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ABSTRACT 
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The main objective in this thesis was to identify and evaluate the applicability of machine 

learning methods that could be used in mineral processing as a tool for forecasting the 

direction in which where the current process values are going. The supervised machine 

learning method k-nearest neighbors (kNN) was selected for finding the closest 

correspondences from history data for the current process conditions. 

The literature review in this thesis describes mineral processing plant processes, mineral 

separation using flotation, mine-to-mill optimization, the CRISP-DM (Cross-industry 

Standard Process for Data Mining) procedure for data handling and machine learning 

methods in general. In addition, a few case studies on the usage of machine learning in 

mineral processing are presented. The experimental part of this thesis concentrates on 

data pre-processing and the development of the k-nearest neighbors function. MATLAB® 

was used for all the calculations and results presented in this thesis. 

The kNN algorithm presented in this study proved to be sufficient in finding the closest 

correspondence from history data for a current process conditions. At the time of 

completing this thesis, the kNN function was in a state where it could be used as part of 

a mine-to-mill expert system to extract a prediction of trajectories for the process’s key 

performance indicators. However, the function could still be improved by the addition of 

clustering, such as k-means, as a preliminary classification for kNN and ranking of nearest 

neighbors based on the area between the trajectories of neighbors and the query point. 
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TIIVISTELMÄ 

Samankaltaisten prosessitilojen etsiminen rikastusprosessissa lähimmän naapurin 

menetelmällä  

Juho Anttila 

Oulun yliopisto, Prosessitekniikan tutkinto-ohjelma 

Diplomityö 2022, 57 s. + 13 liitettä 

Työn ohjaajat yliopistolla: Jari Ruuska, Markku Ohenoja ja Antti Koistinen 

 

Työn päätavoitteena oli sellaisten koneoppimismenetelmien soveltuvuuden 

tunnistaminen ja arviointi, joita voitaisiin käyttää työkaluna rikastusprosessissa prosessin 

tilan ennusteissa. Ohjattua koneoppimista edustava k:n lähimmän naapurin menetelmä 

(kNN) valittiin keinoksi etsiä historiadatasta lähimmät vastaavuudet prosessin 

nykytilanteelle. 

Työn kirjallisuuskatsaus sisältää esittelyn rikastusprosessin yksikköprosesseihin, 

mineraalien erottamiseen vaahdotuksen avulla, mine-to-mill optimointiin, datan 

käsittelyyn suunniteltuun toimintamalliin (CRISP-DM) sekä koneoppimisen 

peruskäsitteisiin. Kirjallisuuskatsauksessa esitellään myös muutama tapaustutkimus 

koneoppimisen käyttämisestä rikastusprosessissa. Työn kokeellinen osa keskittyy datan 

esikäsittelyyn sekä k:n lähimmän naapurin menetelmän sovittamiseen työssä 

käytettävälle datasetille. Esikäsittely sekä työssä esitetyt tulokset tehtiin MATLAB® 

ohjelmiston avulla.  

Työssä esitelty k:n lähimmän naapurin algoritmi todettiin sopivaksi menetelmäksi löytää 

historiadatasta lähimmät vastaavuudet nykyiselle prosessitilalle. Työn 

valmistumishetkellä funktio oli siinä tilassa, että sitä voitaisiin käyttää osana mine-to-mill 

optimointiasiantuntijajärjestelmää prosessin tärkeimpien suorituskyvystä kertovien 

muuttujien (KPI) arvojen trajektorien ennustamisessa. Funktiota voitaisiin kehittää 

lisäämällä klusterointi, esimerkiksi k-means esiluokitteluksi k:n lähimmän naapurin 

menetelmälle, sekä järjestämällä menetelmän löytämät naapurit paremmuusjärjestykseen 

testipisteen ja niiden välisen pinta-alan perusteella. 

Asiasanat: Rikastusprosessi, k-nearest neighbors, Vaahdotus 



 

FOREWORD 

This thesis was done in cooperation between Metso Outotec and the University of Oulu, 

and took place between October 2021 and April 2022. The objective of this research was 

formed from an intriguing idea to create a “weather forecast” model for current process 

conditions.  

I thank docent Jari Ruuska, postdoctoral researcher Markku Ohenoja and doctoral 

researcher Antti Koistinen from the University of Oulu for supervising the thesis. I also 

thank Antti Remes, Jani Kaartinen and others from Metso Outotec for the topic of the 

thesis, and giving me an opportunity to work with real plant data. Finally, I thank 

professor Mika Ruusunen from the University of Oulu for guidance and comments on the 

thesis. 

Oulu, 14.4.2022 

Juho Anttila   
Juho Anttila 



 

TABLE OF CONTENTS  

ABSTRACT 

TIIVISTELMÄ 

FOREWORD 

TABLE OF CONTENTS 

LIST OF ABBREVIATIONS 

1 Introduction ............................................................................................................... 7 

2 Theory ....................................................................................................................... 8 

2.1 Process description .............................................................................................. 8 

2.2 Mineral separation using froth flotation ............................................................. 11 

2.3 Mine-to-mill concept ......................................................................................... 14 

2.4 Data-based modelling utilizing machine learning .............................................. 16 

2.4.1 CRISP-DM .............................................................................................. 16 

2.4.2 Data preparation ....................................................................................... 18 

2.4.3 Machine learning and k-nearest neighbor method ..................................... 19 

2.4.4 Machine learning in mineral processing ................................................... 21 

3 Data preparation and method implementation........................................................... 24 

3.1 Data pre-processing ........................................................................................... 24 

3.2 Implementation of k-nearest neighbors .............................................................. 27 

3.3 Selection of query points ................................................................................... 29 

4 Neighbor search results ............................................................................................ 31 

5 Discussion ............................................................................................................... 47 

6 Conclusions ............................................................................................................. 52 

7 Summary ................................................................................................................. 53 

REFERENCES 

APPENDICES: 

Appendix 1. Scatter plot and distances for 2-variable kNN search at query point 5584 

Appendix 2. 3- and 4-variable kNN search distance indexes for query point 5584 

Appendix 3. Scatter plot and distances for 2-variable kNN search at query point 5158 

Appendix 4. Trajectories for 2-var. search in 5158 and distances for 3-var. search 

Appendix 5. Trajectories for 3-var. search in 5158 and distances for 4-var. search 

Appendix 6. Trajectories for 4-var. search in 5158 and scatter plot for query point 7435 

Appendix 7. Distances and trajectories for 2-var. search in 7435 

Appendix 8. Distances and trajectories for 3-var. search in 7435 



 

Appendix 9. Distances and trajectories for 4-var. search in 7435 

Appendix 10. Scatter plot and distances for 2-var. search in query point 6980 

Appendix 11. Trajectories for 2-var. search in 6980 and distances for 3-var. search 

Appendix 12. Trajectories for 3-var. search in 6980 and distances for 4-var. search 

Appendix 13. Trajectories for 4-var. search in 6980 

 



 

LIST OF ABBREVIATIONS 

AG autogenous mill 

AI artificial intelligence 

CNN convolutional neural network 

kNN k-nearest neighbors 

KPI key performance indicator 

ML machine learning 

MWD monitoring while drilling 

PSI particle size indicator 

RNN recurrent neural networks 

SAG semi-autogenous mill 

SVM support vector machines 

 



7 

1 INTRODUCTION 

Mining and mineral processing can be thought as a set of interconnected processes, where 

each process stage has an impact on later process stages. Roughly speaking, these 

processes can be divided into drilling and blasting, crushing, grinding and mineral 

separation. When the objective is to optimise the performance of the whole process, the 

optimisation of each process stage individually can lead to suboptimal results, since 

changes made in one process stage may influence downstream processes. For example, 

this can lead to growth in expenses in the form of an increase in the raw materials used. 

For this reason, it is essential to understand the effects of each process stage on the final 

product. One possible way to gain knowledge of these effects is to study measurement 

data collected from the different processing stages of a mineral processing plant.  

In this thesis, the tools for gaining such information from process data were investigated 

and applied. A general description of a mineral processing plant for gold flotation was 

given. The calculations presented were done using real plant data, which was acquired 

through Metso Outotec from a mineral processing plant. The key objective in this study 

was to find the best correspondences from history data for the current process conditions 

by using machine learning (ML) methods. The aim was to make predictions about the 

process key performance indicator (KPI) trajectories and examine whether the built model 

could be used as part of an expert system. However, development of this kind of model 

or expert system was beyond the scope of this thesis.  

The literature work in this study includes an introduction to the mineral processing 

process stages, mine-to-mill concept, data-based modelling and machine learning. For 

data handling, an open standard CRISP-DM framework was applied. Data preparation 

and all calculations with the selected ML method were done in the MATLAB® 

environment, and some MATLAB® functions needed for the built model required 

MATLAB® statistics and machine learning toolbox. Implementation of the chosen ML 

method required programming of multiple functions and scripts in MATLAB®, which are 

described in the experimental part of this thesis. The applicability of the selected machine 

learning method is demonstrated and discussed in the results and discussion chapters. 
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2 THEORY 

2.1 Process description 

A mineral processing plant includes several interconnected processes: crushing and 

grinding, which together make up comminution, and mineral separation. Feed for 

crushing comes from drilling and blasting processes, which are done at the mining site to 

remove ores from the bedrock. The most versatile mineral separation process is froth 

flotation, after which the product and tailings go to a dewatering process. Figure 1 

illustrates a typical flowsheet of a mineral processing plant from crushing to flotation 

products.  

 

Figure 1. Typical mineral processing flowsheet. 
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Comminution processes include crushing and grinding. In comminution, the particle size 

of the ore is reduced step by step to enable separation of valuable particles in the 

downstream processes. The feed for crushing comes from drilling and blasting by truck 

and it is fed into a bin before a crusher. The crusher reduces the particle size of the ore to 

such a level that the mineral and gangue can be separated as particles in grinding. 

Crushing can be performed with different equipment, such as jaw, gyratory, cone or 

impact crushers. (Wills 2006) 

After crushing, the ore goes to primary grinding (marked P.G. in Figure 1), where usually 

water is also introduced for reasons of lower power consumption per metric ton of 

product, elimination of dust and higher capacity per unit mill volume. Primary grinding 

is typically done using a semi-autogenous grinding (SAG) mill, which utilizes steel balls 

as grinding media. An autogenous mill (AG) is a tumbling mill, which uses the ore itself 

as grinding media. In the flowsheet, a SAG mill is assumed. The principal purpose of 

grinding is to achieve the correct degree of liberation in the ore. Liberation refers to the 

separation of the valuable minerals from the attached gangue minerals at the coarsest 

possible particle size. The product from the SAG goes to classification by a hydrocyclone 

or cyclone. A cyclone operates utilizing a centrifugal action, and it separates fine particles 

and liquids (overflow) from coarse particles (underflow). The underflow of a cyclone, 

which is also known as a circulation load, goes back to the SAG, whereas the overflow 

continues to secondary grinding (S.G. in Figure 1). (Wills 2006) 

In secondary grinding, the overflow from the SAG cyclone goes first to a sump, from 

which it continues to a secondary grinding cyclone. As in primary grinding, the underflow 

from a cyclone goes back to grinding, and the overflow continues to the next process 

stage, which is flotation. In the flowsheet, the secondary grinding is assumed to be done 

using a tower mill, which is more effective in fine and ultra-fine grinding than AG or 

SAG mills. In a tower mill, steel balls or pebbles are present in a vertical grinding 

chamber, where an internal screw flight provides medium agitation. The feed enters the 

tower mill from the top, together with water, and the particle size of the ore is reduced by 

abrasion and attrition while descending to the bottom of mill. The fine ground particles 

are carried upward by pumped water and enter a built-in classifier. Coarse particles are 

circulated back to the bottom of the mill, while the fine particles in the classifier return to 

a secondary grinding sump as an underflow. (Wills 2006) 
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The first step in a flotation circuit is agitation, which is performed in a conditioner. In a 

conditioner, reagents are added to the slurry, and a feasible mixing time is ensured to  

allow mineral particles to react with chemicals which change the surface properties of 

selected minerals and allow them to react with air bubbles in flotation cells. The flotation 

circuit shown in Figure 1 has five flotation banks, all of which have the same working 

principle. The feed enters the first cell of the bank and some of the valuable minerals are 

collected in the froth as the overflow. The underflow goes to the second cell in the bank, 

and more valuable minerals are collected, until the last cell in the bank. From the last cell 

in the bank, the concentrate continues to a different stage in the flotation circuit than the 

tailings (underflow). The flotation circuit in Figure 1 includes a rougher bank, a scavenger 

bank, the first cleaner, a scavenger cleaner and a secondary cleaner. In addition to this, 

the circuit has a regrinding module. (Wills 2006) 

The initial flotation takes place in the rougher bank, where the objective is to collect as 

much of the valuable minerals as possible. The concentrate from the rougher can contain 

reasonably coarse particle sizes, which is why regrinding is placed after the rougher bank. 

From the rougher bank, the concentrate continues to regrinding, and the tailings are 

directed to the scavenger bank. In the scavenger bank, the aim is to achieve maximum 

recovery of the valuable mineral particles to minimize losses to tailings. From the 

scavenger bank, the tailings leave the flotation circuit and enter dewatering, and the 

concentrate is routed back to the conditioner. The concentrate from the rougher bank goes 

to regrinding, where the middlings are treated. Middlings are products that are neither 

concentrate nor tailings. The rougher concentrate may still contain coarse particles, which 

consist mainly of unliberated valuable minerals, and the objective of regrinding is to 

reduce the particle size of the feed to achieve better liberation. In regrinding, the fine 

particles are separated from the coarse particles in a cyclone, from where the underflow 

goes to the actual regrinding, and the overflow continues to the first cleaner. In the cleaner 

banks, the level of slurry is kept low to achieve a deep froth and produce a high-grade 

concentrate. From the first cleaner, the concentrate is routed to the final concentrate, and 

the tailings enter the scavenger cleaner. The concentrate from the scavenger cleaner enters 

the secondary cleaner bank, and the tailings are directed back to the conditioner. The 

concentrate from secondary cleaning enters the final concentrate of the circuit, and the 

tailings are directed back to the scavenger cleaner bank. (Wills 2006) 
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The tailings from the scavenger bank and the final concentrate from the cleaner banks 

leave the flotation circuit and continue to individual dewatering stages. As the name 

implies, most of the liquids are separated from the solids in dewatering to produce a 

relatively dry concentrate as the final product of the whole process and the final by-

product from tailings. (Wills 2006) 

2.2 Mineral separation using froth flotation 

Froth flotation is a versatile and important concentration method, which can be applied 

to many ores and particle sizes by selecting the correct chemicals for flotation. At the 

beginning of flotation, mineral slurry is formed by grinding the ore with water. Selected 

flotation chemicals are then added to the slurry according to the ore being processed. The 

flotation process is based on the differences in the ability of air bubbles to attach 

selectively to specific mineral surfaces in a slurry. The attached particles are carried to 

the surface froth phase and separated, while other particles stay in the liquid phase. 

Valuable minerals are usually attached to the bubbles while gangue falls to the bottom of 

the flotation cell. If the gangue attaches to bubbles and the valuable mineral falls to 

bottom, the process is called reverse flotation. (Haavisto 2009) 

There are a few different flotation mechanisms, namely bubble attachment, entrainment 

and aggregation. Valuable minerals are usually recovered using bubble attachment, as 

described above, while mechanical entrainment and aggregation are mainly used to 

recover gangue from slurry. In entrainment, fine particles become trapped in a film 

between the bubbles, where they may be recovered into the concentrate or stay in the 

slurry. Entrainment is a non-selective mechanism and it happens with all minerals. 

Rinsing the froth phase with water can decrease recovery by entrainment, but it also has 

an impact on the stability of the froth. In aggregation, physical entrapment occurs between 

the particles in the froth attached to the air bubbles. (Wills 2006; Kortelainen 2019)  

Grade and recovery are the two most important key performance indicators (KPIs) of 

flotation circuits. Grade is used to describe the weight percentage of the valuable mineral 

in the selected stream, for example concentrate. Recovery describes the proportion of the 

mineral collected from the feed to the concentrate and is given according to Equation (1):  

𝑅 = 100
𝑐(𝑓−𝑡)

𝑓(𝑐−𝑡)
,                                                                                               (1) 
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where R is recovery [%], c is the final concentrate grade [%], f is the flotation feed grade 

[%] and t is the grade in the tailings that leave the flotation circuit [%]. Grade and recovery 

can be seen as inversely proportional, since when recovery is increased, the grade 

decreases. This is due to the fact that, when more valuable minerals carried in the 

concentrate, the amount of gangue in the concentrate also tends to increase, which leads 

to a decrease in percentage of the valuable minerals in the concentrate. The main goal of 

flotation control is to maintain a high grade without loss in recovery. (Kortelainen 2019) 

The flotation process is comprised of three interrelated main areas: These main areas are 

chemical components, operation components and equipment components. Changes in one 

area will have an effect in other areas. The chemical components include collectors, 

frothers, activators, depressants and pH modifiers. Operation components are for example 

feed rate, mineralogy, particle size, slurry density and temperature. Equipment 

components include cell design, agitation, air flow, cell bank configuration and cell bank 

control. (Kawatra 2011) 

The role of collectors is to make selected minerals hydrophobic to enable flotation. 

Collectors, which are surfactants, are added to the slurry and are absorbed during a 

conditioning period. Collectors can be ionizing compounds, which split into ions in water, 

or non-ionizing compounds, which are indissoluble and make the mineral hydrophobic 

by covering its surface with a film. (Wills 2006) 

Frothers are used to form and stabilize the froth layer. Frothers may mix with water, but 

some of them do not. Frothers that mix poorly with water are usually added in the grinding 

circuit, so that agitation can promote dispersion into the slurry. Frothers that are soluble 

with water are usually added along the flotation process to maintain a stable froth phase 

and reduce consumption of the frothers themselves. (Crozier 1992) 

Modifiers, depressants and activators are added to the process in order to balance the 

flotation environment by modifying the action of the collector, either by enhancing or 

reducing its hydrophobic properties on the mineral surface. They can be used to make the 

collector more selective towards certain minerals. For example, lime can be used in 

flotation to increase the alkalinity of the slurry, which increases the volume of the froth. 

(Wills 2006) 
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The flotation cell is the basic unit in the froth flotation process. It is a vessel which has 

one inflow and two outflows, the inflow being slurry, and the outflows being concentrate 

froth and tailings. The cell has an impeller which is used both to introduce the air to the 

system and to mix the slurry with air and form small bubbles. The hydrophobic minerals 

can then attach to the bubbles and be lifted to the surface in the froth phase. The froth 

with minerals is collected from the top as overflow, while tailings are gathered from the 

bottom and routed to the next stage in a flotation bank. In order for flotation to occur, the 

particle size of the mineral should be small enough so that bubbles can lift up, the bubbles 

must form the froth phase on top and the mineral particles should be hydrophilic. (Ur 

Rehman 2011) 

Flotation cells are usually connected with each other in series and referred to as a flotation 

bank. Slurry goes as an input to the first cell and continues through the whole series. 

Concentrate is collected from each cell, and the tailings from the last cell. Flotation banks 

connected in series form a flotation circuit. Slurry goes first to the first cell in the rougher 

bank, and tailings from the rougher bank are fed to the scavenger bank. Valuable 

concentrate from the rougher and scavenger banks is fed to the cleaner bank, which is 

used to further decrease the non-valuable minerals in the concentrate. Regrinding may 

take place between these circuits.  

Mass pull is another important indicator for flotation performance. Mass pull is the flow 

rate of solid content reporting to the concentrate, and it is affected by making changes in 

the froth structure and stability. Froth structure and stability can be controlled using the 

air flow rate and froth depth (Hadler et al. 2010). The two main control objectives for 

mass pull control are to optimise and stabilize the performance of the system. Mass pull 

can be regulated by having a controller on each flotation unit, where the manipulated 

variables are the reagent dosing rate, froth depth and air flow rate. As in mineral 

processing in general, the biggest challenge in mass pull control is the constant variation 

in ore characteristics, strict final product requirements and the need to maximize the 

recovery of a finite resource. (Muller et al. 2010) 
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2.3 Mine-to-mill concept 

As mentioned in the introduction, the process stages in mineral processing are 

interconnected and changes made in one process stage may influence later stages. For 

example, changes made in drilling and blasting can have an undesirable impact on 

crushing and grinding processes, which can then lead to further changes in downstream 

processes. Consequently, each process stage should be optimised and analysed in the 

context of the whole operation and every change made to independent processes should 

be considered since it will probably affect the bigger picture. The goal of mine-to-mill 

optimization is to develop and apply integrated mining and processing strategies 

customized for the target plant to minimize the overall cost per metric ton and maximize 

operating profit in a sustainable way. (Kawatra and Young 2019) 

In most mineral processing operations, drilling and blasting can be seen as the first 

process stage. It is an energy-efficient preliminary step for crushing and grinding 

processes. Crushing and grinding are extremely energy-intensive processes. Where 

drilling and blasting consume about 0.1–0.25 kWh/t of energy, crushing consumes 0.5–8 

kWh/t, and grinding 10–35 kWh/t of energy. In mineral processing, comminution 

processes make up approximately 30–60% of the total energy consumption. Since 

crushing and especially grinding processes consume an immense amount of energy, and 

also have an impact on the overall productivity of plant operations, it is important to 

optimise drilling and blasting processes to make rock-breakage efficiencies as good as 

possible during crushing and grinding. (Park and Kim 2020) 

Hence, one of the main goals of mine-to-mill optimisation in the early process stages is 

to improve rock-breakage efficiency for crushing and grinding. This can be done by 

optimising blast fragmentation, since blasting produces microcracks that decrease the 

required comminution energy for crushing and grinding. The optimization process for 

blast fragmentation is complex, and it requires consideration of rock mass 

characterization, blasting energy and downstream comminution processes (Park and Kim, 

2020).  The optimisation must also consider the circuit flowsheet, types and sizes of 

comminution and classification equipment, power capacity and final product 

specifications. The additional cost of increasing blasting energy is well compensated by 

the increase in throughput and recovery and decrease in energy consumption in 

downstream processes. (Kawatra and Young 2019) 
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Determining rock mass characteristics in real time is important but also difficult, since 

gathering the data is labour-intensive and time-consuming. Rock mass characteristics, or 

ore characteristics, are often determined by means of laboratory and field tests. Another 

challenge with rock mass characteristics is the limited approach options for applying the 

data to blast energy design. Representing the whole rock mass in real time is very 

challenging because of the frequency and scale of blasting and the widely varying rock 

properties found at mines. (Park and Kim 2020) 

One method for rock mass characterization is evaluation of drilling performance data 

(Park and Kim, 2020). The data acquired from blasthole drilling is especially useful, since 

it is gathered systematically, regularly and in real time. This practice is called monitoring 

while drilling (MWD), and it is used to gather data on penetration rate, flushing pressure, 

rotational speed and global positioning system (GPS) drillhole positioning data. MWD 

data can be used to determine the rock hardness, which is a useful measurement for blast 

design. Lately, MWD data has been used with machine learning to distinguish rock types 

(Park and Kim 2020).  

Mine-to-mill optimisation should also consider mineral separation, for example the 

flotation circuit. The performance of the flotation circuit can be affected by an increased 

grinding circuit throughput. Due to the limited capacity of grinding circuits, increased 

throughput can result in coarsening of the product size, which can then have an 

undesirable impact on mineral recovery in the flotation circuit. Flotation recovery is 

heavily dependent on the particle size distribution of the valuable mineral in the flotation 

feed, and the highest recoveries are achieved for intermediate-sized particles. The 

recovery is lower for ultra-fine particles due to poor flotation kinetics, and for coarse 

particles due to poor liberation and settling. For these reasons, a fine particle size should 

be achieved in grinding to optimise the recovery and grade in flotation. However, 

achieving a fine particle size is an aim that must consider the higher cost of grinding finer 

due to increased power usage and the income that results from increased throughput in 

grinding, which in turn results in a coarser particle size. The flotation circuit itself can 

also be adjusted for a coarser feed, often by using regrinding capacity. Comminution and 

flotation operations can be optimised with respect to the overall operation by finding the 

optimum trade-off between target grind size (and throughput) and flotation recovery. For 

example, in some cases increased throughput can outweigh the lower recovery by 

providing an overall increase in production and profitability. (Kawatra and Young 2019) 
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2.4 Data-based modelling utilizing machine learning 

When dealing with machine learning (ML), the term artificial intelligence (AI) must first 

be addressed. AI is an old concept which was first introduced in the late 1950s. However, 

due to the lack of data availability and calculational power, practical usage of AI did not 

begin until the 1980s. Since then, due to the immense improvements in these features, the 

opportunities provided by AI and ML have also increased. AI, as the name states, refers 

to computational methods that imitate human intelligence, for example learning or 

problem solving. AI can be approached from two different directions, namely 

computationalism and connectionism. In computationalism, the aim is to imitate logic 

and formal reasoning. An example of computationalism is an expert system. (Barragán-

Montero et al. 2021) 

Machine learning methods, on the other hand, are an example of connectionism. Machine 

learning is a set of methods where the input data is fed into a machine which can learn 

from the data without being expressly programmed. There are usually two stages in ML: 

training and deduction. In training, previously gathered data is put into the algorithm and 

it forms patterns from the training data. In the deduction stage, new data is fed into the 

algorithm, where the machine compares patterns formed in the training stage to the new 

data. An example of the usage of machine learning is image recognition. Other tasks that 

a machine learning algorithm can perform are for example decision making and 

predictions. Machine learning approaches can be roughly divided into three categories, 

i.e. supervised, unsupervised and reinforcement learning. Other learning approaches are 

semi-supervised learning and self-supervised learning. (Barragán-Montero et al. 2021) 

In this thesis, a supervised machine learning method, k-nearest neighbors (kNN) is 

covered in depth. In addition to training and deduction, machine learning methods require 

that the input data is prepared sufficiently. One way to do this is to follow the CRISP-DM 

procedure, which is described in the section below. 

2.4.1 CRISP-DM 

CRISP-DM (cross-industry standard process for data mining) is an open standard 

approach to data mining. It was developed in the late 1990s in co-operation with Daimler-

Benz, NCR Corp., OHRA and SPSS Inc. CRISP-DM was developed so that it could be 

applied to any kind of data without any specific software requirements. The CRISP-DM 
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approach consists of six phases: business understanding, data understanding, data 

preparation, modelling, evaluation and deployment. These phases are visualized in Figure 

2. (North 2012) 

 

Figure 2. CRISP-DM phases (retelling Jaggia et al. 2020). 
 

Business understanding is the first step in the CRISP-DM approach. It is an essential step 

at the beginning of the process to fully understand the problem, and the motivation for 

data mining in the first place. The second step in the process is data understanding. This 

includes initial data collection, familiarization with the data, identifying possible quality 

problems with the data, gaining insights into the data and dividing data into subsets. 

(Jaggia et al. 2020) 

The third step is data preparation, which includes many tasks. These might be data 

reduction, data cleansing or data transformation for testing purposes. The fourth step is 

modelling. This includes the selection and development of analytics techniques and 

models. The fifth step, which is evaluation, involves readdressing and clarifying the 

results of the analysis in the context of the objectives and success criteria determined in 

the first step of the process, business understanding. In the final step, which is 

deployment, the results from the data analysis are rephrased into a set of 

recommendations and actions. This step also includes communication of the results 
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among the analysts and other business members, as the analysts might still improve the 

model performance and accuracy. (Jaggia et al. 2020) 

2.4.2 Data preparation 

In any data analysis, data preparation, or data pre-processing, plays a significant role in 

the reliability and availability of the data. It is important to do the pre-processing 

carefully, since it can also have a negative impact on the analysis. It is also important to 

have knowledge of the analysed data, so that the results and their utilization can be 

understood.  Raw industrial data is usually stored in large databases, which include both 

direct measurements from process instruments and calculated variables. Unmeasured 

disturbances with process and instrument/machine failures contaminate the data and they 

can be seen as different operating points. These distortions in data can be challenging to 

trace, especially afterwards unless they are logged as soon as they happen (Posio et al. 

2008). A system can also contain many separate data collection systems, which need to 

be combined, introducing a problem with synchronization. Since the problems with raw 

data are very specific to the process, process knowledge is essential in data pre-

processing. (Posio et al. 2008) 

Outliers are a common phenomenon in raw data. They are significant deviations from the 

majority of measurements. Outliers have an impact on data statistics, such as standard 

deviation, mean and median, if they are not removed before the calculation. Data pre-

processing often includes outlier detection, removal and replacement, which can be done 

for example by interpolation. It is important that this is done so that the original data 

structure is preserved, and no actual measurements are marked as outliers. A common 

method for outlier detection is to search for measurements which deviate by more than 

three times the standard deviation from the mean. This method is called the 3-sigma 

method. One challenge with this method, however, is that the outliers present have an 

impact on both the mean and standard deviation. When the number of outliers grows, the 

more distorted the mean and standard deviations become. (Posio et al. 2008) 

One important step of data pre-processing is data normalization. This is used to reduce 

the effects of outliers and dominant features by making the data numerically uniform. 

Normalization is done for example by scaling the values to a common range which makes 

sure that each feature in the data will have an equal contribution in the classifier. The 

scaling is done so that the data preserves the original data distribution. Normalization 
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methods include data-wise normalization, and feature-wise normalization. (Singh and 

Singh 2022) 

Other steps in data pre-processing can include for example re-sampling of the data, 

removing NaNs (not a number -values), replacing missing values, calculating the mean, 

median and standard deviation, and summing individual measurements. 

2.4.3 Machine learning and k-nearest neighbor method 

Supervised and unsupervised learning methods imitate human learning. Supervised 

learning is the simplest of the machine learning approaches. In the supervised approach, 

the machine is introduced to inputs and desired outputs by an operator, or “teacher”.  In 

the training stage, well-known input-output pairs are used, and the goal for the machine 

is to learn a pattern in which a desired output is reached with a given input. Typical 

supervised learning methods include linear regression, support vector machines (SVM), 

convolutional neural networks (CNN), recurrent neural networks (RNN), decision trees, 

random forests and k-nearest neighbors (kNN). In unsupervised learning, the training data 

does not have well-known input-output pairs, and the goal is to find patterns in the data. 

Classic unsupervised learning methods are auto encoders, clustering  and dimensionality 

reduction. (Barragán-Montero et al. 2021) 

k-nearest neighbor (kNN) is a supervised ML method used for classification and 

regression which has a simple operating principle. When the algorithm is given a test 

sample, it finds k nearest training samples based on the pre-defined distance metric, after 

which the k neighbors are used to make predictions. The testing sample can be predicted 

by voting or averaging. For example, voting can be used in classification applications to 

predict the test sample as the most frequent class label in k neighbors, and averaging can 

be used in regression to predict the test sample as the average of k real-value outputs 

(Zhou 2021). The k-nearest neighbors method differs from many other ML methods in 

the sense that it does not have an obvious training process. Instead, kNN represents a 

learning procedure, where samples are stored in the training phase, and only used once 

the algorithm receives test samples. In kNN, choosing the right value for parameter k is 

important, especially when multiple variables are introduced to the algorithm, since 

different values of k can lead to a difference in the classification results. Another 

important aspect which must be considered in kNN is distance calculation, since usage of 

different distance metrics can lead to significantly different neighbors, which in 
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consequence leads to different results. A visual illustration of kNN classifier example is 

shown in Figure 3. (Zhou 2021) 

 

Figure 3. Visual illustration of k-nearest neighbors classifier. 
 

In the example above, the test sample X is classified either as blue circles, or red 

diamonds. When k = 3, which is illustrated by the sparse dashed line, the test sample is 

classified as a red diamond, since the area holds two red diamonds and only one blue 

circle. When k = 5, marked by the densely dashed line, the test sample is classified as a 

blue circle, because the area includes three blue circles and only two red diamonds. Lastly, 

when k = 7, the test sample is classified as a red diamond.  

In case of distance function (d (.,.)), following axioms hold: 

• non-negativity: 𝑑𝑑(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) ≥ 0, 

• identity of indiscernibles: 𝑑𝑑(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) = 0 if and only if 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑗𝑗,                                                          

• symmetry: 𝑑𝑑(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) = 𝑑𝑑(𝑥𝑥𝑗𝑗, 𝑥𝑥𝑖𝑖),     

• and triangle inequality: 𝑑𝑑(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) ≤ 𝑑𝑑(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑘𝑘) + 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥𝑗𝑗), 

where the samples are: 𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2,… , 𝑥𝑥𝑖𝑖𝑖𝑖) and 𝑥𝑥𝑗𝑗 = (𝑥𝑥𝑗𝑗1, 𝑥𝑥𝑗𝑗2, … , 𝑥𝑥𝑗𝑗𝑗𝑗). The Minkowski 

distance, which can be modified to city block, Euclidean and Chebyshev distances, is 

written in Equation (2): 

 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) = (∑ |𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑗𝑗𝑗𝑗|𝑝𝑝𝑛𝑛
𝑢𝑢=1 )

1
𝑝𝑝,                                              (2) 
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where the axioms listed above are satisfied when 𝑝 ≥ 1. The city block distance is a 

special case of the Minkowski distance where 𝑝 = 1. The city block distance is described 

in Equation (3): 

 𝑑𝑐𝑖𝑡𝑦 𝑏𝑙𝑜𝑐𝑘(𝑥𝑖, 𝑥𝑗) = ∑ |𝑥𝑖𝑢 − 𝑥𝑗𝑢|𝑛
𝑢=1 .                                                           (3) 

The Euclidean distance is a special case of the Minkowski distance where 𝑝 = 2. The 

Euclidean distance can be written as follows: 

 𝑑𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑥𝑖, 𝑥𝑗) = √∑ |𝑥𝑖𝑢 − 𝑥𝑗𝑢|2𝑛
𝑢=1 .                                                 (4) 

For the special case of 𝑝 = ∞, the Minkowski distance gives the Chebyshev distance, 

which can be written (Zhou 2021; Mathworks 2022): 

 𝑑𝑐ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣(𝑥𝑖, 𝑥𝑗) = 𝑚𝑎𝑥𝑢(|𝑥𝑖𝑢 − 𝑥𝑗𝑢|).                                                  (5) 

2.4.4 Machine learning in mineral processing 

Applying AI and ML methods for industrial use has become popular in recent years. 

Mineral processing, among other fields of industry, is searching for ways to utilize AI 

and ML methods in practice to improve process productivity and reduce human error. AI 

and ML methods are also used to solve problems that are unique in mineral processing. 

The demand for ethical mining has increased together with decreasing ore grades. (Mishra 

2021) 

Since the ore bodies being mined and processed tend to have more complex mineralogy 

and lower grades, a few challenges have emerged. There might be a need to extract 

multiple minerals, or minerals of varying concentrations from the same ore. The quality 

of the deposit might be high, but the size of accumulation is low and vice versa. Also, due 

to the demand for sustainable and green development, the importance of green mining 

with minimal climate impact and material footprint of the process chain has increased. 

This has led to a shortage of ores. These problems, green mining and reduction in ore 

grade exacerbate each other, which is problematic. (Mishra 2021) 

The reduction in ore grades has created one possible application of AI and ML methods 

in mineral processing. Whereas mineral processing machines and techniques have been 

quite similar across all mining operations due to the similarity in ore properties, it is now 
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almost a requirement to adjust the process parameters in real time, due to fluctuations in 

ore properties. This real-time adjustment of process parameters is anticipated to be a 

major application of AI and ML in mineral processing. (Mishra 2021) 

Unsupervised machine learning methods, for example k-means clustering or partitioning 

around medoids, could be used in block classification. Block classification has a direct 

impact on the profitability of the mine. The impact on the performance of processing 

stages when having inputs with significant inconsistencies in grades is often neglected. 

(Li et al. 2020). Since deviations from the target grade of a process stream lead to 

unwanted losses in recovery, a consistent input for the process is necessary but hard to 

achieve. More consistent input also leads to increased profit and more even recovery and 

output. K-means clustering could be utilized to make clusters from blocks, with each 

cluster having a unique target grade. In a case study conducted by Li et al. (2020), 

Clustering LARge Applications (CLARA) and K-means-based Approximate SPectral 

clustering (KASP) methods were used to generate clusters of selective mining units with 

similar grades that corresponded to different process destinations, while minimizing 

differences in mineral grades within clusters.  

In addition to block classification, ML methods have also been used in froth flotation. In 

a case study by Horn et al. (2017), Convolutional Neural Networks (CNN) were used in 

a feature extraction of platinum froth flotation images. Classical froth texture feature 

extraction procedures are prone to variation in imaging conditions, such as changes in 

environmental lightning, they consider limited feature types and require expert 

knowledge in selection. In the case study, CNN was selected since it does not have the 

drawbacks listed above, and it mitigates the curse of dimensionality that is a characteristic 

in fully connected networks. Deployment of CNN enables extraction of both textural and 

spectral features from images. To summarize, the quality of extracted CNN features was 

compared to features that were extracted with classical methods. The CNN feature 

extraction method was found to be competitive with other extraction methods in terms of 

performance, but the comparison of methods was complicated due to the strong spectral 

features present in the dataset. The results from the case study do not provide sufficient 

data to differentiate the types of features extracted by CNN, and further studies on this 

method are required. (Horn et al. 2017) 
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Another application of ML methods in froth flotation has been implemented in a case 

study by Pu et al. (2020). In the case study, deep learning, encompassing long short-term 

memory (LSTM) architecture, was used in flotation process modelling, for forecasting 

the concentrate purities for iron and waste silica. For the LSTM model, 23 variables from 

the flotation plant were monitored and hourly data was collected for six months; the 

model was trained and tested with prepared data. The model built during the case study 

was capable of predicting real-time concentrate purities for iron and waste silica and was 

significantly more proficient in modelling a froth flotation process when compared to a 

random forest model used in the study. The study states that, despite the accuracy with 

which the purities could be predicted with the LSTM, a few aspects of the model require 

further examination. One problem with the model is the black box feature of the deep 

learning method, meaning that there is a lack of knowledge concerning how the output 

was formed, and therefore an explicit function of the trained LSTM model could not be 

extracted. However, the study encourages the utilization of deep learning methods in 

mineral processing, especially in flotation process automation control. (Pu et al. 2020) 
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3 DATA PREPARATION AND METHOD 

IMPLEMENTATION 

The process data which was used for calculations and ML methods in this thesis was 

acquired from a mineral processing plant through Metso Outotec. All the calculations and 

ML implementations were done in MATLAB®. Before any ML implementations, the 

process was studied using SCADA (supervisory control and data acquisition) pictures of 

the plant, and the raw data at 5-minute frequency sent by the plant. The initial objective 

of this research was to use history data to recognize different process situations with 

clustering or classification. The second objective was to compare the current process 

values to the history data to find out the direction the process is taking and how the process 

should be controlled, and to draw trajectories for the closest correspondences from history 

to make a prediction for the current process situation. The supervised machine learning 

method k-nearest neighbors was applied to find the nearest matches from history data for 

current process KPI values. The selected KPI variables were the flotation circuit dry feed, 

flotation feed gold grade, final concentrate gold grade and flotation recovery % for gold. 

It should be noted that the KPI variables correlate with each other, and that the overall 

recovery % is a calculated variable (see Equation 1). The KPI variables were selected 

based on expert knowledge. The use of kNN functions required the MATLAB® statistics 

and machine learning toolbox.  

3.1 Data pre-processing 

The first step in pre-processing, as also mentioned in section 2.4.1, was business and data 

understanding. The raw data from the mineral processing plant was received in eight 

different datasets, according to different process areas, namely crushing, grinding, 

flotation and dewatering. In addition to these process areas, particle size indicator (PSI), 

froth camera, reagents and Courier data were received in their own datasets. Courier is a 

trademark of Metso Outotec for an online X-ray fluorescence analyser, and the dataset 

includes chemical element contents from certain process stages. All datasets included 

process measurement data at a 5-minute sample rate from a one-year time period, 

November 2020 – November 2021. Some datasets had a difference of five minutes in 

time and were synchronized. The total amount of timestamps for each variable was 

105120 across all datasets. The number of individual process variables differed greatly 

between the process areas. Flotation data had the greatest number of variables by far with 
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187, followed by grinding data with 58 variables, dewatering with 46 variables, reagents 

with 41 variables, Courier data with 29 variables, PSI data with 13 variables, and crushing 

and froth camera data with 7 variables. In total, the number of individual variables was 

388. 

The very first step in data handling was to import the data from Excel to MATLAB®. In 

the raw data, the measurements in each process area were identified with tag numbers, 

which corresponded to certain process variables. These tag numbers were renamed based 

on the requested tags list sent by the mineral processing plant and SCADA pictures from 

the process areas to make the data more understandable and make it simpler to find 

wanted variables in future. Also, the measurement units for each variable were added to 

the new variable names. While studying the SCADA pictures of each process area for 

variable names, it was also noted that a few requested variable measurements were 

missing. For example, the circulation loads for grinding mills were not received. 

The first practical step in the data pre-processing, or data preparation, was to sort all the 

data from oldest to newest, since the raw data was sorted starting from the newest 

measurements. This was done simply to ease the interpretation of data. The datasets were 

also synchronized in relation to each other, because of the differences in timestamps 

between the datasets. This was done to make calculational operations more reliable 

between datasets. Also, in the raw data, valve positions were logged in on/off format, so 

they were converted to binary 1/0 format, to make calculations with these tags possible. 

With the valve positions in binary format, the sum vector for each valve set was calculated 

and added to the corresponding dataset. These valve sets were related to grinding and 

regrinding mill classification cyclones. Other calculational variables included the 

recovery % for gold, iron and arsenic in the Courier dataset, and the plant dry feed, which 

is the dry feed for the flotation circuit in the crushing data set. The recovery vectors for 

gold, iron and arsenic were calculated according to Equation 1, presented in section 2.2. 

The plant dry feed was calculated with the following Equation (6): 

 𝑋 = 𝑦 − ((
𝑝

100
∗ 𝑦),                                                                                          (6) 

where X is the dry feed [t/h], y is the wet plant feed from the belt scale [t/h] and p is the 

plant feed ore moisture [%].  
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After calculated variables were added to the datasets, the data was examined visually. The 

raw data was examined using timeseries, histogram and boxplot graphs. Also, the mean 

and standard deviation was calculated for each variable. The purpose of this examination 

was to identify any possible problems with the variables, and to identify the ranges for 

each variable. Each variable was examined individually for noise, data breakages, 

negative values and possibly missing data. The ranges were stored for later use in data 

pre-processing. At this stage, it was noted which variables contained a large number of 

data breakages, negative values or long timespans where no measurements were gathered. 

Also, it was observed that, within the same dataset, data breakages could occur at the 

same time for many different variables.  

After the data had been visually examined and ranges gathered for each variable, outliers 

were removed from the data. This was done by using the 3-sigma method, replacing 

outliers with linearly interpolated values. For the Courier dataset, minimum and 

maximum ranges for values were manually pre-determined, since 3-sigma was unable to 

remove the outliers there because they were very large negative values. After all the 

datasets had been pre-processed in this manner, the five-minute data was resampled to 

one-hour and one-day average sample rates. Linearly interpolated values were kept in the 

data at this stage. 

The one-day averaged data was again visually examined with time-value, histogram and 

boxplot graphs. Mean and standard deviation were calculated again for each variable, and 

any remaining problems in the pre-processed variables were noted. A few variables were 

marked as unusable, since they contained mainly unhealthy data, meaning that the data 

was almost completely missing. It was also noticed that, when a longer time period with 

outliers occurred in a variable, the linear interpolation of outliers distorted the 

measurements significantly. Because of this, pre-processing was conducted later in a 

different manner. For now, however, this pre-processed data was normalized in order to 

make test runs with the k-nearest neighbors algorithm. 

Due to the problems that occurred with interpolated outliers, it was decided to remove 

outliers with 3-sigma by determining a maximum time period after which outliers would 

not be interpolated any more. A time period of one hour was used for all the data, and 

pre-processing was performed again. The outliers were removed while keeping all the 

timestamps present in the data and making the outliers NaN values. In addition, minimum 
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and maximum ranges from visual data examination were used for all the variables in the 

data in outlier removal, and normalization was done before resampling for the final 

normalized data.   

3.2 Implementation of k-nearest neighbors 

The k-nearest neighbors algorithm was selected for finding process points from the 

history data that closely matched the current process values (KPIs). The kNN function 

was constructed so that it could take data of any sampling rate as an input. However, for 

the kNN function, one-hour averaged data was used as an input for the results, since the 

target was to draw trajectories for current process values, as well as history data. The 

problem with a more frequent sample rate would have been substantial noise, which was 

observed in the visual examination of the original data (five-minute sample rate). On the 

other hand, a longer sample rate or filtering the data, which would have more efficiently 

negated the noise, would potentially have lacked the process dynamics of interest; there 

was a special need to examine eight-hour time periods, in other words shifts, which was 

quite simple to do with one-hour averaged data.  

The custom kNN function was built around the ExhaustiveSearcher and knnsearch 

functions, which are part of the MATLAB® statistics and machine learning toolbox. The 

exhaustive searcher model object stores the training data, distance metric and parameter 

values for the distance metric for an exhaustive nearest neighbor search. This algorithm 

finds the distance from each query observation to all n observations in the training data, 

which is an n-by-K numeric matrix. Once the model object is created with 

ExhaustiveSearcher, neighbouring points to the query data can be found from the training 

data by performing a nearest neighbor search, in this case using the knnsearch function. 

It is also worth mentioning that the algorithm searches nearest neighbors only from the 

past, meaning that nearest neighbors can only be timestamps that occurred before the 

current process point (query point).  

The kNN functions were built separately for a 2-, 3-, and 4-variable nearest neighbor 

search, and the KPIs to be considered in the kNN search were specified inside the 

function. All the functions shared the same inputs and outputs, with the natural exception 

being the visual illustration of the results across functions due to changes in 

dimensionality. The function has the following outputs: 
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• t: the timestamps of the nearest neighbors found are collected into a 1 by k matrix 

t.  

• D: with a 1 by k matrix D, we can examine the distance indexes for the nearest 

neighbors.  

• Mdl: an optional output, which holds the parameters of the ExhaustiveSearcher 

function.   

• Number of nearest neighbors excluded due to th input. 

The input parameters for the functions were: 

• t_test,  

• k,  

• deadtime,  

• th,  

• n_step,  

• datasets with and without normalization, and 

• draw.  

The query point, which is a timestamp for which nearest neighbors are sought, is defined 

by the ‘t_test’ and the number of requested nearest neighbors presented as a result is 

designated by‘k’. The algorithm searches for a larger number of nearest neighbors but 

returns only k valid neighbors. The minimum timespan between the query point and 

nearest neighbors that were found was specified with the input ‘deadtime’, with a notation 

that the input value for deadtime was in the same time resolution as the input dataset. This 

was done to ensure that nearest neighbors were sought from history, and not from 

timestamps that had happened recently. For example, an input value of eight for deadtime 

means that if the query point (‘t_test’) is 100, 98 cannot be found as a nearest neighbor, 

but values from 92 and lower can.  

In addition to deadtime, another threshold, ‘th’, was assigned to avoid consecutive 

timestamps being found as neighbors. For example, if the ‘t_test’ is 100, the ‘k’ value is 

3 and ‘th’ is assigned to be 2, then if the nearest neighbors are 91, 67 and 90 in order of 

distance index, timestamp 90 is excluded from the results, since it is less than ‘th’ 

timestamps away from the previous nearest neighbor with a lower distance index. This 

excluded neighbor would then be replaced with the next valid nearest neighbor.  
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The ‘n_step’ parameter can be used to specify the timespan for which the trajectories for 

timestamps are plotted. For example, if ‘n_step’ is assigned to be 8, and one nearest 

neighbor is 50, variable values from timestamp 42 to 58 are plotted. This is important in 

order to see how the selected variables behave around the timestamp that is found as the 

nearest neighbor.  The ‘dataset’ inputs can be used to specify the sampling rate at which 

the search for nearest neighbors is done. The ‘draw’ parameter is used to determine 

whether the results are plotted as normalized values, real process values or not at all. With 

a parameter value of 0, no results are plotted. With a value of 1, results are plotted in 

normalized values, and with 2 in real process values.  

The selection of the applied distance metrics in the kNN function also had to be made. As 

mentioned in section 2.4.3, different distance metrics can have a significant impact on the 

results, depending on the application of the algorithm. Various distance metrics, which 

are pre-built into MATLAB® ExhaustiveSearcher function, were tested within the 

function, such as Euclidean, city block, Chebyshev, Hamming, standardized Euclidean 

and Mahalanobis distances. The distance indexes and timestamps for found neighbors 

were compared between the tested distance metrics with different values of k, and with a 

different number of dimensions. Thus, a custom script, for observing the k=1 distance 

index for a time span of 1200 timestamps, was coded and the results were plotted. This 

allows the visualization of differences in distance indexes between the distance metrics, 

and to see if the metrics found the same timestamps as the nearest neighbors.   

3.3 Selection of query points 

Once the custom functions for 2-, 3-, and 4-variable examination were ready, the query 

points for testing had to be decided. This was done by visually examining a time-value 

plot of overall gold recovery and choosing timestamps as query points where the gold 

recovery was about 85–90%, and reasonably stable for a few days. The fact that neighbors 

could only be found from past timestamps was also considered, and query points were 

selected so that there was plenty of training data for the ExhaustiveSearcher function to 

work with. Finally, when the query points had been selected, the KPI variable values from 

the query points were visualized and compared with a MATLAB® community-made 

radar chart function (Matlabcentral 2022) to verify that the KPI values had some variance 

across the query points. The query points selected for final testing were 7018, 5584, 5158, 
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7435 and 6980, and they are plotted on the radar chart shown in Figure 4 below. Please 

note that the values in Figure 4 are normalized. 

 

 

Figure 4. Radar chart of normalized KPI variable values at query points. 

 

In Figure 4, the feed Au grade values are similar at query points 7018, 7435 and 6980, 

whereas at 5584 and 5158 the value is higher. However, for concentrate Au grade, query 

points 7018, 7435 and 5158 show similar values, while 5584 has lower values and 6980 

higher values.  For Au recovery, all query points have similarly high values except for 

5158, which has a relatively low value. For flotation feed, all query points except for 7435 

have similarly high values. As the figure shows, all query points are in different process 

situations, which was the aim. 
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4 NEIGHBOR SEARCH RESULTS  

As a conclusion for the comparison of distance metrics, Euclidean (which is the default 

distance metric set by MATLAB®), Chebyshev and city block distances had the best 

performance and offered very similar results, finding the same timestamps as nearest 

neighbors when the value of k was smaller or equal to three. Differences between these 

metrics emerged when searching for more than three nearest neighbors, with a k value of 

6 for example, the neighbors 4-6 being different across the metrics. Figure 5 below 

illustrates the differences between the selected metrics. 

 

Figure 5. Distance metric comparison with k=1. 

 

From Figure 5, distance index values can be seen for duration of 1200 timestamps with k 

value of 1 for Euclidean, Chebyshev and city block distance metrics. In the figure, 

individual distance index values should not be compared between the metrics since some 

distance metrics give lower distance index value even if they find the same timestamp as 

a neighbor. Differences between the metrics can be seen from the trends for each metric. 

If there is a sudden change in trends across the metrics, it indicates that the metrics found 

different timestamp as a nearest neighbor. The Chebyshev distance metric was ultimately 

selected to be used in the ExhaustiveSearcher function because of its good performance 

and since the other metrics tended to find neighbors, or timestamps, which were right next 

to each other.  
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In the following figures which display trajectories for the query point and nearest 

neighbors, the data has been filtered with a four-hour moving average with the aim of 

making the trajectories easier to read, without distorting the values in the kNN search. In 

MATLAB®, the smoothdata function was used with additional arguments of movmean as 

a method, and 4 as the length of the window. For all the figures in this Chapter, one-hour 

averaged and normalized data was used, consisting of 8759 data points for each variable. 

For a 2-variable search, the flotation dry feed, and the final concentrate Au grade were 

the KPIs used. With a 3- and 4-variable search, the overall Au recovery and the feed Au 

grade, respectively, were considered as additional KPIs. 

Figures 6-12 below share the same query point, which was 7018 presented in Figure 4, 

and the same algorithm input parameters. These input parameters were k=6, deadtime=8, 

th=12 and n_step=12. However, Figures 6-8 present results for a 2-variable kNN search, 

while Figures 8-9 are results for a 3-variable search, and Figures 10-11 for a 4-variable 

search at the same query point. Table 1 collects the results for query point 7018. 

 

Figure 6. Scatter plot for query point 7018 (2 var.). 

 

Figure 6 presents a scatter plot with values from 2 KPI variables (flotation dry feed (t/h) 

and final concentration Au grade (ppm)). In the figure, the black cross marks the query 

point, and red dots are the k nearest neighbors found with Chebyshev distance and the 

threshold criteria described. The nearest neighbors found in order from nearest to farthest 

were: 6877, 6952, 6826, 2378, 2357 and 6985. It should be noted that in this case one 

neighbor was excluded from the results due to the threshold argument. The distances are 

visualized in Figure 7 below.  
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Figure 7. Bar chart for distance indexes of nearest neighbors (2 var.). 

 

Distance index values for the above-mentioned nearest neighbors are plotted in a bar chart 

in Figure 7. The values were 0.0021 for NN (nearest neighbor) 1, 0.0022 for NN 2, 0.0027 

for NN 3, 0.0047 for NN 4, and 0.0050 for NN 5 and NN 6. It can be observed that 

neighbors 1-3 are quite close to each other in terms of distance index, and there is a jump 

in distance index between neighbors 3 and 4. Neighbors 4 to 6 are again close to each 

other. The trajectories for these neighbors and the query point are plotted in Figure 8. 
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Figure 8. Trajectories for query point 7018 and nearest neighbors (2 var.). 

 

Figure 8 displays the trajectories of the variable values for the query point, which is the 

dashed line, real trajectory, and the nearest neighbors which are solid-coloured lines. The 

vertical 0-line in the figure marks the timestamps for the query point and nearest 

neighbors which were found as a result of the kNN search. The y-axis shows the 

normalized values for these variables, and by reading the x-axis we can see how the query 

point and nearest neighbors changed in relation with time. Note that the x-axis is 

dependent on the dataset used. Because one-hour averaged data was used, meaning that 

the time interval between each timestamp is one hour, and n_step=12, each trajectory can 

be observed 12 hours to the past and 12 hours to the future from the 0-line. The figure 

shows that the query point and NN variable values are quite close to each other at the 0-

line. 

Below, in Figures 9 and 10, the results are shown for the 3-variable kNN search at the 

same query point 7018 and same input parameters, as in the results displayed above for 

2-variable kNN search. Now, with the 3-variable search, the nearest neighbors found in 

order from nearest to farthest were: 6877, 6967, 6309, 6840, 6125 and 6062. Again, one 

neighbor was excluded from the results due to the threshold argument. The distances are 

visualized in the Figure 9 below. 
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Figure 9. Bar chart for distance indexes of nearest neighbors (3 var.). 

 

With the 3-variable search, the distance indexes for nearest neighbors were as follows: 

0.0044 for NN 1, 0.0073 for NN 2, 0.0074 for NN 3, 0.0096 for NN 4, 0.0100 for NN 5 

and 0.0101 for NN 6. We can see that despite NN 1 being the same as in the 2-variable 

search, the distance indexes are larger with the 3-variable search when compared to the 

2-variable search. The trajectories for the found neighbors and query point are drawn in 

Figure 10. 
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Figure 10. Trajectories for query point 7018 and nearest neighbors (3 var.). 

 

From the trajectories above in Figure 10, it can be observed that the variance between the 

query point and NN variable values is greater than in the 2-variable kNN search. The real 

trajectory and NN trajectories show similar behaviour. It can also be observed that for 

NN 5 there is a large difference to query point’s value in Feed (t/h) variable, but the values 

for Au recovery % are very similar. 

Figures 11 and 12 below show the results for the 4-variable kNN search for the same 

query point 7018 and input parameters as for the 2- and 3-variable searches. With the 4-

variable search, the nearest neighbors found in order from nearest to farthest were 6967, 

6868, 6840, 6935, 6694 and 6720. Again, one neighbor was excluded from the results due 

to the threshold argument. Interestingly, the 4-variable search found 2 NNs that also 

appeared in the results of the 3-variable search. The distances are visualized in Figure 11 

below. 



37 

 

Figure 11. Bar chart for distance indexes of nearest neighbors (4 var.). 

 

The distance indexes for the 4-variable kNN search were 0.0073 for NN 1, 0.0085 for NN 

2, 0.0120 for NN 3, 0.0166 for NN 4, 0.0214 for NN 5 and 0.0221 for NN 6. From the 

distance index values it can be concluded that the distances in the 4-variable results are 

greater than in the 2- and 3-variable results. The result trajectories for the 4-variable 

search are shown in Figure 12 below. 
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Figure 12. Trajectories for query point 7018 and nearest neighbors (4 var.). 

 

In Figure 12 above, the variance between the query point and NNs on the 0-line is still 

relatively small. Some similar behaviour between the real trajectory and NN trajectories 

is also visible. The summarized results for the 2-, 3-, and 4-variable kNN searches at 

query point 7018 are listed in Table 1 below. Nearest neighbors are sorted from nearest 

to farthest, NN 1 being the nearest. Timestamps that occurred across 2-, 3- or 4-variable 

search are written in bold. From the results, it can be seen that when only 2 variables were 

involved, the search found two timestamps as neighbors that begin with numbers 23-, but 

when the number of variables was increased, these neighbors disappeared from the 

results.  
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Table 1. Results for query point 7018 kNN search. 

Query point (7018) 2 variables 3 variables 4 variables 

NN 1 6877 6877 6967 

NN 2 6952 6967 6868 

NN 3 6826 6309 6840 

NN 4 2378 6840 6935 

NN 5 2357 6125 6694 

NN 6 6985 6062 6720 

Distance index for NN 1 0.0021 0.0044 0.0073 

Distance index for NN 2 0.0022 0.0073 0.0085 

Distance index for NN 3 0.0027 0.0074 0.0120 

Distance index for NN 4 0.0047 0.0096 0.0166 

Distance index for NN 5 0.0050 0.0100 0.0214 

Distance index for NN 6 0.0050 0.0101 0.0221 

NNs removed due to threshold 1 1 1 

 

The second query point from Figure 4 was 5584. For this query point, the same input 

parameters and variables were used as for query point 7018. The results are collected in 

Table 2. For the 2-variable search, the nearest neighbors in order from nearest to farthest 

were 2228, 5048, 5222, 3427, 5519 and 4019. One neighbor was excluded from the results 

due to the threshold argument. The distance indexes for these neighbors were 0.0027 for 

NN 1, 0.0029 for NN 2, 0.0038 for NN 3, 0.0039 for NN 4, 0.0043 for NN 5 and 0.0049 

for NN 6. A scatter plot and bar chart for the distance indexes can be found in Appendix 

1, Figures 16 and 17. Below, the trajectories for the query point and nearest neighbors are 

shown in Figure 13.  
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Figure 13. Trajectories for query point 5584 and nearest neighbors (2 var.). 

 

In the figure above displaying trajectories, neighbor 3 for the feed (t/h) variable includes 

five NaN values, in other words five hours of data are missing from its trajectory.   

For the 3-variable kNN search in query point 5584, the nearest neighbors in order from 

nearest to farthest were 5519, 5559, 3303, 3118, 5572 and 3166. In this case, five 

neighbors were excluded from the results due to the threshold argument, which means 

that the initial search found many timestamps as neighbors which were closer than 12 

hours to each other. The distance indexes for these neighbors were 0.0095 for NN 1, 

0.0114 for NN 2, 0.0133 for NN 3, 0.0163 for NN 4, 0.0188 for NN 5 and 0.0215 for NN 

6. The bar chart of the distance indexes in this case can be found in Appendix 2, Figure 

18. The trajectories for the query point and nearest neighbors can be found below in 

Figure 14. 
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Figure 14. Trajectories for query point 5584 and nearest neighbors (3 var.). 

 

In this case, although five neighbors were excluded from the results and replaced with 

new ones, we can see that the replacement neighbors are quite close to the query point in 

terms of value. 

The 4-variable kNN search in query point 5584 found the following neighbors in order 

from nearest to farthest 5519, 5569, 5535, 5475, 5547 and 5452. Three neighbors were 

excluded from the results due to the threshold argument. The distance indexes for these 

neighbors were 0.0095 for NN 1, 0.0203 for NN 2, 0.0268 for NN 3, 0.0285 for NN 4, 

0.0321 for NN 5 and 0.0330 for NN 6. A bar chart for these distance indexes can be found 

in Appendix 2, Figure 19. The trajectories for the query point and nearest neighbors can 

be seen in Figure 15 below. 
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Figure 15. Trajectories for query point 5584 and nearest neighbors (4 var.). 

 

From the trajectories above, it can be seen that neighbors 4 and 6 differ from the other 

neighbors and real trajectory in terms of behaviour and values. For example, neighbor 4 

shows significantly different behaviour for the final concentrate Au grade when compared 

to other neighbors and the real trajectory. Table 2 below shows the summarized results 

for 2-, 3-, and 4-variable kNN searches at query point 5584. Nearest neighbors are sorted 

from nearest to farthest, NN 1 being the nearest. Timestamps that occurred across 2-, 3- 

or 4-variable searches are written in bold. 
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Table 2. Results for query point 5584 kNN search. 

Query point (5584) 2 variables 3 variables 4 variables 

NN 1 2228 5519 5519 

NN 2 5048 5559 5569 

NN 3 5222 3303 5535 

NN 4 3427 3118 5475 

NN 5 5519 5572 5547 

NN 6 4019 3166 5452 

Distance index for NN 1 0.0027 0.0095 0.0095 

Distance index for NN 2 0.0029 0.0114 0.0203 

Distance index for NN 3 0.0038 0.0133 0.0268 

Distance index for NN 4 0.0039 0.0163 0.0285 

Distance index for NN 5 0.0043 0.0188 0.0321 

Distance index for NN 6 0.0049 0.0215 0.0330 

NNs removed due to threshold 1 5 3 

 

It can be seen in Table 2 that timestamp 5519 was found as a neighbor in all kNN search 

results for this query point. It can also be observed that the distance index grows 

significantly in the 4-variable search between NN 1 and NN 2 when compared to the 2- 

and 3-variable results. As mentioned earlier, five neighbors were replaced in the 3-

variable search due to the threshold argument.  

The results for the third query point presented in Figure 4, 5158, are summarized in Table 

3 below. Again, timestamps that occurred across the 2-, 3- or 4-variable searches are 

written in bold. Figures for the results, consisting of a scatter plot, distance indexes and 

trajectories can be found in Appendices 3–6, in Figures 20–26. Interestingly, the 

timestamp 5001 occurs in the 2-, 3- and 4-variable kNN searches, but not as the nearest 

or even second nearest neighbor. 
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Table 3. Results for query point 5158 kNN search. 

Query point (5158) 2 variables 3 variables 4 variables 

NN 1 5107 5108 5108 

NN 2 4102 5064 5120 

NN 3 5030 5001 5061 

NN 4 3906 5127 4962 

NN 5 5017 5090 5001 

NN 6 5001 1658 4907 

Distance index for NN 1 0.0024 0.0124 0.0124 

Distance index for NN 2 0.0039 0.0154 0.0242 

Distance index for NN 3 0.0040 0.0155 0.0358 

Distance index for NN 4 0.0056 0.0163 0.0365 

Distance index for NN 5 0.0071 0.0169 0.0378 

Distance index for NN 6 0.0084 0.0191 0.0380 

NNs removed due to threshold 0 2 2 

 

The results for the fourth query point 7435 are summarized below in Table 4. Figures for 

the results, containing a scatter plot, distance indexes and trajectories can be found in 

Appendices 6-9, in Figures 27-33. It can immediately be observed that the distance 

indexes are significantly greater in this case when compared to the query points presented 

earlier. It can also be seen that many timestamps occur again, despite the fact that the 

number of variables is increased in the kNN search. Also, there is quite a large gap in 

time between the query point and the nearest neighbors.  
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Table 4. Results for query point 7435 kNN search. 

Query point (7435) 2 variables 3 variables 4 variables 

NN 1 2066 2066 2064 

NN 2 4439 4439 4297 

NN 3 4300 4297 4439 

NN 4 4588 3914 4267 

NN 5 3960 4267 1678 

NN 6 5225 5225 5225 

Distance index for NN 1 0.0194 0.0197 0.0844 

Distance index for NN 2 0.0389 0.0581 0.0940 

Distance index for NN 3 0.0863 0.0940 0.1351 

Distance index for NN 4 0.1010 0.1229 0.1564 

Distance index for NN 5 0.1012 0.1564 0.1754 

Distance index for NN 6 0.1119 0.1596 0.1767 

NNs removed due to threshold 3 4 5 

 

The results for the fifth and final query point 6980 are summarized in Table 5 below. 

Figures for the results, comprising a scatter plot, distance indexes and trajectories can be 

found in Appendices 10–13, in Figures 34–40. Based on Table 5, these results offer some 

similarities to query point 7018 (Table 1). Also, it can be observed that one timestamp 

(6955) appears in the results for the 2-, 3- and 4-variable searches.  
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Table 5. Results for query point 6980 kNN search. 

Query point (6980) 2 variables 3 variables 4 variables 

NN 1 2179 6292 6955 

NN 2 2336 6757 6843 

NN 3 6812 6208 6705 

NN 4 6955 6744 6814 

NN 5 2276 6970 6718 

NN 6 6851 6955 6969 

Distance index for NN 1 0.0013 0.0090 0.0165 

Distance index for NN 2 0.0014 0.0097 0.0276 

Distance index for NN 3 0.0019 0.0104 0.0279 

Distance index for NN 4 0.0025 0.0109 0.0301 

Distance index for NN 5 0.0035 0.0115 0.0313 

Distance index for NN 6 0.0041 0.0119 0.0323 

NNs removed due to threshold 3 0 4 
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5 DISCUSSION  

It should be mentioned that, due to the way the kNN algorithm was emphasised in this 

work, no characteristic output of the algorithm can be used to validate the reliability of 

the method. However, this thesis does not concentrate on the model itself, but rather on 

the implementation of the selected methods and data-based modelling.  

In this thesis, the scatter plot was employed as a useful visualization tool for 2-variable 

kNN search cases. A scatter plot can be used to confirm that the nearest neighbors found 

by the algorithm surround the query point, thus being the closest matches from the history 

data for the test sample. In Figure 6, it can be observed that query point 7018 and the 

nearest neighbors are in a dense cluster that contains a large number of timestamps. This 

indicates that at least with the two variables (flotation feed and final concentrate Au 

grade) involved, this query point represents a common process condition. Scatter plots 

for query points 5584 and 6980 which can be found in Appendices 1 and 10, Figures 16 

and 34 also show that these query points are in a dense cluster of timestamps. In contrast, 

scatter plots for query points 5158 (Appendix 3 Figure 20) and especially 7435 (Appendix 

6 Figure 27) indicate uncommon process situations. From the scatter plot for query point 

5158, the query point and nearest neighbors are in a sparse cluster next to the densest 

cluster with the variables, which indicates a slight deviance from the normal operating 

point. From the scatter plot for query point 7435, it can be observed that the query point 

is not located in any prominent cluster and neighbors are distributed very sparsely, which 

indicates a very rare process situation. It should be mentioned that the kNN algorithm 

requires a lot of training data to function properly. When the size of the training dataset 

is increased, meaning in this work more timestamps that can be found as nearest neighbors 

for the query point, the probability to find neighbors that correspond to the query point is 

also increased. However, the amount of the training data should not be a problem if the 

kNN algorithm is applied to an online process with comprehensive history data that can 

be used as training data. 

With distance index values, performance of each neighbor search can be evaluated. The 

distance index values presented in Chapter 4 indicate the distance between the query point 

and its nearest neighbors. The smaller the distance index value, the closer the neighbors 

are to the query point. The neighbors found also correspond better to the query point when 

the distance index is smaller. From the results it can be concluded that, when the number 
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of variables is increased in the kNN search algorithm, the values of the distance indexes 

also increase. This is expected and does not necessarily mean that the results become 

worse in terms of correspondence, as can be seen when comparing the trajectory figures 

for the 2-, 3- and 4-variable searches presented in the previous chapter. However, this 

means that only results with the same number of variables involved should be compared 

against each other. The case with query point 7435 stands out, with its significantly large 

distance index values when comparing the 2-, 3- and 4-variable search results across the 

other query points. This indicates that query point 7435 represents a unique process 

situation, or a transition state in the process. In Figure 29 in Appendix 7, which is the 

trajectory figure for the 2-variable kNN search for query point 7435, the trajectories for 

the nearest neighbors are also far from the trajectory for the query point. In contrast, with 

query points 7018 and 6980, the distance index values are relatively small when compared 

to other query point results. 

It should be mentioned that the kNN function used in this study did not have a defined 

threshold for the maximum distance index value. One simple improvement related to 

large distance index values e.g., in the case of query point 7435, could be a limit for the 

maximum distance index, or a threshold after which the kNN function gives an alarm 

about a significantly large distance index value. This threshold limit should be defined 

separately for 2-, 3- and 4-variable kNN searches, as the distance index values will 

inevitably grow when the number of variables increases. 

The trajectory figures in Chapter 4 and the appendices serve as a visual confirmation of 

the kNN search results. The trajectories show whether the nearest neighbors are close to 

the query point or not in the variable values. They also show, depending on the n_step 

parameter, how the values for the query point and nearest neighbors change over time, 

and whether the trajectories of the nearest neighbors share similar behaviour with the 

query point trajectory or not. As the objective of this study was to find the closest 

correspondences from history data for the query point/current process situation, ideally 

all the nearest neighbors found by the algorithm would have similar values to the query 

point and follow the query point trajectory closely in relation to time. A trajectory 

inspection of the results becomes especially important if the training dataset includes NaN 

values, as seen in Figure 13. The problem with NaN values is that, hypothetically with 

the kNN function used in this work, it is possible that the algorithm finds a neighbor with 

multiple NaN values before and after the timestamp. This can happen because the 
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algorithm only searches for individual timestamps. It should be noted that, in an online 

situation, where nearest neighbors are sought for a current process situation, the trajectory 

for the query point cannot be plotted forwards, since measurements from the future 

situation will not exist. However, due to the nearest neighbors, a future trajectory for the 

current process situation can be estimated and even manipulated based on an input 

analysis of the nearest neighbors.  

Tables 1–5 provide a summary of the results of the kNN searches for the query points 

presented in Figure 4. With the tables, it is easy to see the kNN algorithm’s performance 

at each query point with distance index values and compare the results to each other. In 

the tables, timestamps that occur with different number of variables involved in search 

are written in bold font for ease of interpretation. With all the query points presented in 

the results, at least one timestamp reappeared across the results when the number of KPI 

variables involved in search was increased. One explanation for this phenomenon is that 

the KPI variables involved in the search are not independent from each other. Both query 

points 5584 and 6980 had exactly one timestamp that occurred in the 2-, 3- and 4-variable 

cases: 5519 for query point 5584 and 6955 for 6980. For query point 7435, which was 

not near any cluster based on the Appendix 6 Figure 27 scatter plot and offered the worst 

results in terms of distance index values, five timestamps reappeared when the number of 

variables was increased. These facts indicate even more strongly that query point 7435 

represents a highly unique process situation.  

The number of timestamps excluded from the results due to the threshold argument can 

also be seen for each case in Tables 1–5. Without the threshold argument, for most query 

points the results would contain neighbors very close to each other, which would not be 

ideal. This happens because in time series data, subsequent observations are dependent 

on each other. Test runs without the threshold argument proved that, if the algorithm 

found two subsequent neighbors as a result, the trajectories of these neighbors would 

naturally behave in the same manner, and they would just be time-shifted copies of each 

other. The addition of the threshold argument adds quality to the results, as it ensures that 

the neighbors found are independent from each other. For the query points presented in 

the results, 5584 with 3-variable search and 7435 with 4-variable search both had five 

neighbors excluded from their results due to the threshold argument. In the case of query 

point 5584, which is in a dense cluster (see Figure 16 in Appendix 1), the exclusion of 

five neighbors does not significantly raise the distance index values, or the fact that the 
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trajectories of the nearest neighbors in Figure 13 are relatively close to the trajectory of 

the query point. The results for the 2-variable search for query point 5158 and the 3-

variable search for query point 6980 had zero neighbors excluded, which is unusual, based 

on the other results and test runs with the algorithm.  

According to Figure 4, query points 7018 and 6980 have very similar KPI variable values, 

with the greatest difference being in the concentrate Au grade value. Similarities between 

these two query points can also be observed in the scatter plots (Figure 6 and Figure 34 

in Appendix 10) and Tables 1 and 5, which contain the results of kNN searches for these 

query points. From the scatter plots it can be concluded that both query points belong to 

the same dense cluster. Tables 1 and 5 show that, for both query points, when only 2 

variables were involved, the search found timestamps from 2100-2350 as neighbors, but 

when the number of variables was increased, these timestamps disappeared from the 

results. One explanation for the similarities could be that the time difference between 

these query points is only 38 hours, and as seen from the scatter plots, the process stayed 

in the same state during this time period. One possible reason for the disappearance could 

be that when the algorithm is introduced with a new variable, this new variable steers the 

search towards a slightly different process situation.  

At the stage in which it was used in this study, the kNN function was not sophisticated 

enough to be used in process control or optimisation independently; the function only 

searches for individual timestamps for nearest neighbors and does not take the behaviour 

or trend of neighbors into account. In an ideal situation, the trajectories of nearest 

neighbors would follow the query point’s trajectory as closely as possible until there were 

no more measurements for the current process situation, in order to make more accurate 

predictions. 

With the addition of clustering, such as k-means as a preliminary classification for kNN, 

more information about the query point could be gained, especially when more than two 

variables were involved in the kNN search. As a simple example, with k-means 

clustering, the flotation feed KPI could have been divided into clusters with high feed 

days and low feed days.  

If the kNN function built in this study is used as an expert system, the dataset used by the 

function as training data should constantly be updated with new data from the process, 

which would require some adjustments to the function. To make the kNN function search 
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for closest or desired trajectories, a few improvements to the function are possible, which 

are discussed below. 

The simplest improvement to the kNN function in order to search for desired trajectories 

would be to rank the neighbors’ trajectories based on their trend with respect to the query 

point’s trajectory. This can be done for example by calculating the area between the query 

point’s trajectory and the neighbors’ trajectories with an integral and ranking the neighbor 

with the smallest area as best. One other option would be that, in addition to searching 

for individual timestamps for nearest neighbors, the kNN function would search for 

neighbors with similar gradients and values. A search based on a time-based feature 

calculation for the query point (current situation) and history data is also a possibility, for 

example in four-hour time periods. 
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6 CONCLUSIONS 

The main objective in this thesis was to identify and evaluate the applicability of machine 

learning methods that could be used in mineral processing as a tool for forecasting the 

direction in which where the current process values are going. The supervised machine 

learning method k-nearest neighbors (kNN) was selected for finding the closest 

correspondences from history data for the current process situation.  

The results showed that, when neighbors are sought for a query point where KPI variables 

have uncommon values, the distance index values can become very large and the nearest 

neighbors can be quite far from the query point in values. Based on the testing and results, 

further testing with the function is needed to determine accurate limits for the distance 

index values. 

The kNN implementation built in this study proved to be sufficient in finding the closest 

correspondence from history data for a current process situation. As it stands, the function 

could be used as part of a mine-to-mill optimisation expert system to predict the direction 

in which the process KPI variable values are going. From the trajectories of nearest 

neighbors, a neighbor with the desired trend could be selected and used to analyse the 

process inputs to determine the process variable values for the current process situation.  

In future, it would also be possible to try a more advanced ML method instead of kNN in 

the search for nearest matches for the current process situation from history data. In this 

study, kNN was found to be a good starting point as a method for use in this kind of 

application. In order to extend the approach to forecasting, for example kNN regression, 

which is briefly mentioned in section 2.4.3, could be a noteworthy contender. Another 

possible ML method could be the LSTM model mentioned in section 2.4.4, which has 

been used in forecasting concentrate purities in the flotation process. 
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7 SUMMARY 

The objective of this thesis was identification of ML methods that could be used in 

mineral processing as a tool for forecasting, how the current process values are going to 

be changing. Chapter 2 contains the theory related to the topics of this thesis. A 

generalized process flowsheet for the target plant is presented, followed by a more in-

depth review of flotation process phenomena. The basics of mine-to-mill optimisation, an 

important aspect of today’s mineral processing, are introduced. In section 2.3, after a brief 

introduction to AI and ML in general, the open standard data mining approach CRISP-

DM is introduced. The importance of data preparation is also considered, in addition to a 

more in-depth review of ML methods and current ML applications in mineral processing.  

The chapter on data preparation and ML implementation describes the data that was used 

in this thesis, steps for data pre-processing and the building of the k-nearest neighbors 

function. The pre-processing, or data preparation, in this thesis included synchronization 

between the datasets, renaming of measurement tags, converting data in on/off format to 

binary data, addition of calculational variables (valve sum vectors, recovery % for gold, 

iron and arsenic, and flotation dry feed) to the datasets, definition of data ranges for 3-

sigma outlier removal with visual examination, data normalization and resampling. Data 

pre-processing and writing of the kNN function were done in MATLAB®. The kNN 

function was built around MATLAB’s pre-built ExhaustiveSearcher and knnsearcher 

functions, which required the statistics and machine learning toolbox. One-hour averaged 

process data was used for the calculations with the kNN function. With query point and 

k-value being the main inputs, the function gives timestamps of the nearest neighbors and 

distance index values as an output. In addition to these outputs, the function draws a 

scatter plot for the variables, emphasizing the query point and nearest neighbors, and the 

trajectories of the nearest neighbors for a defined time period as an output. In this thesis, 

kNN search was done separately with two, three and four variables, which were the 

process KPI variables, selected based on expert knowledge. In this case the KPIs were 

the flotation dry feed, flotation feed Au grade, final concentrate Au grade and Au recovery 

%.  

Chapters 4 and 5 contain the results and discussion. Results for five query points are 

presented, which were selected based on visual examination of a gold recovery graph. 

The query points were also verified as having some difference in KPI values with the 
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MATLAB® community-made radar chart function. In general, the kNN function 

performed the best when the KPI values at the query point had common values for the 

process. In these situations, the values for the nearest neighbors were relatively close to 

the KPI values of the query point, considering that the kNN search took four variables 

into account, and offered a good prediction of the direction in which the KPI values for 

the query point were going. However, in situations where the query point’s KPI values 

were uncommon based on the scatter plot, the values for the nearest neighbors were far 

from the query point’s values, and the prediction accuracy was poor, which is to be 

expected due to the lack of such situations in the history data.  

The kNN function built in this thesis proved to be sufficient in finding the closest 

correspondence for the query point from the history data and could be used as part of a 

mine-to-mill optimisation expert system to predict where the process KPI variable values 

are going. From the trajectories of the nearest neighbors, a neighbor with the desired trend 

could be selected and included in the input analysis to determine process variable values 

for the current process situation. However, the function could be improved with the 

addition of k-means clustering as a preliminary classification for kNN, to obtain more 

information on the query point and nearest neighbors, especially when more than two 

variables are included in the kNN search. The function could also be improved by ranking 

the nearest neighbors based on the area between a neighbor and the query point for a 

selected time period, instead of the distance index in a single timestamp, to take into 

account the trend of trajectories for the neighbors and query point. More advanced ML 

methods could also be used instead of kNN, for example the LSTM model used in a case 

study by Pu et al. to predict concentrate purities in the flotation process. 
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Appendix 1. Scatter plot and distances for 2-variable kNN search at query point 5584 

 

Figure 16. Scatter plot for query point 5584 (2 var.). 

 

Figure 17. Distance indexes for query point 5584 (2 var.). 
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Appendix 2. 3- and 4-variable kNN search distance indexes for query point 5584 

 

Figure 18. Distance indexes for query point 5584 (3 var.). 

 

Figure 19. Distance indexes for query point 5584 (4 var.). 
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Appendix 3. Scatter plot and distances for 2-variable kNN search at query point 5158 

 

Figure 20. Scatter plot for query point 5158 (2 var.). 

 

Figure 21. Distance indexes for query point 5158 (2 var.). 
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Appendix 4. Trajectories for 2-var. search in 5158 and distances for 3-var. search 

 

Figure 22. Trajectories for query point 5158 and nearest neighbors (2 var.). 

 

Figure 23. Distance indexes for query point 5158 (3 var.). 
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Appendix 5. Trajectories for 3-var. search in 5158 and distances for 4-var. search 

 

Figure 24. Trajectories for query point 5158 and nearest neighbors (3 var.). 

 

 

Figure 25. Distance indexes for query point 5158 (4 var.). 
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Appendix 6. Trajectories for 4-var. search in 5158, and scatter plot for query point 7435 

 

Figure 26. Trajectories for query point 5158 and nearest neighbors (4 var.). 

 

 

Figure 27. Scatter plot for query point 7435 (2 var.). 
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Appendix 7. Distances and trajectories for 2-var. search in 7435 

 

Figure 28. Distance indexes for query point 7435 (2 var.). 

 

Figure 29. Trajectories for query point 7435 and nearest neighbors (2 var.). 
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Appendix 8. Distances and trajectories for 3-var. search in 7435 

 

Figure 30. Distance indexes for query point 7435 (3 var.). 

 

 

Figure 31. Trajectories for query point 7435 and nearest neighbors (3 var.). 
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Appendix 9. Distances and trajectories for 4-var. search in 7435 

 

Figure 32. Distance indexes for query point 7435 (4 var.). 

 

Figure 33. Trajectories for query point 7435 and nearest neighbors (4 var.). 
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Appendix 10. Scatter plot and distances for 2-var. search in query point 6980 

 

Figure 34. Scatter plot for query point 6980 (2 var.). 

 

Figure 35. Distance indexes for query point 6980 (2 var.). 
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Appendix 11. Trajectories for 2-var. search in 6980 and distances for 3-var. search 

 

Figure 36. Trajectories for query point 6980 and nearest neighbors (2 var.). 

 

Figure 37. Distance indexes for query point 6980 (3 var.). 
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Appendix 12. Trajectories for 3-var. search in 6980 and distances for 4-var. search 

 

Figure 38. Trajectories for query point 6980 and nearest neighbors (3 var.). 

 

Figure 39. Distance indexes for query point 6980 (4 var.). 
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Appendix 13. Trajectories for 4-var. search in 6980 

 

Figure 40. Trajectories for query point 6980 and nearest neighbors (4 var.). 


