEG. Next 

an assumption is made, stating that signal can be modelled as a linear combination of 

unknown coefficients 𝑎𝑖𝑗 and hidden variables 𝑠𝑗(𝑡), 𝑗 = 1, … , 𝑚. Resulting in: 

𝑥𝑖(𝑡) = ∑ 𝑎𝑖𝑗𝑠𝑗(𝑡)𝑚
𝑗=1 , for all i = 1, … , n. 

The 𝑠𝑖(𝑡) are the independent components and 𝑎𝑖𝑗 are so called mixing coefficients 

which are both to be estimated. Equation above is more convenient to represent in 

matrix form. Let 𝒙 denote the observations 𝑥𝑖(𝑡) and 𝒔 independent components 𝑠𝑗(𝑡), 

so that 𝒙 and 𝒔 are column vectors. Unknown mixing coefficients 𝑎𝑖𝑗 are represented in 

matrix 𝑨. Using these notations, we can write the mixing model in form:  𝒙 = 𝑨𝒔. If one 

were to know the mixing parameters 𝑨, the linear equation would be easily solved just 

by inverting the linear system. However, since both 𝑨 and 𝒔 are unknown the problem 

becomes undetermined and more difficult to solve. What distinguishes ICA from PCA 

and factor analysis is that the non-gaussian structure of the data is considered. This so 

called higher-order statistical information can be utilized and used for separation of the 

independent components (IC), which cannot be done with PCA or factor analysis.[40] 

Three basic restrictions are needed so that the ICA model can be estimated: 

1. The independent components are assumed to be statistically independent 

The independence of the random variables  𝑦𝑖 can be tested using probability 

densities, which are independent if joint probability density function  

𝑝(𝑦1, 𝑦2, …  , 𝑦𝑛) can be expressed as the product of the marginal probability density 

functions 𝑝(𝑦1, 𝑦2, …  , 𝑦𝑛) =  𝑝(𝑦1)𝑝(𝑦2) … 𝑝(𝑦𝑛) 

2. The independent components must have non-gaussian (non-normal) distributions. 

ICA is essentially impossible if the components contain no higher order cumulants. 

The distributions are too simple to extract components. 

3. Last assumption is that the mixing matrix 𝑨 is square matrix, meaning that number 

of ICs are equal to the number of observed mixed signals. However, this criterion 

can be relaxed and therefore is not necessary, but it simplifies the problem. From 

this restriction follows that for the mixing matrix 𝑨 exist also an inverse matrix  𝑨−1.  

 

In the case that all the three assumptions hold the independent components can be 

easily solved after estimation of the mixing parameters:  

𝒔 = 𝑨−1𝒙 

There are a few indeterminacies that result from equation above and need to be 

considered.  Firstly, one cannot determine the variance (energy) of the ICs. This results 

directly from the reason that both 𝒔 and 𝑨 are unknown and therefore any scalar 
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multiplier in one of the sources 𝒔 could be cancelled by division by the same scalar in 

the corresponding column of 𝑨. Furthermore, what follows is also ambiguity of the sign: 

one could add -1 multiplier to the IC without affecting the model. Secondly, the order of 

the ICs cannot be determined due to same underdetermined reasons. One can freely 

change the ordering of the terms and call any of the components the first one. [40] 

ICA algorithms estimate the separating matrix 𝑾 = 𝑨−𝟏 that gives the independent 

components. It cannot be solved in a closed form, whose values could be directly 

evaluated. Instead, the solution is based on cost functions or objective functions. 

Solutions are found at the minima and maxima of these functions. Sophisticated 

iterative optimization algorithms are needed in the process. Some well-known ICA 

algorithms include infomax, FastICA, JADE and SOBI. All of the previous methods can be 

divided into two families by their methodology: maximization of non-gaussianity and 

maximum likelihood estimation. The non-Gaussian branch is governed by the central 

limit theorem, which states in the context that sums of non-Gaussian random variables 

are typically closer to gaussian than the original ones. Non-gaussianity is at its maximum 

when the linear combination of observed variables equals one of the independent 

components, which can be tested by calculating kurtosis or alternatively with 

approximation of negentropy. Maximum likelihood estimation or the information -

theoretic alternative of minimizing the mutual information, relies on measuring 

variables such as maximum entropy. [40] 

Before separating-matrix W can be estimated, a few preprocessing steps are needed.  

The two compulsory steps are centering and whitening. It is often preferable to perform 

low-pass filtering to reduce amount of noise or high-pass filtering to increase 

independence and non-gaussianity of the components. Also, combination of the two can 

be used i.e., band-pass filtering. On high dimension data, where number of true ICs 

might be smaller than the number of mixed signals, a necessary step might include 

dimension reduction of the data by PCA. This prevents overlearning of the model and 

further decreases the amount of noise. [40] 

Estimation of ICs becomes easier with assumption that mixed variables and ICs have 

zero mean. Centering is done if the assumption of zero mean doesn’t hold. This is done 

by subtracting sample mean from the observable variables. Due to this, ICs have zero 

mean as well. The mixing matrix is not affected by the operation. After the estimation 

of the mixing matrix and the ICs, the subtracted mean can be reconstructed back.[40] 

A zero-mean random vector 𝑍 = (𝑧1, . . , 𝑧𝑛)𝑇 is considered white or sphered if its 

elements 𝑧𝑖 are uncorrelated and have unit variances. Good example of this is white  

noise, where there are no temporal correlations involved. The process of whitening is 

basically decorrelation which is then followed by scaling. It suppresses the first and 

second order information, allowing ICA to focus on the higher order statistics. Whitening 

can be done using principal components analysis.[40] 
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PCA can be used not only for whitening but also for reducing the data dimension. With 

PCA the estimated components are required to be uncorrelated, in comparison to ICA 

where the requirement is independence, independence being more strict criteria of the 

two. The redundancy introduced by correlations is removed by finding a rotated 

orthogonal coordinate system so that the measurements 𝒙 are uncorrelated in the new 

coordinate system. Simultaneously variances of 𝒙 are maximized on the new coordinate 

system.[40] 

Couple of benefits arise from reducing the dimension. It decreases the amount of noise, 

especially in the case where number of signal sources is smaller than the number of 

mixtures. Another factor is that it prevents overlearning, meaning that there are too 

many parameters in the model with respect to number of available data points. 

Question that arises then is how many components need to be estimated. There is no 

simple answer to this question. One way is to pick the number of components which 

explain the data variance well enough for example 90 %. Typical approach is still by trial 

and error.[40] 

 

 

Figure 3. The basic idea of dimension reduction and ICA. From the seven measured EEG signals 

that were bandpass filtered (left). ICA is able to recover the source signals that were mixed in 

the measurements (right). For example, cardioballistic component (second IC) can be easily seen 

as one of the ICs. 
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Cross-frequency coupling 
 

Studying coupling between different frequency oscillations isn’t as straightforward as its 

with oscillators of same frequency, where direct comparison of phases can be done. 

Methods under cross-frequency coupling have been developed for problems like these. 

There are three commonly used methods to assess the coupling between two different 

frequency bands. Two of which are phase-based techniques: Cross-frequency phase 

synchrony (CFS) and phase-amplitude coupling (PAC). And the third one which is not 

phase-based: cross-frequency amplitude-amplitude correlation (AAC). 

Cross-frequency phase synchrony is a form of phase synchrony where the stable phase 

difference takes place between two oscillators with m:n (where m and n are integers, 

for example 1:2) frequency ratio. It operates at the temporal resolution of the faster 

oscillation unlike PAC or AAC which are not related to the phase of the faster oscillation 

[41] and therefore not related to the spike timing of the faster neuronal processing. CFS 

is quantified by testing whether m:n multiplied phase difference remains stable. In 

humans CFS has been observed resting state [42] and task -based studies with EEG and 

MEG [43]. 

Cross frequency AAC is defined as direct coupling between the two oscillation’s 

amplitude envelopes. Since neither the phase of the slower nor the faster oscillation are 

related to this technique, the correlations are unrelated to neuronal spike-time 

relationships. Therefore, AAC cannot express direct integration of processing among the 

two frequencies but are more likely to reflect co-modulation of excitability between the 

coupled frequencies. [41] 

PAC on the other hand, reflects a third type cross-frequency interaction. It signals the 

modulation of the faster oscillation’s amplitude by the phase of the slower oscillation. 

It can be quantified by evaluating 1:1 phase synchrony between the phase of slow 

oscillation and the phase of the slow-filtered amplitude envelope of faster oscillation 

[15]. PAC has been suggested to underlie cross-frequency integration [44]. It is 

independent of the phase of the faster oscillation and hence cannot produce consistent 

temporal and spike-time relationship between the slow and the fast oscillation [43] 

which are essential in the regulation of neuronal communication [45].  

PAC has been observed in animal and human studies with cortical and subcortical 

structures under variety of conditions and using different measures. Coherent low 

frequency oscillations seem to also be important part in regulation of large-scale 

networks. In a way that phase interactions can propagate throughout larger networks  

due interregional phase locking. These coupling patterns between different brainsites 

might help binding together anatomically dispersed functional cell assemblies. It is still 

open what is the relationship between these different coupling mechanisms if there is 

any. It is also not known whether one type is more general over another. [44] 
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Transfer entropy 
 

There is a tendency in literature to use relative phase between coupled oscillators to 

infer which one is the source and a follower. Leading oscillator does not necessarily drive 

the lagging signal. Therefore, phase-difference alone is not sufficient for determining 

directionality of coupling and more sophisticated approach is needed. Transfer entropy 

[46] measures how much information the source process provides about the state 

transitions in the target. In my case whether knowing the ISF phase lowers the 

uncertainty or helps to predict future state transitions of the higher EEG activity or vice 

versa. It is measure of effective connectivity making it able detect directed causal 

relationships. 

In information theory, information itself is defined to be reduction in uncertainty. This 

uncertainty contained in a non-deterministic dynamic process, in my case the phase 

relations of ISF and higher frequency EEG-rhythm envelopes, can be quantified using the 

concept of Shannon’s entropy  𝐻(𝑋) = ∑ 𝑝(𝑥) log2(1/𝑝(𝑥)) = − ∑ 𝑝(𝑥) log2 𝑝(𝑥). 

The joint entropy of two discrete variables is given by 𝐻(𝑋, 𝑌) = ∑ 𝑝(𝑥, 𝑦) log2 𝑝(1/

(𝑥, 𝑦)). Base in the logarithm 2 can be used to express the units in bits. Since entropy 

reflects likelihood of events, probability distributions are used in the calculations. State 

space transition or binning of the data is used to produce the discrete probabil ity 

distributions, where bins are referred as different states. 

More concentrated probability distributions have lower entropy, since they contain less 

‘surprising’ events and values are more likely to be in certain states, in contrast to even 

distributions where equal probabilities are for large number of states and therefore 

holds high uncertainty about the state of the variable. On the other hand, if variable has 

only one possible state with likelihood of 1, it has no uncertainty and therefore zero 

entropy. [47], [48] 

Conditional entropy 𝐻(𝑋|𝑌) describes entropy that remains in X after given the 

knowledge of variable Y. There exists a relation between conditional entropy and joint 

entropy of two variables 𝐻(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌|𝑋). Total entropy of X must also equal 

the entropy remaining in X after learning Y and the information provided by Y about X: 

𝐻(𝑋) = 𝐻(𝑋|𝑌) + 𝐼(𝑋; 𝑌), where 𝐼(𝑋; 𝑌) is also known as mutual information. Due to 

symmetry of 𝐼(𝑋; 𝑌) = 𝐼(𝑌; 𝑋) mutual information can be rearranged as 𝐼(𝑋; 𝑌) =

𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌). Mutual information can be extended using joint variables, 

useful for calculating combined effects of two variables and importantly it can be 

conditioned by the effect of third variable 𝐼(𝑋; 𝑌|𝑍) = 𝐻(𝑋|𝑍) − 𝐻(𝑋|𝑌, 𝑍). This leads 

us to transfer entropy which is a special case of conditional mutual information where 

specific temporal ordering is used. Transfer entropy measures information about future 

states of Y provided by the past states of X, given information of the past states of Y: 
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𝑇𝐸(𝑋 → 𝑌) = 𝐼(𝑌𝑓𝑢𝑡𝑢𝑟𝑒 ; 𝑋𝑝𝑎𝑠𝑡|𝑌𝑝𝑎𝑠𝑡 ) = 𝐻(𝑌𝑓𝑢𝑡𝑢𝑟𝑒 |𝑌𝑝𝑎𝑠𝑡) − 𝐻(𝑌𝑓𝑢𝑡𝑢𝑟𝑒|𝑋𝑝𝑎𝑠𝑡 , 𝑌𝑝𝑎𝑠𝑡). TE 

can be interpreted as better measure of causality than just 𝐼(𝑌𝑓𝑢𝑡𝑢𝑟𝑒 ; 𝑋𝑝𝑎𝑠𝑡), since TE 

measures changes caused in Y from X that cannot be explained by the history of Y alone. 

[47] 

Phase TE (PTE) is used in same fashion as real-value TE but is applied to instantaneous 

phase signals. In the presence of noise and linear mixing, phase TE is more robust 

estimate than TE and is suitable for large-scale directed connectivity analyses, such as 

whole scalp EEG [46].  

TE and PTE are based on the principle of granger causality and can provide frequency 

specific information about the connectivity, which is why this metric is well suitable for 

my analysis [46], [48]. Information flow and causality are closely related but still two 

distinct phenomena [48]. Causality tells us whether intervention on the source causes 

effect on the target, whereas information flow describes whether an observation of the 

source helps predict the phase transitions of the target [48]. PTE requires priori estimate 

of an analysis lag, however the TE values are not sensitive to the lag and connectivity 

can be accurately detected over wide range of analysis lags [46]. 

Methods 
 

Experimental design 
 

The study was approved by The Regional Ethics Committee of the Northern 

Ostrobothnia Hospital District. A written informed consent was obtained from 

participants according to the Declaration of Helsinki. Following criteria was used to 

exclude subjects from the study: Smoking, continuous medication, neurological or 

cardio-respiratory disease. Thirty subjects were scanned twice, first recording during 

wakefulness and second after one night of sleep deprivation. Before the recordings, 

consumption of alcohol or caffeine was prohibited. Sleep scoring was made offline from 

the EEG recordings by experienced clinical neurophysiologists . Subjects were excluded 

from the study if they didn’t score sleep during sleep deprivation recordings. Recordings 

were left out also based on insufficient data quality. Final group sizes were 21 awake 

(average age 29,2 ± 6.8 standard deviations, 8 females) and 21 (28,4 ± 6.3 y, 11f) sleep 

subjects. 

Multimodal imaging setup [49] was used, taking place during fMRI recordings. Two 

separate recordings were performed for each subject lasting from 10 to 15 minutes. 

Awake recordings were done after full night of sleep, with eyes open fixating a cross  

during afternoon. Sleep scans were done in the morning after a night of sleep 

deprivation. Sleep deprivation has been previously used to effectively get subjects to 

enter deeper sleep states during the recordings [50], [51]. 



19 
 

Full-band EEG was recorded with Electrical Geodesics MR-compatible (GES 400) system, 

with 256-channel high density net (HydroCel Geodesic Sensor MR net) and DC-coupled 

amplifier (Net Amps 400). Sampling rate was set to 1 kHz. Electrode ‘Cz’ was used as a 

reference channel during recordings. Electrode impedances were inspected before the 

recordings. Signal quality was further studied by performing test recording with eyes 

open and eyes closed. In the electrode net, silver-chloride (AgCl) plated electrodes are 

surrounded by a sponge that were wetted with liquid electrolyte before the recordings 

to stabilize electrode-skin interface. 

 

Preprocessing 

 

Gradient artifacts arising from switching of the MRI gradients were removed using 

template subtraction (average artifact subtraction) with Brain Vision Analyzer (v.2.1, 

Brain Products) [52]. Ballistocardiographic artifacts, related to blood flow in scalp 

arteries, were also removed using Analyzer’s algorithm based on sliding template 

subtraction, which utilises ECG-signal to find positions of R-peaks of the QRS-complex 

corresponding to ventricle contraction.  After template was fitted visual inspection of R-

markers positions was done, to ensure correct positioning. The correction is performed 

by subtracting average blood pulse curve from each channel independently. Rest of the 

signal processing steps and analyses were performed in Matlab (v.R2018b-2021a, 

MathWorks). 

All the recordings were segmented in length of 10 minutes to match data lengths. Linear 

trends were removed to attenuate stable baseline drift caused conductivity change in 

electrode-skin interface [53], which is known to affect performance of various 

preprocessing steps. I used FastICA [54] algorithm in combination with PCA dimension 

reduction (150 components) to transform datasets into independent components , 

where artificial ICs were identified and removed. The dimension reduction was used 

since enhanced performance was noticed. Symmetric approach was used, that 

estimates the components in parallel using the default nonlinearity of 𝑔(𝑢) = 𝑢3 . My 

main concern was to remove ocular components, which can manifest themselves in the 

low frequencies, which could interfere the following analysis. Since ocular artifacts can 

variate in frequency and overlap with other studied frequency bands, conventional 

frequency domain filters are not suitable. In the awake recordings subjects were 

instructed to fixate on a cross, which is known to reduce the frequency of eye saccades. 

To further minimize non-linearities and enhance the performance of ICA, I used spike 

detection algorithm with amplitude threshold to identify and remove most prominent 

artificial spikes, arising from example from small movement of the electrode. To keep 

the recordings intact, I interpolated the trends for the gaps and used data from intact 

signal to fill the gap as real data imitating injections like is done in inpainting [55]. Bad 

channels were excluded from ICA and spherically interpolated afterwards. EEG records  
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signal relative to reference electrode, which was in my case on the center of the head. 

Since I expected the results to be widespread all over the scalp there are better options. 

The recordings can be re-referenced afterwards without affecting recordings. There are 

also reference free solutions such as surface Laplacian, however they are not suitable 

for studying slow spatial features [56]. Recordings were referenced to linked mastoid 

electrodes behind ears, which are located near other electrodes but record less brain 

activity. This referencing preserves as much ‘true’ signal as possible. 

All recordings were sleep scored manually using American Academy of Sleep Medicine 

guidelines by clinical neurophysiologists who had experience in sleep scoring. Data was 

categorized in 30s segments into wakefulness and non-REM (N1-N3) sleep. EEG epochs 

were scored as awake, N1 (light sleep), N2 (intermediate sleep with K-complexes and/or 

sleep spindles) and N3 (slow wave sleep) (Table 1). 
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Table 1. Sleep scores for each individual EEG recordings with final group sizes. Sleep was scored 

in 30 second epochs, where ‘1-3’ indicates non-rem sleep depth, ‘w’ denotes wakefulness and 

‘a’ for artificial epochs. Each column corresponds to one epoch.  

Sleep classifications 
Control group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Subject 1 w w w w w w w w w w w w w w w w w w w w 
Subject 2 w w w w w w w w w w w w w w w w w w w w 

Subject 3 w w w w w w w w w w w w w w w w w a a a 

Subject 4 w w w w w w w w w w w w w w w w w w w w 

Subject 5 w w w w w w w w w w w w w w w w w w w w 
Subject 6 w w w w w w w w w w w w w w w w w w w w 

Subject 7 w w w w w w w w w w w w w w w w w w w w 

Subject 8 w w w w w w w w w w w w w w w w w w w w 
Subject 9 w w w w w w 1 w w w w w w w 1 w w w w w 

Subject 10 w w w w w w w w w w w w w w w w w w w w 

Subject 11 w w w w w w w w w w w w w w w w w w w w 
Subject 12 w w w w w w w w w w w w w w w w w w w w 

Subject 13 w w w w w w w w w w w w w w w w w w w w 

Subject 14 w w w w w w w w w w w w w w w w w w w w 
Subject 15 w w w w w w w w w w w w w w w w w w w w 

Subject 16 w w w w w w w w w w w w w w w w w w w w 

Subject 17 w w w w w w w w w w w w w w w w w w w w 
Subject 18 w w w w w w w w w w w w w w w w w w w w 

Subject 19 w w w w w w w w w w w w w w w w w w w w 

Subject 20 w w w w w w w w w w w w w w w w w w w w 

Subject 21 w w w w w w w w w w w w w w w w w w w a 

                     
Sleep group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Subject 1 w w w w w w w w w w/1 w 1 1 1 2 1 1 2 2 2 

Subject 2 1 1 1 1 2 2 1 1 2 2 2 2 2 2 1 1 1 1 1 2 
Subject 3 2 2 w w 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 

Subject 4 w 1 1 1 1  1/2 1 1 1 1 1 1 1 1 1 1 2 2 2 1 

Subject 5 w w w 1 w w 1 w 1 1 1 w w w w w w 1 w w 
Subject 6 w a 1 1 1 1 2 2 2 1 w 2 2 2 2 2 2 2 2 2 

Subject 7 w w w 1 1 1 1 2 2 2 2 2 2 2 1 1 2 2 2 2 

Subject 8 w w w w 1 w 1 1 w 1 1 1 1 1 1 w 1 2 1 w 
Subject 9 1 2 2 2 1 w  1/2 w 1 w w 1 1 1 1 w 1 1 1 1 

Subject 10 2 2 2 2 w w w 1 2 2 2 2 2 2 1 2 1 2 2 3 

Subject 11 1 1 1 1 1 a 1 2 2 a 2 2 2 2 2 2 2 2 2 a 

Subject 12 1 2 a 1 2 a 2 2 2 1 2 2 2 2 2 1 1 2 1 2 
Subject 13 w w 1 1 1 1 w 1 2 2 w w w 1 1 w w w w w 

Subject 14 1 w w w w w 2 2 2 a 1 2 2 2 2 2 1 2 2 2 

Subject 15 w w 1 1 1 2 1 1 2 2 2 1 1 1 w 1 2 2 2 2 
Subject 16 1 1 1 1 1 1 1 2 2 1 1 2 1 1 w 1 1 2 1 1 

Subject 17 1 1 1 w w w a 1 2 2 w 2 1 2 2 2 2 w 1 1 

Subject 18 w 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Subject 19 w 1 1 1 1 w w 1 1 2 2 1 2 2 1 1 1 2 1 2 

Subject 20 w 1 1 1 2 2 1 1 1 2 2 2 1 1 w 1 1 2 2 1 

Subject 21 w w w w w 1 1 1 1 1 1 1 2 2 1 2 2 1 2 2 
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Spectral analysis 

 

Time-frequency (TF) spectral analysis was made with wavelet convolution using 

mirrored time-series to avoid edge effects which occur during temporal filtering 

especially seen at the lowest frequencies. Mirroring of the signal from both ends 

generates buffer zones containing the edge effects and can be later cut out. Wavelet 

convolution can be used to extract frequency specific information about the signal 

similar to conventional methods like Fourier transform. Unlike Fourier transform 

wavelet convolution does not require signal stationarity, which long EEG time-series 

violates. Wavelet convolution also gives temporal specificity due to its nature. Complex 

Morlet wavelets are sine waves of different frequencies tapered by gaussian. Thanks to 

Gaussian windowing the wavelets taper to zero at the edges and do not generate 

artifacts in the filtering process like happens with sharp filter kernel edges. Gaussian 

windowing also reduces the weight of the surrounding timepoints. Therefore, estimate 

of power at specific timepoint is also influenced by surrounding timepoints. [56] 

Time-domain convolution involves calculation of sliding dot products between filter 

kernel i.e., the wavelet and the signal. Convolution in time domain is equal to 

multiplication in frequency domain. Therefore, convolving signal with wavelet in time 

domain equals multiplying frequency domain signal with frequency domain of the filter 

kernel and then taking inverse Fourier transform of the results . It is more convenient to 

calculate wavelet convolution in the frequency domain due to faster calculation. [56] 

Wavelet convolution, implemented in frequency domain was performed using complex 

Morlet wavelets (Eq.1). Logarithmic frequency range between 0.05 and 100 Hz was 

used, with 70 steps and constant wavelet cycle of 7, which is related to the width of the 

gaussian by (Eq.2). This parameter controls the trade-off between time and frequency 

precision in a way that larger number of cycles gives better frequency precision. See 

(Figure. 5) for more information about wavelet properties. Three pieces of information 

can be obtained from convolution results: projection onto real axis that is the filtered 

signal, magnitude of the complex vector that is the amplitude or as squared represents  

the power, and angle of the vector with respect to positive real axis which is the phase 

angle estimate. [56] 

TF-power estimates were acquired from squared magnitude of the convolution results. 

Square root of TF-power was further modified into relative amplitude (Eq.3) to reduce 

subject specific variability in power. I used sleep scores to categorize the epoched power 

estimates to wakefulness and sleep (N1-N3). I discarded wake epochs of the sleep study 

and vice versa to gain even more accurate estimate. 
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Phase-amplitude coupling 

 

Finite impulse response (FIR) Hamming windowed bandpass filters were designed to 

filter ISF into two separate bands (ISF1-EEG: 0.008-0.05 Hz & ISF2-EEG: 0.05-0.1 Hz) to 

improve the accuracy of phase-based calculations, since phase is defined only for 

narrowband signals. Sharp transition in the frequency domain window such as 

rectangular windowing can generate ringing artefacts . Hamming windowing generates 

smoother passband frequency response, eliminating the ringing effects  [56]. The ISF 

range of 0.008-0.1 Hz was chosen to obtain maximum coverage, without crosstalk with 

respiratory frequencies, which can go as slow as 0.1 Hz. Minimum filter kernel length 

was used i.e., one cycle of the lowest frequency. To avoid edge artifacts occurring in the 

temporal filtering process, signal was mirrored from both ends. Mirrored time-series 

𝑥(𝑛 = 1, . . , 𝑁) were zero-phase filtered 𝑥𝐼𝑆𝐹(𝑛), which is recursive filtering method 

that doesn’t cause phase distortions  or offsets like conventional filtering, especially 

important with our phase-based calculations. FIR bandpass filters were designed 

similarly to five higher EEG frequency bands (delta: 1-4 Hz, theta: 4-8 Hz, alpha: 8-13 Hz, 

beta: 13-30 Hz, gamma: 30-40 Hz) and zero-phase filtered producing signals 𝑥𝐻𝑖𝑔ℎ (𝑛). 

Number of filter taps was increased to 6 cycles of the lowest frequency in each band, to 

increase stopband attenuation and gain more accurate frequency response. Mirrored 

signals were segmented back to their original lengths. 

PAC is a form of cross-frequency coupling where the phase of the slower rhythm is 

coupled to the amplitude of the faster oscillation. I used phase-locking value to assess 

the magnitude of coupling between ISF and fast activity, following methodology from 

[15], [43], [57]. Hilbert transform was applied, which is done by taking the FFT of the 

time-series and replacing negative frequency Fourier-coefficients with zeros, then 

calculating the inverse FFT. Resulting in so called analytical signals  𝑧𝐼𝑆𝐹(𝑛) (Eq.4), from 

which ISF phase time-series were extracted 𝛳𝐼𝑆𝐹 =  𝑎𝑟𝑔(𝑧𝐼𝑆𝐹(𝑛)). For higher frequency 

bands Hilbert amplitude envelopes were computed by taking complex magnitude of the 

Hilbert transforms 𝑎(𝑛) = |𝑧ℎ𝑖𝑔ℎ(𝑛)|. Amplitude envelopes were then filtered to 

infraslow frequency bands using the same filters as previously mentioned to produce 

𝐴ℎ𝑖𝑔ℎ (𝑛). After the filtering, signals were downsampled to 3 Hz to speed-up 

computation, which can be done since PAC operates on temporal resolution of the 

slower oscillation. Hilbert transform was applied to envelopes 𝐴ℎ𝑖𝑔ℎ(𝑛) to extract the 

instantaneous phase 𝛳′ℎ𝑖𝑔ℎ = 𝑎𝑟𝑔(𝑧𝐴ℎ𝑖𝑔ℎ
(𝑛)). PAC was then quantified as 1:1 phase 

synchrony between 𝛳𝐼𝑆𝐹  and 𝛳′ℎ𝑖𝑔ℎ . 

PAC coupling magnitude between time-series was estimated using phase locking value 

[58] (Eq.5) as stable phase difference over time, giving one estimate of phase synchrony 

for each channel. It is more suitable for my analysis compared to e.g., coherence since 

it does not require signal stationary, which long EEG time series violates [58]. PLV is 

geometrically defined as the length of average complex vector on unit circle that is 
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obtained from phase difference. PLV of 0 indicates no phase synchrony and 1 represents  

perfect synchrony. PLV was calculated for each electrode between both ISF bands and 

faster frequency bands (Figure 4).  
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Figure 4. Workflow of the PAC analysis. Arrows represent the calculation ordering.  Neural 

oscillations amplitude envelopes are filtered to corresponding ISF frequencies, whose phases 

are then compared against the ISF phase time series to calculate PAC. Unit circles are used to 

visualize the coupling pattern, where the length of the red arrow is PLV, and its direction is the 

average phase difference.  

 

Respiratory frequency related results were also studied using PAC. Individual respiratory 

frequencies were calculated from end-tidal CO2, which records the inhaled and exhaled 

concentration of CO2. Short-time FFT is windowed version of Fourier transform where 

the signal itself is tapered by window function to prevent edge artefacts  [56]. This also 

attenuates valid signal, that can be countered using temporally overlapping segments. 

The frequency of respiration is captured in end-tidal CO2, which I calculated using short-

time Fourier transform with 50 second Hamming tapered windowing and 50% overlap. 

Peak of the respiration frequency was then used as a center frequency for complex 

Morlet wavelet (N=5). Wavelet convolution implemented in frequency domain was then 

used to filter the EEG recordings in respiratory frequency. First, I compared respiratory 

frequency EEG (RESPEEG) with neural bands. Neural bands were handled similarly as with 

the ISFs, with an exception that now the fast envelopes were filtered down to 

respiratory frequency. Furthermore, I compared RESPEEG to ISFs following the same 

principles. 

Properties of the designed Morlet wavelets used in spectral and PAC calculations (Figure 
5) were inspected with frequency and time resolution estimates, which were calculated 
from full width half maximum (FWHM) of each wavelet. As expected, frequency 
resolution is good at the slowest frequency range and becomes more affected by 
surrounding frequencies as the center frequency increases when wavelet number is 
kept constant. Time resolution on the other hand acts reversely where lower 
frequencies exhibit decreased time resolution. 
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Figure 5. Frequency and time resolution of the designed Morlet wavelets, where N corresponds 

to number of wavelet cycles. Resolution is interpreted as Full width at half maximum (FWHM) 

of the wavelets in frequency and time domain. Frequency axes are visualized in logarithmic 

manner 
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Phase transfer entropy 

 

Since information encoding, storing, and computing is central behaviour of brain 

function, I approached the question concerning directionality of the frequency specific 

interactions from information theory perspective. As causal relationships cannot be 

defined from correlation analyses or phase synchronization alone, I used phase transfer 

entropy [46] to assess information flow between phases of slow physiological rhythms 

and faster neuronal rhythm amplitudes. PTE results tell whether knowing the ISF phase 

lowers the uncertainty or helps to predict future state transitions of the higher EEG 

activity or vice versa. 

I used previously acquired instantaneous phases 𝛳𝑠𝑙𝑜𝑤  and 𝛳′𝑓𝑎𝑠𝑡  in the following 

calculations. Sampling rate of 125 Hz was used. Information itself can be quantified as 

reduction in uncertainty, which can be estimated using Shannon’s entropy. State space 

transition or binning of the data was used to bin the phase time series from -π to π 

producing discrete probability distributions, from which entropies can were calculated 

as a summation over all state logarithmic probabilities. Scott’s choice [59] was used to 

estimate the number of bins in state space transition (Eq.6). 

For PTE computation (Eq.7) I calculated the probabilities for entropies in equations 

(Eq.8-10) using script provided by Palva Lab. Base 2 was used in logarithms to express 

the units in bits [47], [48]. I formulated the PTE values into directional form dPTE (Eq.11), 

so that sign of the metric tells the information flow direction, or which one of the two 

studied phase timeseries is the stronger predictor. PTE requires priori estimate of an 

analysis lag, which I set to one cycle of the slow phase. 

 

Statistical analysis 
 

Null hypothesis power difference distribution (Figure 6a) was built with randomization 

testing using 104 permutations shuffling of the group labels, where the null hypothesis 

being that vigilance states have same effect on spectral power (two-tailed). Differential 

power map was then transformed to z-statistics (Eq.12) to determine statistical 

significance (p<0.05). Multiple comparison problem arises when large number of 

statistical tests are performed. This increases a chance to see an effect that does not 

exist in reality. Multiple comparison problem was assessed with maximum statistic 

correction [56], in which the null distribution was built from minimum and maximum 

values of the permuted maps and statistical significance threshold (p<0.05) could be 

extracted from 2.5 and 97.5 percentiles. 

Median PLV were compared groupwise (Figures: 6b left, 8a left, 9a left) using Wilcoxon 

rank sum test with false discovery rate (FDR) adjustment (Benjamini-Hochberg) [60]. 
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FDR correction allows to control type 1 errors, reducing the number of false positives. I 

used adjusted p<0.05 as significance criterion. I tested the null-hypothesis: vigilance 

state has no effect on PAC (two-tailed). For average PLV difference topography (Figure 

6c) I permuted subject labels 104 times to build null distribution from which the first 

whitening significance (p<0.05, thresholds 2.5 % & 97.5 %) threshold masks were made. 

Maximum statistic correction was used to create even more strict significance mask 

(p<0.05, thresholds 2.5 % & 97.5 %) that was overlayed on top of the first mask to 

highlight most significant regions. 

To assess the significance of the PAC on individual level (Figures : 6b right, 8a right, 9a 

right), time shifted surrogate data was used [58], [61]. Null hypothesis distributions were 

built by splitting the phase of time-series 𝑥(𝑡 = 1, . . , 𝑇) from a random time-point k into 

𝑥1 = 𝑥(1, . . , 𝑘) and 𝑥2 = 𝑥(𝑘, . . , 𝑇) to construct the surrogate timeseries defined as 

𝑥𝑠 = [𝑥2,𝑥1]. This approach preserves temporal autocorrelation structure of the data. 

Shuffling was done 100 times to produce null-distribution of surrogate phase locking 

values from which p-values were obtained by calculating the number of more extreme 

surrogate locking values and dividing by the number of permutations. Alpha level was 

set again as 0.05 %. 

I tested whether the median dPTE differs from zero in other words whether net 

information flow exists to specific direction. One sample sign test with FDR correction 

was used to adjust p-values with 95 % confidence level criteria (Figures 7, 8c, 9c). Two 

sample Wilcoxon rank sum test with FDR correction was used to compare the medians 

between awake and sleep groups (Figures 7, 8c, 9c). Null hypothesis being that the 

medians of the two are equal (two-tailed). Adjusted p<0.05 was considered significant. 

Effect size estimates (η2) that describe the magnitude of effect relative to sample size 

(Table 2) were made using z-values according to formula: η2 = (𝑍 √𝑁⁄ )2, where N 

equals total sample size and Z equals Z-statistic [62]. Common interpretation goes: 

η2≈.01 for small η2≈.06 medium η2≈.14 large effect size. 

 

Collection of formulas 

(Eq.1) 𝜔 = 𝑒𝑖2𝜋𝑓𝑡𝑒
−𝑡2

2𝜎2  

(Eq.2) 𝜎 =
𝑛

2𝜋𝑓
 

(Eq.3) 𝑅𝐴𝑖 = (𝐴𝑖
∑ 𝐴𝑖𝑖  

⁄ ) ∗ 100% 

(Eq.4) 𝑧(𝑛) = 𝑥(𝑛) + 𝑖𝑦(𝑛) = 𝑎(𝑛)𝑒𝑖𝛳(𝑛) 

where n denotes to discrete time variable, 𝑎(𝑛) and 𝛳(𝑛) are the instantaneous 

amplitudes and phases. 

(Eq.5) 𝑃𝐿𝑉𝐼𝑆𝐹,ℎ𝑖𝑔ℎ =  
1

𝑁
|∑ 𝑒𝑖(𝛳𝐼𝑆𝐹(𝑛)−𝛳′ℎ𝑖𝑔ℎ(𝑛))𝑁

𝑛=1 | 
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where N is the number of samples 

(Eq.6) 𝑘 =
2𝜋

ℎ
, 𝑤ℎ𝑒𝑟𝑒 ℎ =

3.5𝜎

𝑁
1
3

 

(Eq.7) 𝑝𝑇𝐸𝑥→𝑦 = 𝐻 (𝛳𝑦(𝑛),𝛳𝑦(𝑛′)) + 𝐻 (𝛳𝑦(𝑛′),𝛳𝑥 (𝑛′)) − 𝐻 (𝛳𝑦(𝑛′)) −

𝐻(𝛳𝑦(𝑛),𝛳𝑦(𝑛′),𝛳𝑥 (𝑛′)) 

(Eq.8) 𝐻(𝛳𝑥 (𝑛)) = − ∑ 𝑝(𝛳𝑥 (𝑛)) log2 𝑝(𝛳𝑥 (𝑛)) 

(Eq.9) 𝐻 (𝛳𝑥 (𝑛′),𝛳𝑦(𝑛)) = − ∑ 𝑝 (𝛳𝑥 (𝑛′),𝛳𝑦(𝑛)) log2 𝑝 (𝛳𝑥 (𝑛′),𝛳𝑦(𝑛)) 

(Eq.10) 𝐻 (𝛳𝑦(𝑛),𝛳𝑦(𝑛′),𝛳𝑥 (𝑛′)) =

− ∑ 𝑝 (𝛳𝑦(𝑛), 𝛳𝑦(𝑛′),𝛳𝑥 (𝑛′)) log2 𝑝 (𝛳𝑦(𝑛),𝛳𝑦(𝑛′),𝛳𝑥 (𝑛′)) 

(Eq.11) 𝑑𝑝𝑇𝐸𝑥→𝑦 =  𝑝𝑇𝐸𝑥→𝑦 − 𝑝𝑇𝐸𝑦→𝑥 

(Eq.12) 𝑧 =
𝑥−𝜇

𝜎
 

(Eq.13) 𝐻 (𝛳𝑦(𝑛),𝛳𝑦(𝑛′)) = − ∑ 𝑝 (𝛳𝑦(𝑛),𝛳𝑦(𝑛′)) log2 𝑝 (𝛳𝑦(𝑛),𝛳𝑦(𝑛′)) 

 

Results 
 

Transition from wakefulness to sleep increases ISF spectral power 

I used power spectral analysis to assess the difference of sleep and awake states in terms 

of power in the slow and infraslow frequency bands (Figure 6a). In sleep, spectral power 

was higher in the ISFEEG and RESPEEG  frequencies below 0.2 Hz, and conversely, lower in 

frequencies above 3.6 Hz. Respiratory pulsation peaks were seen at ~0.3 and ~0.2 Hz in 

awake and sleep, respectively. I did not observe delta frequency 1-4 Hz power increase 

typical for deeper sleep stages, which was expected, since recorded sleep was mostly 

light NREM sleep (Table S1). However, the slow delta (0.2-2 Hz) topography showed 

increased power over most of the brain during sleep, excluding frontal electrodes . In 

line with my hypothesis, ISF power was increased in sleep over wide areas frontal 

dominant (at 0.05Hz, ΔRA=-0.730 %, p<0.001, η2 =0.364). 

 

Sleep increases ISF coupling with cortical rhythms. 

To assess the phase relationship and correlation between the ISF phase and the 

amplitudes of fast oscillations, I used the PLV based phase-amplitude coupling estimator 

[15] that enables the isolation of PAC effects attributable to distinct ISF frequencies in 

the amplitude time series.  

 

Since phase locking is property of narrowband signals, ISF was studied in two separate 

frequency bands (ISF1-EEG: 0.008-0.05 Hz & ISF2-EEG: 0.05-0.1 Hz). I found that PAC 
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between the phase of ISF1-EEG and the amplitude of all faster rhythms was greater during 

sleep than during awake (Figure 6b, left). This difference between groups was noticeably 

strongest with alpha band, where an increase of ~0.1 in the median PLV was observed. 

Significant group differences in PAC were found between ISF1-EEG phase and delta 

(ΔPLV=-0.029, padj=0.031, η2=0.179), alpha (ΔPLV=-0.081, padj=0.002, η2=0.339), and 

beta (ΔPLV=-0.023, padj=0.037, η2=0.142) amplitudes, where differences were focused 

on central brain regions (Figure 6c). Theta and gamma bands showed similar behaviour, 

where phase locking was stronger during sleep. PLV compared with surrogate data 

followed same pattern as raw phase locking values (Figure 6b, right). During wakefulness 

the number of significantly coupled channels was clearly lower so that 5-15 % of 

electrodes had significant phase-amplitude coupling effects, compared to 5-35 % in 

sleep. 

 

To investigate how coherent the phase differences were spatially, I estimated the 

probability distributions of the average phase differences combined from all frequency 

bands (Figure 6d) between the ISF1-EEG  and amplitudes of fast oscillations. During 

wakefulness I found that the phase differences were distributed in a relatively uniform 

manner. However, in sleep the pattern changed drastically, with heavy tendency 

towards phase differences around π⁄2. Topographical analysis showed that these 

changes were focused on parietal, central and frontal electrodes.  

 

I found that while infraslow EEG fluctuations are significantly coupled to the amplitude 

dynamics of fast neuronal oscillations during both awake and sleep states, this 

relationship is both stronger and anatomically more widespread during sleep.  
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Figure 6. EEG average spectral power & standard deviations are visualised using relative 

amplitude on a logarithmic scale. The width of the solid lines represents statistical significance 

at specific frequency in rising order: no statistical significance, permutation tested, permutation 

test + maximum statistics correction. Topography plots the relative power difference at chosen 

frequencies. b) Left: Median PLV taken over electrodes, where asterisks indicate statistically 

significant (adjusted p<0.05) difference in the coupling strength (2-sample). Gray lines connect 

paired subjects. Right: Number of significantly coupled electrodes in percentiles. c) Difference 

in average PLV combined with two overlayed whitening masks (p<0.05) and maximum statistics 
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correction (p<0.05). d) Probability estimates of the average phase difference between ISF phase 

and faster rhythms phase. Channels on the y-axis are sorted to ascending order following the 

median phase difference. Topographical plot shows the median phase difference taken over the 

five bands and subjects. 

 

 

ISF phase drives electrophysiological brain rhythms 

The question still unanswered was whether ISF1-EEG are modulating cortical oscillations 

or just phase synchronized. To measure this kind of effective or directional phase 

correlations, I estimated phase transfer entropy (PTE) [46] between the phase of ISFs 

and the phase of infraslow frequency filtered amplitude envelope of fast oscillations. 

 

I found significant non-zero directional PTE (dPTE) in all frequency bands during both 

awake (combined dPTE: 0.099 bits, padj<0.001 for all bands) and sleep (combined dPTE: 

0.052 bits, padj<0.001 for all except gamma padj<0.05) states. Importantly, the phase of 

ISF1-EEG was a stronger predictor of the fast brain rhythms than vice versa, which implies 

that ISF1-EEG significantly drive the amplitude dynamics of fast oscillation (Figure 7). 

Median dPTE was consistently stronger in awake than in sleep state (average difference 

0.047 bits, padj<0.02 and η2
 >0.16 for all bands), with little variation in magnitude of dPTE 

between frequency bands or scalp topographies. 

These findings constitute the first evidence for ISFs driving cortical brain rhythms during 

both wakefulness and sleep.  

  



33 
 

 

 

 

 

Figure 7. Information transfer between ISF1 phase and faster rhythms. Top: Probability density 

estimate of the average dPTE. Since dPTE is a directional metric, the direction of the information 

flow changes on a sign change. Greek letters indicate the neural band in question. Asterisks 

indicate statistical significance (adjusted p<0.05). Coloured asterisks are for one sample tests, 

indicating whether there is significant non-zero information transfer. Black asterisks are for 2- 

sample test. Bottom: Topography shows average dPTE for wakefulness and sleep. 
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Influence of EEG respiratory frequencies to cortical excitability  

We have recently found that respiratory brain pulsations in magnetic resonance 

encephalography BOLD signals are accompanied by widespread electrophysiological 

changes. This and evident power peaks seen at respiratory frequencies (Figure 6a) led 

us asking whether also the respiratory rhythm is phase-amplitude coupled with 

neuronal oscillations. I repeated same analysis as with ISF to evaluate PAC using 

individual respiration frequency (RESPEEG). 

  

PAC phase locking values between RESPEEG and higher bands (Figure 8a) were marginally 

lower than seen with ISF1-EEG. On average, I found the PAC to be stronger during 

wakefulness (mean PLV=0.185) compared to sleep (mean PLV=0.167). However, 

differences in PLV magnitudes were small and no significant differences were seen 

between the two arousal states. PLV compared against surrogate data revealed that 

RESPEEG coupling to neural amplitudes is widespread phenomenon. Awake state showed 

interquartile range of significantly coupled channels from 15 to even 80 percent. With 

sleep in contrast, the same metric varied from 15 to 60 percent. 

 

As before, to further investigate directionality of the phase interaction I calculated dPTE. 

I found robust directional phase correlation between RESPEEG and faster brain rhythms 

(Figure 8c) occurring at every tested frequency except for delta rhythm during 

wakefulness, which were not altered by sleep. The coupling was directed also so that 

slower RESPEEG predicts the faster neural rhythms both during wakefulness (combined 

dPTE: 0.049 bits, padj<0.002 for all, except for delta padj=0.189) and sleep (mean dPTE: 

0.085 bits, padj<0.002, except for delta padj<0.05). Topographical mapping clearly 

separates frontal electrodes and rest of the scalp where differences take place.  

 

I wanted to see whether there was interaction between ISFEEG and RESPEEG. and found, 

increased coupling during sleep with slower ISF band (Figure 8a). Comparing against 

surrogate data revealed that this coupling is not widespread, taking place only around 

10 % of electrodes. I still found non-zero dPTE directed from ISF1EEG to RESPEEG which 

indicates that slower ISF is also predicting respiratory frequencies but only very locally 

(Figure 8c).  During sleep the ISF drive of respiratory frequencies dropped significantly, 

which was seen all over scalp except at some frontal electrodes.  

 

These results confirm that respiration couples with cortical rhythms even on a larger 

scale than ISF1-EEG. I further showed that respiration also drives neural amplitudes, but 

interestingly, sleep didn’t influence neither coupling strength nor directionality of this 

interaction, even though respiration frequency became slower and more powerful in its 

EEG effects (Figure 8b).    
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Figure 8. EEG respiratory frequency PAC and dPTE. a) Median PLV of the coupling. Lines on the 

scatter plot display median for the group. Note that coupling is also tested between ISFs and 

EEG respiratory frequencies. Topography is the average difference (awake-sleep) in phase 

locking value. b) Probability estimates of the individual respiratory frequencies. Respiratory 

frequency for each test subject was taken from capnography which was simultaneously 

recorded. c) Probability density estimates of the average dPTE. On the left side information 

transfer between EEG respiratory frequencies and neural frequency bands. On the right side 

dPTE between ISFs and EEG respiratory frequencies. Topography shows median difference 

between the groups. Asterisks indicate statistical significance (coloured: 1-sample, black: 2-

sample). 

  



36 
 

 

 

Faster ISF2 phase is not involved in drive of cortical amplitudes 

 

I repeated same analysis pipe for faster ISF2-EEG (0.05-0.1 Hz) as with ISF1-EEG band to see 

if the coupling and directionality with neuronal rhythms stays unchanged. I found similar 

phase-amplitude coupling patterns with ISF2-EEG, where during sleep the coupling was 

stronger throughout all the frequencies (Figure 9a left). However, PAC magnitudes were 

generally lower than with ISF1-EEG. I found significant difference between the two states 

only with ISF2-beta coupling (ΔPLV=-0.021, padj=0.037, η2=0.142). Comparison with 

surrogate data (Figure 9a right) confirmed that not only the coupling magnitudes, but 

also number of significantly coupled electrodes were lower in this  faster ISF range. 

Interquartile ranges of significant PAC electrodes were from 5 to 20 percent, varying 

between frequency bands. Especially sleep state showed decrease in the extent of 

coupling. Average phase difference probabilities  (Figure 9b) showed a little emphasis on 

small phase differences. With sleep phase differences from 0 to π were more dominant 

occurring at frontal electrodes.  

In contrast to ISF1-EEG I found reversed directionality of the phase interaction to occur 

with ISF2-EEG, directed from fast activity to slow ISF2-EEG phase (Figure 9c), which I found 

to be significant during wakefulness with all but beta frequency band (combined dPTE: 

-0.028, padj<0.03 for all, except for beta padj=0.07). Still, I didn’t observe significant 

differences between the two groups.   
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Figure 9. Coupling and information transfer with ISF2. Panel a) left: Median PLV taken over 

electrodes. Asterisks indicate statistically significant (adjusted p<0.05) difference in the coupling 

strength between the two states. Gray lines connect paired test subjects. Right: Number of 

significantly coupled channels in percentiles. b) Probability estimates phase difference between 
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ISF and faster rhythms phase. Channels on the y-axis are sorted to ascending order following the 

median phase difference. Topographical plot shows the median phase difference taken over the 

five bands and subjects. Panel c: dPTE between ISF phase and faster rhythms. Top: Probability 

density estimate of the average dPTE. Greek letters indicate the neural band in question. 

Asterisks represent statistical significance (adjusted p<0.05). Coloured asterisks are for one 

sample tests, indicating whether there is significant non-zero information transfer. Black 

asterisks are for 2 sample tests i.e., groupwise comparison. Bottom: Topographical presentation 

for average dPTE for wakefulness and sleep. 

Groupwise dPTE differences are not explained by increased autocorrelations 

 

Increased spectral power of the very low frequencies during sleep indicates in the 
direction of increased autocorrelations. This would make comparison of the two arousal 

states invalid since increase in autocorrelation leads to decrease in dPTE. I used 
information theory replicate of autocorrelation (Eq.13) to calculate autocorrelations  

with the same analysis lag used in the PTE calculations (Figure 10). If the 
autocorrelations between the wakefulness and sleep differ significantly, it is not 
meaningful to compare the PTE between conditions. Average was taken over channels 

and Wilcoxon rank sum combined with FDR correction was used to assess statistical 
significance, with null hypothesis being that the medians of the two distributions are 

equal. No significant differences were seen between the groups, meaning that 
comparison of dPTE values on group level can be made and that correlation differences 

do not explain the differences observed with phase transfer entropy. 
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Figure 10. Differences in phase TE are not explained by differences in autocorrelations. First two 

rows visualise slower ISF1 (0.008-0.05 Hz) band and related faster neural frequencies, and lower 

two rows correspond to the faster ISF2 (0.05-0.1 Hz) band and related bands. X- and y-axis 

correspond to autocorrelation and histogram count respectively. Greek letters represent slow 

filtered amplitude envelopes used in PAC and PTE calculations. P-values are FDR adjusted p-

values. 

 
Relation between PAC and PTE 

 

I wanted to test if there exist correlation between PAC values measured by PLV and dPTE 
magnitude. I hypothesized that increased phase-amplitude coupling is accompanied by 
increased directional PTE, which has been seen with Kuramoto models [63], however 
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not always [64]. I took median over subjects and combined all five cortical bands in one. 
I used linear regression analysis using ordinary least squares fit (Figure 11). Coefficient 
of determination (R2) between the model and observations were low, therefore linear 

model was not sufficient to explain variation in the observations. Residuals and residual 
autocorrelations showed that model was not biased and contained no autocorrelation 

of residuals.  
 

 
 

 

Figure 11. Magnitude of information transfer as a function of PAC strength for ISF1-neural (top) 

and RESPEEG-neural (bottom) coupling. Ordinary least squares (OLS) fits are marked by solid lines. 

Histogram and box plot represents OLS residual distances and autocorrelation function 

respectively.  
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Table of statistical tests 
Table 2. Table of statistical tests. Median PLV and dPTE are shown including adjusted p-values 

and effect sizes for 1- and 2-sample tests. Red and blue colors mark awake and sleep states 

respectively. 

  Alpha Beta Theta Delta Gamma 

PLV ISF1 0.161 0.185 0.191 0.186 0.164 

  ISF2 0.155 0.150 0.165 0.167 0.152 

  ISF1 0.242 0.208 0.208 0.215 0.182 
  ISF2 0.170 0.171 0.176 0.188 0.160 

2-sample padj ISF1 0.002 0.037 0.111 0.031 0.185 
  ISF2 0.164 0.037 0.164 0.069 0.563 

Eff. Size η2 ISF1 0.339 0.142 0.080 0.179 0.046 
  ISF2 0.054 0.142 0.058 0.106 0.008 

dPTE ISF1 0.110 0.090 0.093 0.099 0.103 
  ISF2 -0.039 -0.016 -0.038 -0.035 -0.016 
  ISF1 0.062 0.053 0.052 0.038 0.054 
  ISF2 -0.026 -0.015 -0.005 -0.003 -0.012 

2-sample padj ISF1 0.003 0.003 0.018 0.003 0.001 
  ISF2 0.217 0.960 0.051 0.218 0.349 

Eff. Size η2 ISF1 0.271 0.259 0.163 0.243 0.376 
  ISF2 0.049 6.03E-05 0.111 0.044 0.024 

1-sample padj ISF1 4.77E-06 5.25E-05 5.25E-05 4.43E-04 4.77E-06 
  ISF2 0.002 0.078 0.010 0.030 0.030 
  ISF1 0.001 0.004 9.54E-06 1.05E-04 0.014 
  ISF2 0.426 0.426 0.426 0.664 0.426 

       

  Alpha Beta Theta Delta Gamma 

PLV Resp 0.169 0.202 0.214 0.197 0.143 
  Resp 0.173 0.163 0.161 0.173 0.166 

2-sample padj Resp 0.546 0.546 0.291 0.291 0.511 

Eff. Size η2 Resp 0.009 0.009 0.070 0.056 0.020 

dPTE Resp 0.060 0.041 0.047 0.051 0.048 
  Resp 0.096 0.080 0.093 0.073 0.084 

2-sample padj Resp 0.597 0.597 0.597 0.597 0.597 

Eff. Size η2 Resp 0.007 0.007 0.047 0.008 0.023 
1-sample padj Resp 4.43E-04 4.43E-04 0.002 0.189 0.002 

  Resp 0.002 4.43E-04 2.10E-04 0.030 4.43E-04 

       

  ISF1 ISF2    

PLV Resp 0.167 0.160    
  Resp 0.197 0.182    

2-sample padj Resp 0.008 0.349    

Eff. Size η2 Resp 0.251 0.039    

dPTE Resp 0.089 0.009    
  Resp 0.046 0.017    

2-sample padj Resp 2.70E-05 0.125    

Eff. Size η2 Resp 0.451 0.056    

1-sample padj Resp 3.81E-06 0.078    
  Resp 4.20E-05 0.078    
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Discussion 
 

Sleep is known to induce changes in the scalp EEG since the discovery of slow sleep 

related delta waves. It is not until recently that frequencies < 1 Hz has started to reveal 

their importance in electrophysiological processes. My study showed that infraslow 

frequency powers increase with concurrent drop at most neural rhythms during NREM 

light sleep. Changed respiration patterns during sleep were also reflected into the EEG. 

I found that slow physiological oscillations, i.e., ISFEEG and RESPEEG both reflect gross 

cortical excitability, especially seen during sleep. I further showed that the two are both 

not only coupled but predicting neuronal oscillations implying causal relationship and 

that the two are coordinating and driving faster oscillation amplitudes. 

 

Cortical excitability is driven by ISF    

 

It has been shown previously that cortical ISF reflect neural fast amplitudes, or gross 

cortical excitability, seen during sleep [15], [30]–[32]. I used same approach in my study 

with the same metrics to fully evaluate the increased ISF phase correlation with cortical 

amplitudes comparing sleep against awake resting-state recordings. Most evident 

increase in PAC was seen in the same alpha, beta, and delta bands. This was the first 

high density EEG study to quantify the spatial extent and directionality for ISF 

modulation of cortical neuronal rhythms over the human brain. 

In addition, I showed that during sleep the phase difference of the PAC unifies around 

π/2 seen especially in frontal areas (Figure. R1d). This might suggest more uniform 

modulation of the whole brain. During sleep connectivity between cortical nodes is 

known to collapse, which is reflected as decoupling between cortical oscillations [65]. 

Could this decoupling of the cortical oscillations be balanced by uniform increase of ISF 

coupling seen in my study? 

Signal crosstalk arising from volume conduction is major limitation in scalp EEG [66]. The 

ability to consider shared history and common external driving influences between two 

processes makes the PTE a versatile approach in comparison to PLV along with 

directionality of the measure [48]. As a nonlinear measure, PTE it is also model free. 

Therefore, no assumptions about the interaction are needed and it is therefore suitable 

for explorative analysis such as ours. 

In my original hypothesis I stated that ISF serves as driver of the process and this drive 

should increase during sleep. The phase -interaction was indeed directed from the ISF 

to neural rhythms both during wakefulness and sleep. This combined with previous  
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result further strengthens my hypothesis that ISF are orchestrating cortical excitability 

now measured with two different metrics. I expected the net information flow to be 

stronger during sleep compared to wakefulness due to clearly increased ISF coupling 

and power during sleep. Surprisingly, the opposite was found with all tested 

frequencies. My initial though was that stronger coupling transfers less information due 

to more constant phase difference. To test this, I quantified the relationship between 

PLV magnitude and information transfer and found only weak linear correlation 

between the two (Figure 11) which did not explain the results.  

Typically, increased coupling points to direction of increased information transfer, this 

is however not the case in all systems [64].  Also, with oscillators that are fully phase 

locked there cannot be any information transfer. Kuramoto models can be used to study 

effects of synchronous behaviour. It is a model containing a set of coupled oscillators 

with properties similar to neural populations such as natural frequency and coupling 

strength, which can be seen as natural firing rate of neuron and degree of excitation and 

inhibition [67]. 

Studies with Kuramoto models have shown that information transfer drops significantly 

before coupled signals reach perfect synchronization [63]. It is thus possible that 

reduced information transfer I observed during sleep was an indication of stable state 

prior to synchronization, where information is not as actively transferred, which was 

supported also by increased phase locking. Furthermore, spectral power increase at ISF 

could indicate elevated autocorrelations and in theory reflect as a change in PTE. This 

was tested and the effect was not large enough to be considered significant (Figure 10). 

I hypothesize that there could be bi-directional phase interaction which takes place 

during sleep where the driving dynamics interchange, having a cancelling effect on the 

net dPTE. To verify the previous two possible explanations, analysis which studies 

coupling strength and directional PTE as a function of time would be needed. 

ISF2-EEG resembles ISF1-EEG in its PAC effects with neuronal oscillations, but the phase-

correlations were much lower along with the extent of the effect. Furthermore, the 

directionality of the interaction on average seemed to be reversed, implying different 

source of signal. It’s possible that the underlying ISF effect takes place on wider 

frequency band than studied, overlapping with ISF2 frequency range or due to spectral 

leakage, the ISF2 measures partially the same effect as ISF1 possibly explaining the 

similarities between the two. From these results I can surely say that ISF2 does not 

modulate cortical rhythms. My observations showed that careful assessment of ISF 

bandwidth choice needs to be made, due to drastically different results and varying ISF 

range used in literature. 

 

Respiratory oscillations are active drivers during both arousal states  
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Clear spectral peak found at the respiratory frequencies along with concomitant fMRI 

findings and existing literature made us to further explore whether respiration could in 

fact influence neurophysiological rhythms directly or indirectly by affecting the ISF drive.  

There is recent evidence indicating that intracranial respiratory pulsations mediated by 

CSF/venous pulsations could also affect scalp EEG [68]. Recent study with awake mice 

revealed that respiration-entrained oscillation pattern is coupled and pacing electrical 

oscillations in the prefrontal cortex [16]. One could argue these to be due to respiratory 

related motion of the head. Topographical distribution of my results speaks against that 

measured respiratory frequency oscillations arise from movement of the head as I would 

expect them to highlight posterior electrodes, which is the most prone area to electrode 

movement, since the subjects are lying on a bed. Strong respiratory brain pulsations also 

have been detected in human brains as well using both ultrafast fMRI [68]–[70] and 

intracranial needle electrode EEG [71], [72] recordings.  

My novel finding showed that amplitudes of neural frequency bands, which reflect 

cortical excitability, were also driven by respiration related RESPEEG phase and not 

exclusively by ISF1-EEG phase. Interestingly, unlike with ISF, the phase locking magnitudes 

and dPTE were not altered by sleep. Sleep increases respiratory power practically in the 

same areas as slow wave (0.2-2 Hz) power over nearly the whole brain excluding the 

frontal areas (Figure 6a).  Interestingly, sleep induced change in respiration frequency 

doesn’t influence coupling metrics, suggesting stable function of respiration throughout 

different arousal states. 

 

Electrohydrodynamic changes over the BBB during sleep 

 

The glymphatic model states that the interstitial brain water dynamics between 

interstitial and perivascular space alters in sleep such that the interstitial space widens, 

and electrolyte concentrations drop with subsequently lower neuronal excitability. This 

was experimentally shown as artificial CSF flushing of the brain tissue elicits locally sleep 

like slowing to slow wave activity while most of the brain was awake with faster EEG 

activity [73]. And conversely also electrophysiological awake state was introduced 

during sleep by narrowing the interstitial space and increasing of electrolyte 

concentrations locally. In my study I saw increased slow and infraslow EEG power over 

posterior regions during NREM human sleep (Figure 6a), which could possibly inversely 

mark the areas of increased CSF movement. 

As the vasomotor and respiratory pulsations are the two main drivers of both blood flow 

and CSF in the cortex [74] their role in electrohydrodynamic driving mechanisms needs 

to be more thoroughly investigated. The glymphatic clearance has been shown to be 

deteriorated in several major brain diseases ranging from acute trauma and stroke to 

slow degenerative diseases like Alzheimer’s disease, which is thought to be related to 
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impaired clearance amyloid β proteins [75]–[77] and epilepsy that is accompanied by 

BBB leakage [78]–[80]. Proper function of the clearance is crucial for neurotoxic proteins  

to be able to enter paravenous spaces and further to lymphatic vessels. As fbEEG ISFs 

reflect BBB permeability [6], [14] they could prove to be important part in studying such 

diseases.  

Sleep deprivation is commonly used method to study sleep with limited recording times. 

In my case the recording time was limited due multimodal imaging including MRI with 

limited sequence lengths for example. The main time limitation with EEG is however the 

drying of the electrolyte solution used with wet electrodes. Sleep deprivation however 

have its disadvantages. Mouse models have shown that continued sleep restriction 

lasting six days downregulates expression of tight junction proteins at BBB and increases 

its permeability [81]. Ultimately this can lead to impaired AQ4 channels, which facilitate 

the CSF flow, followed by dysfunction of the glymphatic system [10], [82]. There is no 

evidence that one night of sleep deprivation used in my study could have such extreme 

effects. Recently it was shown that one night of sleep deprivation increases the amount 

of metabolites in human brain [83]. This implies higher need for clearance the night 

following, which could have an amplifying effect compared to normal sleep.  

Future works remains to be done, whether the ISF phase interactions with cortical 

rhythms are changed with such neurodegenerative brain diseases. The question left 

open was why exactly ISF drive was stronger during wakefulness when the phase 

synchronization was stronger during sleep, more accurate analysis in the time domain 

could be used to answer these questions. Source-level analysis requiring solving of 

inverse and forward problems would be useful for more precise localisation of the 

coupling interactions since scalp EEG signal is prone to volume conduction resulting in 

spatial imprecision and linear mixing of the scalp signal. 
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