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ABSTRACT

The need of high-quality phone and internet connections, high-speed streaming
ability and reliable traffic with no interruptions has increased because of the
advancements the wireless communication world witnessed since the start of 5G
(fifth generation) networks. The amount of data generated, not just every day
but also, every second made most of the traditional approaches or statistical
methods used previously for data manipulation and modeling inefficient and
unscalable. Machine learning (ML) and especially, the deep learning (DL)-
based models achieve the state-of-art results because of their ability to recognize
complex patterns that even human experts are not able to recognize. Machine
learning-based anomaly detection is one of the current hot topics in both research
and industry because of its practical applications in almost all domains. Anomaly
detection is mainly used for two purposes. The first purpose is to understand
why this anomalous behavior happens and as a result, try to prevent it from
happening by solving the root cause of the problem. The other purpose is to,
as well, understand why this anomalous behavior happens and try to be ready for
dealing with this behavior as it would be predictable behavior in that case, such
as the increased traffic through the weekends or some specific hours of the day.

In this work, we apply anomaly detection on a univariate time series target, the
block error rate (BLER). We experiment with different statistical approaches,
classic supervised machine learning models, unsupervised machine learning
models, and deep learning models and benchmark the final results. The main
goal is to select the best model that achieves the balance of the best performance
and less resources and apply it in a multivariate time series context where we are
able to test the relationship between the different time series features and their
influence on each other. Through the final phase, the model selected will be used,
integrated, and deployed as part of an automatic system that detects and flags
anomalies in real-time. The simple proposed deep learning model outperforms
the other models in terms of the accuracy related metrics. We also emphasize the
acceptable performance of the statistical approach that enters the competition of
the best model due to its low training time and required computational resources.

Keywords: anomaly detection, time series, times eries anomaly detection,
time series forecasting, machine learning, deep learning, supervised
learning, unsupervised learning, artificial intelligence, 5G, BLER, wireless
communications.
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1. INTRODUCTION

The introduction of the 5G technology for broadband cellular networks has succeeded
in establishing many achievements for different applications in different domains, such
as the internet of things (IoT) [1], drones, virtual reality (VR) [2], and autonomous
robotics. On the other hand, all these advancements and applications introduce
complex challenges in terms of the latency, reliability, connectivity and more. Having
a strong and reliable receiver system is essential for maximizing the data throughput
and having high-quality connections. Being able to stream high-quality videos,
downloading gigabytes of data in a couple of minutes, browsing tons of social media
channels and having real-time updates with no interruptions are not a luxury anymore
but a need for the mobile users. The quality of both the transmitter and receiver in both
the cases of uplink and downlink cases affects the mobile devices’ users’ experience.

In many critical applications in different domains, it is crucial to meet the strict
requirements of latency and reliability. For example, the modern critical surgeries in
the healthcare domain, the real-time transmission of the digital sensors’ data to the
medical devices is not a negotiable constrain. Any small error might cause the death
of the patients. In self-driving cars, the car must have real-time connection with all
the cloud servers so that the radar, lidar and cameras’ readings are communicated,
pre-processed and fed to the algorithms for making decisions in real-time. Any small
margin or error can cause fatal accidents and the losses of humans’ life. A huge part of
the entertaining industries nowadays is based on the Augmented Reality (AR) and VR.
Streaming high-quality videos in real-time is one of the main factors the AR industry
is based on. With the rapid increase of the previously mentioned applications and
many more, maintaining the capacity and latency requirements becomes more and
more challenging for both the technical side and the business side as well.

At the same time, artificial intelligence (AI), especially, the machine learning and
deep learning models have been achieving breakthroughs in industry and research
in all the domains. In E-commerce, machine learning models have been used in
building personalized recommendation engines that we use on a daily basis for many
different purposes starting from watching YouTube videos till the recommendation of
strong passwords for our personal emails [3]. In healthcare, deep learning has been
contributing to detecting fatal diseases such as cancer, enough time beforehand so that
chances of saving patients life increase [4]. In digital marketing, machine learning
has been used for identifying and clustering users’ personas, predicting the conversion
and retention rates and optimizing the advertising campaigns [5]. In finance, machine
learning has been used for detecting fraud transactions and forecasting the stock
markets [6]. There are also many sub-tracks under the umbrella of AI such as computer
vision (CV) or machine vision, natural language processing (NLP), time series analysis
and anomaly detection and more.

Anomaly detection for time series data is one of the very important topics
that are essential and has a lot of applications in many domains and not just
the Telecommunications domain. In network activities-related data sets, anomaly
detection can be used for detecting intrusion attacks [7]. In the finance domain,
anomaly detection can be used for detecting the unusual behaviors for users’ purchases
for instance [8]. Anomaly detection can be used for tracking the organic traffic and
keywords ranking in search engine optimization (SEO) [9] in the digital marketing
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domain. At the same time, anomaly detection can be used for detecting the unusual
behavior in heart rate signals in addition to some cancer and diabetic diseases rare cases
[10] in the medical domain. Real estate domain has witnessed different applications
of anomaly detection as well for the purpose of tracking and analyzing prices [11].
Even recommendation systems and recommendation engines have many application
based on anomaly detection as it can be used for detecting the rare customer personas
that might bias the performance of the machine or deep learning models responsible
for making the recommendations [12]. In almost any domain, anomaly detection can
be used and applied whether through applying basic and simple statistical approaches,
classic machine learning models or deep neural networks.

1.1. Thesis Scope

As discussed earlier, there are many factors and constrains that can be used as
evaluation metrics for the receiver side. Our main focus in this work is the BLER
constrain as it is a crucial feedback measurement that significantly affects whether
wireless communications processes are accepted, declined, or need enhancements.
There are different studies that tackle the problem of time series anomaly detection
in the telecommunications domain in general but, to the best of our knowledge, there
is no focus on detecting anomalies on the time series based BLER target.

This work is organized as follows: Chapter 2 discusses the time series analysis
and anomaly detection concepts, an overview of machine learning addition to an
introduction to the fifth-generation network receiver side with an emphasize on the
BLER target as an evaluation metric of the data reception process. Chapter 3 discusses
the related work for time series anomaly detection using statistical approaches,
machine learning-based approaches and deep learning based-approaches in addition
to anomaly detection in the telecommunications domain. Chapter 4 discusses the data
set description and the most important features it has. It also discusses the data analysis
including the data cleaning and pre-processing and the exploratory data analysis and
visualization. Chapter 5 discusses the methods used in this work and their advantages
and disadvantages. Chapter 6 discusses the results of the four models selected for
the forecasting and anomaly detection purposes. Chapter 7 discusses the results we
got in addition to the limitations of the work and potential improvements. Chapter 8
concludes the work done and the potential future steps.

1.2. Contribution

The motivation behind this work is to build a reliable baseline system for automatic
anomaly detection for the wireless communication time series features. One of
the common challenges of any anomaly detection problem is the lack of labeled
data. Labeling data points or sequences as anomalous or not is a time consuming
process that requires a lot of resources and domain expertise. Being able to build
and deploy a system that can detect anomalies in not only one specific time series
feature, but also other wireless communications related features, in real-time, can
contribute significantly to the company business and as a result, the end users.
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The generalization of such a system to different telecommunications features is a
challenging yet rewarding mission.

One of the main goals of this work is to overcome the problem of unlabeled
anomalies by proposing a flagging method based on the assumption of the percentage
of anomalies in the data set. Having labeled data will impact the system performance
positively but it should not be a barrier for having good model performance using
supervised machine learning or deep learning models. The data set used for this work
has been recorded in an automated test environment and because of its generic use,
it is not labeled for the anomaly detection purpose. Our approach tackles this change
by representing the results in a severity based approach given the assumption of the
percentage of anomalies in the data set.

This work is considered phase one of three phases. The objective of the first phase,
the thesis work, is to select the best model for detecting anomalies in the univariate time
series BLER feature based on the model accuracy related-metrics and computational
resources. Through the second phase, the best model selected from phase one will be
used in a multi-variate environment in order not to be just able to detect the anomalies
but also, understand why this behavior happen in the first place. One of the advantages
of applying anomaly detection in a time series multi-variate environment is that we will
be able to verify the model performance and its ability to generalise better in different
context in addition to testing potential correlation and causation among the time series
features. In the final phase, the best model will be optimized and deployed as part of
an automated system for the time series anomaly detection purpose in real-time.



11

2. BACKGROUND

In this chapter we give an overview about machine learning and its different sub-areas.
We also introduce the main topic of this work, time series anomaly detection and dive
deeper into the foundations of time series analysis and anomaly detection. In addition,
we give a basic background about the BLER feature and the data reception process.

2.1. Machine Learning

Machine learning is one of the main sub-fields of AI that has been revolutionizing
many industries due to its ability to outperform human experts’ performance in solving
complex tasks in an automated manner. There are many sub-tracks under the umbrella
of machine learning such as supervised machine learning, unsupervised machine
learning, reinforcement learning (RL), semi-supervised learning[13], self-supervised
learning [14] and more. Supervised learning is the most popular sub-track due to its
applicability and scalability to a wide range of applications and industries. The main
advantage of supervised learning is that we have labeled data set. In other words, we
are able to supervise the model’s learning process as we have both the input and output
known. The model needs to learn the process or the mapping from this input to that
output so that when we have a future input, we can just pass it to the mapping process
the model learned to predict the future output.

In supervised learning, we have mainly two problems: regression-based problems
and classification-based problems. In the regression-based problems, the model
forecasts a continuous value such as the prices of stock markets. In the classification-
based problems, the model forecasts a discrete value, a category or a class such as
forecasting whether the value of the stock market will increase or not. The discrete
values in classification problems can take any number as far as there are no infinite
possibilities of the values of that number and we know these possibilities beforehand.
For instance, in computer vision, we can have one million classes that the model needs
to distinguish and it is considered a classification problem. In the case of anomaly
detection problems, if we have a labeled data set, it is considered a classification
problem as the models needs to predict whether a point or a sequence is an anomaly or
not.

In unsupervised learning, we have only the input but we do not know the output
beforehand which makes unsupervised machine learning problems more challenging.
In RL, we do not have either the input or the output defined. The learning process in
RL depends on the interaction of an agent with the surrounding environment and the
feedback signal it gets based on that interaction. Other areas such as self-supervised
learning, one-shot learning [15] and few-shot learning [16] are based on the fact that we
have both labeled and unlabeled data where the model tries to generalize its learning
experience using few labeled data and enhance this learning experience using the
unlabeled data. Both supervised and unsupervised machine learning models can be
used for applying anomaly detection. The models selected for this work are from both
the categories.

One of the most common challenges in anomaly detection problems is that most of
the time, we do not have the anomalies themselves labeled as anomalies or not. If they
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are labeled, we can transform the problem into a supervised classification problem
and then, apply a suitable classification model that yields good performance but as
discussed, this is not the common case. In the case of unlabeled anomalies data set,
sometimes we need the participation of domain experts to label the data and provide
some guidelines and directions for the whole labeling process. This is not the most
efficient way to solve the problem of unlabeled anomalies as it is really resource-
consuming in terms of time and cost. Getting domain experts to do this labeling
themselves can be quite expensive as well.

Another solution for the unlabeled anomalies problem is to have some meta data or
additional information about the data set such as the potential percentage of anomalies
in the data or the contamination value. By knowing such information, we can apply
confidence interval-related statistical approaches and flag the different anomalies based
on the model performance. This is the approach that we will follow in our thesis given
that we do not have the anomalies labeled in our data set.

2.2. Time Series Analysis

Time series is a sequence of information that attaches a time period to each value and
this value can be represented in almost everything such as prices, humidity, or the
number of people. As far as the value recorded is unambiguous, any medium could be
measured with time series. There are not any limitations regarding the total span of a
time series. It can be a minute, a day, a month, or even a century. The most important
thing is to have a starting and an ending point. The interval between one value and
value next to that value is called a time period or time step. Frequency is referred to
as how often values of the data set are recorded. To be able to analyze and extract
insights from time series data, all time steps must be equal and clearly defined, which
would result in a constant frequency. This frequency is a measurement of the time and
can range from a few milliseconds to decades. Generally, patterns observed in time
series are expected to persist in the future. That is why we try to predict the future by
analyzing the past recorded values.

Time dependency is also an important feature of time series data which means
that the values for every period are affected by outside factors and by the values
of past periods. Time series data suffer from seasonality as some values depend
on the time of day or season of the year for instance and since it is a repeated
pattern, we can anticipate these changes and account for them when making our
predictions. Seasonality as a trade is not often observed in regular data. When there
is no chronological order, we do not expect repeated cycles. We express time series
variables with capital letters such as X and Y . We express the entire period covered by
a time series sequence with T while we use t to describe a single period of an interval.
Since t represents the order of the period we are interested in, we use t− 1 to express
the previous period with one time step difference. Similarly, we can express the next
period as t+ 1.

The intervals between the time steps or time periods need to be identical and if
this is not the case, it is usually because of the missing values. The values between
consecutive periods usually affect each other. We can also adjust the frequency of
the data set based on the values we are interested in. For example, if we have daily
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data and we want to conduct a monthly analysis, we need to compute some average
values for the recorder’s daily values. In this way, by aggregating the data, we will try
to determine the best values to describe a month. Sometimes, we have to increase
the frequency and this leads to an increase in the number of time steps within an
interval and consequently, the time period. Then, comes the need to impute values
for the missing ones. As mentioned before, unlike regular data, time series require
chronological order. From the machine learning perspective, this is inconvenient as we
cannot shuffle the data into train and test sets. What we do instead is to pick a cut-off
point and the data before the cut-off point is the training set and the data after this
cut-off point is the testing or validation set.

Another odd of time series data is that its graphs do not follow any popular statistical
distribution such as the normal distribution for instance. This is because time series
data never satisfies Gauss-Markov assumptions, unlike regular linear regression data.
Instead, time series data assumes that the past time patterns in the variable will continue
unchanged in the future

The quantile-quantile (Q-Q) plot is one of the tools used in analytics to determine
whether a data set is distributed a certain way. It usually showcases how the data fits
a normal distribution. The Q-Q plot works by taking all the values a variable can take
and arrange them in ascending order. The Y axis represents the variable values and
the X axis represents the theoretical quantiles of the data set, in other words, how
many standard deviations away from the mean these values are. The diagonal line
represents what the data should follow if they are normally distributed. If the data
is not normally distributed, we cannot use popular statistical techniques for making a
forecast. However, this is what is usually expected from time series data.

Another important concept in time series is white noise [17]. White noise is a special
type of time series where the data does not follow a pattern and since no pattern can be
found, white noise is not predictable. In order for a series to be considered as a white
noise series, it needs to satisfy these three conditions:

• Constant mean

• Constant variance

• No auto-correlation.

Auto-correlation means how correlated a series is with a past version of itself

p = corr(xt, xt−1), (1)

where p is the auto-correlation value. Hence, no auto-correlation means that there is
no clear relationship between the past and present values of a time series. Thus, we
can also say that white noise is a sequence of random data, where every value has a
time period associated with it.

Another related concept is random walk. Random Walk is a special type of time
series where values tend to persist over time and the differences between periods are
simply white noise

Xt = Xt−1 + ϵt, (2)
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where ϵt is the residual coefficient. We assume that these residuals are white noise, so
they are arbitrary and cannot be predicted. This suggests that the best estimator for the
current variable value is the previous variable value and the best estimator for the next
variable value is the current variable value and so on.

In order to understand the different tests that should be conducted before applying
any statistical approaches to time series data sets, we need to understand the concept of
time series stationarity [18]. Stationarity implies that taking conductive samples of data
with the same size should have identical covariances regardless of the starting point.
This characteristic of the data is also known as weak-form stationarity or covariance
stationarity. In other words, we classify a time series data as stationary data if it
satisfies their key assumptions:

• Constant mean

• Constant variance.

Consistent covariance between periods and identical distances from one another are
key assumptions for time series stationarity. To satisfy this concept, we want to have
the same covariance between the first and fourth period as we do between the third and
sixth:

cov(x1, x4) = cov(x3, x6)· (3)

We can also say that a sample of a weak-form stationary process is white noise
as the mean, in that case, is equal to 0 and the variance is constant. Additionally,
auto-correlation between lags is always zero. Since covariance is simply correlation
multiplied by the standard deviations, it will also equal zero and hence, white noise
stratifies all the assumptions of a covariance stationary process. Generally, when we
refer to stationarity, we refer to it as strict stationarity where samples of identical size
will have distributions:

(xt, xt+k) ∼ dist(µ, σ2), (4)

(xt+τ , xt+τ+k) ∼ dist(µ, σ2), (5)

where k and τ are the sampling factors to be chosen to achieve the matching of the
samples size.

Statisticians David Dickey and Wayne Fuller developed a statistical test to check
whether a data set is stationary and it is called Dickey-Fuller test [19]

• H0 : ϕ1 < 1

• H1 : ϕ1 = 1

The null of the Dickey-Fuller test (H0) assumes non-stationarity. It assumes that
one lag of the autocorrelation coeffient (ϕ1) is lower than one and when we compute
the stastistic, we compare it to the values in fuller table. If it is lower than the critical
value, then, we reject the null and hence, the data comes from a stationary process.
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Seasonality suggests that certain trends will appear on a cyclical basis. One way to
test whether a data set has a seasonality is to decompose the signal or split it into three
components [20]:

• Trend: represents the pattern consistent through the data

• Seasonal: represents all the cyclical effects due to seasonality

• Residual: represents the error of prediction of the actual data and the model we
fit.

The simplest decomposition is called a naïve decomposition. With naïve
decomposition, we expect a linear relationship between the three parts observed
in the time series. Naïve decomposition has two features which are additive and
multiplicative. Additive assumes that for any period, the observed value is the sum
of the trend, seasonal and residual for that period. Similarly, the multiplicative
decomposition assumes that the observed series is a product of the trend, seasonal
and residual components.

In order to be able to specify the number of lags that we will use for measuring
any of the time series components such as the seasonality, we need to calculate the
correlation between lags whether it is auto-correlation or partial auto-correlation.
Correlation measures the similarity in the change of values of two series. Auto-
correlation represents the correlation between a sequence and itself. In other words, it
measures the level of resemblances between a sequence from several lags ago and the
actual data. The lags mean a delayed version of the original one.

The number of significant lags are one of the main parameters to be fed to the
models and tuning most of the forecasting models is based on tuning the lags’ value.
Sometimes, the number of lags even influences the choice of the selected model. For
example, if we have only three to five significant lags, we can use any simple model
including the statistical approaches. If we have a high number of significant lags, we
need to use more complex models in order to be able to detect the patterns in such long
sequences. In addition to the number of lags, There are also other factors that influence
the model selection and its degree of complexity such as:

1. Significant coefficients

2. Parsimonious

3. Residuals

If the values of the coefficients are not that significant or very close to zero, that
means that they are not contributing to our model results that much. In other words,
they do not have predictive power. Parsimonious means as simple as possible as we
generally prefer to use a simpler model than the complex one as the latter generally
provide significantly better predictions. For us to be able to decide whether our
predictions are good ones, we use a statistic test called the log-likelihood ratio test but
it only can be applied to models with different levels of degree freedom. So, we need
to compare the information criteria for each one. The lower the coefficients, the less
data the model requires to make accurate predictions. The two most common features
for this measurement are the Akaike’s Information Criteria (AIC) and Bayesian
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Information Criteria (BIC). Because we tend to prefer simpler models, we prefer the
models with lower AIC and BIC values. Regarding the residuals, if our model fits well,
there should be no trend we fail to account for and the residual of the model should
resemble white noise. So, we can conclude that there are no other patterns we can
account for when we overtrain our model. By overtrain we mean that the model is
learning the data too well that it might not be able to generalize to a new data set.

2.3. Anomaly Detection

Before stating some popular definitions of anomalies, we need to highlight the fact
that there is a distinction between anomaly detection and outlier detection. Despite
that there is no clear measurement in terms of the definition between outliers and
anomalies, there are some factors that can be considered to distinguish between them.
Most of the time, the two terms, outliers and anomalies are used interchangeably.

One definition of outliers is as stated by Aggarwal [21]: “Outliers are also referred to
as abnormalities, discordants, deviants, or anomalies in the data mining and statistics
literature.”. Some also tend to define outliers as a broader and more generic concept of
anomalies which consists of some noise in addition to the anomalies. Finally, Hawkins
[22] defines outliers as follows: “An outlier is an observation which deviates so much
from the other observations as to arouse suspicions that it was generated by a different
mechanism.”. While they also define anomalies as irregular behaviors that share some
patterns [23]. On the other hand, one the most popular definitions of anomalies is
"Anomalies are patterns in data that do not conform to a well-defined notion of normal
behavior.” – Chandola et al. [24]. Another popular definition of anomalies is "An
anomaly is an observation or a sequence of observations which deviates remarkably
from the general distribution of data. The set of the anomalies form a very small part
of the data set." [25]. The main focus of our thesis work is on anomaly detection for
time series data.

There are many different types of anomalies but we can categorize them into three
main categories:

Point Anomalies: this is the case when we have some point values that deviate
significantly from the other points’ values. For instance, an extreme temperature
degree within a specific weather season. So, Xt is considered a point anomaly if its
value deviates significantly from all the points in the interval [Xt−n, Xt+n], n ∈ R and
n is sufficient large.

Collective Anomalies: this is the case where each point value that deviates from
the other values does not consider to be an anomalous point but the sequence of the
values together is labeled as a collective sequential anomaly. An example of collective
anomalies can be a very big withdrawal or purchase from a bank account each day
within the same week. A big withdrawal every once in a while is not considered
an anomaly as this might happen for different reasons but the sequence of the big
withdraws within the same week is considered an anomalous behavior.

Contextual Anomalies: in contextual anomalies, the values themselves do not show
an anomalous behavior but it depends mainly on the context of these values. Back to
the temperature degree example, a +20 degree in Finland in Summer, for instance, is
not considered an anomaly while the exact same temperature in Winter in the same
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country is considered an anomaly. The main differentiator is the context of the values
and not the values themselves.

There is also a measure of how the anomalous values deviate from the other values.
This measure is usually used to explain the strength of the anomalous values, or in
other words, the likelihood of being an anomaly. This measure is referred to as an
anomaly score. How an anomaly score is calculated differs from one approach to
the other, for instance, whether it is a statistical approach or machine learning-based
approach. Detecting anomalies in the case of univariate time series unlabeled data sets
is applied by using a forecasting model first to which we fit our training data set and
then, a test data set is used to make predictions and evaluate the model performance. A
window is used with a certain number of lags is used to mark the labeling of the target.
The number of lags depends on different factors such as the model used and whether
it is a statistical approach, machine learning or deep learning model, the data set itself
and whether it is stationary or not, the nature of the target variable itself, and more.

The anomaly score is computed by measuring the distance between the model
prediction and the actual value of the target

ei = d(xi, x
i), (6)

where d is the chosen distance function. The distance function is also dependent on
the model used and in the case of the machine learning models, it differs depending on
whether it is a supervised or unsupervised machine learning model. The deviation ei
can be referred to as the error function which is proportional to the anomaly score. For
instance, if the error value is larger than a specific threshold, the point is considered an
anomalous point.

2.4. 5G Networks and BLER Metric

5G is the next promising generation of mobile broadband that offers download and
upload speeds that the mobile users have not experienced before. From the user
perspective, and in addition to the higher download and upload speeds, mobile users
enjoy low battery consumption which also allows the service providers to develop
more efficient phone devices. 5G traffic fees is considered lower than the previous
networks due to the infrastructure low maintenance resources required in terms of the
cost. Moreover, increased throughput and lower network outage probability is one of
the most important features that distinguishes the 5G network.

However, all of these powerful features of the 5G network imposes some challenges
for reliability, latency, capacity and network outage. Controlling the network outage
is not an easy task and it is one of the main goals of the current research. In
simple terms, maintaining low outage means maintaining successful transmission and
reception processes. There are many ways to enhance the transmission process but
our main focus in this work is the receiver side. There are also many factors to
measure the quality and accuracy of the data transmitted to the receiver side and we
are going to focus on only the monitoring and evaluation of one factor in this work
which is the BLER [26]. BLER is considered one of the most effective metrics of
evaluating the demodulation process and the receiver sensitivity which is one of the
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most important measurements of the receiver performance. As a rule of thumb, the
higher the modulation coding scheme (MCS) [27], the higher the spectral efficiency
and as a result, higher data throughput.

The MCS selection is mainly based on two factors; the radio signal quality and the
BLER. Signal to noise ratio (SNR) [28] is used to measure the radio signal quality
as it represents the difference between the received signal power and the noise power.
BLER is defined by 3GPP [29] as a physical layer error estimation technique. BLER
is calculated as the number of unsuccessfully transmitted data blocks over the total
number of transmitted blocks within a certain number of frames as follows

BLER =
number of erroneous blocks

total number of transmitted blocks
· (7)

BLER can also be defined as the number of negative acknowledgment (NACKs) over
the total number of transmitted blocks which is equal to the positive acknowledgment
(ACKs) summed up to NACKs. A NACK can be considered as a negative feedback
signal when the data block is transmitted unsuccessfully while the ACK can be
considered a positive feedback signal that acknowledges that the data blocks were
transmitted successfully, which leads to the following equation:

BLER =
number of NACKs

number of ACKs+ number of NACKs
· (8)

BLER is also used to measure the level of interference. The higher the SNR, the
lower BLER expected for a certain modulation scheme, and the opposite is true. When
we have a low SNR, we expect a lot of interference and as a result, the data blocks
transmitted in error will increase and hence the BLER. When we have high BLER, we
expect more drops in calls, poor reliability, handovers, and latency.
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3. RELATED WORK

In literature, different terms are used interchangeably that express the same meaning
of anomaly detection. Anomaly detection, deviant discovery, intrusion detection, fault
detection, misuse detection [30] and more are used within the same context to express
unfamiliar or unexpected behavior. As discussed earlier, anomaly detection methods
can be divided into three categories; statistical approaches, machine learning-based
approaches and deep learning-based approaches. For the machine learning approaches,
we can categorize them into two categories; supervised machine learning approaches
and unsupervised machine learning approaches. In this chapter, we discuss the related
work in the three main categories for the time series anomaly detection generally.
Then, we review some novel approaches for detecting anomalies in cellular networks,
specifically.

3.1. Statistical Approaches

In addition to the auto-regressive integrated moving average (ARIMA) model that will
be discussed in the methods chapter, there are many other different approaches. Double
and triple exponential smoothing (DES, TES) [31] are considered an extension of the
simple exponential smoothing (SES) model as it uses an additional parameter, beta,
as a smoothing factor to smooth the trend in the time series target. Triple exponential
smoothing is also considered an extension of the double exponential smoothing as it
adds a third parameter, gamma, to influence the seasonality of the time series data set.

Another statistical approach is the prediction confidence interval (PCI) [32]. PCI
uses a non-linear weighted technique over the time series sequence to forecast the
next data point. After the forecasting, it applies a threshold to classify whether the
forecasted point is an anomaly or not. To calculate Xt, it uses a window of past
observed points of the series:

Xt =
Σ2k

j=1wt−jXt−j

Σ2k
j=1Xt−j

, (9)

where wt−j is the weight for Xt−j and it is proportional to the inverse of the distance
between Xt and Xt−j . Then, it uses upper and lower boundaries to classify the
anomalies given this equation:

PCI = Xt ± tα,2k−1 ·
S

√
1 +

1

2k
, (10)

where tα,2k−1 is the p-th percentile of the target feature t-distribution with 2k − 1
degrees of freedom, s is the standard deviation value, and k is the window size. Thus,
s is calculated based on the window k. Another hyperparameter to be tuned to choose
the PCI boundaries range is α. The value of Xt is checked whether it fits within the
boundaries range. If it is outside the range, then, the point is considered an anomaly.
Overfitting and underfitting are common challenges for this method and tuning all the
hyperparameters helps in overcoming these challenges.
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3.2. Machine Learning Approaches

By the machine learning approaches we mean the classic machine learning approaches
and not the deep learning based one. As discussed earlier, deep learning is a sub-area of
machine learning. The anomaly detection deep learning approaches will be discussed
in the following section.

K-means clustering is used widely in unsupervised problems for clustering purposes.
In time series-related problems, K-means clustering can be also used, and sometimes
it is referred to as subsequence time series clustering (STSC). To apply K-means
clustering for anomaly detection, a sliding window methodology is used [33]. The
algorithm starts running on the data set until it converges which results in K number of
centroids [34]. A centroid is considered the mean of vectors in one cluster. To detect
anomalies an error function is computed by calculating a distance function, usually,
the euclidean distance, but other distance functions can be used as well depending
on the data set and whether we are working on univariate of multivariate time series
sequences. After calculating the distance function, a threshold is specified and if the
error or distance is higher than the specified threshold, the point is considered an
anomaly.

One of the main challenges of the K-means clustering algorithm generally is
specifying the hyperparameter K, which needs a lot of experimentation. Another
challenge is the time complexity of running this algorithm which scales drastically
with the length of the data set. Keogh and Lin [35] showed that using a subsequence
part of the data set and feeding it to the K-means clustering algorithm is complexity
insignificant as the results are almost the same as using a random walk algorithm for
selecting the K-centroids. They did this experimentation to try to overcome the time
complexity challenge of the K-means clustering algorithm. They also experimented
with different distance functions such as the Manhattan distance but the results were
not significantly different from the ones that were based on the Euclidean distance.

Another algorithm is the Density-Based Spatial Clustering algorithm (DBSC) [36].
DBSC is another clustering algorithm that is used for time series anomaly detection. In
addition to the clustering methodology, the Density-Based Spatial Clustering algorithm
also analyzes and categorizes the points into three categories:

• Core points

• Border points

• Anomalies.

There are mainly two hyperparameters used to tune the performance of
this algorithm, unlike the K-means clustering algorithm which had only one
hyperparameter, the number of clusters. The two hyperparameters used in DBSC are
the distance to the neighbors of the selected point and the minimum number of points
that each cluster has to have in order for the model to perform well. To classify a point
into one of the three categories mentioned before, the distance to the neighbors for
each point has to be calculated first. Based on the calculated distances and a threshold
to be determined, the point can be classified as a core point or in other words, a safe
point, a border point or in other words, a suspicious point and an anomalous point.
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Local outlier factor (LOF) is another clustering-based anomaly detection algorithm
for time series data. It is important to mention that the LOF algorithm was used
initially to detect outliers and anomalies in spatial data sets. After that, it was extended
by Oehmcke et al. [37] to include time series data sets as well. Unlike the DBSC
algorithm that is based on the density approach, it is based on the K clustering approach
similar to the K-nearest neighbor (K-NN) algorithm [38]. K-NN is one of the most
popular clustering algorithms. It assigns a point to a certain cluster based on the
distance between it and the other k neighbors. A time series sequence is to be divided
into a train set A and a test set B. After that, a sliding window with window length w
is applied to both the training and testing data sets as a transformation function. To
determine whether the new transformed sequence is an anomalous sequence or not,
an anomaly score is calculated and if it is higher than a pre-defined threshold, it is
considered as an anomalous sequence.

The anomaly score is calculated so that it measures how much the different
transformed data sets are similar or different to each other. This algorithm has its
own challenges as well:

The 1st challenge: is tuning the hyperparameter K similar to the K clustering
algorithm which requires some domain knowledge about the data set.

The 2nd challenge: is that the algorithm depends mainly on the direct neighbors,
which on the other hand, makes it more sufficient for detecting local anomalies.

The 3rd challenge: is choosing the error or distance function as it affects how the
anomaly score will be calculated. For instance, using the Euclidean distance might not
be suitable for this algorithm in the case of working with a multidimensional space.

The 4th challenge: is the time complexity of running this algorithm which is O(n2)

Semi-supervised learning models are also used for the anomaly detection purpose
in addition to the unsupervised learning models. One-class support vector machines
(OC-SVM) [39] is a semi-supervised machine learning algorithm that is used for
classification problems and hence, it can be used for classifying the anomalous points
in time series data sets. The main support vector machine classification algorithm
was extended by adding the kernel trick which enabled the algorithm to detect the
non-linear patterns. After that, the algorithm was extended again to be able to detect
anomalies [40]. The data set is divided into training and testing sets where the training
set includes only the normal data. After feeding the training data to the model, the test
set is used as a classification set and is compared to whether it is similar to the normal,
training, data set or not. A threshold is pre-determined to be able to detect anomalies
after feeding the training data to the model. If the classification error is higher than the
specified threshold, then, the point is classified as an anomaly.

3.3. Deep Learning Approaches

The third category is the deep artificial neural networks or the deep learning-based
models. The most basic format of neural networks is the multi-layer perceptron (MLP)
which is a fully-connected neural network that is based on feedforward propagation.
Hyndman and Athanasopoulos [41] used neural networks as autoregressive models for
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forecasting the time series signals. Despite the fact that they used only one hidden
layer, they were able to predict the time series signal efficiently.

Haselsteiner and Pfurtscheller [42] used two different variations of MLP for
forecasting and classification of anomalies. For the classification model, they used
finite impulse response filters (FIR) that are based on MLP. On the other hand, they
used a sliding window technique for forecasting purpose. After using MLP for
forecasting the time series signal based on the sliding window approach, an error
function is calculated based on the model prediction and labels and after that, an
anomaly score is used to determine whether a point is considered an anomaly or not.

One of the biggest advantages of using MLP for anomaly detection is that we are
able to forecast more than one time step at a time which allows for applying anomaly
detection for time series sequences accurately and not just a single point. On the other
hand, there are some challenges that are represented mainly in the hyperparameters
that need to be tuned in the case of neural networks. Hyperparameters can be:

• number of hidden layers

• number of neurons of perceptrons per a hidden layer

• learning rate

• the activation function

• the optimization function

• the regularization function, if needed.

• the window length in case of the forecasting model.

Another popular deep learning architecture that has been used widely for
computer vision applications such as image classification, object detection, semantic
segmentation, and more is the convolution neural networks (CNN). CNNs usage has
been extended to detecting anomalies in time series data. In contrast to MLP, which
are full-connected layers, CNNs are based on the convolutional layers that are partially
connected in addition to the pooling layers such as the maximum pooling layers [43].

Munir et al. used a CNN architecture (DeepAnT) [44] that is based on deep learning
for the time series anomaly detection purpose. While we feed 2D images to the
CNN architecture for classification purposes, in the case of DeepAnT, we feed a 1D
univariate time series signal which leads to using 1D kernels as well. In the original
architecture of DeepAnT, two convolutional layers followed by max-pooling layers
were used in addition to a fully-connected dense layer at the end. ReLU or rectified
are used as the activation function [45].

Batch normalization [46] sometimes is being used as a regularization technique that
can replace the effect of the dropout layers. It also results in a higher learning rate and
hence, easier parameters initialization. The same prediction methodology as the MLP
one is being used in the case of CNN architectures as well.

Using CNN has its own challenges as well, in terms of hyperparameter tuning. So,
in addition to the parameters that need to be specified in the case of MLP architectures,
there are a couple of additional parameters that need to be tuned in the case of CNN
architectures. These parameters can be:
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• the actual architecture of CNN

• the design choice of batch normalization

• the design choice of pooling layers

• the design choice of dropout/regularization layers

• the depth of the convolutional layers

• the number of kernels per a convolutional layer

• the kernels’ size.

Residual Neural Network (Resnet) [47] is one of the most important extensions of
CNNs that has been used widely for many applications and not just in computer vision.
When using deep CNN architectures with quite many pooling layers, the problem
of vanishing gradient appears which affects most of the values of the parameters
to be close to zero. The skip connections idea was developed as a solution to this
problem where simply a connection from a certain layer at the start of the architecture,
depending on the design choice is fed to a later layer in the middle or last part of the
network as a shortcut feedback layer.

Wang et al. [48] used ResNet for time series anomalies classification. They used
mainly three convolutional layers with batch normalization. ReLU was used as the
activation function. In addition, they used three residential blocks with dimensions of
64, 128, and 128. The main challenge of the Resnet architectures in addition to all the
CNNs challenges is that the Rent architectures can overfit the data easily, especially, in
the case of limited data sets but the overfitting problem can be resolved using different
techniques.

Wavenet [49] is another variation of CNN architecture that has been used widely in
the audio-related applications. It is basically a deep generative model that was used
to create audio waveforms. In other words, it is a probabilistic model that predicts the
distribution of the signals by approximating the joint probability.

p(x) =
T∏
t=1

p(xt|x1, · · · , xt−1) (11)

The difference between the Wavenet architecture and the regular CNN architecture
is that the Wavenet one is using dilated convolution layers instead of the regular
convolution filters used in the case of CNN architectures. The dilated convolution
layer enables the convolution operation to be applied on data with a size higher than
the kernel size using the skipping trick. Borovykh et al. [50] used the concept of
WaveNet for time series forecasting by applying the dilated concept to a regular CNN
architecture which enabled the use of a much bigger window size in comparison to the
one used in the case of regular convolution layer.

Long Short Term Memory (LSTM) [51] has been used a lot recently for many
applications and especially, the time series based ones because of its strong ability
to detect patterns in long sequences. LSTM architectures are one of the variations of
the Recurrent Neural Network architectures (RNNs). RNNs architectures generally
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have the advantage of feedback connections that enable them to get feedback from
previous sequences. As the name implies, LSTMs are able to detect patterns in both
short and long sequences. LSTMs architectures also have the ability to overcome
the vanishing gradient problem because of their different gates functionality. They
have mainly two gates that are responsible for retaining the important information,
patterns, and forgetting the unnecessary information. The other two gates are the
input and output gates which are responsible for processing the input signal and output
the most significant part of the long-short memory. Chauhan and Vig [52] used an
LSTM architecture to predict (ECG) signals. By using the probability distribution
of the output and after calculating the error based on the prediction, they were able
to classify whether an input signal is considered an anomaly or not. Malhotra et al.
[53] used an LSTM architecture of two layers for the same forecasting purpose but
using a multivariate Gaussian distribution context. They applied maximum likelihood
estimation (MLE) after calculating the prediction error to detect the anomalies in the
time series signal. Gated recurrent unit (GRU) [54] is another variation of RNNs. It is
different from the LSTM architectures as it includes the input and forgets gates in only
one gate. In addition, the output gate functions in a different manner as the full-state
vector is the output of every timestamp. GRUs have the advantage of requiring less
computational resources in comparison to the LSTM architectures. Wu et al. [55] used
a stacked GRU model for time series anomaly detection using the same approach used
with LSTM architectures.

Autoencoders [56] are another deep learning-based architectures that belong to the
feedforward neural networks family. They consist of two main blocks the encoder and
decoder parts. The encoder block encodes the input into a project space called the
latent space where the dimensionality of the data is reduced to include only the most
significant information of the data patterns. The decoder part decodes the embedded
vector into its original dimension back. The main reason that autoencoders based
architectures are useful in the case of anomaly detection is that the embedded vectors
of normal data and anomalous data can be distinguished easily in the latent space.
Sakurada and Yairi [57] used an autoencoder architecture for detecting anomalies on
time series. They benchmarked the results with a simple linear principal component
analysis (PCA) technique. They used what they called a denoising autoencoder in
addition to a normal autoencoder. The denoising autoencoder works on removing
the noise from the original time series signal and hence, they are able to detect the
anomalies after projecting the normal time series signal only on the latent space.

3.4. Anomaly Detection in Telecommunications

The autoregressive (AR) model was used not only for time series forecasting but also
detecting anomalies in network related activities. Shao et al. [58] used the AR model
was used to detect the abrupt change in time series network data sets. After using the
AR model for forecasting, a sequential hypothesis test was applied to the output of
the model to filter the anomalies. Time correlation and location correlation were key
features that contributed to the model learning experience and helped in detecting the
anomalies in addition to their occurring time and location.
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A hybrid method of three models were used to study the mobile users’ behavior in
cellular networks, predict the number of calls within a specific time in a certain region
and detect any potential anomalies [59]. The hybrid method used included a supervised
machine learning model, generalized autoRegressive conditional heteroskedasticity
(GARCH) [60], an unsupervised machine learning, K-means and a deep learning
method, an MLP architecture. The k parameter in the K-means model was specified
to two in order to cluster the data set into two clusters. The first cluster includes the
normal points and the second cluster includes the anomalous points. The GARCH
model was used to stabilize the mean the data points by removing potential noise. The
output of the GARCH model is to be fed to the Neural Network architecture for the
forecasting purpose and detecting the anomalies.

Another hybrid model consists of two models was used to filter out outliers
and understand their behavior in cellular networks [61]. One class support vector
machine (OC-SVM), an LSTM architecture and K-means models were used for
automatic labeling of the data set, forecasting the target feature and finally, detecting
anomalies. The OC-SVM model was used to filter out the outliers in the first
phase of the anomalies detection. After that, the LSTM architecture was used for a
deeper understanding of the root cause for such behaviors in addition to successfully
classifying both the false positives (FP) and false negatives (FN) anomalies. They used
an anomaly filtering technique after studying the key performance indicators (KPIs)
features’ profile behavior for labeling the data set and transforming the problem into a
supervised one.

While most of the research papers were focusing on solving the anomaly detection
problems using novel methods, a traditional graph model was used but with a novel
approach that focuses on modeling and reading the data set in a graph format was
proposed [62]. The main idea is to transform the cellular network data set into a graph
representation where a graph-based anomaly detection model can be used easily. This
approach suggests using the history of the mobile users’ phone calls and messages to
detect the anomalous users’ patterns. Transforming the data such into the graph format
will make using any graph-based model a straightforward and efficient approach for
reporting anomalies.

Topic modeling has been mainly used for text analysis purposes such as detecting
patterns in documents such as the words count frequencies. In the work by [63], and
given its statistical probabilistic property, the topic modeling algorithm was used as a
clustering algorithm to cluster the normal point together and filter out the anomalous
points in a separate cluster. They applied the algorithm directly to the data gathered
from live Radio Access Networks (RANs) and they were able to cluster the anomalies
with a performance that is very close to human experts’ one.
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4. DATA ANALYSIS

In this chapter, we discuss the data used for this work and the cleaning and pre-
processing methods used and the reasoning behind using them. We also visualize both
the uplink and downlink BLER features and apply different statistical tests to check
the number of significant lags, stationarity of the data sets and isolate the main time
series signal into its three components; trend, seasonality and residuals. Moreover, we
conclude our findings.

4.1. Data Description

The data set was recorded in a field testing environment using an in-house agnostic
tool. Using this tool, the granularity of the data sets can be specified in addition to
features generated for both the downlink and uplink cases. The data set recorded for
the purpose of this work has a granularity of 80 ms for each time step. The data set
has 4614 records for both the uplink and downlink cases. These 4614 are in the time
span of 7 minutes starting from the time 10.46 to 10.52. The data set has 89 features.
Some of the 89 features are common for both the uplink and downlink cases such as
the timestamp and the rest are case dependant. The uplink and downlink data sets were
extracted from the main data set file so that the analysis and modeling can be applied to
each of them separately. Modeling both the data sets separately was necessary because
of the difference between the data sets and comparing their results to each other does
not make sense. The uplink case represents the case of data transmission from the user
equipment (UE) to the base station while the downlink case represents the case of data
transmission from the base station to the UE.

Since our work focuses on the anomaly detection for univariate time series targets.
We are mainly concerned about the BLER target for both the uplink and downlink
cases. It is important to highlight that the BLER feature values are not labeled as
anomalous or normal point. Solving this problem will be explained later in this chapter.
Other features were used for the analysis purpose during the data pre-processing,
cleaning, and analysis phases. Some of the features that the data sets include:

• Number of transmitted blocks

• Number of received blocks

• Number of ACKs

• Number of NACKs

• MCS: modulated coding scheme

• CQI: Channel Quality Indicator.

The MCS and CQI features were used during the exploratory analysis phase to get
a better understanding of the BLER feature by checking the potential correlation and
causation relation with the BLER feature. The MCS and CQI showed some correlation
but it was not significant enough. The other four features; number of transmitted data
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blocks, number of received data blocks, ACKs and NACKs were used to calculate
the BLER within specified window. The four features were also used to check the
correlation between them and the BLER feature within smaller periods such as one
minute or a couple of seconds instead of the whole data set period, seven minutes.

4.2. Data Cleaning and Preprocessing

During the data preprocessing phase, we focused mainly on handling four major
aspects:

• Missing values

• Categorical features

• Duplicates

• Outliers

• Normalization.

Missing values: given that we are working on uni-variate time series target, we
are mainly concerned about the target feature itself and the timestamp feature. The
feature engineering phase will become handy for more complex cases of multi-variate
time series analysis and forecasting. For the missing values, only five features had
the dominant percentage of missing values. These features were representing the IDs
of some events, and they were all unique. So, they are not contributing to our work
scope. After dropping the five features, we are left only with fourteen data entry with
missing values. Given that the 14 records represent less than 0.003 of the total number
of records, we decided to drop them as well other than working on the imputation of
these missing values.

Categorical features: for the categorical features, all of their classes were already
encoded properly except for the ones with missing values that have been already
handled in the previous phase. Only two categorical features had only one value
consistently in all the records. So, they will not be helpful whether during the analysis
or modeling phases. We dropped these two features as well.

Duplicates: during the initial check of duplicates in the data, we found that more
than half of the records have duplicated values. After deeper investigation, we found
that this problem was caused because of the timestamp features as the values of the
timestamp features started repeating themselves again from the beginning after the
record 2302. We found out this was a bug during the measurement phase and all
the other features values have no duplicates. We tackled the duplicates problem by
changing the duplicated values of the timestamp feature given that the granularity of
the data set is 80 ms per each time step. We looped over the the duplicated timestamp
values starting after the record 2302 and edited them manually to match the accurate
measurement.

Outliers: because of the scope of the problem we are tackling, time series anomaly
detection, we expect that the data has already anomalies or outliers. So, it is important
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to keep them to be able to train the different machine learning and deep learning models
to classify the anomalous points in addition to the normal ones as well.

Normalization: we normalized all the BLER values for both the uplink and
downlink values by using a simple min-max normalization so that the final values
range is from 0 to 1. Due to the existence of the anomalies in the data set, using the
BLER values as they are might influence the model performance and normalizing even
the anomalous points helps the model to generalize better by understanding the pattern
of the anomalies.

4.3. Analysis and Visualization

After cleaning the data and making sure it is in a good shape, we started by dividing
the data set to uplink and downlink data sets based on their features. There were
some shared features for both the uplink and downlink cases which were mostly the
timestamp related ones. The other features were case dependant. So, we divided the
main data set so that the downlink data set has its own features in addition to the shared
features and the same applies to the uplink case.

4.3.1. Uplink

We started by a basic visualization of the BLER feature. As we can see in Figure 1,
most of the values are zero which is the optimal case of the BLER values. We can
also see that there is a pattern that repeats representing increasing and decreasing
trends of the BLER values. Visualizing the whole BLER signal does not reveal much
information in this case and that is why we decided to divide the signal into smaller
ones and visualize each of them separately. All the data set records were recorded
through almost seven minutes, so, we divided the data set into 7 chunks, the first chunk
represents the first minute, the second chunk represents the second minute and so on.

Some of the new divided data sets shared the same pattern as the original data set
such as the pattern represented in Figure 2. While others showed the normal expected
behavior of the BLER feature, to have all the values equal to zero or close to it such
as the one illustrated in Figure 3. Others showed a lot of fluctuations in the signal as
illustrated in Figure 4.

Before moving to the statistical tests, We checked the correlation between the BLER
feature and the other features in the uplink data set but there was not a strong clear
correlation between the BLER and any of the other features. So, we decided to check
the correlation within shorter duration, such as a specific minute of time or through
each couple of seconds. Some of the features started showing some correlation but it
was not significant enough. Checking the correlation between the BLER feature and
the other features helps us in understanding the potential important features that might
be used in the feature engineering phase.
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Figure 1. Uplink BLER feature.

Statistical tests

Statistical tests represent a very important phase of any time series data set
manipulation. Applying the statistical tests enables us to check the number of
significant lags that we will feed to our models and might affect the choice of the model
used in addition to verifying the stationarity of the data which is an essential property
for any time series data set. We started by checking whether the distribution of the data
follows one of the known distributions such as the normal distribution or the Bernoulli
distribution as in that case we will be able to make many assumptions about the data
set and apply direct statistical approaches. As we can see in Figure 5, if the distribution
of data is following one of the known distributions, the curve should have aligned with
the red line, which is not the case for our data. So, we cannot apply direct statistical
rules to our data set. We also checked whether the data set is stationary by applying
the Adfuller test [64] and the p value was very close to 0 which indicates that the data
set is stationary. The zero value of the p value means that there is 0 percent chance of
not rejecting the null, so, it is definitely stationary. Given the data is stationary, using
only the autoregressive moving average (ARMA) model would be sufficient as in that
case we do not need the integration factor represented in the ARIMA model that will
be discussed in the following chapter, and we also do not need to transform the data
set into a stationary one.

After making sure that the data is stationary, we need to decompose the time series
signal into its three components; trend, seasonality and residuals so that we get a
better understanding and a visual of the patterns, trends and outliers in the main signal.
As discussed previously, We can work on extracting the signal components using the
additive or multiplicative approaches. Given that the BLER values usually should be
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Figure 2. Uplink BLER 2nd minute (10.47).

zero or close to zero, we will use on the additive approach. As we can see in Figure 6,
there is no one specific trend in the BLER signal as it has decreasing and increasing
trends with different peaks. The seasonality pattern was captured efficiently from the
original signal and it shows a repeating pattern. Many residuals or fluctuations were
found around the zero value and this is expected because of the anomalous behavior of
the data set.

Given that our data set is not labeled, we need to first work on improving the
forecasting performance of our models whether they are statistical approaches or
machine learning based models. In order for the models to forecast the future values of
the BLER accurately, we need to specify how many lags or time steps in the past will
affect the future forecasting positively and with what weights for each lags in case the
lags have different weights. Checking the auto correlation and partial auto correlation
is one of the ways to check the significance of the lags and visualise this significance.

For the partial auto correlation as illustrated in Figure 7, we can see the first ten lags
are the most significant ones. The first lag is the main contributor to next time step
value and the second lag is the second best contributor. Including all the first ten lags
will slightly increase the model performance but it will require more computational
resources, training time and inference time. The main objective is to select the best lags
that will yield to a good performance while maintaining a good training and inference
time. It is important to mention that the partial auto correlation is mainly used as a
baseline for the autoregressive-based models.

While the partial auto-correlation graph showed that the first 10 lags are the most
significant ones, the auto-correlation graph suggests that the more lags we include the
better model performance we will get with the first lag as the most significant lag as
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Figure 3. Uplink BLER 7th minute (10.52).
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Figure 4. Uplink BLER 5th minute (10.50).
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Figure 5. Uplink BLER Q-Q plot.

Figure 6. Uplink BLER trend, seasonality and residual components.

Figure 7. Uplink BLER partial auto correlation.
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illustrated in Figure 8. We can also see that the significance of the lags decreases
gradually and there is a consistently decreasing trend after the lag 60. It is important to
highlight that the auto correlation is used as the main metric to determine the number of
the significant lags for the moving average method in addition to the machine learning
and deep learning models. Fine tuning the models will be required in all the cases.

Figure 8. Uplink BLER auto correlation.

4.3.2. Downlink

For the downlink data set, we followed the same steps used for the uplink data set. We
started by a basic visualization of the BLER feature as illustrated in Figure 9. As we
can see there is a clearer seasonality pattern in the downlink BLER time series feature
in comparison to the uplink BLER time series feature. We can also see that there are
generally less fluctuations or anomalies than in the case of the uplink. We used the
same approach of visualizing each minute of the signal separately to be able to capture
any trends, correlation or general patterns.

Some of the new divided data set has clear fluctuations or anomalies as illustrated in
Figure 10. Others share a clear seasonality pattern with less fluctuations or anomalies
as illustrated in Figure 11 We can also see that the range of the BLER values in
Figure 10 is limited in comparison to the range of the BLER values in Figure 11.

After the exploratory visualization of the downlink data set, we checked the
correlation between the BLER feature and the other features and there was not a strong
clear correlation between the BLER and any of the other features as well. Then, we
used the same approach used for the uplink data set and checked the correlation within
shorter duration. Some of the features started showing some correlation but again it
was not significant enough as it was around 0.3 to 0.4.
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Figure 9. Downlink BLER feature.

Statistical tests

We again started by checking whether the distribution of the data follows one of the
known distributions. As we can see in Figure 12. if the distribution of data is following
one of the known distributions, the curve should have aligned with the red line, which
is not the case for our data. So, we cannot apply direct statistical rules to our data set.
We also checked whether the data set is stationary by applying the Adfuller test and
the p-value was very close to 0 which indicates that the data set is stationary.

For decomposing the main downlink signal into its components, we used the additive
approach as illustrated in Figure 13. Unlike the uplink case, there is a clear decreasing
trend in the BLER signal which can be interpreted in different ways. One way can
be that there is some calibration of in the transmission and reception process at the
beginning and after this calibration period, the number of ACKs starts increasing
gradually and as a result, the BLER signal decreases. The seasonality pattern was
captured efficiently from the original signal and it shows a repeating pattern. A very
clear seasonality pattern is captured from the signal and it repeats periodically. Many
residuals or fluctuations were found around the zero value as for the case of the uplink
data set. Despite the stronger seasonality and repeated pattern, more residuals were
found in the case of downlink.

For the partial auto correlation and as illustrated in Figure 14, we experimented with
two approaches to check the significance of the lags. The first approach is to take the
zero offset into consideration. This approach is important when the lags show weak
partial auto correlation close to zero. In order to be able to distinguish the values
representing the significance of the lags, we have to set the zero offset. Unlike the
uplink case, we can see that the very first lags show lower significance than the later
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Figure 10. Downlink BLER 4th minute (10.49).

ones. For instance, the fourth lag shows more significance than the first three lags.
The lags number nine and 16 shows the highest significance, in terms of affecting
the model performance. This approach of testing the lags’ significance might not be
efficient eventually as all the partial auto-correlation values are very low, the highest
ones are around 0.04.

The second approach for checking the lags’ significance depends on calculating the
ordinary least squares (OLS) [65] between the lags in addition to taking the zero offset
into consideration as done in the same approach. OLS is one of the popular methods
for estimating the regression parameters or weights in a linear regression model. This
approach gives better indication of the significance of the lags as it assumes a basic
forecasting model for making future predictions to be able to calculate the OLS which
can be used an error metric and a feedback for evaluation the lags’ significance. As we
can see in Figure 15 the first lag is the most significance one. All the other lags were
not significant as their partial auto-correlation value is very close to zero even with
setting the zero offset. The output of this approach, the significance of the first lag, can
be tested by using any of the statistical approaches for forecasting and evaluating the
final output based on any regression metric such as root mean squared error (RMSE)
for instance. Another way to evaluate the output of this approach is by calculating the
auto-correlation as calculating the auto-correlation should yield similar results.

After experimenting with different numbers of lags to calculate the direct correlation
between the lags in the downlink BLER case, we were able to get the same results we
got using the OLS approach for calculating the partial auto-correlation between lags.
As illustrated in Figure 16, the first lag is the most significant one while all the other
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Figure 11. Downlink BLER 7th minute (10.52).

lags have correlation values equal or very close to zero even with setting the offset to
zero.

It is important to mention that due to the anomalous nature of both the uplink and the
downlink data sets, the data analysis, cleaning and preprocessing can differ because of
the existence of the outliers or anomalies which should be handled first in normal case
or otherwise we get false insights. Working on normal BLER data set whether for the
uplink or downlink cases will give more accurate insights about the feature itself and
might help determining the significance of the lags in a more accurate way for better
model performance.

4.4. Data Analysis Conclusion

During the first phase of the data analysis we cleaned and pre-processed the data set
and normalized the BLER features values. After that, we started by dividing the main
data set into uplink and downlink ones so that we are able to get more accurate insights
about the BLER feature in both cases. Then, we checked the distribution of the data
sets and concluded that they do not follow any popular data distributions, which is the
expected behavior of time series data sets. Finally, we made sure that the both the
uplink and downlink features are stationary and ready for the modeling phase.

Through the second phase of the analysis, we mainly focused on checking the
number of significant lags or in other words, previous time steps, that might influence
the model performance. This is also important for the labeling technique we used for
the forecasting purpose. For instance, if the number of lags selected is 60, that means
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Figure 12. Downlink BLER Q-Q plot.

Figure 13. Downlink BLER trend, seasonality and residual components.

we use a sliding window of length 60 time steps and the label of the first 60 time steps
is the 61 time step and for the next 60 time step, from two till 61, is the 62 time step and
so on. Both the partial auto-correlation and main auto-correlation graphs suggest that
the higher the number of lags, the better the model performance. The main objective is
to find the focal point that represents the minimum number of lags that yields the best
possible model performance. The exact number of lags is to be determined during fine
tuning the four models.
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Figure 14. Downlink BLER partial auto correlation with zero offset.

Figure 15. Downlink BLER partial auto correlation using OLS with zero offset.

Figure 16. Downlink BLER auto correlation.
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5. METHODS

In this chapter, we discuss the Four models used for the detecting the anomalies. We
explain how these 4 models work and the advantages of using them. The Four models
selected are from Four different categories to be able to compare the pros and cons
of each category as well. The ARMA model belongs to the statistical approaches
category. The isolation forest model belongs to the unsupervised machine learning
category. The Extreme Gradient boosting regressor (XGBRegressor) belongs to the
supervised machine learning category. Finally, the LSTM model belongs to the deep
learning category.

5.1. ARMA

The autoregressive model [66] or AR model relies on past period values and uses them
only to precise current period values. It is a linear model where current period values
are a sum of past outcomes multiplied by a numeric factor

Xt = C + ϕ+Xt−1 + ϵ (12)

where ϕ is any numeric constant by which we multiply the lagged variable. This ϕ
coefficient should be between -1 and 1.

The more lags we include in our model, the more complicated the model is. The
more complicated the model is, the more coefficients we use. The more coefficients
we use the more likely that some of them will not be significant. In general, the model
takes into account more data to make a prediction. Auto-correlation function (ACF)
captures the direct and indirect effects the previous value has on the current one. Since
we want to select the best model, we want to only choose the lags that have significant
or direct effects. By normalizing two time series, we compare how they perform to
one another. In stationary data sets, ideally, the residuals should follow a random walk
process

Generally, the autoregressive model does not handle unexpected behavior or events
in the time series signal as it often relies on past data to make predictions. However,
there exists a type of self-correcting model which takes past residuals into account.
Such models adjust to unexpected behaviors or events very quickly because the
predictions are corrected immediately following the error. The more errors we
examine, the more adapted our model is to handle unseen errors. These models are
known as moving average models or MA models because absorbing unexpected events
allows the mean to move accordingly. They do exceptionally well in predicting random
walk signals because they make adjustments from the error or previous period. This
gives the model prediction a better chance to move in a similar direction to the values
it is trying to predict. It also stops the model from greatly diverging and this is very
useful in the case of stationary time series data:

rt = c+ θ1 + ϵt−1 + ϵ, (13)
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where θ1 is a numeric coefficient for the value associated with the first lag. We
can say that a simple moving average model or MA(1) is equivalent to an infinite
auto-regressive model with certain restrictions. The main difference between the auto-
regressive model and the moving average model is that the moving average model
relies on the residual values while the auto-regressive model relies mainly on the
variable values themselves. The absolute value of the coefficients in both the models’
cases should be less than one as a restriction. This restriction is to prevent compounded
effects from exploding in magnitude.

Also, both the models have some key differences. One such distinction comes in
the form of determining the maximum number of lags we are willing to include in
our model. While in the autoregressive model, we relied on the partial auto correlation
function, with moving average, we relied on the auto correlation function. Determining
which lagged values have a significant direct effect on the present time step value is
not relevant in our case. The combination of both the models result into the ARMA
model that share the strength points and overcome the negative side of both them. After
choosing the best number of lags, or the degree of the model complexity, for both the
AR and MA model separately, we apply fine tuning again for the final ARMA model.
For example, if we have AR(4) and MA(3), the best ARMA model is not necessarily
ARMA(4, 3) but it is expected to be of a lower degree or otherwise the new ARMA
model will be of degree 7, which adds unneeded complexity for the model to perform
well.

5.2. Isolation Forest

Isolation forest [67] is one of the unsupervised machine learning approaches for
detecting anomalies in time series data sets. As the name implies, it isolates the
anomalies in the data sets from the normal data points. The forest part of the algorithm
name is due to the binary trees mechanism and the combination of these trees together
forms the forest. Because of the nature of anomalies, it is expected that the isolated
anomalies will be closer to the root of the trees. In isolation forest, the data is processed
in a tree structure based on the time series signals. The sample points that go deeper
into the tree structure are the normal points as it is hard for the algorithm to separate
them based on the nature of their values.

As stated earlier, the isolation forest is basically an ensemble to decision trees. These
are more detailed steps of how the algorithm actually works:

1. A random sample of the data is assigned to a binary tree.

2. Branching start randomly based on a randomly selected value or threshold within
the range of the minimum and maximum values of the target.

3. If the current point value is less than the selected threshold, the point goes to the
left of the partition of the tree structure and if it is higher, the point goes to the
right partition of the tree structure.

4. This process continues recursively till we have all the points isolated or until we
reach a pre-defined maximum depth of the tree.
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5. The whole steps are repeated again for new binary trees.

After the whole steps are completed, an anomaly score is calculated for each point
based on how deep this point traveled in each tree, and then, the final anomaly score of
each point is an ensemble based on the contamination value. The contamination value
represents the percentage of outliers in the data set and it is one of the parameters that
need to be defined for the algorithm beforehand. An anomaly score of -1 is assigned
to the anomalous points and an anomaly score of +1 is assigned to the normal points.
Based on the steps explained previously, the algorithm does not take the time series
sequence into consideration as it selects the points and the threshold values randomly
and the timestamp feature is the main feature that distinguishes the time series features
from any normal data features.

Ding and Fei [68] extended the main algorithm and uses a sliding window to be able
to take the time series sequence feature into consideration. Now, the anomaly score is
computed for each sequence and it is proportional to the average path length that the
sequence travels within the binary trees.

S(x, w) = 2−
E(h(x))
c(w) (14)

E(h(x)) =
1

L
ΣL

i=1 hi(x) (15)

where hi(x) denotes the length of the i-th iTree, E(h(x)) the average of h(x) from
a collection of iTrees and c(p) is the average of h(x) given w and L, the number of
iTrees.

The extended version of the algorithm has three main parameters that need to be
defined or tuned:

• Window length

• Number of binary trees in the forest

• Contamination value.

Too short window length causes the loss of important information about the time
series sequence which was the main reason for extending the algorithm functionality.
On the other hand, too long window length might include less relevant information
which can confuse and affect the model performance in a negative way. The higher
the number of the binary trees, the closer the average value of the estimated value but
on the other hand, this increases both the time and space complexity of the algorithm
and as a result, the computational resources required for the training and inference
phases. Contamination value or the percentage of anomalies in the data set: as
discussed earlier, this value should be pre-defined as it affects the model performance
significantly given that the algorithm is an unsupervised machine learning algorithm
and hence, we do not have the data labeled. The contamination value can be determined
in different ways and might require the help of domain experts.
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5.3. XGBoost

XGBRegressor [69] is a supervised machine learning algorithm that is used for
regression-based problems for forecasting or prediction purpose. XGBRegressor uses
gradient boosted trees and we refer to them as the number of estimators when using
the model. The boosting mechanism is done based on the combination of decision
trees. The number of lags in XGBRegressor should be taken into consideration as they
basically form the labels of the data sets. Depending on the data set, the number of lags
can be only one or higher. In our case, we experimented with 5, 60, and 100 lags based
on the auto-correlation and partial auto-correlation graphs to be able to determine the
most significant number of lags that will contribute to better model performance.

After using the model for the prediction purpose. We apply a threshold error based
on the assumption of the percentage of anomalies in the data set and assign different
flags for each assumption.

5.4. LSTM

As discussed earlier, LSTM has the advantage of learning the patterns on long
time series sequences because of its different gates functionalities which enables
it to discard the unnecessary information and learn the important patterns. After
experimenting with different architectures, we found that deep architectures tend to
overfit the data set pretty easily and requires more work for fine tuning the hyper-
parameters, add regularization to overcome the over-fitting problem in addition to the
increased time of training and inference and as a result the computational resources.

On the other hand, experimenting with shallow architectures that have three or less
layers results yield almost the same or close to the performance we got from the deeper
models. Using simple architectures helped in decreasing the training and inference
time exponentially in addition to the time required for fine tuning the model hyper-
parameters and experimentation. Generally, one of the disadvantages of using shallow
networks is the problem of under-fitting but in our case this was not a problem as the
model was able to detect the patterns and generalize for the test set as well.

For the loss function we used a basic mean squared error metric and for the optimizer
we used adaptive moment estimation (Adam) [70] optimizer as it has the advantage of
using adaptive learning rate and performs generally well on sparse and time series data
set most of the time. We used a batch size of four and trained the model for only one
epoch. Training the model for more epochs gets slightly better results but takes much
longer time and computational resources. The exact architecture we used is illustrated
in Figure 17. We used only one hidden layer in addition to the input layer and dense
(fully-connected) layer. We did not need to add any dropout layers because of the
simplicity of the model and as a result, no need for regularization.
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Figure 17. LSTM architecture.
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6. RESULTS

For all the models selected we divided the data set into train and validation sets. The
whole data set was almost 7 minutes length and after some experimentation, the first
5.5 minutes were assigned to the train set and the rest to the validation set without
any shuffle as it is important to maintain the time series sequence. Only the BLER
target with the timestamp features were used through the modeling phase without any
other features. The reason behind that is that some of the models expect only the time
series target such as the ARMA one. In order to compare and benchmark the results,
we need to make sure that all the models have the same input. The inference and the
evaluation were done on the validation data set. The following graphs for models’
prediction and anomalies detection representing the output over the whole data sets,
uplink and downlink ones. We used the trained weights for forecasting over only the
validation set. One of the reasons of choosing a shallow LSTM architecture as shown
in Figure 17 is to overcome the overfiting the data in addition to the constrain of the
time and computation resources. We made sure that the model is not overfitting and
by monitoring the validation loss for longer time and we can see that there is not
overfitting as illustrated in Figure 18.

Figure 18. LSTM train and valid loss for 15 epochs.

6.1. Anomalies Flagging Methodology

The anomaly detection approach we followed to overcome the unlabeled anomalies is
based a flagging technique and the assumption of the percentage of anomalies in the
data set. After we forecast the output of the time series target, we calculate the error
between the models’ prediction and the actual values of the BLER target. Then, we
sort the error values while saving their original indexes so that we are able to restore
the time series sequence back using the saved indexes. Based on the assumption of the
percentage of anomalies in the data set, we select the points with the highest error as
anomalies and project them back into the original time series signal using their saved
indexes. Finally, we use the flagging technique to determine the severity of those
anomalies. If we have only 2% of anomalies in our data set, these points will be the
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ones labeled with the red points. If we have 5% of anomalies in the data set, these
points will be the ones labeled with the red points in addition to the ones labeled with
the yellow points.

6.2. Uplink

6.2.1. ARMA

After the experimentation with different lags for both the AR and MA models, we
found that the best model results are based on the model ARMA(4, 4). In Figure 19 we
can see that the model was able to detect the general pattern in the data set and forecast
the BLER values accurately but the main challenge is that the data set is anomalous
and this results into the model learning the anomalous behavior of the BLER signal as
well which could be solved by training the model on only a data set with normal BLER
values as discussed earlier.
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Figure 19. ARMA(4, 4) model prediction for the uplink BLER signal.

Given that we have the forecasted output, the next step is to calculate the error based
on a statistical threshold and the assumption of the percentage of anomalies in the data
set. As illustrated in Figure 20, we can see that the distribution of the error is centered
around the zero value which matches our knowledge about the default or normal BLER
values.

As illustrated in Figure 21, we can see that the model labeled some of the zero BLER
values as anomalies by mistake and this is because of the nature of the data set.
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Figure 20. Error distribution for uplink BLER forecasting.

6.2.2. Isolation Forest

As discussed previously, one of parameters that influences the isolation forest
performance is the n estimator. After experimentation with different values of the n
estimator hyperparamter, we found that using 20 estimator yields the best performance
as increasing the number of n does not contribute to enhancing the model performance
but just adding more complexity to the model. As illustrated in Figure 22, we can see
that the dominant percentage of the BLER values are equal or close to the 0 value.

Given that the contamination value is the second main parameter that needs to
be given to the model for accurate results, we used the same percentages we used
previously for the other models to be able to compare and benchmark the results. As
illustrated in Figure 23, given the 5% of anomalies, we can see that the model selected
all the BLER points with values that match the contamination value as anomalies.

6.2.3. XGBoost

We generally start by a low number of lags and start adding complexity to the model
depending on the suggested number of lags we got during the data analysis phase.
Following that approach, we found that using only five lags yields the best model
performance as adding more lags do not contribute significantly to enhancing the
model performance. As illustrated in Figure 24, we can see that the model was able
to detect the general pattern in the data set while failing to recognizing the anomalies
pattern. Most of the values forecasted were close to 0 but not actually 0 and this is
due to the very small number of lags selected that gives higher weight to the very
previous time steps regardless of whether they are anomalous or normal points. We
experimented with very large number of of lags such as 100 and 200 and found that
this yields worse model performance.

As illustrated in Figure 25, and given both the assumptions of 2% and 5% anomalies
in the data set, we can see that model failed to detect some anomalies while assigning
the same severity degree to the anomalies detected in both the cases of 2% and 5%
anomalies.
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Figure 21. ARMA(4, 4) anomalies for uplink BLER.

6.2.4. LSTM

Using the same approach used before for selecting the best number of significant lags,
we found that using 60 lags yield the best LSTM model performance as illustrated
in Figure 26. The model was able to forecast low BLER values while retaining the
general pattern in the data set. Some fluctuations were forecasted as normal values.

As illustrated in Figure 27, we can see that the model was able to isolate the
anomalies given the assumptions of percentage of anomalies in the data set. Identical
BLER values were isolated in different cases based on the percentage of anomalies

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 22. Uplink BLER box plot representation.
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Figure 23. Isolation Forest for uplink BLER, contamination of 5.
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Figure 24. XGBRegressor uplink BLER forecast.
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Figure 25. XGBRegressor uplink BLER anomalies detection.

Figure 26. Uplink BLER LSTM prediction.
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Figure 27. Uplink BLER LSTM anomalies detection.

which indicates that the model is learning how to distinguish the anomalies based on
their pattern and not just the values.

6.3. Downlink

6.3.1. ARMA

Like the uplink case, we started by experimenting with different lags for both the AR
and MA models and found that the best model results are based on the model ARMA(4,
3). In Figure 28 we can see that the model was able to detect the general pattern in the
data set and forecast the BLER values accurately. Unlike the case of the uplink, the
model forecasting is closer to the zero values of BLER as the downlink data set has
more stable patterns with less fluctuations.

After forecasting, we used the same approach used previously to calculate the error.
As illustrated in Figure 29, we can that the distribution of the error is centered around
the zero value as well but the tail of the distribution is larger this time which indicates
that the forecasting results are more accurate so that the anomalies are isolated at the
tail of the distribution.

Through the final phase of the error values manipulation and as illustrated in
Figure 30, we can see that most of the fluctuations were labeled as anomalies and
the higher the values of the fluctuations, the faster they are isolated. Again the model
labeled some of the zero BLER values as anomalies by mistake because of the reason
discussed earlier.
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Figure 28. ARMA(4, 3) model prediction for the downlink BLER signal.

6.3.2. Isolation Forest

Despite the difference of BLER values in the uplink and downlink data sets, we found
that using n of 20 yields the best performance as in the case of uplink. As illustrated
in Figure 31, we can see that the dominant percentage of the BLER values are forming
one cluster together. After training the model and assigning the anomaly score based
on the contamination value we can see the anomaly scores distributed over the original
data set values as illustrated in Figure 32.

For the contamination value, we used the same percentages we used previously for
the other models to be able to compare and benchmark the results. As illustrated in
Figure 33, given the 5% of anomalies, we can see that the model selected most of the
BLER points with values that match the contamination value as anomalies.

6.3.3. XGBoost

Unlike the uplink case, we found that using only one lag yields the best model
performance. As illustrated in Figure 34, we can see that the model was able to detect
the general pattern but we can also see that the model predicted some fluctuations in
the BLER values as normal values. The general range of the forecasted BLER values
is low and stable which indicates that the model is learning the pattern.

As illustrated in Figure 35, we can see that the model failed to detect some
fluctuations as anomalies. We can also see that the model detected a couple of 0 BLER
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Figure 29. Error distribution for downlink BLER forecasting.

values, the normal value, as anomalies in both the assumption cases of 2% and 5% of
anomalies in the data set.

6.3.4. LSTM

After experimenting with different lags, we found that using 100 lags yield the best
LSTM model performance as illustrated in Figure 36. The model forecasted stable
values of BLER that are close to the normal behavior of BLER values but the forecast
still deviates from the default values of BLER, the zero values.

By getting a closer look at the prediction of the LSTM model over the validation set
as illustrated in Figure 37, we can say that the LSTM mode is the closest to learning
the expected normal behavior of the BLER feature despite of the anomalous data set.
The model was able to learn the stable pattern with values close to zero and discarded
all the fluctuations or anomalies in the BLER signal.

As illustrated in Figure 38, we can see that the model was able to isolate the
anomalies given the assumptions of percentage of anomalies in the data set. Identical
BLER values were isolated in different cases based on the percentage of anomalies
which indicates that the model is learning how to distinguish the anomalies based on
their pattern and not just the values.

6.4. Evaluation

As discussed earlier, only the validation set was used to evaluate the models’
performance. In the case of the labeled data sets, supervised learning process, we
tend to use classification metrics. On the other hand, we tend to use the regression
based metrics in case of the time series forecasting or prediction problems and in case
of unlabeled anomalies as well, the case of our work. One of the most popular used
regression metric is the root mean square error because of its simplicity to calculate
and its efficiency to indicate whether a regression model is performing well. RMSE is
calculated as follows:
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Figure 30. ARMA(4, 3) anomalies for downlink BLER.

RMSE =

√
1

n
Σn

i=1

(
yi − fi)2, (16)

where n is the number of samples we have in the data set, yi is the true label value
and fi is the predicted target value. We will be using RMSE as our main evaluation
metric for benchmarking the supervised learning based-models’ results.

We used RMSE for all the models except for the Isolation Forest model as it is
an unsupervised machine learning model as shown in Table 1. The evaluation of the
isolation forest model was based on the anomaly score as illustrated in Figure 32 and
we can see that the anomalies were assigned higher anomaly score than the case of
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Figure 31. Downlink BLER 2D distribution in 2d array.
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Figure 32. Downlink BLER anomaly score distribution for isolation forest.
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Figure 33. Isolation Forest for downlink BLER, contamination of 5.
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Figure 34. XGBRegressor downlink BLER forecast.
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Figure 35. XGBRegressor downlink BLER anomalies detection.
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Figure 36. Downlink BLER LSTM prediction.

Figure 37. Downlink BLER LSTM prediction over valid set.
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Figure 38. Downlink BLER LSTM anomalies detection.

the normal points. Anomalous points have an anomaly score of 0.65 or higher. The
RMSE values represent the evaluation of the three models used for forecasting. The
more robust the forecasting the more accurate we are able to detect the anomalies using
the flagging technique explained previously.

Table 1. Models evaluation using RMSE on validation sets
Models Uplink Downlink
ARMA 2.023 3.349
XGBRegressor 2.577 3.852
LSTM 1.928 3.788
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7. DISCUSSION

Exploratory data analysis is always important even for the case of uni-variate time
series as it gives us a better understanding about the whole data set we are working with
generally and the time series target we are interested in specifically. Understanding
the context helps significantly through the data cleaning, preprocessing and modeling
phases. For the time series data sets, it is always necessary to verify whether the data set
is stationary and transform it into a stationary one if it is not already. It is also important
to check whether the data distribution follows one of the popular distributions as in this
case, applying only pure statistical rules can be sufficient.

The data set used for this work has two main limitations. The first one is that it is not
labeled for the anomaly detection purpose. The approach we developed to overcome
this limitation is sufficient but it also depends on the assumption of the percentage
of anomalies in the data set which is also not known. The second limitation is that
the data set has many anomalies which affects the models learning behavior. Training
the model on a normal data set that includes only normal BLER values would have
helped the model in learning the expected behavior of the BLER values and as a result,
detecting any anomalous pattern more efficiently.

Choosing the number of lags that significantly influence the model’s performance
is one of the key factors for any time series forecasting problem. Using partial auto-
correlation or main auto-correlation tests is one way to determine this number but it
is important to highlight that these tests only suggest the range of the number of the
significant lags while the exact number is to be determined during fine tuning the model
used for the forecasting purpose.

The selection criteria of the four models selected was based on the literature review
of these models and their final results’ benchmark on different data sets for the time
series anomaly detection problems. Each model represents a different category of
algorithms. The ARMA one represented the statistical approaches. XGBRegressor
represented the supervised machine learning approaches. Isolation Forest represented
the unsupervised machine learning approaches. Finally, the LSTM model represented
the deep learning approaches.

Based on the previous results we got, we can conclude that the Isolation Forest
algorithm works as a clustering algorithm given its baseline version. That means that
it will be able to isolate the outliers but not the anomalies as it does not distinguish
whether these fluctuations are part of a pattern or just outliers. It does not also make
use of the time series sequence which is a very important feature that influences the
model performance in the case of the time series anomaly detection problems. On
the other hand, being an unsupervised machine learning model, makes it easier to
generalize using this model for unlabeled data sets, which is a common challenge
most of the time. Using the enhanced version of Isolation Forest that takes the time
series sequence into consideration might influence the model performance and makes
it more suitable for the anomaly detection problems and not just the outliers detection.

There are advantages and disadvantages of the other three models. The ARMA
model got the best performance on the downlink BLER data set and the second best
performance on the Uplink BLER data set. It is also important to highlight the
fact that despite it got the second best performance, its RMSE is very close to the
best performance with less than 0.1 difference. On the other hand, it got the best
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performance on the BLER downlink data set with a difference of 0.44 RMSE to the
second best performance. The training time is almost real-time but it depends on
the length of the data set. The biggest odd of the ARMA or ARIMA based models
generally is that it does not accept any other features except for the time series target
we are concerned about. In some cases, we need to test the model performance in a
multi-variate context to be able to check the influence and correlation of other features
on our main time series target as working only on univariate time series target does not
give enough insights in that case.

The XGBRegressor got the highest RMSE for the both the BLER uplink and
downlink data sets. It is important to mention that even though it got the highest RMSE
or worst results, its results are still good as they differ from the other models results
with a small margin. Further fine tuning of the model in addition to more accurate
labeling technique could have resulted in better RMSE. One of the advantages of the
XGBRegrssor is that it can accept and train over additional features other than the main
time series target which can be helpful in the multi-variate context. In addition, it has
very decent training and inference time that we are able to get the final results in almost
real-time.

The simple LSTM architecture we used got the lowest RMSE for the BLER uplink
data set and the second best result for the BLER downlink data set. It is important to
mention that there are many improvements that could be done to the model that will
definitely enhance its performance and yield the best performance among the other
models. Similar to the XGBRegressor, the model can accept and train over additional
features other than the main time series target. We only used one hidden layer in our
architecture and trained the model for only one epoch. Some improvements that can
influence the model performance are:

• Using a deeper architecture

• Training the model for longer time

• Using a different batch size

• Changing the number of perceptrons in hidden layers.

The main goal of this work is not to prove the capability of a certain model or
a category of models to detect anomalies in a time series target but to compare
and benchmark the output of different models from different categories in terms of
different performance metrics. The recommendation of the best model is based on
the constraints of the system this model will be integrated in as there is no one best
model that fits all the requirements. As mentioned previously, this is phase one of
three phases. During the next phases, further filtration process is to be applied to the
selected model or models from phase one.
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8. CONCLUSION

Machine learning has been applied widely in different problems in the wireless
communications domain. Time series anomaly detection-based machine learning topic
has attracted a lot of research attention recently because of its increasing need in almost
all the domains. The main factor that distinguishes machine learning models ability
to detect anomalies from the statistical approaches is the automation factor. Detecting
unseen anomalous patterns without the need of humans expert interference saves many
resources and is considered a huge added value for both the research and industry
aspects.

In parallel to the improvements and enhancements the 5G cellular network has
witnessed, the importance of testing the 5G networks’ environments became an
essential need in terms of the networks’ capacity, reliability and latency. Testing is
done in both the transmitter and receiver sides. This work focuses mainly on one of
the most important features and measurements of the quality of the reception process,
the BLER.

In this work we applied four statistical, supervised machine learning, unsupervised
machine learning and deep learning models for the anomaly detection purpose. Given
that the data set does not have the anomalous points labeled, we developed a flagging
technique for flagging the anomalies in the data set based on their severity and the
assumption of the percentage of anomalies in the data set.

There will always be the trade-off between the performance and resources. If the
performance is our main constrain, then, using complex deep learning models such as
the LSTM model in our case will yield the best results. If training and inference time
and the computational resources required is our main constrain, then, using simple
statistical approach such as the ARIMA models and its variations is the best option as
these models yield good results and have almost real-time performance.

The next phase of this work, after the selection of the model that matches the
required constraints, is to apply the selected model in a multi-variate time series context
where other features’ behavior influence the main time series target. During the final
phase and based on the output of the second phase, the best model is to be optimized
and integrated as part of an automatic time series anomaly detection system that detect
anomalies in a time series target with good performance in real-time.
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