
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Ville Hokkinen

RAPID HIGH-LEVEL BEHAVIORAL
MODELLING OF SOC COMMUNICATION

INTERFACES

Bachelor’s Thesis
Degree Programme in Computer Science and Engineering

February 2022

Hokkinen V. (2022) Järjestelmäpiirien tiedonsiirtoyhteyksien nopea korkean
tason käytösmallinnus. Oulun yliopisto, Tietotekniikan tutkinto-ohjelma, 22 s.

TIIVISTELMÄ

Laitteistojen ja systeemien kasvava kompleksisuus lisää niiden mallinnukseen
vaadittua työmäärää ja resursseja. Erityisesti järjestelmäpiireissä (SoC)
mallinnuksen monimutkaistuminen näkyy. Elektronisen järjestelmätason (ESL)
mallinnus käyttämällä tapahtumatason mallinnuksen (TLM) hyötyjä vähentää
vaadittuja resursseja ja nopeuttaa mallinnukseen kuluvaa aikaa.

Tässä opinnäytetyössä tarkastellaan likimääräisesti ajastettua mallinnusta
käytösmallinnuksen kontekstissa abstrakteilla prosessointi elementeillä ja
abstrakteilla sovittelu proseduureilla.

Tässä työssä kuvataan myös järjestelmäpiirin ja TLM:n perusperiaatteet,
jonka jälkeen tutkitaan erään yrityksen SoC:in tiedonsiirtoväylän mallinnuksen
ongelmaa, ja tutkitaan TLM ratkaisua mallinnusongelmalle.

Avainsanat: järjestelmäpiiri, tiedonsiirtoväylä, elektroninen järjestelmätaso,
tapahtumatason mallinnus

Hokkinen V. (2022) Rapid High-Level Behavioral Modelling of SoC
Communication Interfaces. University of Oulu, Degree Programme in Computer
Science and Engineering, 22 p.

ABSTRACT

The increasing complexity of hardware and software systems increases the
amount of labour and resources required to model them. Especially in system-
on-chips (SoC), the complexity of modeling is evident. Electronic system-level
(ESL) modeling using the benefits of transaction level modeling (TLM) reduces
the required resources and speeds up the modeling time.

This thesis examines approximately timed modeling in the context of behavioral
modeling with abstract processing elements and abstract arbitration procedures.

This thesis describes the basic principles of SoC:s and TLM, and then
a problem of modeling a SoC communication interface for a company is
investigated, and a TLM solution to the modeling problem is explored.

Keywords: system-on-chip, communication interface, electronic system-level,
transaction level modeling

TABLE OF CONTENTS

TIIVISTELMÄ
ABSTRACT
TABLE OF CONTENTS
LIST OF ABBREVIATIONS AND SYMBOLS
1. INTRODUCTION... 6
2. THEORY ... 7

2.1. System on Chip .. 7
2.2. Data Communication Interface .. 7

2.2.1. Parallel and Serial ... 7
2.3. Modeling.. 9

2.3.1. Existing Tools ... 10
3. REQUIREMENTS AND DESIGN... 13

3.1. The Problem... 13
3.2. Requirements ... 13

3.2.1. General Functional Requirements... 13
3.2.2. Architecture Requirements... 14

3.3. Chosen Tool ... 14
3.4. High-Level Architecture and Design of the Tool 15

3.4.1. Architecture Overview... 15
3.4.2. System Interfaces .. 16

3.5. Submodule Design.. 17
3.5.1. Source .. 17
3.5.2. FIFO .. 17
3.5.3. Sink.. 17
3.5.4. Element .. 17
3.5.5. Plotting... 18

4. DISCUSSION .. 19
5. SUMMARY ... 20
6. REFERENCES ... 21

LIST OF ABBREVIATIONS AND SYMBOLS

SoC System on Chip
ESL Electronic System-Level
TLM Transaction Level Modelling
DSE Design Space Exploration
IC Integrated Circuit
HW Hardware
FIFO First In, First Out
IP Intellectual Property
VHDL Very high-speed integrated circuit Hardware Description

Language
SysML Systems Modeling Language
UML Unified Modeling Language

6

1. INTRODUCTION

The increasing complexity of system-on-chips (SoC), combined with the drive for
more sophisticated applications utilizing the available resources smarter and more
energy-efficient, has driven designers around the world to increase the level of
abstraction in system modelling. This has been pursued by adopting electronic system-
level (ESL) design methodologies to lower simulation times and reduce the labour
intensity of the modeling. Modeling systems early gives the engineers a chance to
catch issues earlier in the development cycle, making correcting the issues cheaper
and easier. [1]

Transaction level modelling (TLM) is a set of techniques that enable ESL
and make it practical. Implementing these methodologies in system design has
several application areas: architectural modeling, algorithmic modeling, virtual
software development platforms, functional verification and hardware refinement. [2
Section 1.3]

Figure 1. System modeling graph

In the context of behavioral modelling of SoC communication interfaces, this thesis
looks into approximately timed modelling with abstract arbitration procedures and
abstract processing elements. From the system modeling graph introduced by Cai
et al. in Figure 1 [3], that would correspond to bus-arbitration modelling. This allows
the model accurate design space exploration (DSE), while decreasing the complexity
of the model and the needed labour to produce the model.

This thesis will look into different options for rapid TLM and explore a solution for
a company with a DSE problem in their communication interface under development.
The problem also includes the need for the solution to be applicable to future similar
modeling DSE problems,

7

2. THEORY

2.1. System on Chip

SoC is, by definition, an integrated circuit (IC) system with all of the components of
a specified electronic system integrated on the chip. In this context, system includes
a microprocessor, memory and peripherals. One kind of memory is First In, First Out
(FIFO) memory, found in SoC:s.

SoC:s are found in every consumer product area, and semiconductor companies are
moving towards SoC designs, due to their numerous benefits. SoC design provides
lower system cost, compact system size, reduced power consumption, increased
performance and intellectual property (IP) blocks, which can be reused, customized
and optimized.

Even though moving to SoC provides many benefits, it also has its disadvantages.
For example, in big designs the whole logic may not fit on the chip. Also the
manufacturing becomes a challenge, as now the whole chip needs to be manufactured
instead of modules. Same problems arise in design verification and validation, as
verifying and validating individual modules becomes hard or impossible, due to the
system being monolithic. [4, 5 Section 1]

2.2. Data Communication Interface

Communication interfaces in computer science consist of data lines on which data
is sent and received. This data transmission is done in a diverse set of protocols and
arrangements, such as serial and parallel protocols, depending on where the interface is
used. They are used to make other systems available to communicate with. The data in
this communication consists of either address, control and payload type items. Address
is used to communicate a location in which some operation is performed, control
describes what kind of operations are performed and payload information which the
communication system transmitting or receiving.

The place of the interface and type of data handled in the interfaces poses some
indirect requirements on the system. An interface used for transmitting controls
typically is more vulnerable to errors, as the tolerances are smaller and resources
for highly accurate error correction are not always available. Interfaces used for
transmitting payloads typically have more redundancy in the form of system level
repetition and error correction procedures. [6]

The lines between systems are most typically electrical wires, but optical cabling
can also be used, both having their advantages and disadvantages. Electrical signals
are transmitted as a difference in voltage in the wire, and optical signals as fluctuations
in the light inside the cable.

2.2.1. Parallel and Serial

In parallel communication, bits are sent on parallel data lines, with a package
consisting of the state of the lines at the corresponding moment in time, as per Figure

8

Figure 2. Communication interface.

3. A data line is required for each bit and an additional data line for synchronization.
Parallel data transmission is competent over small distances, but over longer distances,
the cost of multiple data lines becomes a problem, and signals in the cables may
get misaligned, causing timing skew and packet corruption on the receiving end. [7
Section 7.5]

Figure 3. Parallel interface.

Serial communication on the other is carried out on only one data line, where packets
are sent in subsequent bits as in Figure 4. The advantage of this is that bits arrive in the
right order in the receiver. Also, due to the decrease in the required number of wires,
circuitry and cabling become simpler and more affordable. Serial communication has
become more practical over the years compared to its earlier days, due to the increase
in circuit speeds and the development of a wide variety of protocols. These protocols
aim to work at different transfer speeds, as the number of errors and disturbances in
data transmission grows with speed. [8]

An example package from universal asynchronous receiver-transmitter protocol is
shown in Figure 5, which shows how in addition to data payload, other types of bits
than data bits are added to a packet. Here one start bit is added, to mark the start of
the package to the receiver. The start bit is followed by the payload. After the payload,
parity bit or bits are added, to check the validity of data. This is done by using some
algorithm on the data, which outputs the parity bits. This algorithm is also performed
on the payload in the receiving end, providing the same parity bits if the data is the
same. If one bit of the data is different, the algorithm aims to change the parity bit or

9

Figure 4. Serial interface.

bits so that the receiver notices the data corruption, and can inform the sender, that the
data was corrupted and a resend is required.

Figure 5. Example packet from universal asynchronous receiver-transmitter protocol.

2.3. Modeling

Figure 6. Behavioral model use case example.

TLM has been widely adopted in different fields and several tools have been
introduced for modeling tasks. In general, TLM:s impose a trade off between
simulation speed and accuracy loss. The problems designers face now relate to re-
usability of modelled system blocks and capturing the right amount of complexity
in the model. The models need to also have support for being flexible and quickly

10

adaptable, due to rapidly changing design needs. The modelling and eventual
refinement of Intellectual Property (IP) blocks becomes a priority as block like
interface-based design allows for the needed flexibility. [9]

TLM modelling can in theory be done with almost all high level languages. Still
some specific versions have emerged which offer better support for different aspects of
modelling. [2 Section 1.4]

Figure 7. Use of languages.

2.3.1. Existing Tools

You can see in Figure 7 [2 Section 1.4] some of the general use cases for different
modeling coding languages. The most suitable of these are described in more detail
below, in addition to some unorthodox, but still possible options.

SystemC

SystemC is a C++ language extension with class libraries used for system design and
verification. It is especially used for modeling system partitioning, assessing and
establishing hardware or software block assignment, and designing and quantifying
communication between and amid operative blocks. SystemC is used for architectural
exploration by well-known companies in the electronic design automation, intellectual
property, embedded software, electronic systems, and semiconductor industries [10].
SystemC has been criticized for lacking support for verification and debugging, being
expensive on resources to run and being difficult to debug. [11]

VHDL

Very High-Speed Integrated Circuit Hardware Description Language (VHDL) is a
formal notation that is designed to be used in every phase of electronic systems design.
According to the IEEE standard, VHDL has support for "the design, development,
verification, synthesis, and testing of hardware designs; the communication of
hardware design data; and the maintenance, modification, and procurement of

11

hardware." [12 p.14]. As a hardware description language, the main focus for VHDL
behavioral modeling is in modeling low level hardware circuits. This falls out of the
scope of this thesis.

SysML

Systems Modeling Language (SysML) is to be used as a commonplace modeling
language for use cases in Systems Engineering. It has support for the analysis,
specification, validation, and verification of systems such as hardware, software,
processes, information, facilities, and personnel. It is built upon Unified Modeling
language (UML) as an UML 2 profile, meaning it reshapes UML by three structures,
which are tagged values, stereotypes, and constraints. SysML has support for SysML-
as-model-simulation, where the modeled system can be run on a behavioral modeling
engine. [13]

DIPLODOCUS

DIPLODOCUS is a UML profile run on an open-source toolkit TTool for modeling
and designing data-flow embedded systems from UML and SysML diagrams. It
is based on four principles: using high-level and well-known language, abstracting
data, using simulation and static formal analysis techniques on models, and separation
of architecture and application. Because of the underlying transformation rules,
DIPLODOCUS design can be used to generate a SystemC executable that generates
visualizable traces or to generate LOTOS code, a formal description technique, which
is supported and standardized by formal validation tools.[14]

Universal Verification Methodology

Universal Verification Methodology (UVM) is a methodology, which is used to verify
IC designs [15]. It is a class library to SystemVerilog, which is an hardware verification
and description language [16]. The focus of UVM is in helping companies develop
testbench structures, which are modular, reusable and scalable. UVM has been
criticized for having a steep learning curve [17], and for this reason will not be
considered for later modeling efforts, as it falls out of the scope of this thesis.

JavaScript

JavaScript is a popular scripting language, which can be used together with Node.js,
an asynchronous event-driven runtime environment for JavaScript code, to create
executable applications. Together JavaScript and Node.js can be used to create easy to
maintain, high-level, operating system independent and fast applications. JavaScript
also supports importing C/C++ native addons, allowing for integrating existing real
system code to the model, bringing the model closer to reality. JavaScript also has
an extensive libraries containing tools for many kinds of data manipulation as well as
tools for assisting development. [18, 19]

While any high-level language can be used for TLM modeling, no proof of
JavaScript being used for modeling was found. This hampers modeling, as no proof of
concept is available as an example.

12

Python

Python is a high-level programming language, used for general-purpose programming.
Main focus of the language is in readability and producing clear and logical code for
both small and large projects. It has extensive libraries for various data manipulation
techniques and it has support for asynchronous operations in the form of coroutines.
[20]

13

3. REQUIREMENTS AND DESIGN

3.1. The Problem

There are a good deal of different communication interfaces in the company’s product,
and an example interface is provided in Figure 8. One of the key design factors for
optimized systems in the product is finding the optimal parameters for all the interfaces.
This optimization needs a robust and a reliable way to model different design options.
As a part of this thesis work a solution in the form of a general model is explored and
an example design is described.

Figure 8. Problem description.

3.2. Requirements

The development environment in the company combined with the use case for the
model impose some requirements on the model. In this chapter the requirements are
highlighted and introduced under two topics: one for bringing forth the functional
requirements for the modeling system and one for highlighting the architectural
requirements for the modeling system architecture.

3.2.1. General Functional Requirements

The model needs to provide certain output parameters to measure the functionality of
the link. It needs to offer throughput for different use cases, suitable FIFO size for the
data flow, approximate power consumption of the system and latency for each control
passed through the interface. The model also needs to have certain static parameters,
which can be profiled using the model, such as the number of parallel data lines and
FIFO:s, control command sizes and the composition of the higher level controls, clock
frequency and data encoding.

In addition, the model has needs to have an intuitive input and output interface which
can be handled in a standard way. This way different use cases can be crafted to suit

14

the need of the use case that is investigated. The input data flow needs to be in high
enough abstraction that creating new use cases is easy and efficient. To accomplish
this, the model needs to have a parser to break down high-level controls into low-level
control commands to pass through the system. Using the predetermined output the
model should also have a standard logging and visual representation of the logs. The
model should also have a built-in tracing and debugging to find possible problems with
the design. These should also be plotted for more accessible debug data.

3.2.2. Architecture Requirements

The interface model needs to be re-usable as many different use cases within the
company exist for such a communication interface model. Re-usability greatly lowers
the required design time in future applications, but increases the current design time.
To achieve re-usability the model should be modular, with thought put into possible
future extensions.

The model also needs to have some kind of abstract definition for communication
system components, with additional details being added on per model basis. This also
supports the re-usability aspect of the design, as it is relatively easy to build a new
system model with generic components.

The model should provide easy debugging for finding out faults in the system. The
model needs to also support parallelism and data priority, as data is coming in to the
system from multiple sources and being fed through multiple FIFO:s, with different
priority associated with different data.

The requirements have been summarized in Table 1, where some examples have
been provided and the effect of the requirement has been evaluated along with where
the requirement is targeted at.

3.3. Chosen Tool

The major options for modeling are JavaScript, SystemC and Python. All other tools
get pruned out by either being unsuitable for this task or unsupported for this kind
of modeling. From these options the JavaScript tool run on Node.js was chosen for
its high-level coding language properties and built-in support for being used in web-
based applications. Using TypeScript, a superset for JavaScript, we can also achieve
strict type checking, easing future development. The Node.js runtime offers a built-in
asynchronous high-performance JavaScript engine for fast modeling. It has an event
loop which can be used in TLM for accurate and efficient model execution. For plotting
the modeling data a Python tool, Bokeh, will be used as a working framework for
similar plotting has already been completed in another project.

Possible challenges might appear in building the needed code library for successful
modeling, as no such library exists to the best of authors knowledge. Other challenges
might appear in debugging the model while it is still in production, as the event loop is
not the easiest to keep track of.

15

Table 1. Model requirements and their effects.
Requirement Effect Influences
Support for web applications Easier integration into

existing web framework
Modeling language

Strict types Simplifies model design Modeling language
Parallelism Support for parallel data

input from multiple sources
Architecture

Re-usable Assists future development Model
Abstract component modules Assists scalability Model
Static parameters Provides changeable

system parameters such
as clock frequency, assists
DSE

Model

Power consumption Estimates system power
consumption, assists in
DSE

Model

Throughput Estimates system
throughput, assists in
DSE

Model

Latency Estimates data latency
through the link, assists in
DSE

Model

Priority handling Support for prioritized data
in FIFO:s

FIFO

Intuitive input and output Assists future developers in
using the model

Input and output

High abstraction for input Assists crafting different
use cases

Input

Plotting for output Visualizes output, easier
interpretation of output
data

Output

Built in tracing to modules Module states at given
times known, easier
debugging

Every module

Plotting the traces Visualizes module states
at given times, easier
interpretation.

Every module

3.4. High-Level Architecture and Design of the Tool

3.4.1. Architecture Overview

The model contains several general modules: source, FIFO, sink, element and plotting.
Source is a general module for incoming data, which represents data coming in from
other blocks. It feeds data into system at times defined in the parsed version of use

16

case data. General FIFO module mimics the nature of real FIFO memory elements
and it is used to handle different priority data coming from different instances of source
elements, to control and regulate the data flow through the system. Sink module is an
endpoint, where data is accumulated to store in an output file. The general element
module is for adding different behavioral properties to the system. It provides the
actual functionality of the behavior from the communication interface. Plotting module
provides visual output of its input.

Figure 9. Model description.

3.4.2. System Interfaces

The model will take in a file where events are defined at the systems required accuracy,
and system parameters, which define event sizes and different system properties. The
model then provides the needed FIFO depth at different use cases, the throughput of
the system, and the total overhead in the system. Event input is implemented as 3
files: One for high-level use case specification with time accurate control specification,
one for defining control command contents and priority, and one for defining control
command sizes and contents. These are then parsed to create an input event list, with
the size of control command inputs and the time of the input. Then the input data is
processed through FIFO:s and the link, keeping track of link utilization and contents
and FIFO contents. These attributes are mapped into output files and throughput is
estimated from this data. The output file will be visualized using the Python plotting
library Bokeh.

The model may also interact with external C/C++ addons, which may include code
intended to be run on the actual application. This interaction takes place inside the
general modules, and is used to bring the model closer to the application.

17

3.5. Submodule Design

The system will have general hardware (HW) blocks comprising of general code
modules with details being added when needed. A more specific look into submodule
design is offered below.

3.5.1. Source

Whenever a new control command is due to the system the source submodule handles
notifying the central event loop of incoming data, which handles that the transaction
begins at the correct time in the model. In the setup phase, source submodule is fed a
data object list containing all the control commands it will pass into the system as it
progresses. While the system runs, the module passes on data objects containing the
control commands, but only when it is the correct time to feed the data. Regarding the
source submodule, system parameters are the control command sizes passed in to the
source.

3.5.2. FIFO

FIFO submodules task is handling incoming data and feeding it forwards in the right
order. It also logs its state. This submodule is fed data objects, which it releases into
the system when the system is ready to receive data. The data objects have priority,
which affects the order in which control commands are fed into the system. System
level parameter inside this submodule is the priority handling, which can be modified
for different priority algorithms. The submodule produces a suggested FIFO size based
on its utilization.

3.5.3. Sink

Sink submodules task is being a clear endpoint for the data flow and logging the data
that reaches the end. This submodule is fed data objects and it accumulates them until
the model is finished, then it outputs them into a file for easy handling.

3.5.4. Element

The general element submodule handles the actual behavior of the communication
interface part of the system, with payload building and other methods describing the
interface. Element submodule is fed different data objects, which it might alter and
log. Then it forwards a data object with a form described in the setup phase of the
system.

18

3.5.5. Plotting

Plotting module consists of the Bokeh plotting framework. It visualizes the output
files produced by other submodules. The plots can be customized and the framework
is scalable to even larger data amounts.

19

4. DISCUSSION

Using JavaScript with the Node.js runtime allows for more flexible modeling, but
lacks some needed infrastructure for modeling. Creating a working arbitrator for the
transactions proved to be a challenge, but a proof-of-work for event based modeling
on JavaScript was successfully created. The system performance was appropriate with
a test scenario and the model was able to produce realistic plots in the scenario.

Still some planned features are missing from the proof-of-work model. The logging
from each submodule is yet to be implemented and FIFO priority algorithm has some
problems. Difficulties with the arbitrator encouraged searching solutions elsewhere,
and the model could have most likely been successfully completed with SystemC if it
would have proved to be impossible to be successful with JavaScript.

With the proof-of-work JavaScript model we have proven that more detailed models
of the company’s SoC communication interfaces can be modeled using JavaScript.
This can also be extended and modified to cover other similar modeling use cases with
the same DSE problems. The plots created by the proof of work model Figure 10
visualize clearly the utilization of different FIFO:s and the link.

Figure 10. FIFO utilization plots.

20

5. SUMMARY

This thesis presented the basics of SoC:s and TLM and explored a solution for a DSE
problem for a company using TLM. Using TLM reduces the amount of labour required
for a realistic model of a communication system, by abstracting the transaction as
simple function calls and ignoring the unnecessary details in the system.

The target for this thesis was to study different options and exploring a solution
for creating a model to a company’s SoC communication interface. The model was
implemented with JavaScript and a test scenario was successfully run on the model.
Re-usability of the tool in different similar SoC communication interfaces also played
a major part in the design, and modeling in the future is moving towards using previous
modeling as much as possible and only changing details with minimum modifications.

21

6. REFERENCES

[1] Grant M., Brian B. & Andrew P. (2007) ESL Design and Verification : A
Prescription for Electronic System Level Methodology. The Morgan Kaufmann
Series in Systems on Silicon, Morgan Kaufmann.

[2] Black D.C. (2010) Systemc: From the ground up. Springer.

[3] Cai L., Verma S. & Gajski D. (2003), Comparison of specc and systemc
languages for system design.

[4] Mishra S., Singh N.K. & Rousseau V. (2016) System on chip interfaces for
low power design. Elsevier, Waltham, MA, 410 p. Description based upon print
version of record.

[5] Forstner P. (1999), Fifo architecture, functions, and applications.

[6] Da (1984) Chapter 9 data communication interfaces. In: R.R. Smardzewski (ed.)
Yes, Data Handling in Science and Technology, vol. 1, Elsevier, pp. 223–246.

[7] Null L. (2015) The essentials of computer organization and architecture, fourth
edition. Jones and Bartlett Learning © 2015.

[8] Frenzel L.E. (2016) Handbook of Serial Communications Interfaces: A
Comprehensive Compendium of Serial Digital Input/Output (I/o) Standards.
Elsevier.

[9] Rowson J. & Sangiovanni-Vincentelli A. (1997) Interface-based design.
Proceedings of the 34th Design Automation Conference .

[10] Systemc. URL: https://www.accellera.org/community/
systemc/about-systemc About SystemC. Accessed 9.2.2021.

[11] Bailey B. (2015), Is systemc broken? URL: https://semiengineering.
com/is-systemc-broken/.

[12] (2019) IEEE Standard for VHDL Language Reference Manual. URL: https:
//standards.ieee.org/standard/1076-2019.html.

[13] Sysml. URL: https://sysml.org/ SysML Open Source Project. Accessed
9.2.2021.

[14] Apvrille L., Muhammad W., Ameur-Boulifa R., Coudert S. & Pacalet R. (2006) A
uml-based environment for system design space exploration. In: 2006 13th IEEE
International Conference on Electronics, Circuits and Systems, pp. 1272–1275.

[15] (2017), Ieee standard for universal verification methodology language reference
manual.

[16] Rich D.I. (2003), The evolution of systemverilog.

https://www.accellera.org/community/systemc/about-systemc
https://www.accellera.org/community/systemc/about-systemc
https://semiengineering.com/is-systemc-broken/
https://semiengineering.com/is-systemc-broken/
https://standards.ieee.org/standard/1076-2019.html
https://standards.ieee.org/standard/1076-2019.html
https://sysml.org/

22

[17] Sana S. (2020), The best way to learn systemverilog accelerated verification
with uvm. URL: https://community.cadence.com/cadence_
technology_forums/f/functional-verification/46679/
the-best-way-to-learn-systemverilog-accelerated-
verification-with-uvm-blended-training UVM. Accessed
16.2.2021.

[18] Jansen R.H., Vane V. & Wolff I.G.d. (2016) TypeScript: Modern JavaScript
Development. Packt Publishing.

[19] Javascript. URL: https://developer.mozilla.org/en-US/docs/
Web/JavaScript JavaScript. Accessed 9.2.2021.

[20] Python. URL: https://docs.python.org/ Python. Accessed 16.2.2021.

https://community.cadence.com/cadence_technology_forums/f/functional-verification/46679/the-best-way-to-learn-systemverilog-accelerated-verification-with-uvm-blended-training
https://community.cadence.com/cadence_technology_forums/f/functional-verification/46679/the-best-way-to-learn-systemverilog-accelerated-verification-with-uvm-blended-training
https://community.cadence.com/cadence_technology_forums/f/functional-verification/46679/the-best-way-to-learn-systemverilog-accelerated-verification-with-uvm-blended-training
https://community.cadence.com/cadence_technology_forums/f/functional-verification/46679/the-best-way-to-learn-systemverilog-accelerated-verification-with-uvm-blended-training
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://docs.python.org/

	
	
	
	
	

	
	

	
	
	
	
	

	
	
	
	

	
	
	
	
	
	

	
	
	REFERENCES

