
 

 

 

 

 

 

 

ARTIFICIAL INTELLIGENCE IN STUDYING AND 

EVALUATION OF OTITIS MEDIA BY ACOUSTIC 

REFLECTOMETRY 

 

 

 

 

Iikka Nissi 

Master’s Thesis 

 

Medical and Wellness Technology  

Faculty of Medicine 

University of Oulu 

2022



 

 

Nissi Iikka (2022), Faculty of Medicine, University of Oulu, Master's thesis, 52 

pages. 

Abstract 

Objective:  

Acute otitis media (AOM) is usually associated with upper respiratory tract infections 

and common colds, but many times it can last longer than the initial symptoms. An 

acoustic reflectometry device can be used to objectify the diagnostic process. The purpose 

of the study was to train the neural network to identify ears with symptoms of AOM using 

the acoustic response of the device. 

Methods:  

An acoustic reflectometry sample of 53 ears from 39 patients was collected during 

laryngoscopy operation from patients with recurrent ear infections. In addition to the 

acoustic samples, the doctor determined whether ear had visual signs of otitis media (OM) 

and whether there was effusion in it. These three parameters were used in the construction 

of feedforward neural network. Two neural network layouts were selected, one with 

samples of effusion-only sick ears and the other with sick ears based on other visual 

indications of OM, independent of effusion.  

Results:  

The sensitivity and specificity of the trained networks were about 90%. Two different 

groupings of samples clearly showed that diseased ears without effusion could be 

identified as sick with sensitivity of 80-90%, when similar ears were included in the 

category of sick ears. Network with sick ears with effusion as training material had a 

sensitivity of 20-30% identifying sick ears without effusion. The inclusion of both types 

of sick ears in single network caused slight drop in sensitivity and specificity compared 

to just one type. 

Conclusion:  

Acoustic reflectometry can detect more than just standard cases of acute otitis media, in 

which effusion typically occurs. An accurate neural network for identifying sick ears 

without effusion can be achieved with a relatively small sample size. This indicates a 



 

 

possibility of conducting an in-depth analysis of other diseases within the OM group or 

the transition between these diseases. 
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Nissi Iikka (2022), Lääketieteellinen tiedekunta, Oulun yliopisto, Pro gradu – 

tutkielma, 52 sivua.  

Tiivistelmä 

Työtarkoitus: 

Akuutti otitis media (AOM) yhdistetään yleensä ylempien hengitysteiden tulehduksiin ja 

nuhaan, mutta monesti otitis media (OM) oireet voivat kestää tulehdustilaa tai nuhaa 

pidempään. Akustista reflektometriaa käyttävän laitteen avulla diagnosointi prosessia 

voidaan tarkastella objektiivisesti. Työn tarkoitus oli opettaa neuroverkko, mikä tunnistaa 

AOM-oireisen korvan akustisen reflektometrin akustisesta mittauksesta. 

Menetelmät: 

Laryngoskopiaoperaation aikana kerättiin akustisella reflektometrialla otos 53 korvasta. 

Operaatio suoritettiin 39 potilaalle, joilla oli uusiutuvia korvatulehduksia. Akustisten 

näytteiden lisäksi operaation aikana lääkäri määritti visuaaliset OM-merkit ja eritteen 

määrän. Näitä kolmea tietoa käytettiin eteenpäin kytkeytyvän neuroverkon 

rakentamiseen. Kaksi neuroverkkoa rakennettiin, joissa ensimmäisessä oli pelkästään 

eritettä sisältävät korvat, ja toisessa kaikki visuaalisesti OM-merkit täyttävät korvat, 

mukaan lukien eritettä sisältävät korvat.   

Tulokset:  

Opetettujen neuroverkkojen sensitiivisyys ja spesifisyys olivat 90 % luokkaa. Kahteen 

ryhmään jaettu aineisto osoitti, että sairaat eritteettömät korvat voidaan tunnistaa sairaiksi 

80–90 % sensitiivisyydellä, kun neuroverkolle opetetaan sekä eritteiset että eritteettömät 

sairaat korvat. Pelkästään eritteisiä korvia sisältävä neuroverkko tunnisti eritteettömät 

sairaat korvat 20–30 % sensitiivisyydellä. Eritteisten ja eritteettömien korvien käyttö 

samassa neuroverkossa laski sensitiivisyyttä ja spesifisyyttä verrattuna pelkkien 

eritteisten käyttöön. 

Johtopäätökset:  

Akustinen reflektometria voi tunnistaa muitakin tiloja kuin tyypillisen eritteisen akuutin 

otitis median. Pienellä näytemäärällä voidaan saavuttaa tarkka neuroverkko, mikä 



 

 

tunnistaa otitis median ilman eritteen läsnäoloa. Tämä viittaa mahdollisuuteen, että 

syvällisellä analyysillä voidaan saada lisää tietoa taudin etenemisestä tai taudin muista 

tiloista. 

 

Avainsanat: Tekoäly; Akustinen reflektometria; Otitis media; Otoskopia 
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Abbreviations used 

AI   Artificial Intelligence 

ANN   Artificial neural network  

AOM   Acute otitis media 

AR   Acoustic reflectometry 

BP   Back-propagation  

CC   Correlation coefficient 

CNN   Convolutional neural network  

FFT   Fast Fourier transform 

FNN   Feed-forward neural network 

LM   Levenberg-Marquardt 

LPC   Linear Prediction Coefficients 

MEE   Midlle ear effusion 

MFCC   Mel Frequency Cepstrum Coefficients 

NN   Neural network 

OM   Otitis media 

OME   Otitis media with effusion 

PCA   Principal component analysis 

purelin    Linear transfer function  

RNN    Recurrent neural network  

SG-AR   Spectral gradient acoustic reflectometry  

tansig    Hyperbolic tangent sigmoid transfer function 

TM   Tympanic membrane 
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1 Introduction 

Otitis media (OM) means generally an inflammatory condition in the middle ear having 

various background factors as well as symptoms and courses of the disease. 

Acute otitis media (AOM) is a common infectious disease particularly among young 

children all over the world (Teele, D. W., Klein, & Rosner, 1989). It is a bacterial or viral 

ear infection that appears usually in connection with an upper respiratory tract infection 

(Granath, 2017; Wiertsema & Leach, 2009). Its typical symptoms, ear pain and hearing 

impairment, cause the child suffering and the child’s illness strains the family in many 

ways. 

The inflammatory process in the upper respiratory tract and the middle ear leads in 

swelling of mucous membranes and increased mucus secretion. As a result, the auditory 

tube (Eustachian tube) connecting the middle ear cavity and the nasopharynx becomes 

constricted or even completely blocked. Further, the middle ear ventilation and the mucus 

transporting function of the tube becomes insufficient. Resulting condition is called otitis 

media with effusion (OME). The accumulated mucus in the middle ear and the swollen 

eardrum causes so called conductive hearing impairment because the structures of the 

middle ear cannot normally conduct an ambient sound vibration to the inner ear. (Parmar 

et al., 2019; Wiertsema & Leach, 2009) 

The spontaneous healing of AOM occurs usually in the period of 1-2 weeks. Anyhow, 

prolonged ear infections are not rare. Besides that, some children suffer from recurrent 

otitis media that cause need for frequent doctor visits. 

After the acute period of otitis media there may be individually varying symptoms and 

signs of OM.  The effusion may still stay in the middle ear albeit the ear pain is not 

existing anymore. During that kind of “silent” form of OM the child is prone to get a new 

AOM and he or she may have a hearing impairment which the parents cannot notice 

(Parmar et al., 2019). Older children can communicate and describe if they suffer from 

ear locks or pain, but younger children just become restless, touch a painful ear with their 

hands and cry. It is difficult to detect of otitis media at home. It is also challenging for 

parents to decide when a doctor’s appointment is needed.  



 

 

At the doctor’s office, the primary method to examine an otitis media is to use an 

otoscope, which is an optical tubular device to help to see and evaluate the condition of 

the tympanic membrane (TM) under well-lit conditions. The freedom of movement of the 

TM can be tested by applying an air pressure pulse to the ear canal with a pneumatic 

otoscope (Abbott, Rosenkranz, Hu, Gunasekera, & Reath, 2014; Lous, Ryborg, 

Damsgaard, & Munck, 2012; Won et al., 2018). This method does not work when the TM 

cannot be seen due to wax or a narrow ear canal (Pichichero, 2000). Moreover, the 

examination may be uncomfortable or painful for the child, that may reduce the 

willingness to cooperate. So, the diagnostic of OAM is in many cases challenging and the 

result of examination remains uncertain. 

Another method for detecting the presence of fluid is acoustic reflectometry (AR) 

(Kimball, 1998; Pichichero, 2000; Puhakka, 2014; Teele, David W. & Teele, 1984), 

which does not require as much cooperation with struggling children as using otoscope 

(Barnett et al., 1998; Chianese et al., 2007; Teppo & Revonta, 2009). Acoustic 

reflectometry, in simple terms, is a recording of reflection, which is produced by 

projecting sound towards TM. From that recorded reflection, it is possible to figure out 

many different parameters, e.g., spectral changes or delays in time of reflection. The use 

of various parameters can be utilized for different physical conditions that occur in otitis 

media cases. AR has been used mainly for the detection of effusion in previous solutions 

and studies. 

This study is based on the method developed by Hannula et al., where acoustic 

reflectometry data were collected using a PC internal sound card via a USB port and 

analyzed using a generalized regression-based neural network (NN). Acoustic data was 

converted to spectral data by fast Fourier transform (FFT) and the neural network was 

trained using this information in combination with the amount of middle ear effusion 

(MEE)  taken from the ear, scaled between 0 and 1. Previous studies focused on the 

incidence and amount of effusion observed in the ear (Hannula, Hinkula, Holma, Löfgren, 

& Sorri, 2009; Hannula, Holma, Löfgren, Hinkula, & Sorri, 2011). This study used new 

smartphone device, remade spectral conversion and focused on the detection of AOM, 

regardless of effusion. 
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2 Background 

2.1 Otitis media 

Otitis media is a general term to address middle ear inflammation, which is distinguished 

between different states using additional terms. In most OM cases mucus is present in 

middle ear after membranes swell and the extraction of mucus is limited. Acute OM is 

used when bacterial infection is present. OME is a non-infected state where the mucus is 

blocking the middle ear e.g., after virulent upper respiratory infection. Cases of AOM or 

OME are typically short term, but prolonged episodes can lead to more severe 

complications. (Mandel et al., 2016; Schilder et al., 2016)  

The environmental factors increasing the risk of getting OM include age, genetical 

differences and socioeconomic status. The probability of inheriting OM susceptibility 

from parents is relatively high. (Schilder et al., 2016) 

2.1.1 Eustachian tubes 

One explaining factor for prolonged OM cases is the changes in the eustachian tube (ET) 

development. ET act as drainage and pressure equalizing for the middle ear. This enables 

the tympanic membrane to work freely without being forced inwards or outwards by the 

pressure difference in outer ear. When the efficiency of ET function is decreased, mucus 

is formed faster than it is drained out. This symptom can be caused natural physiological 

difference where the opening of tubes is not functioning. One significant difference in ET 

structure is between young children and adults. The position of ET for children is 

horizontal from middle ear to nasopharynx, whereas for adults ET is more vertical, close 

to 45 degrees (Schilder et al., 2016). Also, the ability to manipulate the opening of ET by 

jaw and muscle movements is much more effective for adults. (Bylander, 1980; Mandel 

et al., 2016) 

2.2 Diagnostic methods 

Hearing problems are many times present in OME cases, but it can’t be utilized when 

child is too young to communicate (Parmar et al., 2019; Teele, D. W., Stewart, Teele, 

Smith, & Tregonning, 1990). Definitive way to diagnose OME is myringotomy operation, 

but it is not feasible in check-ups at primary health care or general clinics. Clinical uses 
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include pneumatic otoscope and tympanometer (Barnett et al., 1998; Laine, 2015). Less 

common method is acoustic reflectometer, which has not reached popularity in clinical 

use.  

2.2.1 Otoscopes and tympanometer 

AOM diagnostic in general practices can be limited to pneumatic otoscopes and 

tympanometers as non-pneumatic otoscopes don’t provide enough information on MEE 

(Abbott et al., 2014; Laine, 2015). Microscopy is used in specialized environments. 

Pneumatic otoscope uses positive and negative air pressure to visually check TM for 

irregular mobility, which can indicate presence of different pathologies. Method is limited 

by the high level of competence required to provide diagnosis, which makes it hard to 

generalize between studies (Fagan, 2014). 

Tympanometer can be described as pneumatic acoustic reflectometer, as the mechanism 

has similarities between both solutions. A negative to positive air pressure is varied inside 

ear canal and measuring sound is recorded during this change in pressure. Tympanogram 

is printed for every pressure value, resulting in graph with pressure on horizontal axis and 

compliance on vertical axis. Plotted curve should have distinguishable peak near 0 

pressure for healthy ear. Different peak location and undisguisable peak indicate 

abnormal states. (Lous et al., 2012) 

The most challenging part in standard otoscopic diagnostic method is identifying MEE; 

both pneumatic otoscope and tympanometer specialize in this (Abbott et al., 2014). 

Tympanometer is more likely to give standardized results as it is not as dependent on the 

expertise of users but is expensive compared to pneumatic otoscope. Pneumatic otoscope 

reliant diagnosis is more likely to mistake healthy ear as OME. Tympanometer sensitivity 

and specificity is in most studies between 70 and 95% but there was high cap as the lower 

value was in most cases around 50 and 60%. (Laine, 2015).  

2.2.2 Acoustic reflectometry 

AR utilizes the reflectance of soundwaves from surfaces to detect changes in the structure 

of point of interest. In the case of OM, TM is many times rigid and possibly unmovable 

from the mucus or pressure difference (Laine, 2015). The density change inside middle 

ear can also have effect. Reflectance is measured by recording the summarized value from 
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both loudspeaker output sound and reflected sound from ear. Basic methodology of AR 

is to display the reflected energy profile of target in some form e.g., intensity of sound, 

time difference measurements or as power of frequency. Then analysis is based on the 

thresholds or profiles of known healthy and sick values. These thresholds and profiles are 

investigated in clinical trials and confirmed by other state-of-the-art methods. 

2.2.2.1 Methods 

Acoustic reflectometry was popularized by studies performed by Teele et. al. The method 

utilizes the nature of reflected and incident sound being out of phase when the distance 

from microphone to TM is quarter of sound wavelength. This creates a low point in 

measured sound intensity, which is then used to detect middle ear effusion. (Teele, David 

W. & Teele, 1984) 

In spectral gradient acoustic reflectometry (SG-AR), a spectral slope, also called spectral 

gradient, is used to measure the physiological changes. A Fourier transform is used to 

show spectral information, which is then used to detect the slope location and angle. The 

steepness of this slope is the defining parameter in SG-AR. Commercial adaption of this 

method was made by EarCheck and earliest studies also mention EarCheck (Block, S. L. 

et al., 1998). Other mentions of method used are scarce and use different terms e.g., angle 

of the curve (Kemaloğlu, Sener, Beder, Bayazit, & Göksu, 1999). Newer studies are very 

much synonymous with EarCheck and SG-AR. Device measures the angle and lower 

value indicates higher risk of middle-ear effusion, which in many cases indicate OME 

(Barnett et al., 1998) 

One more comparable method is by Hannula et al. (Hannula et al., 2009; Hannula et al., 

2011), where frequencies of acoustic reflectometry are used as such to input to NN, 

without using any specific singular point to determine the result. Method is similar when 

compared to SG-AR, but the determining of result value is left to NN. 

More complex audio processing and analysis is nonexistent in AR studies. This can be 

seen how already common methods such as Mel-Frequency Cepstral Coefficients 

(MFCC) have been in use by different areas of medicine (Bahoura & Ezzaidi, 2013; 

Balamurali et al., 2021). When considering the wide range of OM related symptoms and 

individual pathological categories and only diagnostic focus in recorded sound is the 

presence of MEE (Coleman, 2021; Schilder et al., 2016; Teele, D. W. et al., 1989). 
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Processing and audio analysis methods can be used to increase the number of features 

extracted from the reflected audio, aside from the physical dimension changes that can be 

made to recording device.  

2.2.2.2 Diagnostic relevance 

Many studies compare AR with tympanometry as it is the widely accepted standard for 

OM diagnosing. Study results are divided between tympanometry or AR being superior 

solution. Differences are produced by used methods and selected test criteria. Study 

comparison can be divided into sound intensity-based studies, SG-AR based studies and 

rest into different acoustic analysis methods.  

Sound intensity-based results were the first studies utilizing AR. Teele’s study showed 

94.4% sensitivity and 79.2% specificity, after confirming results with tympanometer and 

acoustic admittance (Teele, David W. & Teele, 1984). 

SG-AR method by EarCheck Ltd seems to be equal method compared to tympanometry 

in many studies, where definitive diagnosis was made with either pneumatic otoscopy, 

microscopy or surgery (Barnett et al., 1998; Block, S. L. et al., 1998; Block, Stan L., 

1999; Kimball, 1998; Laine, 2015). This is a common comparison as they are considered 

clinically easy to use compared to pneumatic otoscopy which requires experienced 

operators (Fagan, 2014). Two studies slightly favoured EarCheck over tympanometer 

(Babb, Hilsinger, Korol, & Wilcox, 2004; Puhakka, 2014) and two studies vice versa 

(Chianese et al., 2007; Muderris et al., 2013). Aside from EarCheck, in older studies 

acoustic otoscopes have showed more promising results with SG-AR being equal or 

slightly better than tympanometer (Douniadakis, Nikolopoulos, Tsakanikos, Vassiliadis, 

& Apostolopoulos, 1993; Kemaloğlu et al., 1999). The dependent variable in each study 

seems to be the selected cut-off for the measured angle. SG-AR studies show that 

measurements between different angles can produce high accuracy while sacrificing the 

sensitivity or specificity (Chianese et al., 2007; Teppo, Revonta, Lindén, & Palmu, 2006; 

Teppo & Revonta, 2009). Angle values with balanced sensitivity and specificity produce 

in most cases between 70% and 80% (Chianese et al., 2007; Muderris et al., 2013). The 

best cut-off point varied between different studies and showed that EarCheck can have 

very high accuracy in single gradient level, but significantly biased towards negative 

accuracy at other levels. The high negative predictive values were proposed to be a good 
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screening tool for clinic or home use as negative result was seldom false (Babb et al., 

2004; Teppo et al., 2006; Teppo & Revonta, 2009). 

Neural network results from Hannula were mostly from preliminary testing of fluid level 

detection (Hannula et al., 2009; Hannula, Hirvikoski, Hinkula, & Holma, 2009; Hannula 

et al., 2011). No clinical OME results were published. Results state that a correlation 

between neural network output and fluid level exists (Hannula et al., 2011). 

2.3 Artificial Intelligence and machine learning 

Artificial intelligence is machine using technology to operate like intellectual biological 

being while solving problems. Machine learning is this machine using premade 

algorithms to develop these problem-solving functions from existing data. Algorithm will 

make assumption of the data structure and then build the functions to try and match the 

input and output variables with minimal error. First step is the selection of algorithm that 

is suitable for the data, which can be binary, continuous numerical values or multiple 

category classification. When learning is done, these functions can be used to predict 

outcomes or operate different functions. 

2.3.1 Input or feature selection 

Point is to use most relevant values for building the AI system. This way there are no 

redundant or irrelevant data making the processing heavier with increased number of 

calculations. Correct feature selection can also lead to more accurate system.  

2.3.1.1 Principal component analysis (PCA)  

PCA is a dimensionality reduction method when handling large datasets. It is used to 

create new variables which have no correlation to the original data, while preserving the 

information the dataset has. Method principle is finding new linear functions that 

maximize the variance of dataset. This is done by solving eigenvector problems. (Jolliffe 

& Cadima, 2016) 

2.3.1.2 Refief 

Relief utilizes a filter-type feature selection. It is flexible method suitable for many 

different data characteristics. It calculates a score for each feature to determine the 

relevance. Scores for each input parameter is dependent to nearest neighbor relations. 

Relief cycles through datasets and calculates values for differences between neighbor 
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datapoints. Scores are then updated based on these values. (Urbanowicz, Meeker, La 

Cava, Olson, & Moore, 2018) 

2.3.1.3 Filtering data 

After selecting NN model and functions suitable for the data, many times the data needs 

to be preprocessed. The NN in most cases is not flexible enough to remove datapoints, 

which have undesired impact on the NN. This problem is the scope in deep learning 

(Goodfellow, Bengio, & Courville, 2016). For machine learning either filtering or manual 

selection is needed for datapoints depending on the size of the data. Detecting and 

removing influential observations from the data will increase accuracy and reliability. 

Datapoints causing large deviations to the calculated network are called outliers. Outliers 

are random occurrences, which don’t describe the observed phenomenon. These are most 

likely caused by data collection errors, or in the worst-case scenario, phenomena the 

testing equipment cannot understand, but still relevant physiological measurements 

outside the intended scope. (Singh & Upadhyaya, 2012) 

2.3.2 System 

Selecting the system components depends on the type of input values and desired output. 

Machine learning system is constructed by the algorithms selected and creating a structure 

matching that algorithm. Typically, machine learning algorithms can be divided into 

regression and classification methods. These two are not mutually exclusive and there are 

algorithms that can be used for both (Torgo & Gama, 1997). 

2.3.2.1 Regression 

Regression is used when making models to predict values. When a linear relationship 

exists between dependent and independent variable, dependent variable values can be 

predicted even when there is no existing data representing the exact independent variable 

value. One of the regression algorithm models is linear regression, where continuous 

numerical values are summarized and the linear relationship between dependent and 

independent variable is calculated. The relationship is represented by equation that leaves 

minimal error when these two variables are used in the equation as input and output. 

Simple linear regression model can be built for predicting weight when e.g., height is 

known. System with more than one independent variable is called multiple linear 

regression. (Osborne, 2021) 
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2.3.2.2 Classification 

Classification methods can be simplified to finding borders from dataset to either find 

labels, which can be used to define limits for a class or divide dataset into wanted number 

of classes using known labels. Understanding and predicting the labels is important. This 

can again be expanded to binary or multi-class systems. In case of OM binary classifier 

could be OME and healthy, and multi-class could be OME, AOM and healthy. The 

selection of input parameters and the feasibility of distinguishing the difference between 

very similar OM conditions is what must be understood when making such classification 

system. (Kotsiantis, Zaharakis, & Pintelas, 2006) 

Example of classification algorithm would be decision tree, where each node has defined 

number of possible outcomes depending on the feature that is observed in that node. 

Decision trees are mainly classification algorithms but can be adapted easily to different 

tasks, e.g., as regression trees, when the node functions are defined as numerical 

thresholds (Yang, Liu, Tsoka, & Papageorgiou, 2017).  

2.3.2.3 Artificial neural network 

The difference in structure of nodes and connections are very different in each of these 

systems. Simple linear regression is defined as formulas depicting the correlation between 

dependent and independent variable. Decision trees are flowcharts with different feature 

comparisons and thresholds in each step of chart, which leads to classification in the 

bottom of the chart. In more complex cases the number of variables and features increase, 

which can lead to redundancies. When handling many features, artificial neural network 

(ANN) is more feasible. 

ANN is a collection of many neurons that can be layered to form multiple levels for 

different computational functions. The main parts are the input layer, hidden layers, and 

output layer. Example of neural network model in Fig. 1. Most common neural network 

types are feed-forward neural network (FFN), convolutional neural network (CNN) and 

recurrent neural network (RNN). ANN is the basic term for every NN, and it is many 

times used in place of the FFN, because it was the first NN model and most common. 

FFN operates in linear manner from input layer towards output layer. CNN can skip 

neurons in layers by focusing on distinct properties in the input data, e.g., filtering images. 



 

18 

 

RNN stores data in layers and uses that stored data to make predictions of sequential or 

time series data.  

Fig. 1. ANN diagram 

Figure shows the network structure with layers where the lines between represent the 

calculated weights of the transfer function inputs. Every neuron in layer is connected to 

all neurons on the next layer. 

Training a FNN is done by finding suitable weights between each neuron. The weights in 

case of FNNs can be found with back-propagation (BP). BP means calculating the 

gradients of network layers to minimize the loss occurring with current weights set for 

FNN (Goodfellow et al., 2016). This calculation is performed by checking the output 

error from current network and propagating the error back to the network layers (Gavin, 

2013). Transfer functions are not typically modified during BP in NNs (Tutunji, 2009). 

Transfer function selection and layer sizing are crucial parts, since they are static during 

BP. Once the NN is trained, hidden layers combined with weights between neurons 

should produce close to desired results with minimal loss. 
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Levenberg-Marquardt (LM) algorithm is the tool utilized in processing the gradients, 

which are calculated during BP. LM algorithm is used to find solutions to non-linear 

problems. The algorithm operates by minimizing the square error between the matching 

function and the input. This is the so-called least squares method. LM is a combination 

of two different algorithms, gradient descent algorithm and Gauss-Newton algorithm. LM 

balances between these two methods by changing the damping factor after checking 

whether approximation is getting better or worse after each iteration. (Gavin, 2013) 

2.3.3 Validation 

Last step in AI model is the validation. When a NN is constructed, training algorithms 

can lead to different answers caused by the random initial weight selection (Cao, Wang, 

Ming, & Gao, 2017). Results from validation are more reliable when error is minimal in 

subsequent trainings with random initial weights. Validation is many times included in 

the training function or it can be performed manually by leaving part of the data out of 

the training dataset. The validation data is input as data to the constructed model and the 

model output is compared with the actual values. This provides error, which can be used 

in the evaluation of the model. The selection of validation data can be done by rotating 

the data randomly or applying different cross-validation methods (Vabalas, Gowen, 

Poliakoff, & Casson, 2019). It is better to have as many iterations as possible. In large 

datasets this might not be as clear, but in smaller sample sizes a single abnormal datapoint 

can cause large deviations. The biggest problem in uneven distribution is overfitting of 

model (Ying, 2019). Overfitted model will only give good results for the phenomenon 

that is most represented in the training data and will perform poorly with new data. With 

smaller dataset underfitting can occur, which has bad performance with both training and 

new data. 

2.3.3.1 Validity of data for generalization 

In machine learning models the generalization is one of the main points. It is expected 

that model can solve unseen cases from the same problem category, not just the data input 

during training. This is reached by having large dataset with enough diversity. Large size 

means that it is more probable that both training and validation datasets are diverse. Cross 

validation methods help with the diversity and distribution. Over- and underfitting can 
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also happen with selected machine learning algorithms when number of features is too 

large. This leads back to dimensionality reduction. (Ying, 2019) 

The validity of model can be expressed in the amount of error or correlation. In medicine 

the standard way is to describe the results with true and false basis. The range is binary, 

and the model gives either positive or negative result, which is either true or false. This 

is given as sensitivity, correct positive readings divided by all positive cases, and 

specificity, correct negative readings divided by all negative cases.  
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3 Objective of the study 

The objective of the study is to collect clinical data using a next-generation mobile device 

to verify and investigate the accuracy provided by AR data for use in diagnosing otitis 

media, and not just to detect effusion behind the tympanic membrane (Hannula et al., 

2011). The study consisted of data collection in the Department of Otorhinolaryngology, 

Oulu University Hospital, and modelling a system for detecting sick ears.  
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4 Material and methods 

The data was gathered from the patients who were scheduled for a myringotomy operation 

providing an accurate assessment of ear status by professionals with state-of-the-art 

devices. A total of 39 patients were studied, completing 75 ears altogether. Data of 22 

ears were abandoned, and 53 accepted. The abandoned ears were classified as 9 already 

tubed TMs, 2 perforated TMs, 3 too much environmental noise and 8 device 

malfunctions. The accepted ears were classified as 28 healthy and 25 sick, of which there 

were 19 cases with effusion and 6 cases with minimal effusion. Those 6 cases had clear 

visual signs of AOM but could not be clearly classified as AOM like the other 19 cases. 

Unclear cases were handled as own group and taken into consideration in the study.  

Data collected from each ear included a binary diagnosis of otitis media (healthy - sick), 

the amount of effusion as rough estimates using the number of + signs, three AR 

measurements, and three additional measurements if there was wax in the ear and had to 

be cleaned. The data also included notes from the measurement staff describing the 

original condition of the ears, for example, whether the TM was already tubed, or the 

outer ear canal was completely filled with wax. 

Acoustic reflectometry data were collected using a prototype measuring device developed 

by Otometri Ltd which was connected to the Huawei smartphone model Y5 II as shown 

in Fig. 2. The system consists of end-user software running on the smartphone, 

determined by a special calibration protocol for collecting AR data in a clinical setting. 

The device is connected to the smartphone via a 3.5 mm aux connector. The device has a 

speaker and a microphone that are controlled by the wired headset software of the 

Android smartphone.  
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Fig. 2. a) An Otometri measuring setup, including a measuring device connected to a smartphone 

and b) operational block diagram of the setup.  

A measurement sound (chirp) is played and recorded simultaneously for about one 

second. Chirp used to measure acoustic reflectivity was a series of different frequencies 

in ascending order from 1.5 kHz to 2.5 kHz at 20 Hz transitions. This pattern was repeated 

twice to improve error handling and improve the time fitting. Envelope of the chirp is 

seen in Fig. 3. 
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Fig. 3. Chirp envelope in time domain 

The device was calibrated for the smartphone using the measurement against free air as a 

reference. The measurement result is used to adjust the sound amplitude levels at each 

frequency to match the desired profile. The profile was defined as an input signal whose 

amplitudes were half at each frequency compared to the transmitted sound. The corrected 

audio file is downloaded to the smartphone, and this process is repeated until the sum of 

the errors in each frequency band is at an acceptable level. This meant that if the total sum 

of frequency deviation or single frequency deviation was more than 1%, the calibration 

was not acceptable. This final air measurement result is part of the input parameters used 

for the neural network. The approval process is performed each time an application is 

launched for new measurements. 

In the smartphone application interface, there are two selections: # 15 = sick and # 85 = 

healthy ear. Once the mode is selected, measurements are performed simply by placing 

the tip of the device at the entrance of the ear canal and pointing it towards TM. The Start 

button starts the measurements. The application has a customized mode of operation for 

the collection of clinical data, where 3 identical recordings are made at the start of the 

recording and sent to the device server. After the measurement, the researchers fill in 

additional information in the prepared documents. 
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The acoustic data is decomposed over the frequency range with the original input 

frequencies between 1.5 and 2.5 kHz in 20 Hz steps. This can be seen in the time domain 

envelope of the chirp in Fig. 3, which shows different amplitudes for the different 

frequencies.  

4.1 Models 

Study used MATLAB’s (MathWorks Inc) back-propagation network training function 

trainlm (Demuth & Beale, 2001), which utilizes the LM algorithm to find the best fit for 

neural network weights and bias values. Algorithm utilizes least squared errors in 

nonlinear curve fitting. Each training loop was an individual process, and no data was 

stored for subsequent loops. A preliminary test between classification and regression 

models was conducted to select the method to be used in this study. The original 

regression-based model was compared to a new approach using classification with more 

advanced input parameters. 

4.1.1 Classification method 

In classification approach a Wiener filter was used to remove background noise (Plapous, 

Marro, & Scalart, 2006). 68 acoustic features and channel features were extracted from 

the recordings, namely MFCCs and differential MFCCs (Mel Frequency Cepstrum 

Coefficients), energy, Linear Prediction Coefficients (LPC), pitch, formant, maximum of 

frequency domain channel response, mean of frequency domain channel response, 

cumulative sum of edge of frequency domain channel response, cumulative sum of center 

of frequency domain channel response, maximum of histogram of frequency domain 

channel response, and length of histogram of frequency domain channel response. 

Frequency domain channel was calculated as 2048-point FFT. The cumulative sum of 

edge of frequency domain channel response is the sum of H(f) from f=0 till f=2048/3 

whereas the cumulative sum of center of frequency domain channel response is the sum 

of H(f) from f=2048/3 till f=2048*2/3. The length of histogram of frequency domain 

channel response is the number of histograms. Other features extracted are widely used 

audio processing features. Example of healthy is shown ear in Fig. 4, where sum borders 

are displayed as red lines. 
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Fig. 4. Example frequency domain from healthy ear 

Selection of features was performed by Relief-F (k=9). Relief-F is a filter-type feature 

selecting algorithm which calculates the weights of features according to intra-class 

distances and inter-class distances. During Relief-F process, features with negative 

weights were discarded, and finally 41 features were retained. These features contained 

maximum of frequency domain channel response, mean of frequency domain channel 

response, cumulative sum of edge of frequency domain channel response, cumulative 

sum of center of frequency domain channel response, length of histogram of frequency 

domain channel response, 5 MFCCs, 8 first order differential MFCCs, 11 second order 

differential MFCCs, 11 LPCs, and pitch.  

Class labels were the doctor defined study indexes of #15 or #85, which were changed to 

1 and 0. A neural network was used as the classifier, where fitnet function was used with 

trainlm. Two thirds of the samples were used as the training set, and one third were used 

as the testing set. The classification was between-subject, i.e., the training set and the 

testing set have no overlap. 

4.1.2 Regression method 

The frequency feature extraction in case of regression was a bit different from the one in 

classification. Spectral samples are taken from the chirp in a known time interval order. 

This meant that there was no need to use Fourier transform when by knowing the time 
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slots of each frequency the changes could be compared by overlapping the original and 

recorded sound. Previous studies indicated problems in the use of FFT, which led to this 

method. The number of spectral samples is doubled from 51 to 102 by doubling each 

sample. The profile of frequencies from calibrated chirp before doubling is shown in Fig. 

5. Calibration tunes the amplitudes of each frequency to match the profile against air as 

seen in the figure. The profile of the chirp was selected through experimenting with the 

typical ear acoustic responses.  

 

Fig. 5. Profile of calibrated chirp according to spectral samples before doubling 

The resulting jagged vector is smoothed with a Blackman window filter. The final focused 

frequency spectrum is 102 samples between 1.5 and 2.5 kHz in 10 Hz steps.  This vector 

is constructed from both air and ear measurements. The final input is the ratio of the two 

vectors. Each frequency was weighted to 1 by function: 

𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚 = 1 +  
𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝑒𝑎𝑟−𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝑎𝑖𝑟

𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝑎𝑖𝑟
  

   (1) 

and normalized between 0 and 2 by changing the values outside this range to a maximum 

of 2 and a minimum of 0. The constructed vector is used as input for the neural network 

and as a visual aid for filtering of unsuitable data. The filtering is done by looking at the 

plotted frequencies and listening to the recordings by ear. Loud artifacts and spikes in the 

frequency are reasons to remove the measurement from the data set. 
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5 Results 

5.1 Pre-study 

5.1.1 Input parameters 

The acoustic data were processed by converting the recordings into a frequency domain 

and taking the relevant values from selected frequencies using the PCA method. PCA 

compares all frequency vectors and calculates a principal component coefficient matrix 

that identifies relevant values across the group. It was chosen as preferred method to avoid 

overfitting in case of effusion being a dominant factor in the selected input range. The 

components obtained are then used as input to an FNN. The network was built with back-

propagation using the LM algorithm. 

5.1.2 Method selection 

The problem solving was compared as classification and regression. In terms of effusion 

levels and the correlation to OM a regression model is naturally better, but in binary terms 

a classification method could show better results. Regression was selected as it was 

showing better initial test results, which is described in Material and methods. For 

regression modelling the inputs needed to be edited according to the used frequency 

range. The range and sampling selection rationale consisted of previous unpublished tests 

performed by Otometri Ltd and the measurement device limitations. Device was intended 

to be used in varied environments, which meant that manufacturing focus was on 

robustness and simplicity. Microphones with higher response range were expensive. 

The selected input is the normalized combination vector that is reduced using PCA to 

reduce the computational burden on the neural network as well as to prevent overfitting. 

Previous experiments had shown using plain frequency inputs would not give good 

results, especially with large dataset. This was found to be the case even for smaller 

dataset in this study. The final input is a vector of 16 values. The inputs for the back-

propagation algorithm to construct the FNN are the study index and the error index. Study 

index refers to the doctor defined #15 or #85 values, which were input as 0.15 and 0.85 

to better suit the NN functions. The error index was not a focus of this study. The selected 

NN structure is input layer, two hidden layers and output layer, which is shown in Fig. 6. 

The number of neurons in the input layer correspond to the 16 values of PCA output. The 
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sizes of the hidden layers are tested in the preliminary trainings. The selected sizes for the 

two hidden layers are 20 and 11. There are 2 neurons in the output layer for study and 

error indices. The two hidden layers use a hyperbolic tangent sigmoid transfer function 

(tansig) and the output layer use a linear transfer function (purelin) to approximate the 

FNN result. The linear output is found to be the right choice to simulate the linearity of 

changing ear status from healthy to sick. 

 

Fig. 6. Feedforward neural network diagram 

Tansig fits the input into -1 to 1 range, and purelin gives linear results from negative to 

positive without minimum or maximum limitation (Namin, Leboeuf, Wu, & Ahmadi, 

2009).  

The training takes place by dividing the ears into train, test and validate groups. The 

appropriate data distribution is tested with short preliminary training sets. According to 

these preliminary tests, using 66 % of the ears as training material instead of 50 %, gives 

better results. The risk of bias is a bit higher with this selection, since the test and validate 

groups have less ears. The groups are defined so that the ears do not overlap in any of the 

groups. Both the cleaned ear and the unclean ear are placed in the same group.  
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A backpropagation FNN was created with newff function from Neural Network Toolbox. 

Training was performed with trainlm function. (Demuth & Beale, 2001) 
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5.2 Main study 

The preliminary comparison between classification and regression ended in favour of 

regression. The binary classification method produced best accuracy of 80%. In this best 

network, the number of neurons in single hidden layer was 48. Model reached binary 

sensitivity of 73.7% and specificity of 87.5%. Binary sensitivity and specificity explained 

in Fig. 7. The regression model preliminary tests had accuracy over 85% without neural 

network size tuning. Classification model had promise and it was deduced it would be 

good to continue the experimentation in the future. 

 

 

Fig. 7. Classification of index groups and calculation equations for sensitivity, specificity and 

accuracy. 



 

32 

 

For the study, multi class approach was adopted for both methods. In this 3-class model 

there were healthy ears, sick ears with symptoms of OME and sick ears with OM visual 

signs with minimal effusion. The classification method was ruled out as it showed 

significant class imbalance problems with the small dataset and the accuracy was worse 

than with binary class. The more complex feature collection method of classification 

experiments was tested for the regression model, but the accuracy was lower than 

previously, which led to using the original method.  

In case of regression model, the 3-class approach was done by dividing the data into two 

datasets. First dataset included the ears with symptoms of OME. The second dataset was 

the same as previous but also included ears with OM visual signs with minimal effusion. 

The choice to use these two datasets was to differentiate the ability of NN to diagnose 

OM with different states. AR method, which is mainly known for its fluid sensitivity, was 

put to the test. These two datasets are called later as OME ONLY and AOM ALL. 

Technically these cases were not acute otitis media, but prolonged cases needing 

treatment. Dataset groups were rearranged randomly between train, test and validate to 

produce to Random 1 and Random 2. The distribution of the data is shown in Table 1.  

Table 1. Data distribution and randomization into two random versions. All unique ears were divided 

into six equal sized groups (first row). These groups had unique ears stated before the parenthesis and 

number of measurements from those unique ears inside the parenthesis. Each unique ear had at least 

one measurement. Each of six groups were randomly categorized as train, test or validate (Random 1 

and Random 2), where there were four train groups, one test group and one validate group. 

 

Table 1 shows the 6 different groups and the distribution between them. The 3 main 

groups were train, test and validate. First value shows the unique ear count and the value 

inside parenthesis is the total data packet count recorded from these ears. OME ONLY 
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Random 1 dataset had unique ear ratios of 19:12, 5:3 and 4:4, where the value before 

colon is number of healthy and after colon is number of sick. Complete number of data 

packets were 63:56, 9:12 and 14:16. Second randomization had ratios of 20:12 (64:55), 

3:4 (13:17) and 5:3 (9:12). Total packet divisions were 119:21:30 and 119:30:21 (train, 

test, validate). AOM ALL Random 1 had ratios of 19:17 (63:75), 5:4 (11:15) and 4:4 

(12:21). Random 2 had unique ratio of 18:17 (47:74), 5:4 (17:18), and 5:4 (22:19). Total 

packet divisions were 138:26:33 and 121:35:41. 

The correlation coefficient (CC) between inputted indexes and results of trained neural 

network was calculated by a corrcoef function of MATLAB and used as an initial 

specifier to identify good training results. Sensitivity and specificity were calculated on 

multiple levels by limiting the area of results to 4 distinct groups, as shown in Fig. 7. A 

choice to use 4 groupings was made to further inspect the functionality of linear transfer 

function instead of simple binary classification.  

Values between 33 and 66 represent transition values, which can occur when state of ear 

is between healthy and sick definition. This is intended as follow-up functionality to show 

the progress of recovery. For study reasons the results were split into three following 

categories, a standard result, which ignores the values between 33 and 66, a binary result 

with 50-50 distribution, and strict result with 33 cut-offs in both directions. Strict result 

counts values between 33 and 66 to be false in both positive and negative. 

When both OME ONLY and AOM ALL datasets had two randomized groups, there was 

a total of 4 neural networks to be trained. Results of the networks are displayed in Table 

2. Training was done by selecting the groups for MATLAB code and running the training 

process 30 times. The highest CC values were picked out of 30 trained networks for every 

case. Every CC value given by corrcoef function had p-value better than 0.0001. 
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Table 2. NN training results. 

 

The standard sensitivity and specificity values give a reference to how in a normal 

diagnostic situation there is always a degree of trust in the diagnostic result. For the 

classification in this study, the standard value is the result with high degree of trust. This 

means that the unsure cases are not displayed. The standard/strict accuracy here displays 

the number of ears, which have the high degree of trust. The fairest way to assess the 

results would be the binary, which includes every measurement, but on the expense of 

degree of trust. 

The results for the OME ONLY cases have high accuracy and very small number of 

results are outside the intended index area. From Table 2, we can see that the accuracy of 

the measurements is slightly higher in the OME ONLY dataset. The accuracy is below 

80 % for AOM ALL, but the binary result is around 90 %. Compared to the OME ONLY 

dataset, there is a difference of around 5 % units. The Random 2 network in OME ONLY 

is the best version with good accuracy of over 80 % for every calculation option. The only 

problem with it is the biased weight on the specificity. This weighted result raises the 

strict accuracy but is not necessarily a good thing. The other versions were also more 

tipped to either good sensitivity or good specificity, but the accuracy was still pretty good 

overall. The networks with AOM ALL as training data had a bit lower accuracy compared 
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to OME ONLY. To demonstrate the difference between these two networks, the data of 

ears with minimal effusion was inputted into the trained FNNs in Table 2. The results are 

shown on Table 3. 

Table 3. Results from trained FNNs using AOM ears without effusion. 

 

It was clear that the AOM ALL networks, which had the ears with minimal effusion 

mixed into the data, had much better detection results. The OME ONLY networks 

classified these ears as healthy since they did not have any effusion. This proves the fact; 

how dominant the presence of effusion is in the input values. This also proves that the 

healthy and OM ears without effusion do have other differences, which the NN is able to 

differentiate from the AR measurement. 

The network model was able to identify the ears with no effusion, but it was clearly more 

challenging for the algorithm to find the right network weights. CC and accuracy were 

lower overall. The differences are visible in the histograms for the results in Fig. 8. 

Histograms were divided into 25 bins using histcounts function to detect edges and the 

counts for the bins. OME ONLY had around equal amount of healthy and sick ear 

measurements, whereas AOM ALL had the extra 27 sick measurements. 
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Fig. 8. a) Histogram of OME ONLY and b) histogram of AOM ALL datasets. 

Rough comparison from the Fig. 8a and 8b shows that the localization near the index 

values is better with OME ONLY network. Comparing these histograms, it can be said 

that the OME ONLY network gives better results when effusion is present. On the other 
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hand, that same network cannot identify ears, which have OM with minimal effusion. 

Distinct features for OME ONLY is the ability to give better binary results, whereas the 

AOM ALL can detect two types of sick ears, but the results are not as clear. 

The difference between these two types is very subtle. It is nearly impossible to 

differentiate using just the frequency. The converted frequency spectrum of whole data 

given in the window of 1500–2500 Hz shows how similar even the sick and healthy ears 

are. Spectrum is shown in Fig. 9a, where the y-axis represents the relation to the free-air 

calibrated measurement. These spectrums were weighted around 1 as stated in the Eq.1. 

When signal is straight line over value 1, the ear recording matches the free-air calibrated 

measurement. When value is lower, the ear measurement has lower amplitude on those 

frequencies. Means of frequencies are shown in Fig. 9b and variances are shown in Fig. 

9c. Figures provide information about AOM without effusion, OME and healthy ears. 
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Fig. 9. a) Normalized frequencies of sick and healthy ears for all measurements, b) Means of 

healthy, OME ONLY and OAM ALL frequencies, and c) variances of healthy, OME ONLY 

and OAM ALL frequencies. 
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The colors in figures represent the original indexes, not the neural network results. Blue 

curves represent individual sick ears and green curves healthy ears in Fig. 9a. The most 

significant visual information is that the sick ears tend to have much higher variation in 

all frequencies. This means that healthy ears will have more predictable reflection and 

attenuation, which will make any bigger changes likely to be associated with OM. 

Variance change is clear between healthy and sick ears. AOM without effusion shows 

higher variance compared to OME, but this could be caused by smaller subject group 

size. The variances are more meaningful between 1650–2100 Hz for sick and healthy 

ears. It is also notable that healthy ears reflectance falls in between the two sick ear groups 

on the ends of the frequency window in Fig. 9b. This indicates the possibility of discarded 

information at frequencies below 1500 Hz and above 2500 Hz.  
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6 Discussion 

The used AR device combined with FNN frequency analysis can handle linear regression 

detecting of AOM at least on same level as tympanometry or SG-AR. Results showed 

comparable accuracy levels to Teele studies (Teele, David W. & Teele, 1984), but as the 

data used in training is relatively small for a NN, a definitive result cannot be concluded. 

Still notable finding is that correlation with MEE is not necessarily needed for AOM 

detection. The slight accuracy difference between the two constructed NNs does indicate 

that effusion has big part in the overall variability of PCA outputted values. In terms of 

this variance, healthy ears and sick ears without effusion are very closely related. The 

result from this comparison indicates that there is a variance aspect, which can 

differentiate these sick ears without effusion from healthy ears. 

What we can deduct from the used methods is that the frequency variance between 

different ears is the most important variable for this system. PCA uses each frequency as 

a separate feature and calculates the most significant values by considering the entire data 

set, including the variance. PCA might have problems with sustaining some information, 

but in this case that does not seem to produce problems. In the future, several different 

combinations will have the possibility to adapt different curve profiles for better 

classification of the ears. The current binary indexing seems simple, but the fact that sick 

ears include more than one type of OM pathology makes this identification sensitive to 

small trends. NN cannot determine the output based on higher values showed by OME 

cases e.g., at the 1500 Hz frequency. This is emphasized since the amount of effusion was 

not reported in any way to NN. There is also the possibility of using multiple smaller 

frequency areas or even combinations of time and frequency domain data when a large 

and well-documented data has been gathered. 

The nature of neural network analysis is very accurate and rigorous, as evidenced by the 

fact that OM cases with no effusion cannot be identified when they are not included in 

the data. The most significant finding of these results is that the neural network can detect 

a binary result reasonably well with two different OM types, without other indicators in 

the network input. Even if the accuracy is slightly lower with both types than with OME 

ONLY, the level of accuracy displayed is well within the requirements of a home-use or 

even a clinical-use device. It is also worth mentioning that there was no input data for the 
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area of uncertainty between sick and healthy ears, making strict computation questionable 

and binary accuracy thus more credible. The binary accuracy was between 88–95%. In 

the long run, the goal is to use linear regression to determine the range of uncertainty 

between diseased and healthy ears, which is why the linear transfer function is used in the 

output layer. Direct binary classification using the sigmoid function in the output layer 

would probably have given slightly better binary results.  

A typical training outcome was that networks placed more emphasis on either sensitivity 

or specificity. This can be explained in some cases by the similarity of the acoustic 

responses. This was also observed in the classification method, where increasing the 

classification from binary to 3 classes caused significant drops in accuracy. The best way 

to combat these problems is to either gather more data to reduce the problems caused by 

imbalance in datasets or use figure out better features to separate the classes. When data 

pool is larger, more specific classification can be utilized, such as differences in a child’s 

age or stages of the ear healing process, or the process of OM in an ear that looks relatively 

healthy. The age of the child affects the volume of the ear canal and middle ear. The 

change in volume is inversely proportional to the frequency of the system formed by the 

ear and the device. This is significant when the target group of patients is young children 

aged a few months or older, where the size and tissue structure become a factor (Teele, 

D. W. et al., 1989). Due to the patient group, it is possible that many of the healthy ears 

were already healing ears with only residual symptoms of OM because the selected group 

were patients screened for myringotomy surgery. The surgery is only intended for cases 

of diseased ears that do not heal normally and where recurrent infections are suspected 

unless surgery is performed. A healthy group would also need more information from 

other sources. 

There are several other methods, which could be used instead of simple frequency domain 

data. The classification method pursued in this study used a much more complicated 

feature extraction, which could easily have much promise with a more profound dataset. 

Pre-processing the time domain information into a visual information and using image 

related AIs, which have already been developed to great lengths in other solutions 

(Khamparia et al., 2019). Decision tree methods could also be a potential branch of AI 

technology to utilize with a classification approach. 
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During the study, there were some problems that should be solved in the future. The 

number of patients was less than 10 patients per week, which limited the number of ears 

eligible for the study and slowed down data collection. It would be better to take only one 

measurement from each ear or to use the averages of several measurements, but due to 

the small group size all the collected measurements had to be used separately. This was 

not only a negative thing, as the included environmental noise makes the network more 

flexible. The effects of errors were minimized by omitting the most erroneous 

measurements, which led to rejection of several measurements. The rejection also 

included few unique ears caused by device malfunction. Small group size was highlighted 

as the main negative point. 

The use of a smartphone and built-in logic for sound processing is a large unknown 

variable, which creates uncertainty about the repeatability of measurements. This 

uncertainty is due in part to the calibration process because the smartphone responds 

strongly to the surrounding environment. The only way to ensure that the smartphone 

does not make automatic changes to the recording sensitivity would be to tamper with the 

device’s hardware, which will void the device’s warranty. An independent probe for 

performing acoustic operations would fix most of the negatives found during this study.   
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7 Conclusions 

The accuracy of the presented neural network adapted AR solution is higher than expected 

with very minimal dataset. Still a clear advantage in comparison to other solutions is hard 

to prove objectively, as there is no clear baseline for acoustic reflectometry solutions in 

terms of accuracy, because of varied methods and cut-off values. It is only an 

approximation to say any solution to be better than other. A clearly defined test settings 

between other solutions is needed for this.  

The presented solution showed the ability to detect typical OM cases with effusion in 

high sensitivity. Also, the sensitivity was good for abnormal OM cases, where effusion 

was minimal, but ears showed clear visual signs of OM. Despite having high sensitivity 

there was no major degradation in the specificity or vice-versa. 

The versatility of the method has not been studied in-depth to this day, when considering 

the vast development in NN and AI technology. A simple frequency domain-based 

analysis gives more than adequate detection accuracy for AOM in home or healthcare 

environment. There is a widespread and growing need for diagnostic devices that can help 

physicians or patients to monitor the status of their health. Solution is a prime example of 

old viable technology being included into new innovative methods to process data and 

form results. The AR is a solution with a relatively long history in technological 

diagnostic methods, but it is still very much relevant when enhanced with computer-

assisted ways. The results are applicable to current medicine, and solution has several 

possible ways for future development. 

The visible changes to ear have been the prevalent way to diagnose ears, which has 

already been adapted by AIs specializing in image analysis. The combined outputs of 

image analysis and acoustic properties would be new and a comprehensive method for 

avoiding the weaknesses of single diagnostic solutions. Moreover, would also give more 

depth and reliability to diagnosis and follow-up of OM. 
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