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1. Introduction

Ever since large-scale observations of galaxies became possible due to
technological development of observational equipment, the number of
known galaxies within the universe has gradually increased. This has led
to the development of various classification methods to sort galaxies into
morphological classes, which has proven to be useful in the effort to try
and understand their formation and evolution.

The original 1888 New General Catalogue of Nebulae and Clusters of
Stars (NGC) by J. Dreyer, with its two Index Catalogue supplements
from 1895 and 1908, amount to a total of 13 226 catalogued objects.
For comparison, Sloan Digital Sky Survey1 has catalogued more than 50
million galaxies since 2000, whereas the Dark Energy Survey2 catalogues
include more than 200 million galaxies to date. Future surveys, such as
Euclid3 or the Legacy Survey of Space and Time4, are sure to dwarf their
predecessors with the amount of produced survey data. The amount
of data collected from modern astronomical surveys has reached such
massive proportions that the conventional method of classifying galax-
ies visually is not practical anymore. Thus, new methods to automate
the process and maintain systematic objectivity in the classifications are
needed. The creation of new, automated methods requires, however, a
lot of human effort put into them before even partial automation can be
reached within the classification process.

Citizen science projects such as Space Fluff5, which focused mainly on
identifying low surface brightness objects from the Fornax Deep Survey
data (see e.g. Peletier et al. 2020), and Galaxy Zoo6, which has classi-
fied data from for example all Sloan Digital Sky Surveys and has to date
ongoing projects, have been established to help with sorting and vetting
out different types of objects from large amounts of survey image data.
These projects rely entirely on volunteer contributions, albeit Galaxy

1https://www.sdss.org/
2https://www.darkenergysurvey.org/
3https://www.cosmos.esa.int/web/euclid/home
4https://www.lsst.org/about
5https://www.zooniverse.org/projects/sundial-itn/space-fluff
6https://www.zooniverse.org/projects/zookeeper/galaxy-zoo/
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Zoo has introduced a convolutional neural network (CNN) trial (Walm-
sley et al. 2019) alongside the volunteer-driven classification, trained on
data received from previous classifications made by users, to present the
volunteers with more informative imagery to classify. In addition to be-
ing of use directly in research, the classified image data is also useful in
the training and development of classification algorithms.

Machine learning as a tool in galaxy classification has been a topic
of discussion for decades. Along with the development of computational
systems the subject has gradually shifted from being a topic of specu-
lation towards the larger-scale applications that are now reality within
the field of astronomy. Computer algorithms which mimic the behaviour
of biological neural systems and their ability to recognize relationships
within sets of data, also known as neural networks, can, among other
things, be trained to recognize, categorize, alter, and combine images.
Neural networks can therefore serve as a viable option in the develop-
ment of new, more efficient galaxy classification tools. The data received
from the citizen science projects mentioned earlier is also used to train
automated classification algorithms, which can pick up the work from
where available human resources can no longer keep up with the growing
amount of data.

In chapter 2, I give a general outline of the structural components
present in galaxies. In chapter 3 I overview different classification schemes
for galaxies, focusing on morphological and non-parametric classification.
In chapter 4, I briefly go over the theory of artificial neural network as
well as supervised and unsupervised learning methods in the context of
galactic astronomy, along with examples of different applications of con-
volutional neural networks and clustering algorithms.
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2. Structural components in galaxies

Galaxies are gravitationally bound systems that consist of stars and dark
matter, potentially along with various other components, such as neutral
and ionized interstellar gas, molecular clouds and dust. They can be
found both in regions of the universe densely populated by galaxies, such
as groups and clusters, as well as sparsely populated voids between the
more densely populated filaments of the cosmic web. The environment
of the galaxy has a strong impact on the evolution and morphology of
the galaxy. Galaxies exhibit a variety of observable structural features,
based on which division into various classes is possible.

Various classification systems and the bases of each system are dis-
cussed in chapter 3 - the focus of this chapter is to give an outline of the
morphological features of several main types of galaxies on a very general
level.

2.1. Stellar and gaseous halos

A stellar halo within a galaxy is a spherical, diffuse collection of globular
clusters and stars thought to have formed from material stripped via
tidal interactions from star clusters or satellite galaxies on orbit around
the galaxy. Before merging into the halo structure, the stripped material
is visible as large, elongated arc-like features around the galaxy. Based
on results received from simulations (see e.g. McCarthy et al. 2012), the
halo likely consists of two different components, the inner and outer halo
which have different origins and physical characteristics. The simulation
results suggest that the outer halo forms via accretion of stars, whereas
the inner halo forms due to the heating of the protogalactic disk.

The gaseous halo consists mostly of very diffuse gas of varying tem-
perature, along with trace amounts of dust, metals and molecules (H2,
CO). The dust, molecular gas and metals present in the gaseous halo
are a result of stellar activity and supernovae in the galaxy. In massive
galaxies the gas within the halo can reach extremely high temperatures,
which can be detected via x-ray radiation. The gas of the halo has sev-
eral possible origins (see e.g. Putman et al. 2012): a galaxy can accrete
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new gas into its halo from the intergalactic medium (IGM) along cosmic
filaments or capture gas from its satellite galaxies. Gas can also be recy-
cled between the disk and the halo within a galaxy via so-called galactic
fountains, a term first coined by Shapiro and Field (1976). Expansion
of cavity bubbles fueled by stellar winds or supernova activity within
star clusters can blow out disk material into the halo and thus cause the
mixing of metal-rich disk gas and metal-poor halo gas (Mac Low and
McCray 1988).

2.2. Disks

A galactic disk is a highly flattened rotating component containing most
of the stars in the galaxy, accompanied potentially by gas and dust,
and described by its exponentially falling surface brightness profile. The
appearance of a disk varies from a featureless, smooth one to that of
a spiral galaxy, with its characteristic spiral arm structure. Galaxies
feature both thin and thick disks. Thick disks contain mostly old, metal-
poor stars, and their origins is a subject of debate. Several formation
methods have been proposed: these include, for example the suggestion
by Villalobos and Helmi (2008) that the formation of a thick disk is
possible after the galaxy is heated during a major merger event, whereas
Loebman et al. (2011) present a model where the thick disk forms through
radial migration of stars. The stellar populations in thin disks are far
younger and more metal-rich than those in thick disks, due to being
the result of star formation caused by gas accretion later in the galaxy’s
formation history (see e.g. Yoachim and Dalcanton 2006). Both the scale
height and length of the thin disk are also lower than those of the thick
disk. The thin disk is, thus, embedded inside the thick galactic disk.

The disk can accrete material from the surrounding interstellar ma-
terial, thus gaining new material for forming stars. Active star formation
eventually incites supernova activity in the disk, followed by transfer of
disk material into the surrounding gas halo as described in chapter 2.1.

2.3. Spiral arms

Spiral arms are dense structural features that appear within the galac-
tic thin disk, manifesting as several curved bright strands of stars and
interstellar matter. The appearance of spiral arms largely varies from
well-defined, long and luminous arms to patchy, irregular and relatively
less luminous ones.

Density waves which induce star formation by moving through the
gaseous disk structure were proposed as the explanation for spiral arms
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by Lin et al. (1969) as an attempt to explain the persistence of a spiral
pattern in a galaxy. The density waves that make up the spiral arms move
through the thin disk far slower than the average ISM and stars within
the disk, compressing disk gas and causing subsequent star formation
visible as bright blue regions in the arms.

Seigar and James (1998) have speculated that the determining fac-
tor for the arm type of a spiral galaxy is the cold gas content of the
galaxy. This is because the amount of cold gas within a galaxy controls
the amount of star formation, thus affecting the distribution of young,
bright stars. Similarly, a relationship between the mass of the central
supermassive black hole of a galaxy and the pitch angle of the spiral
arms has been proposed by Seigar, Kennefick, et al. (2008): the larger
the mass of the black hole, the smaller the pitch angle. The pitch angle
refers to how tightly the arms are woven around the center of the galaxy
- a large pitch angle corresponds to wide open arms far apart from each
other, whereas a small one refers to spiral arms tightly wound together
and around the galactic center.

2.4. Central bulges

A bulge is a concentration of mass within the central region of the galaxy.
It is less flattened than the disk of the galaxy, and visible as a region of
higher brightness that departs from the disk’s exponential surface bright-
ness profile. According to Athanassoula (2005), bulges can be roughly
divided into classical bulges, boxy-/peanut-shaped bulges and disk-like
bulges. The latter two are two distinct sub-types of pseudobulges, a
term which sets them apart from classical bulges. Pseudobulges can be
characterized as bulges with active star formation, young stars and ro-
tating kinematics, whereas classical bulges are akin to elliptical galaxies
in their features, such as random-motion dominated kinematics and a
smooth distribution of old stars. Different types of bulges can co-exist in
the same galaxy: composite bulges with both a classical and a pseudob-
ulge component have been identified and studied by for example Erwin
et al. (2015).

Different formation methods have been proposed for classical bulges.
For example, Aguerri et al. (2001) have suggested that classical bulges
have formed in the early universe via accretion of dense satellites which
caused the growth of the bulge, whereas Noguchi (1999) has proposed
that the bulge has merged from the clumps of the disk material caused
by gravitational instabilities in the early evolution phases of the galactic
disk.

Boxy/peanut bulges are thought to have formed from a vertical insta-
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bility in a galactic bar. The characteristic shape of the bulge is a result of
bar material detaching from the equatorial plane in a galaxy. Athanas-
soula et al. (2015) have shown that this type of a bulge and a so-called
barlens, first unambiguously identified by Laurikainen et al. (2011), are in
fact the same thing viewed from different angles. Disk-like bulges, on the
other hand, are formed via infall of mainly gas into the central regions of
a galaxy or via gas redistribution within the disk. The gas subsequently
forms an inner disk, which makes up the disky pseudobulge.

Within the bulge of a larger galaxy, the abundance of gas may trigger
generous amounts of star formation, resulting in what is called a nuclear
star cluster (NSC) at the innermost regions of the galaxy. NSCs are
common: within the late-type galaxies, it has been estimated (Böker
2009) that at least half of early-type spirals feature a NSC, compared to
75% of late-type spirals. Nuclear star clusters can also form in smaller
galaxies via the migration of globular star clusters towards the central
region of the galaxy (Tremaine et al. 1975).

What has and hasn’t been considered a bulge, especially in older
studies, varies greatly depending on the author’s interpretation: what
would nowadays be explicitly referred to as a bulge has historically been
grouped under varied terminology, ranging from "unresolved nuclear re-
gions" to "amorphous center regions" and "peculiar nuclei". A system-
atic approach towards the classification and study of bulge components
is a relatively new prospect.

2.5. Bars, lenses and rings

A galactic bar is an elongated structure in the central region of some disk
galaxies. Formation of a bar in a galaxy can be either incited by internal
gravitational instabilities in the thin disk or by disturbances caused by
interactions with other galaxies, leading to disturbed stellar orbits that
begin to deviate from circular orbits and eventually form the galactic
bar. Along with a larger bar, some galaxies also contain a nuclear bar,
which is a smaller bar nested within the larger bar component (see e.g.
Friedli and Martinet 1993).

Lenses are somewhat spherical components present in some galaxies,
with shallow inner brightness gradients limited by a sharp outer edge and
located between the bulge and the disk, coexisting with a galactic bar.

Rings are features of varying size and structural integrity within the
galaxy. A partially defined or open ring is called a pseudoring, as opposed
to a classical ring with a closed structure. They range from outer rings,
which are, as the name suggests, ring-like collections of stars in the outer
regions of the galaxy, to inner and nuclear rings, which in turn are rings
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in the inner and nuclear regions.
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3. Galactic classification schemes

Various classes of galaxies can be defined in order to establish a founda-
tion from which further research can be conducted. For such classification
scheme to be useful in practice, it should without ambiguity distinguish
between the different defined types of galaxies and have a physically mo-
tivated basis.

Every classification system is always a product of its time, built upon
what observational data and constrained by what technical means to
extract and analyze it were available. Especially the older schemes are
systematically developed based on observations of giant, luminous and
fairly well resolved galaxies of the nearby universe, in the absence of ob-
servational instruments that could peer deeper into the less luminous and
distant parts of the universe. Attempts to fit low surface brightness irreg-
ular galaxies - potentially at higher redshifts - into older schemes often
fall short, as the schemes were not made with such galaxies in mind and
thus cannot properly accommodate them. The perceived morphology is
also affected by the wavelength the galaxy is imaged on. The promi-
nence of a morphological feature when observed in a certain wavelength
depends on the stellar population and the gas content within the feature.

3.1. Morphological classification

3.1.1. Hubble classification scheme

An example of a classification system is the Hubble system (Hubble
1926), later followed by the Hubble ’tuning fork’ scheme (Hubble 1936;
see figure 3.1). The system can be considered to be the first and to
date perhaps most widely used of all classification schemes despite, as
stated by its creator, its "descriptive and entirely independent of any
theory" nature. It should be noted that the original scheme did not
speak of different types of galaxies as such, but rather referred to them
as ’extra-galactic nebulae’ - the nomenclature has since changed to sim-
ply ’galaxies’. The scheme divides galaxies into classes of ellipticals of
varying ellipticities (E0 - E7), irregular (Ir) and spiral galaxies. Of these,
spiral galaxies are sectioned into ordinary (non-barred, S) and barred
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spiral galaxies (SB), and further into early (a), intermediate (b) and late
(c) types within both sub-classes.

Elliptical galaxies are defined by Hubble (1926) as objects in which
the only notable structure is the gradually diminishing luminosity from
the central areas towards the peripheral regions of the galaxy. They are
divided into subgroups En, where n = 0, 1, ... , 7, depending on the
apparent axial ratio b

a
and thus the perceived ellipticity of the galaxy.

The value of n is determined by the formula

n = 10(1− b

a
),

in which n increases along with the ellipticity of the galaxy, E7 being
thus the most and E0 the least elliptical.

For spiral galaxies of both the unbarred and barred variety, Hubble
(1926) considers the classification of different galaxies in the group on
the grounds of the relative size of the "unresolved nuclear region", the
extent to which the arms are unwound, and the degree of resolution in the
galactic arms. Spiral galaxies with well resolved, tightly wound together
arms and large nuclear regions are denoted as Sa, whereas galaxies with
flocculent, spread out arms and small nuclei are labeled as members of
the Sc group.

Irregulars are defined by Hubble as galaxies which lack both a dom-
inant nucleus as well as rotational symmetry. Hubble proposed two dif-
ferent classes of irregulars, denoted Ir I and Ir II. Neither of these types
have structural symmetry, but they differ from each by their other char-
acteristic features. Ir I galaxies are described as a "homogenous group"
that shares features with the Magellanic Clouds, with stellar content re-
sembling that of late-type spirals. They’re placed in the scheme as the
last stage of galaxies following the extreme late-type spirals, albeit this
is not reflected in the visualization of the tuning fork diagram (see figure
3.1). Ir II galaxies are described as a heterogeneous class of highly pe-
culiar objects. Hubble makes a note that this classification is not truly
physically or morphologically justified, and is rather used as a dump for
the leftover galaxies not fit for any of the other defined classes.

The original classification scheme by Hubble (1926) does not include
lenticular galaxies. The group was added into the scheme later: Hubble
(1936) defines lenticular galaxies as intermediate objects between E7-
and Sa-class objects. The new class is not given much attention: S0
is referred to as a hypothetical class merely established to ’solve’ the
observed discrepancy between the transition from E7 ellipticals to Sa
spirals.

A major problem in establishing the Hubble system, also acknowl-
edged by Hubble (1936), was the inadequate availability of detailed enough
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photographic data of faint galaxies and the more subdued features of
brighter galaxies to be able to account for the intricate details within
different types of galaxies. The choice of the various sub-classes is a com-
promise set by technical limitations, despite the already then suspected
variability of the more intricate features in galaxies. Hubble (1936, p. 37)
states that "[i]nconspicuous features, although they might be highly sig-
nificant, would restrict the classification to a small number of nebulae
which might not be a fair sample".

Figure 3.1: The original Hubble sequence. Reprinted by permission from
Springer Nature Customer Service Centre GmbH: Springer Nature, Nature, The

Realm of the Nebulae by E. Hubble. Springer Nature 1936.

The Hubble system has later been found to be lacking also in terms of
how ellipticals are classified compared to types towards the late end. For
example, Kormendy and Bender (1996) point out that the classification
for ellipticals from type E0 up to type E6 is more due to the apparent
inclination of the galaxy than any physically interpretable reason. The
suggested improvement to better account for the fundamental properties
of the elliptical galaxies is to base the sequence of E galaxies on the shape
of their isophotes, resulting in sub-types of ellipticals ranging from boxy
to elliptical to disky types. The true shapes of ellipticals feature various
levels of triaxiality, which can be described by for example the triaxiality
index T (see e.g. Franx et al. 1991) which sorts ellipticals into prolate,
triaxial and oblate based on their axial ratio.

3.1.2. De Vaucouleurs’ classification scheme

Further improved and altered versions, of which some are based on the
original Hubble classification, have later been developed. The sought
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after recognition of smaller details within galaxies came about in the
revised Hubble scheme proposed by de Vaucouleurs (1959), also known as
the de Vaucouleurs revised Hubble-Sandage (VRHS) system. The revised
system takes into account the lenticular and ring-like features in the disk
of the galaxies, along with the existence of an intermediate type of spiral
galaxy, denoted SAB, and lenticular galaxies of both the ordinary (non-
barred) and barred variety, denoted SA0 and SB0, respectively. As with
spirals, an intermediate type is also recognized, denoted SAB0. SA0’s
and SB0’s are situated at the crossroads of elliptical and spiral galaxies,
serving as a transitional type between the two. Some of the galaxies
classified earlier as for example early SBa’s were subsequently re-classified
as SB0’s.

Figure 3.2: Visualization of the de Vaucouleurs classification scheme.
Reprinted by permission from Springer Nature Customer Service Centre GmbH:
Springer Nature, Classification and Morphology of External Galaxies by G. De

Vaucouleurs. Springer-Verlag OHG, Berlin 1959.

The scheme also recognizes various stages within the main types of
early-type galaxies. For example, lenticular galaxies are divided into
early (S0−), intermediate (S0o) and late (S0+) sub-classes, which allows
for more finesse in the classification of lenticular galaxies by establishing
classes akin to the transitional classes of spirals (ab, bc, cd). Some
of the original Hubble notations, such as simply E7 or S0 still exist in
the system, but are only ever used to denote a galaxy which is viewed
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completely edge-on. These systems are marked with the notation (sp),
short for ’spindle’.

Within the already established types, the late-end sub-typing of spi-
rals was extended to cover types d and m, which are set in the scheme
after the initially established sub-types a-c, before the irregular (Im)
galaxies. Spiral galaxies, along with the newly established type of lentic-
ular galaxies, are sectioned into galaxies of ringed (r) and galaxies of
spiral (s) variety, as well as galaxies of the intermediate type (rs). The
notation m refers to ’magellanic’ features resembling those of the Mag-
ellanic clouds - for example, the Large Magellanic Cloud (see figure 3.3)
is SB(s)m in the de Vaucouleurs system. The additional features in the
system are represented by a third axis, making the classification scheme
three-dimensional as can be seen from figure 3.2.

Additionally, dwarf ellipticals (dE), which went by the name ’Sculptor
type’ for a time, were recognized as a separate type of galaxy following
the discovery of the Sculptor and Fornax systems by Shapley (1938).

Figure 3.3: The Large Magellanic Cloud is considered to be of the type
SB(s)m in the de Vaucouleurs system and Ir I in the Hubble system.
Shared under the CC-BY-SA 4.0 license. Original author of the content: Astro.sin.

van den Bergh (1998) criticizes de Vaucouleurs’ scheme for the simul-
taneous drop in luminosity and the gradual transition to blue being both
attributed to a single classification parameter when moving along to the
right in the classification sequence Sc-Sd -Sm.

3.1.3. Morgan’s classification scheme

Similar to the de Vaucouleurs classification system explored in chapter
3.1.2, the Morgan (1958) system for classifying galaxies is a modified
version of the Hubble system. The scheme is based on the assumed
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correlation between the central concentration of light and the average
stellar population within the galaxy estimated from its composite spec-
trum. The Morgan system was developed due to an observed lack of
real correlation between the spectral types and the Hubble morpholog-
ical class in case of some classes, a problem present mainly in different
stages of spirals of both the ordinary (S) and the barred (SB) variety.
The aim of Morgan’s classification is to accurately portray the stellar
population of the galaxy on a general level within each type of galaxy.
The assigned type of a galaxy is a combination of three parameters used
in the classification scheme to describe the central concentration of the
light, the ’form family’ and the approximate tilt of a flattened system.

Within the fundamental parameter, galaxies are grouped into four
main categories of a, f, g and k based on the central concentration of
light within the galaxy, taking also into account the intermediate types
between two main ones, such as af or gk. Of these, objects of the a type
have the weakest and objects of the k type the strongest central concen-
tration of light, the rest being intermediates between the two extreme
ends. In type a galaxies the light is dominated by B-, A- and F-type
stars, whereas the light of k -type galaxies is mainly dominated by large,
old K-type stars.

The first secondary parameter for the ’form’ of the galaxy overlaps
somewhat with the Hubble classification, recognizing elliptical (E), ir-
regular (I) and both barred (B) and ordinary (S) spiral galaxies. Addi-
tionally, systems with low surface brightness (L) as well as systems with
a bright nucleus and subdued background (N), systems with a star-like
appearance with large redshifts in their spectra, also called quasi-stellar
objects (Q), and systems with a large, diffuse envelope showing rotational
symmetry, yet lacking a spiral or an elliptical structure (D) are recog-
nized. The other secondary parameter describes the approximate level of
tilt of a galaxy as seen by the observer. This ’inclination class’ parame-
ter is, however, not used for irregulars, low surface brightness systems or
certain barred spirals.

Later, the N type was further divided by Morgan (1971) into subcat-
egories N-, N and N+ in an effort to establish an internally consistent
way to classify N-type galaxies. N- includes galaxies with relatively less
pronounced nuclei compared to the other N-type galaxies, whereas N+
galaxies feature an extremely bright nucleus and a markedly subdued
background, possibly with for example spiral arms or jets. N serves as
an intermediate type between the two.

Criticism towards the Morgan system stems from the seemingly arbi-
trary criteria for D-type galaxies within the form family parameter. The
criteria for a galaxy to be considered as a D-type overlaps, according to
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for example van den Bergh (1998), with that of S0’s and E’s in terms
of including galaxies with S0-like disks and tidally stretched halos, thus
rendering the D-type somewhat useless as an effective classification tool.

3.1.4. Van den Bergh’s parallel classification scheme

A classification system by van den Bergh (1976) redefines the sequence
of classically late-type systems within Hubble (1936) based on their gas
abundance and bulge-to-disk ratios. The reason behind the reassembly of
the classical scheme is the perceived hypothetical nature of the transition
from E through S0 to the Sa-Sb-Sc-sequence.

The redefined sequence parallels the S0 galaxy sub-types with the
traditional sequence of S galaxies. Additionally, an intermediate type of
’anemic galaxies’ is introduced as its own sequence. Of these, the S se-
quence features the gas-rich systems, whereas the S0 sequence represents
the gas-devoid systems. van den Bergh (1976) points out that since both
the S0 and S types have very similar axial ratios (i.e. both are intrinsi-
cally very flattened; Sandage, Freeman, et al. 1970) and mainly differ in
the abundance of gas in their structure, the existence of a gas-poor ’ane-
mic’ intermediate type is possible. These three sequences could, thus,
be paralleled with each other. The resulting trident-shaped scheme is
presented in figure 3.4.

Figure 3.4: The parallel classification system as proposed by van den
Bergh (1976).

Observational evidence to support the scheme came about decades
after it was initially published, as for example true S0c lenticulars were
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documented by Laurikainen et al. (2011). The idea of a paralleled se-
quence is seconded also by for example Kormendy and Bender (2012),
who in addition propose extending the S0 branch by relating the late
end to spheroidal (Sph) galaxies, somewhat analogous to the Im galaxies
in the S branch. This, according to the authors, creates a continuous
sequence from early-type S0s with large bulges all the way to Sphs with
no bulge at all.

On the other hand, it has been questioned whether paralleling the
sequences of the trident is justified. Graham (2019) argues that the true
’overlap’ between the three branches of the trident is in fact minimal
compared to how the scheme was initially presented. The average bulge-
to-disk ratio of early-type disk galaxies is far higher than that of spiral
galaxies, and the amount of for example early-type disk galaxies with
B/D values resembling those of extremely late-type spirals with barely
any bulge is not significant enough to justify the shape of the trident.
Graham (2019) suggests that the overlap of the paralleled sequences in
the classification trident is, at best, partial, and that the parallel prongs
of the trident should be established based on the strength of the galactic
bar.

3.1.5. Elmegreens’ classification scheme for spiral arms

Within spiral galaxies, the variance of the spiral arm structure has been
documented on a larger scale since Reynolds (1925), who remarked that
the arms of the reviewed spiral galaxies exhibit patterns from well-defined
tightly wound together arms to patchy ones far apart from each other. A
classification system by Elmegreen and Elmegreen (1982) divides spiral
galaxies into 12 different categories based on the length, continuity and
symmetry of the spiral arms. The types range from 1 to 12, where
galaxies of type 1 have a ’chaotic appearance’ with no symmetry and
ragged arms with varying pitch angles, whereas galaxies of type 12, also
called "grand design galaxies" by the authors, feature two sharp-featured,
long, symmetric arms that dominate the structure of the galaxy.

The classification scheme was devised based on a study by Elmegreen
and Elmegreen (1982) of galaxies isolated in the field, those in binary
systems and those in groups, accompanied by Elmegreen, Elmegreen, and
Dressler (1982) in which galaxies in cluster environments were similarly
classified. It was found that the designated arm class correlates fairly
well with the presence of a bar, as well as the presence of a companion
galaxy. The strongly defined so-called "grand design" arms are more
common among galaxies with either a bar or a companion galaxy, and
fragmented, unevenly spaced arms occur more commonly in isolated,
non-barred (corresponding with the main Hubble type SA) galaxies.

17



Later, the arm classes 10 and 11 were abolished (Elmegreen and
Elmegreen 1987) and the galaxies previously classified as such were re-
classified. The galaxies of class 10 were barred galaxies and those of class
11 galaxies with one or several close companions.

3.1.6. Comprehensive de Vaucouleurs revised Hubble-Sandage classi-
fication scheme

As a modernized variant of the VRHS scheme discussed in chapter 3.1.2,
the comprehensive de Vaucouleurs revised Hubble-Sandage classification
scheme (CVRHS, discussed in detail by e.g. Buta, Sheth, et al. 2015;
Buta 2019) seeks to define and classify previously somewhat undocu-
mented features which affect galaxy structure and evolution and also to
set a standard for possible future studies applying automated classifi-
cation to large samples of galaxies. CVRHS recognizes several different
characteristic features of galaxies: the stage, family, possible outer and in-
ner variety as well as the nuclear variety of the galaxy. Along with these,
cataclysmic rings resulting from major interaction events and edge-on
galaxy collisions are taken into account in the scheme.

The stage of a galaxy refers to the development of the structure, dis-
tribution of star formation, importance of the bulge component relative
to the rest of the galaxy, integrated colour, average surface brightness as
well as the HI mass-to-blue luminosity ratio. The family refers to the
apparent strength of a bar or some other structure, such as an X-shaped
(e.g. SABx) or an oval (SAB) inner structure.

For the inner and outer variety, the inner variety refers to the absence
or existence of an inner ring and the outer, in turn, the presence of a
possible outer ring or a pattern resembling a ring. Additionally, special-
case scenarios for both inner as well as the outer varieties are recognized.
These include for example the presence of several outer or inner rings
or pseudorings (e.g. rr, RR, rs, R’R’), a barlens (bl, Laurikainen et al.
2011) which is a ring-like part of a bar, as well as the presence of a lens
with a subdued spiral-like pattern (ls).

The nuclear variety, as suggested by the name, recognizes various fea-
tures, such as rings (e.g. nr, refer to Comerón et al. 2010), bars (e.g. nb),
ring-lenses (nrl) etc. commonly found at the centers of barred galaxies
and occasionally also in non-barred ones. The nuclear variety features
can coexist in a combined form with certain inner variety features: for
example the existence of both an inner ring as well as a smaller nuclear
ring (r, nr) is recognized in the scheme.

Cataclysmic rings are shaped by catastrophic interaction events be-
tween galaxies. The types of cataclysmic rings recognized in the scheme
include for example peculiar rings (RG) thought to originate from special
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galactic collisions, and accretion rings ((R)E) formed from a companion
galaxy being disrupted into an orbit around an elliptical galaxy. The
latter is also known as a ’Hoag’s object’ - Schweizer et al. (1987) were
the first to suggest that the structure is a remainder left behind by a
major accretion event from 2 to 3 Gyr ago.

A comprehensive list with descriptions and notations for all the rec-
ognized sub-types of the aforementioned varieties is included in Buta,
Sheth, et al. (2015).

3.1.7. Morphological classification of dwarf galaxies

The schemes mentioned so far are mostly built around observations of
large and relatively bright galaxies. Galaxies withMV ≥ −18 are referred
to as dwarf galaxies - this limit for the magnitude is used by for example
Grebel et al. (2003), but can vary from author to author.

Sandage and Binggeli (1984) propose a classification system for dwarf
galaxies in which the luminosity and the Hubble type of a galaxy form the
basis for the classification. The system recognizes dwarf ellipticals (dE),
dwarf lenticulars (dS0) and blue compact dwarfs (BCD), and attempts
to relate them with the classical Hubble types. A visualization of the
scheme is presented in figure 3.5.

Figure 3.5: Classification system for dwarf galaxies as proposed by
Sandage and Binggeli (1984). The dotted lines mark a possible

connection between the indicated types.
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Of the early-type variety, dEs are defined by Sandage and Binggeli
(1984) as galaxies with low surface brightness and a smooth, spherical
appearance, and dS0s as galaxies which, on par with S0s, consist of a
disk and a bulge component, but differ from their larger counterpart by
their low surface brightness.

Within the late-type dwarfs, BCDs are described as galaxies with a
very centrally concentrated star-forming region, appearing as one or sev-
eral bright dense areas within the galaxy’s innermost parts, contrasting
an otherwise quiescent outer areas. Sm and Im, referred to together as
dIrr galaxies, are defined as the extreme low luminosity late end of the
disk galaxies in the Hubble sequence. Star formation in dIrr galaxies
happens actively across the whole galaxy.

3.1.8. Morphological classification of galaxies at higher redshifts

As was the case with the morphology and classification of dwarf galaxies
(chapter 3.1.7), the prevalent galaxy classification schemes are also ill-
fitted for classifying galaxies further away in the universe. van den Bergh
(2002), for example, asserts that the classical Hubble scheme is suitable
only for classifying galaxies with a redshift z ≤ 0, 5. The amount of
merger activity increases with the look-back time, as does the relative
amount of highly irregular and clumpy galaxies. The star-formation of
galaxies at high z is for the most part driven by mergers, as opposed
to the star-formation mostly taking place in disks at low z. Albeit no
comprehensive morphological classification scheme for galaxies at higher
redshifts exists, attempts to divide the observed galaxies based on their
appearance have been made.

Elmegreen, Elmegreen, Rubin, et al. (2005) have identified various
morphological classes for the galaxies in the Hubble Ultra Deep Field
(UDF). The different types are divided by the authors into chain, double-
clump, tadpole and clump-cluster galaxies. These kinds of galaxies have
been recognized individually in earlier works by for example van den
Bergh (2002), who mentions both comma- and tadpole-like galaxies (dis-
tinction between the two made based on their ’tail’ length) as well as
chain-like galaxies. All of the galaxies identified here that deviate from
the Hubble ’norm’ share several common features, such as the presence
of very active star formation, as well as the lack of both a bulge and
an exponential disk light profile. Many of the galaxies are also low in
luminosity and highly asymmetrical in structure.

Tadpole galaxies have a dominant single clump which is linked to a
less resolved, tail-like component. Double-clump galaxies are dominated
by two clumps, and chain galaxies by several clumps that together make
up a chain-like structure. Clump-clusters, in turn, appear as an irregu-
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Figure 3.6: Images of chain, double-clump and tadpole galaxies as
identified by Elmegreen, Elmegreen, and Sheets (2004).

larly shaped collection of clumps. Elmegreen, Elmegreen, Rubin, et al.
(2005) note that for example tadpoles, double-clumps and clump-cluster
galaxies might all be different-sized versions of each other.

The evaluated survey data also includes galaxies classically typed
as spirals and ellipticals, though the evaluated population of spirals is
described to be very varied, and many of the spirals to have a ’highly
disturbed’ appearance. The relative amount of observed barred spirals
also decreases with increasing redshift (noted also by van den Bergh
2002), albeit this could partially be due to the difficulty of spotting a bar
structure from a highly irregular galaxy as opposed to one with a more
ordered appearance, such as a classical "grand design" spiral.

3.2. Non-parametric classification

The schemes described so far divide galaxies into groups based on ei-
ther their visual morphology or measured parameters which describe the
structure of the galaxy by modelling the distribution of the light within
the galaxy. Both morphological and parametric classification systems
have been found lacking on several fronts. Morphological classification
systems have been criticized (e.g. Conselice et al. 2000; Conselice 2003)
for example for their inability to account for the effects of various red-
shifts on galaxy morphology, and for the entirely descriptive nature of
the classification, which does not relate the morphological types to un-
derlying physical processes and is thus not an effective tool in evaluating
galaxy evolution. Classical morphological classification systems also do
not eliminate subjectivity in the classification process. This is well show-
cased in for example Naim et al. (1995), where the classifications made
by six independent observers on the same sample images were compared
with each other. While the observers agreed with each other on a general
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level, the results showed "non-negligible scatter".
Parametric classification systems have in turn received criticism (e.g.

Lotz et al. 2004) for how single- and multi-component profile fitting,
such as the Sérsic index or bulge-to-disk ratio, require the assumption of
a symmetric and smooth profile within the evaluated galaxy, as well as an
underlying assumption for the form of the light profile, thus rendering the
information received model-dependent. The assumption of a symmetric
profile shape is not ideal for for example highly irregular or merging
galaxies, both of which have noticeably distorted light distribution. This
causes the parametric approach to fall short on being able to reliably
classify all types of galaxies.

Non-parametric classification attempts to classify galaxies by measur-
ing the light structures within and form a classification system system
which relates the results to significant physical features and processes
without relying on model parameter fits. The aim is to create a frame-
work for classification which uniquely distinguishes galaxies in different
phases of evolution and across a range of redshifts. Out of non-parametric
classification systems, the CAS system and the Gini coefficient are dis-
cussed here; other non-parametric classification systems such as M20 by
Lotz et al. (2004) built upon the same principle idea exist.

3.2.1. CAS

The ’CAS’ system compiled by Conselice (2003) models the galaxy’s
stellar light distribution. This is done via three structural indices, which
measure the concentration (C ), asymmetry (A) and clumpiness (S ) of
the light within the galaxy, forming the so-called CAS volume within
which all classified galaxies are meant to fall.

The concentration index C measures the concentration of light at the
center of the galaxy compared to its outer parts. This is measured by
taking the ratio of light at two determined radii, for which the central
location used is often the same as the one used for measuring asymmetry.
A high value of concentration indicates a greater amount of light con-
centrated at the galactic center. The index scales with the bulge-to-total
light ratios, as well as the scale of the galaxy.

The asymmetry index A is used to describe how much of the light of
the galaxy is within its asymmetric components - a high value indicates
the presence of a relatively large fraction of light within asymmetrical
structures. Asymmetry is determined by subtracting an image of the
galaxy rotated 180◦ along its central axis from the original image. Con-
selice (2003) asserts that the asymmetry index serves as a simple indicator
of galactic mergers and galaxy interactions underway.

The smoothness index S describes how large a portion of the galaxy’s
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light is in clumpy portions of the galaxy. A high value of S indicates a
greater amount of light situated in the clumpy regions, and tends to
correlate with ongoing star formation within the galaxy. Smoothness is
determined by generating a secondary image from the original image by
blurring it and then subtracting the secondary image from the original
one. What is left as a normalized residual map contains only the high
spatial frequency structures of the galaxy. Conselice (2003) argues that
star formation is a defining aspect in both the placement of galaxies in
the classical Hubble-based morphological classification sequences, as well
as when evaluating the evolution of galaxies. In for example the Hubble
morphological sequence, early-type galaxies exhibiting barely any star
formation, whereas late-type galaxies are morphologically dominated by
it. The passive evolution of the galaxy’s star population directly affects
the morphology of the galaxy, thus serving as a potential aspect to be
considered when studying galactic evolution.

Lotz et al. (2004) point out that when measuring the concentration
of light at different distances from the center of the galaxy, the use of
circular apertures is forced, as is defining a center for the galaxy. This
is not ideal for for example irregular galaxies due to their often highly
garbled shape, for which it can be almost impossible to unambiguously
define a center. In the case of asymmetry as a descriptor for merger
galaxies it is noted that, despite the sensitivity of the index for signature
features of mergers, not all merger remnants are highly asymmetric, and
neither are all of the asymmetric galaxies mergers.

3.2.2. Gini coefficient

The Gini coefficient (G) for galaxy classification (e.g. Abraham et al.
2003; Lotz et al. 2004) is an adapted form of the perhaps more universally
known Gini coefficient (also Gini index or Gini ratio), which is used to
measure the degree of inequality within a distribution, in economics often
the wealth distribution within a society. When evaluating galaxies, G
describes the relative distribution of flux within the pixels associated
with a galaxy. For a discrete population, such as the pixels in a galaxy,
the coefficient is defined as the mean of the absolute difference between
all Xi, following

G =
1

2xn(n− 1)

n∑
i=1

n∑
j=1

|Xi −Xj|,

in which n is the number of pixels in a galaxy and x is the mean over
all (pixel flux) values Xi. In the case of extreme concentration of flux
into one point source, G = 1, and a completely equal distribution of flux
among the pixels, G = 0.
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For the majority of local galaxies, G correlates (Abraham et al. 2003)
with the concentration parameter C (see chapter 3.2.1), which is due to
very centrally concentrated galaxies having most of their light within a
small number of pixels. The two indices differ, however, in how they
interpret the large-scale distribution of light within the galaxy structure.
For example, a galaxy with light concentrated in a non-central part of the
galaxy would have a high G, but a low C. This is due to G not making
the assumption for the location of the galactic center.

G is affected systematically by the signal-to-noise (S/N ) effect on
the measurements. Lisker (2008) argues that results from each galaxy
could realistically only be compared with those of galaxies with a similar
S/N. This is due to how, especially at larger apertures, the systematic
effect on results by S/N solely causes the transition within a range of Gini
values, instead of it stemming from the actual different surface brightness
values of the evaluated galaxies. At smaller apertures, the effect is not
as prominent, yet it is still there. As a solution, requiring the difference
between the G of different galaxy classes to be larger than the systematic
S/N ratio is proposed.
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4. Theory and applications of machine learning in
galactic astronomy

The morphological classification schemes presented in the previous chap-
ter can be used as a basis for an automated classification system. While
the various schemes, especially in the case of older classification systems,
have been made with human classifiers in mind, computer algorithms can
nowadays also be trained to recognize different types of galaxies from
survey image data basing on a classification scheme of choice. Some
algorithms can also independently draw conclusions from image data
presented to them, creating a galactic classification scheme of their own
based on the appearance of galaxies in the data. The topic of neural net-
works, convolutional neural network -based supervised learning methods
and unsupervised clustering methods will be covered on a general level in
this chapter, along with recent examples of their applications in galaxy
classification.

4.1. Artificial neural networks

Artificial neural networks (ANNs) are computational systems, taking in-
spiration from the mechanism by which biological nervous systems oper-
ate and process information. The basic structure of an ANN comprises of
multiple interconnected basic units of the network, neurons, which form
layers within the network. These can be divided into the input layer,
in-between hidden layers, and the output layer. The number of hidden
layers varies - in the case of several hidden layers, the network is a so-
called deep neural network. Each neuron, except for the neurons of the
input layer, is associated with an activation function. The function de-
termines the node’s output when provided with one or several weighted
inputs. The weight of the inputs is determined per each neuron-to-neuron
connection, and within a network, the output of the previous layer is the
input of the next one. The nth layer vector, for example, is defined as

xn = g(Wnxn−1 + bn),
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in which g is the activation function, bn the vector of biases and Wn the
matrix that contains the weights for the layer’s neurons.

The role of bias in a neural network is to contribute to the output
of a neuron by shifting the answer to a desired direction. Bias can be
thought of as a constant that is added or subtracted from the output to
achieve a better fit for the data within the used model.

The used neuron-to-neuron connections and activation functions within
the network determine the network architecture. Common examples are
feed-forward networks, radial basis function networks and recurrent neu-
ral networks. Of these, feed-forward networks move information in only
one direction - from the input towards the output - in the network with-
out any loops within the network structure, whereas recurrent neural
networks can move information both forward and backward.

The availability of uniform and large enough data sets as well as the
lack of necessary computational power have both constrained the training
and use of neural networks as a tool for data processing in astronomy,
albeit automated classification methods to evaluate survey data have
been hinted at since the 1980’s (e.g. Kurtz 1983).

Some of the earliest documented uses include Odewahn et al. (1992),
in which stellar and galaxy images were separated from each other with an
ANN, and Naim et al. (1995) accompanied by Lahav et al. (1995), where
images of galaxies were morphologically classified based on the Revised
Hubble T-type system (see e.g. Buta, Mitra, et al. 1994 for a summary of
the T-type system) by an ANN trained with a sample classified by several
human experts, and the results evaluated on the grounds of how well the
ANN matched the human classifiers’ classifications. Another noteworthy
example from the same time is Weir et al. (1995), where the performance
of a supervised neural network is compared to that of a decision tree
algorithm in being able to distinguish between stars and galaxies.

4.2. Convolutional neural networks

Convolutional neural networks (CNNs) are fundamentally similar to tra-
ditional ANNs. The difference between a CNN and a traditional ANN
arises from the possibility to encode image-specific features into the net-
work architecture. The network aims to create a feature map in which
the presence of detected features is summarized. In simple terms, the
networks takes pixels as an input, identifies and combines the edges de-
tected from the pixels to form shapes, and then uses the formed shapes
to detect objects from images.

The CNN structure consist of three main types of layers, which are the
convolutional layer, the pooling layer and the fully connected layer. Both
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Figure 4.1: Simplified visualization of the convolutional neural network
structure. Distributed under the CC-BY-SA 4.0 license. Original authors of the

content used in the adapted version presented here: David Dayag, Aphex34.

the convolutional and the pooling layers can include multiple instances
of the same layer, and the fully connected layer will always follow after
these as the final layer of the network. Within the convolutional layer,
a filter matrix is applied to a partial area of the processed image, and
the network calculates a dot product between the filter values and the
pixels of the input. The result gets sent to an output array, and the
filter moves on to repeat the procedure within another area of the input
image. How much the filter moves is determined by its ’stride’, referring
to the number of pixels the filter moves vertically and horizontally over
the input image. The output of the convolutional layer is passed on to
the pooling layer, which subsamples the input given to it in order to
reduce the number of trainable parameters.

A CNN learns by a process where a classification is made, checked
against the true label in the training data, and the network weights are
automatically adjusted to fit the model to better accommodate the train-
ing data. The network aims to minimize the value of the loss function
that keeps track of the accuracy of the classifications. The learning pro-
cess is based on training and validation datasets, where - as the names
suggest - the training data is used to teach the network and the valida-
tion dataset to measure how well the knowledge attained in the training
phase can be extrapolated into unseen data. The validation and training
losses are tracked separately, and by comparing the two it is possible to
estimate whether or not the learning process has been successful.

The learning process of a CNN can stray from the desired result in
several different ways: the network can, for example, learn to be too
specifically focused on the features on the training data and not be able
to extrapolate its knowledge to data outside the training domain, leading
to a process called overfitting. One indicator of overfitting can be a
growing discrepancy between training and validation loss values during
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the training period. The network can also learn to focus on irrelevant
features on the data if the training data is not chosen with care to ensure
enough variability on the background features around the main object.
To avoid overfitting, methods like regularization and dropout can be
implemented into the network. Dropout layers randomly set a specific
fraction of weights equal to zero, while regularization penalizes larger
values of node weights and thus reduces their impact on the training
process.

Due to their specific suitability for image recognition and classifica-
tion, CNNs have been used especially to identify and classify objects from
survey image data: examples of such use include morphological classifica-
tion of galaxies (Dieleman et al. 2015; Aniyan and Thorat 2017), detec-
tion of strong gravitational lens candidates and lensing systems (Petrillo
et al. 2018; Davies et al. 2019), morphological classification of galaxies
into ellipticals and spirals (Cheng et al. 2020), morphological classifica-
tion into main Hubble types (Cavanagh et al. 2021), separation of low
surface brightness galaxies and artefacts from survey images (Tanoglidis,
Ćiprijanović, et al. 2020) and further classification of the previously sep-
arated low surface brightness galaxies into spirals, dwarf ellipticals and
dwarf irregulars (Müller and Schnider 2021).

4.2.1. Binary image-based classification

Most of the CNN applications in galactic astronomy have so far been
limited to simple yes-no binary classification tasks, such as whether an
object is an artifact or a galaxy, or whether a galaxy is a spiral or an ellip-
tical one. Binary classification tasks are computationally less demanding
to execute, and do not require grand amounts of training data to be
able to distinguish between two classes, especially if the division is made
between two "clear cases", such as point sources and diffuse objects.

As an example, Tanoglidis, Ćiprijanović, et al. (2020) present a CNN-
based solution for the overwhelming ratio of false positives while identify-
ing low surface brightness galaxies (LSBGs) from survey images. LSBGs
are defined by for example Impey and Bothun (1997) as galaxies in which
for the central surface brightness µ0(B) > 23 mag arcsec−2.

While identifying LSBG candidates from survey image data, identifi-
cation algorithms often pick up not only true LSBGs, but also so-called
false positive objects which are structurally similar to LSBGs but phys-
ically different. False positives that pass the selection criteria of LSBGs
include, for example compact, faint objects muddied by the diffuse light
from bright stars or giant elliptical galaxies, bright parts of the Galactic
Cirrus, which consists of sources that produce background radiation at
100 µ. In addition to these, star-forming dense, bright regions within the
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arms of large spiral galaxies and tidal features connected to high surface
brightness host galaxies can cause confusion in the algorithm.

The amount of false positives is generally so significant that it vastly
outnumbers the amount of real LSBGs in the sample material. This
renders the sample contaminated, requiring manual rejection of the arti-
fact objects. For example, in the Dark Energy Survey (DES) after cuts
based on colour, the half-light radii in the g-band and the mean surface
brightness were performed to exclude artefacts, approximately 8% of the
remaining sample were found (Tanoglidis, Drlica-Wagner, et al. 2021) to
be real LSBGs.

The network was implemented on the open source machine learning
platform TensorFlow1, making use of its deep learning framework Keras2.
The structure of the network consist of three 3 x 3 convolutional layers,
with the same amount of 2 x 2 pooling layers in between, followed by two
fully-connected layers at the end of the network. The training, testing
and validation sets used include a sample of labeled LSBGs and arti-
facts detected from DES (see Tanoglidis, Drlica-Wagner, et al. 2021 for
a detailed summary), presented to the network as 64 x 64 RGB pictures.

The performance of the CNN was benchmarked against the results
from support vector machine and random forest algorithms, both of
which have been widely used in astronomy. The accuracy of the classifi-
cations made by the CNN on the same data was found to be significantly
better, with a classification accuracy of 92,0%, compared to 81,9% with
a support vector machine and 79,7% with a random forest algorithm.

4.2.2. Multi-class image-based classification

Multi-class image-based classification is at its core almost identical to
binary classification of the same kind, with the exception of the number
of output nodes, the output layer activation function and the loss func-
tion used in the training phase. While in binary classification tasks a
simple probability between 0 and 1 suffices as an output value, a multi-
class classification task requires for the network to be able to produce a
result which indicates the probability of the observed object belonging
to each defined class. This sets some constraints of what loss and final
layer activation functions can be implemented into the network: multi-
class CNNs for example usually use the normalized exponential function
for final layer activation, as opposed to the various sigmoid functions
commonly used in binary classification tasks.

Cavanagh et al. (2021) have performed multi-class classification on
1https://www.tensorflow.org/
2https://keras.io/
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data visually classified by Nair and Abraham (2010) from the SDSS Data
Release 4 (Adelman-McCarthy et al. 2006), using a CNN to distinguish
between three (elliptical, lenticular and spiral) and four (elliptical, lentic-
ular, spiral and irregular) classes of objects. Four different network ar-
chitectures are tested, each built using Keras. The tested architectures
consist of varying amounts of convolutional and pooling layers, as well
as different hyperparameter values. All of the architectures share the
same activation function (rectified linear unit) in their convolutional and
dense layers, and the same final layer activation function (normalized
exponential).

The received results from the four different architectures vary on 3-
way classification between 75% and 83% on input image size 100 x 100
and between 81% and 84% with size 200 x 200. With 4-way classification,
the results were 74%-81% for 100 x 100 images and 79%-83% for 200 x 200
images. While the classification accuracy for spirals (93% in 3-way, 89%
in 4-way) is high, the networks have trouble with lenticular galaxies (60%
in both cases) and almost entirely fail to classify irregulars (27% in 4-
way) in the 4-way classification. The bad performance on classification of
irregulars is, however, more due to a heavily under-representative training
set than any shortcomings of the network itself. Cavanagh et al. (2021)
remark that the misclassifications can in some cases be interpreted as
physically meaningful ones, and that they can be traced to for example
effects of redshift or larger than average size of the galaxies. This is
seen as a sign that the networks have effectively learned to differentiate
galaxies based on the main morphological features of different Hubble
types.

4.2.3. Transfer learning

Transfer learning refers to a method where a CNN model is first trained
on one problem, after which the model’s weights and architecture are
applied to a similar problem either by using the old model as is, or by
integrating the old model partially or completely into a new model.

The study by Tanoglidis, Ćiprijanović, et al. (2020) presented in chap-
ter 4.2.2 also includes a transfer learning trial. The model trained on DES
image data is adapted to classify data from the Hyper-Suprime-Cam sur-
vey. The original model is used both with and without retraining it on
the HSC image data. Without retraining, the model reaches a classifica-
tion accuracy of 82,1%, compared to an accuracy of 87.6% after having
been retrained on a set of data consisting of 320 objects. The retraining
is done with a very small learning rate in order to somewhat maintain
the original weights of the model and to avoid overfitting.

Domínguez Sánchez et al. (2019) present another example of transfer
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learning applied to cross-survey galaxy classification. The models trained
on SDSS data are applied separately to three different classification tasks,
each with its own model. Classification is done between galaxies with
disks/features and smooth galaxies, between edge-on and face-on galax-
ies, and lastly between galaxies with bar signature and galaxies with no
bar. The SDSS-based models are then applied to DES data, evaluating
the performance of the model in four different cases: the original model
is directly applied to DES data without retraining, the weights of all the
original model’s layers are fine-tuned with a small learning rate using a
small batch of DES data, only the weights of the fully connected layer
are fine-tuned, and the model is fully trained anew with the same small
DES sample batch as in the previous two cases.

The models were found to adapt best to new data when all of the
model’s layers are fine-tuned with a small amount of labeled data from
DES. All of the three different classification cases reach an accuracy of
95% with the fine-tuned model, though the precision rate varies between
the three. The precision metric indicates what portion of both true and
false positive classifications were true positives. Since the classification
task is a binary one, false positives and negatives refer to classifications
where an objects of for example the smooth class is classified as an object
of the disk class, and vice versa.

4.3. Unsupervised learning

Using supervised learning in any automated classification task requires a
large amount of pre-classified data for the purpose of training the classi-
fication algorithm. This can be circumvented by unsupervised machine
learning methods. Unsupervised machine learning refers to a procedure
where an algorithm autonomously deduces the key categories from the
data presented to it and compresses an arbitrary amount of input data
into said categories. Although the effectiveness of any classification al-
gorithm has to eventually be benchmarked by comparing its produced
results to pre-classified data or by assessing the quality of the classifica-
tions by eye, cutting away the need for one of the two large data batches
necessary for supervised learning reduces the amount of time and effort
needed to establish an automated classification scheme.

An unsupervised learning scheme can be established in several dif-
ferent ways: these include anomaly detection, clustering, neural network
and latent variable methods.
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4.3.1. Clustering methods

Clustering methods with significance in astronomy include for example
k-means clustering and agglomerative hierarchical clustering. Agglom-
erative hierarchical clustering (see e.g. Johnson 1967) is a bottom-up
algorithm which creates a hierarchical model of clusters. In the case of
bottom-up clustering, the algorithm begins each evaluation process from
a singular cluster, merging cluster pairs as it climbs up the hierarchy.

Hocking et al. (2018) use a technique combining agglomerative hi-
erarchical clustering (see figure 4.2) with growing neural gas network
algorithm (GNG; refer to Fritzke et al. 1995 for a detailed description of
the algorithm) and connected component labelling to automatically seg-
ment and label galaxies basing only on pixel data. The used technique
is first applied to Hubble Space Telescope (HST) Frontier Fields survey
images and then further used on HST Cosmic Assembly Near-infrared
Deep Extra-galactic Legacy Survey (CANDELS) fields. This technique
has later been built upon by for example Martin et al. (2020), who use
a similar approach to identify different galaxy types from the Hyper-
Suprime-Cam Subaru-Strategic-Program Ultra-Deep layer and sort them
into morphological clusters.

Figure 4.2: Visualization of the hierarchical clustering process by
Hocking et al. (2018). The x-axis lists the GNG node identifiers and the
y-axis represents the degree of similarity, with the root node at the top.

In the learning phase of the network, the unlabeled training image is
converted into a m x n data matrix, where each row of the matrix is a
sample vector, serving as a rotation invariant representation of a small
patch area of the image, and each column is a feature with a value. The
GNG algorithm is then used to create a topological map, which is a k x n
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(k < m, k being the number of GNG nodes) data matrix, of the previous
matrix. Each sample vector in this matrix represents a cluster of similar
small sub-image patches used to create the first matrix. Hierarchical
clustering is then on used to further reduce the number of clusters to
identify subsets of the groups represented in the data matrix generated
by GNG. Connected-component labelling can thus be used to identify
the numbers and types of the small sub-image patches which, together,
form each galaxy in the survey image.

Another data matrix can be created by creating a sample vector for
each galaxy, where each element in a galaxy’s sample vector corresponds
to one ’type’ of a sub-image patch. Several patches form a galaxy, and
each sample vector is a histogram of the types of sub-images contained in
a galaxy. After normalization of the sample vectors, the result is a matrix
where each sample vector is a scale and rotation invariant representation
of a galaxy. From this, main groups or types of galaxies can be identified
via hierarchical clustering, and the positions of each group used then to
identify galaxy types from other, previously unseen images.

Several of the automated groups created by the classifier are found to
be in agreement with the consensus classifications of the same data from
Galaxy Zoo. Hocking et al. (2018) remark that the algorithm could be
of use especially in the search for similar galaxies when the user has a
test example in mind, or in the search of undiscovered features.
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5. Summary

Galaxies are systems of dark matter, stars, gas and dust orbiting around a
central concentration of mass. They span a wide variety of appearances,
based on which they can be classified. Several classification schemes
have been developed during the last century, with an attempt to relate
the different types of galaxies to each other based on their key physical
features and use the received information to further the understanding
of both the composition as well as the evolution of galaxies. In the
past, the small amount of galaxies in survey image data allowed for the
classification process to be completed visually, but with the ever-growing
size and depth of survey image data, making classifications in this way
nowadays is near to impossible.

Various machine learning algorithms specialized in image recognition
and classification can outperform human classifiers in terms of speed and
likely soon also in accuracy. The advent of the development of neural
network tools for astronomy was in early 1990’s, and ever since espe-
cially convolutional neural networks have been applied to classification
problems in galactic astronomy. Applications of unsupervised learning
have also shown promise in being able to produce self-organizing classi-
fication results. The rapid development of machine learning algorithms
and hardware suited to perform automated large-scale classification tasks
with astronomical survey data holds promise for machine learning meth-
ods being able to eventually fully replace humans in most classification
tasks.
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