
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Atte Jauhiainen

DATA-ORIENTED APPROACH FOR SYNTHETIC
NETWORK TRAFFIC GENERATION

Master’s Thesis
Degree Programme in Computer Science and Engineering

January 2022



Jauhiainen A. (2022) Data-Oriented Approach for Synthetic Network Traffic
Generation. University of Oulu, Degree Programme in Computer Science and
Engineering, 40 p.

ABSTRACT

A significant portion of dynamic websites, called web applications present
dynamic information, which can be fetched from a backend pre-emptively or on-
demand. For popular sites and applications, the increased volume of network
calls and connectivity creates high performance requirements for the server side
implementation. A failure to fulfill these requirements might lead to security
vulnerabilities, high latency, logical malfunctions, and other issues.
Identifying and quantifying performance weaknesses is not trivial. Even if

measurements are collected, they might not originate from a stable environment
which allows truthful comparison between software versions. Often application
programming interface (API) performance issues are found by accident while
using the software, but a few more automated methods to find the issues have
been created as well, such as automated end to end API tests.
In this diploma thesis, a case of web application software is studied with the

goal of increasing its performance testing capability. A data-oriented approach
to create synthetic network traffic for performance testing is prototyped. The
approach consists of recording incoming network traffic at the server, finding user
sequences within the traffic, which are then used to create a model of the users.
Themodel can then be utilized to generate synthetic network requests, which have
the same characteristics as real network traffic. The synthetic network requests
are then used to generate load in a performance test environment. The approach
is evaluated by its applicability for the use case.

Keywords: Performance testing, user modelling, application programming
interface, API, cloud, latent dirichlet allocation



Jauhiainen A. (2022) Datapohjainen lähestymistapa verkkoliikenteen
syntetisointiin. Oulun yliopisto, Tietotekniikan tutkinto-ohjelma, 40 s.

TIIVISTELMÄ

Suuri osa dynaamisista verkkosivuista eli verkkosovelluksista esittää käyttäjälle
dynaamisesti tietoa. Tarvittava tieto haetaan tyypillisesti palvelimelta (jatkossa
"backend"), jonne voidaan myös lähettää dataa. Suosituilla verkkosovelluksilla
voi olla valtava määrä samanaikaisia käyttäjiä, mikä aiheuttaa suuren
kuorman backendille. Mahdollinen suuri kuorma johtaa korkeisiin
suorituskykyvaatimuksiin. Epäonnistuminen suorituskykyvaatimusten
täyttämisessä voi johtaa tietoturvaongelmiin, pitkiin vasteaikoihin, loogisiin
virheisiin tai muihin ongelmiin.
Verkkopalvelun suorituskykyheikkousten löytäminen ja tunnistaminen ei

ole triviaali tehtävä. Vaikka ohjelman suorituksesta kerättäisiin tietoa, se ei
välttämättä pohjaudu vakaasta ja toistettavasta ympäristöstä mitatulle datalle.
Usein backendien rajapintojen suorituskykyheikkoudet löytyvät vahingossa
rajapintaa käytettäessä, mutta muutamia automatisoituja keinoja heikkousten
löytämiseksi on olemassa.
Tässä diplomityössä tutkitaan yhden verkkosovelluksen käyttäjien

datapohjaista mallinnusta, ensisijaisena tavoitteena nostaa sovelluksen
suorituskykytestauksen tasoa. Työssä kokeillaan datalähtöistä lähestymistapaa
verkkoliikenteen mallintamiseksi ja syntetisoimiseksi. Lähestymistapa koostuu
verkkoliikenteen nauhoittamisesta, käyttäjäsekvenssien tunnistamisesta
verkkoliikenteen joukosta ja käyttäjien mallintamisesta. Mallinnettujen
käyttäjien avulla voidaan luoda synteettistä verkkoliikennettä, joka muistuttaa
ominaisuuksiltaan alkuperäistä nauhoitettua verkkoliikennettä. Synteettistä
liikennettä käytetään suorituskykytestaukseen tarvittavan kuorman luomisessa.
Lopulta lähestymistavan onnistumista ja sovellettavuutta arvioidaan.

Avainsanat: suorituskykytestaus, käyttäjän mallinnus, sovellusrajapinta, API,
pilvipalvelu, latent dirichlet allocation



TABLE OF CONTENTS

ABSTRACT
TIIVISTELMÄ
TABLE OF CONTENTS
FOREWORD
LIST OF ABBREVIATIONS AND SYMBOLS
1. INTRODUCTION....................................................................................... 7
2. BACKGROUND AND RELATED WORK .................................................. 8

2.1. Web Application ................................................................................. 8
2.1.1. Web Application Architecture .................................................. 8
2.1.2. Backend.................................................................................. 9
2.1.3. Performance Considerations..................................................... 9
2.1.4. Web Traffic ............................................................................. 11

2.2. Testing ............................................................................................... 12
2.2.1. Performance Testing ................................................................ 13
2.2.2. Test Definition ........................................................................ 15

2.3. Sequence Modeling............................................................................. 16
3. IMPLEMENTATION .................................................................................. 18

3.1. Traffic Recording................................................................................ 19
3.2. Sequence Identification ....................................................................... 22
3.3. Modeling............................................................................................ 22

3.3.1. Dataset ................................................................................... 24
3.3.2. Modeling Results .................................................................... 24
3.3.3. Markov Chains........................................................................ 26

3.4. Synthetic Traffic Generation ................................................................ 27
4. EVALUATION ........................................................................................... 30

4.1. Discussion.......................................................................................... 31
4.1.1. Future Work............................................................................ 33

5. SUMMARY ............................................................................................... 34
6. REFERENCES ........................................................................................... 35
7. APPENDICES............................................................................................ 38



FOREWORD

This thesis was partly conducted while working for Uros Oy. It took a few months
to find a suitable topic, but model-based network traffic synthesis eventually came
to mind in late 2020. The idea of automating the complete process all the way to
parameterization was quickly deemed too broad and the scope was narrowed to its
current form. The spring of 2021 was the most intensive time of working with the
thesis, as that is when the I completed the traffic recording and most of the data
processing software. The pace of work gradually slowed as the thesis got closer to
being complete but finally in the Christmas of 2021 the thesis was complete. I can,
without a doubt, say that this was the most challenging and time consuming but also
the most fulfilling endeavour I’ve completed during my studies.
This thesis would not be complete without the help of all the lovely people helping

me on this journey. First and foremost I would like to thank my wife, Kia, for the
seemingly endless support she gave me. I would also like to thank my thesis adviser
Teemu Kanstren at Uros for his patience and guidance, and all other colleagues who
helped me to make the right decisions. And finally, I thank my supervisor Aku Visuri
for his valuable advice and insight.

Helsinki, January 3rd, 2022

Atte Jauhiainen



LIST OF ABBREVIATIONS AND SYMBOLS

API application programming interface
LDA latent Dirichlet allocation
AWS Amazon Web Services
EC2 Elastic Compute Cloud
OSI Open Systems Interconnected
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol (secure)
TCP Transmission Control Protocol
UDP User Datagram Protocol
SOAP Simple Object Access Protocol
MTU maximum transmission unit
IP Internet Protocol
VPC virtual private cloud
SUT system under test
HWPC hardware performance counter
REST representational state transfer
SVM support vector machine
HMM hidden Markov model
SAM sequence alignment method
DNA deoxyribonucleic acid
CI continuous integration
KMS Key Management Service
ALB Application Load Balancer
HAProxy High Availability Proxy
TLS Transport Layer Security
IGW Internet Gateway
VXLAN Virtual Extensible LAN
LAN local area network
URL Uniform Resource Locator
K-S Kolmogorov-Smirnov
F cumulative distribution function
eCDF empirical cumulative distribution function
n, m size of dataset
D maximum distance



7

1. INTRODUCTION

Various information systems such as web applications are used daily by people all
around the world. As a business that provides these systems, it is important to ensure
the systems are of high quality and work as intended. One common method of ensuring
the quality is automated testing. There are many methods to test an information
technology system, but it could be simplified as applying a set of predetermined
scenarios to different parts of the system and then observing and comparing the results.
Usually the goal of testing is to gather information about the quality and characteristics
of different components and the system as a whole.
One field of testing is performance testing, which deals with the performance of

some system. A company ordered this thesis for a web application, which is not
thoroughly performance tested. The goal is to improve the testing capability for that
application by creating realistic synthetic network traffic. However, it is not trivial to
create credible synthetic network load.
In this thesis I investigate an approach to synthesize network requests using a

network traffic log. Network request synthesizing is the process of creating fake
requests, which simulate user behaviour. The goal of this approach is that the
synthesized request chains would be statistically similar to the original traffic. In this
thesis I describe and justify the design and implementation of tools to achieve this goal
and evaluate their functionality.
The approach developed in this thesis consists of 4 distinct phases: network traffic

collection, sequence analysis and modeling, request synthesizing, and finally applying
the synthesized requests in performance testing. The effectiveness of this approach
is then assessed in the evaluation phase. Sequence modeling is aided by a machine
learning model called Latent Dirichlet Allocation (LDA). All the implementation tasks
such as modeling, request synthesis and performance testing is done through Python
scripting.
I have two research questions I try to answer in this thesis:

• RQ1: How effectively can Latent Dirichlet Allocation (LDA) be used to
categorise user sequences in network traffic?

• RQ2: How effective are synthetic requests in conducting controlled performance
tests for a back end application?



8

2. BACKGROUND AND RELATEDWORK

Web applications, network traffic, application testing, performance testing and
sequence modelling are the key aspects of this thesis. In the background section I
talk about web applications, software testing and sequence modeling.

2.1. Web Application

Web applications and web services are distributed computer systems which are built
to provide some functionality, such as providing access to a set of remote resources
[1]. Web service is a client-agnostic interface and its infrastructure, whereas web
applications consist of a web service and a web application which is usually used
within some kind of a web browser. Web applications are usually quick to take into use,
compared to desktop applications which might require more setup, such as installation
and configuration.

2.1.1. Web Application Architecture

Web applications and other distributed systems often consist of multiple interconnected
devices, i.e. servers, clients, and other machines. A large portion of systems required
for work, financial services, social platforms, leisure, such as games, etc. rely on these
services [2]. For the user, web applications may appear as a dynamic website or a
mobile application, but under the hood there are many components that provide the
functionality. A static website is not considered as a web application, unlike a website
that displays dynamic data fetched from a remote source.

Figure 1. Simplified end to end web application.

A typical mobile or web application consists of a server and clients as shown in
Figure 1. The client executes on the end users device such as a mobile phone or a web
browser, whereas the server is executed on a remote device often described as a server
or the cloud. Cloud platforms offer servers which are machines as any other, except
they are managed by somebody else and paid per usage. Both the client and server
components may have performance issues and highly benefit from testing in order
to verify functionality of the integration and sufficient quality of operation. Client
software may be atomic in the sense that it is not dependant on other clients. Unless
we take peer-to-peer software into account, the client is often dependant on the server
side software. The virtually unlimited number of possible simultaneous client devices
and the client-server dependency results in a requirement to manage a highly scalable
and difficult to predict network traffic volume.



9

2.1.2. Backend

Because of the strong coupling between clients and the backend, and the "single point
of failure" nature of backends, their high availability is important. A backend that
fails to respond might result in the whole application being unusable. Businesses with
high availability services often prefer to host their applications in a cloud environment,
such as the Amazon Web Services (AWS), Azure, Google Cloud Platform or some
other vendor instead of having an on-premise hardware to run the server. These
cloud environments offer tools to automatize deployments, backups, updates and other
maintenance tasks.
Another important factor for cloud deployments is network delay. Each request has

some delay between sending a request and getting a response. Larger cloud vendors
provide multiple datacenter locations around the world, which allows a company to
host multiple geographically distributed instances of their application. Usually the
closer a server is to the client within the internet topology, the less significant is the
network delay. Other important factors are scalability and the pricing model, as users
only pays for usage and not the hardware. The high volume of computing power owned
and sold by a cloud vendor allows the consumers to allocate the required resources and
quickly ramp up computing heavy tasks without spending on hardware up front. In
the case of web applications, the automatic scaling of the number of instance nodes is
sometimes referred as a dynamic deployment [3].
In this thesis AWS virtual servers, called EC2 instances (Elastic Cloud Computing)

play a key role. They are simple and cheap virtual servers that offer any kind of general
purpose computing. The user has total control of the networking, processing and
everything else within a virtual server. Virtual servers are a typical tool for hosting web
applications and other software in a cloud environment. In this thesis EC2 instances
are used for network traffic proxying and traffic monitoring. The preexisting Java-
application which act as the network traffic source is also deployed in an EC2 instance.

2.1.3. Performance Considerations

Each instance of an application server has a limited number of API calls it can serve
in a given time frame. This threshold is called the throughput of the server and is an
important performance metric. If the number of concurrent users surges dramatically, a
server will likely experience an unusually high load. If the number of requests is higher
than the maximum throughput, unpredictable side effects may arise. Application
throughput is a combination of the software itself and the environment it is running in.
Environment consists of multiple aspects such as the hardware running the software,
network connections and other software running within the same machine. Even the
most performant software runs slowly in a terrible environment and vice versa.
In a centralized distributed system performance issues are typically less severe on

the client software, but they can be observed regardless of the system wide workload.
Figure 2 illustrates how in a simplified system the server side response time of an
application is proportionally more significant when the number of concurrent users
increases. The client side software performance remains constant for each user
regardless of other users. However, the client side is still impacted negatively by



1 0

b a c k e n d sl o w d o w n as r es p o ns e ti m es  m a y g et l o n g er.  T h e s yst e m  wi d e p erf or m a n c e
is t h e c o m bi n ati o n of all c o m p o n e nts  w h er e t h e l o w est p erf or mi n g c o m p o n e nt is t h e
li miti n g f a ct or.  T y pi c all y t h e c o m p o n e nts  wit h hi g h c o n c urr e n c y, t hr o u g h p ut, n u m b er
of c o n n e cti o ns, or h e a v y c o m p uti n g ar e t h e  m ost pr o n e t o b ei n g t h e  m ost criti c al
c o m p o n e nts p erf or m a n c e  wis e.

Fi g ur e 2.  Cli e nt a n d s er v er p erf or m a n c e.

L ets c o nsi d er a c as e  w h er e a n e n d us er r e gist ers a n e w a c c o u nt, l o gs i n o n t h e n e w
a c c o u nt a n d t h e n pr o c e e ds t o p ur c h as e a n e w d e vi c e fr o m t h e st or e s e cti o n of t h e
a p pli c ati o n. If t h e s er v er  w as t ar g et e d b y a s ur g e of si m ult a n e o us r e q u ests, t h e r e q u est
t o p ur c h as e t h e d e vi c e c o ul d b e ti m e d o ut.  T his s ort of p erf or m a n c e iss u es c o ul d
p ot e nti all y b e c ostl y f or t h e b usi n ess as us ers  mi g ht f or e x a m pl e c h a n g e t h e pr o d u ct
b e c a us e of s u c h pr o bl e ms.  A n ot h er p erf or m a n c e iss u e e x a m pl e is a vi d e o str e a mi n g
s er vi c e,  w hi c h  mi g ht n ot b e a bl e t o pr o vi d e all vi e w ers  wit h c o nsist e nt bit r at es b e c a us e
of hi g h n u m b er of c o n c urr e nt  w at c h ers.  T his c o ul d b e o bs er v e d as st utt eri n g, l o w vi d e o
q u alit y a n d b uff eri n g iss u es.

T h e p erf or m a n c e of a pi e c e of s oft w ar e c a n  m e a n  m a n y t hi n gs, s u c h as  m e m or y
us a g e or e x e c uti o n ti m e r el ati v e t o t h e i n p ut d at a or t hr o u g h p ut. I n t h e c o nt e xt
of  w e b a p pli c ati o ns p erf or m a n c e is oft e n  m e as ur e d i n a v er a g e r es p o ns e ti m es (i n
e. g.,  millis e c o n ds), n u m b er of r e q u ests or s essi o ns  wit hi n a ti m e fr a m e or r e q u est
b uff er l e n gt h.  All of t h es e  m e as ur e m e nts c a n als o b e i ns p e ct e d r el ati v e t o h ar d w ar e
utili z ati o n,  w h er e a hi g h er p h ysi c al r es o ur c e us a g e p er t hr o u g h p ut is c o nsi d er e d as
w ors e effi ci e n c y. F or e x a m pl e, if t w o pi e c es of s oft w ar e b ot h s er v e o n e r e q u est p er
s e c o n d b ut ot h er r es er v es 5 0 p er c e nt  m or e  m e m or y, it  m ost li k el y h a n dl es p h ysi c al
r es o ur c es l ess effi ci e ntl y. S oft w ar e p erf or m a n c e is i nt er esti n g f or t h e a p pli c ati o n i n
f o c us of t his t h esis as p erf or m a n c e iss u es h a v e aris e n d uri n g us a g e a n d p erf or m a n c e
r e gr essi o ns h a v e b e e n i ntr o d u c e d b y a c ci d e nt.  A n a ut o m at e d p erf or m a n c e t esti n g
r o uti n e  w o ul d  m a k e it e asi er t o fi n d t h e iss u es as e arl y as p ossi bl e.  R e g ul ar
p erf or m a n c e t esti n g  w o ul d als o  m a k e it e asi er t o dis c o v er p erf or m a n c e li mit ati o ns



11

of the software, and to draw conclusion about how the software and its environment
handles current and future user base.

2.1.4. Web Traffic

Network monitoring is a method to inspect and collect network traffic, which is often
used to gather some information of the system usage as a whole or some individual
users. To create a network traffic monitoring setup, some background information
about network traffic is required.

Figure 3. OSI (Open Systems Interconnected) model.

The connection between a server and a client typically uses some sort of application
layer protocol on top of a transportation layer protocol, such as TCP (transmission
control protocol) or UDP (user datagram protocol). Figure 3 shows how the
application layer and transportation layer position within the OSI model (Open
Systems Interconnection model). Commonly used application protocols are HTTP(S)
(hypertext transfer protocol (secure)), WebSocket and SOAP (simple object access
protocol) to name a few. The client and server are tightly coupled through a network
connection and each resource access requires a network request. OSI model in Figure
3 describes internet architecture on a protocol level. It describes the layered nature
of internet traffic in which application layer protocols build on top transport layer
protocols.
The network traffic I need to have as an input for sequence modeling is HTTP

requests. The tools I use to record the traffic output TCP packets which transport
HTTP requests. Each HTTP request may be split into multiple TCP packets if the
HTTP request is larger than the MTU (maximum transmission unit) and will not fit
into one packet. This is shown in figure 4 and is called IP fragmentation which must
be taken into account when working with a raw TCP dump.



12

Figure 4. IP fragmentation: a HTTP request split into multiple TCP packets.

HTTP requests typically contain headers and metadata that allows the client and
server to distinguish entities from each other. For example, authorization tokens, user
agents, source IP addresses, or some other combination of these identifiers may provide
the identifying information. With the aid of this identifying information one may
rearrange a network traffic log to reveal all actions done by a single client. The user
specific rearranged section of the log will be called a used sequence. A user sequence
is thus a chronological list of API operations performed by a single entity.
A network traffic dump is one low level choice for analyzing application usage. The

good thing about a network traffic dump is that it should show the requests as they
are without any modifications. Multiple methods for implementing data capture exist.
For example, one may increase logging coverage at the application level to also log
individual requests. This could have a significant probe effect, as the logging will have
an effect on the application performance [4]. Probe effect is a phenomenon where
the process of data collection has an effect on the measured attribute. For example,
in this case the increased logging could degrade performance. Logging could also
be implemented at some level in the network infrastructure, but this could have same
problems as application level logging. In the scope of this thesis a good solution is
AWSVPCmirroring, as it is easy to apply on our existing applications. VPCMirroring
is cloud network tool specifically in the AWS cloud, that allows cloning traffic from
one network interface to another with little effect in performance. VPC mirroring may
have an effect on the traffic, but it should be negligible compared to application level
logging [5].
A data set consisting of network traffic will usually not be very useful unless it is

processed further. The chapter 2.3 focuses in how network traffic dumps consisting of
network requests can be processed to create models or to find information. Finding
information about the users of a system can also be helpful in developing or testing a
system.

2.2. Testing

Testing is a collection of processes applied to a piece of software or a system, with the
goal of finding bugs, weaknesses, and vulnerabilities in the system - and to verify that
the software implements the desired functionality. Software testing can be conducted
on many levels from a unit test to an end-to-end integration test. The scope of a
unit test should be an atomic function that can be assessed individually, where as the
end-to-end test might test one use case of the entire system - spanning over different
components. Different test methods address different kind of threats and operate in a



13

different scope [6]. These different levels of testing are illustrated in figure 5, which
portrays a linear model for application development. Performance testing would fit
under System testing or Acceptance testing.

Figure 5. Life cycle of an application.

Different types of bugs are typically introduced to the code base when any changes
are made, which warrants testing for every version of the system. This iterative
degrading of system quality is called a regression. Software regression can be
functional, which means that some output of the software is wrong in a newer version
of the software. It can also be a performance regression which means that the software
performance is worse after a change. Typical regression test suites try to keep the
system quality on the same level as it was by identifying software regressions in
existing features from newer versions of software. The ability to identify and solve
the root cause causing the issue is often the goal of testing efforts. Regression testing
gives tools to help this process in regard of regression issues. [7]

2.2.1. Performance Testing

Performance testing is a non-functional testing paradigm. It means that performance
testing is not concerned with the functional correctness of the software, but rather about
its performance characteristics. Often the goal for performance testing an application
is to find performance regressions, which means finding the change in performance to
previous software versions. Performance testing is also important for new features,
which are not within the scope of regression resting yet. Performance testing, or
performance benchmarking, could also give deeper insight about how the software
functions under strain. Performance testing is also a valuable tool in finding the load
thresholds at which the software performs badly. Performance, as mentioned in section
2.1.3, can mean many things based on the application. In the case of performance
testing a web application, it is usually execution times or concurrency limits.
Web application performance can be observed by generating load against the

application in a specific environment. The load should represent actual production
application load, but it could be difficult to model production-like load reliably. It has
been shown that production environment traffic can be utilized to model the synthetic
load [8].



14

To make any assumptions about the performance of a software, some metrics are
required. The metrics can be measured either from within the machine running the
software under test, or from an external device, such as a web client. Performance
telemetry can be collected from hardware within the machine running the system,
e.g. from a processor load, cache hits and misses, or disk usage. External software
would experience the performance as request response times. These times do, however,
include the delays that are induced from the connection between the system under test
(SUT) and the tester device. Modern hardware components; processors, motherboards,
memory modules and other components provide a method to inspect their performance.
These are called hardware performance counter (HWPC), and they can be fine tuned
to track the system performance very accurately [9]. In the scope of this paper the
performance of the SUT is viewed in the perspective of the client.
Web application performance testing can be divided into different types of

performance testing plans, which are: stress testing, spike testing, load testing and soak
testing [10]. Stress testing may find the performance limits of the system, as stress
testing is about creating extreme loads. Spike testing is about finding how positive
surges in load, known as spikes, affect the performance. A weak system will fail
when a drastic change in volume is introduced. Load testing is the most "natural"
performance test for an application, as it is about verifying how the software behaves
under an expected load, such as the production environment. Load testing should be
the easiest testing plan for performant software, but it can be difficult to model and
reproduce a real-world load in the testing environment. Finally, the soak test is about
finding the issues relating to prolonged use of the software. Difficult to identify issues
such as memory leaks may come up when any piece of software is run for long time.
Other testing plans exist, such as configuration testing or internet testing but they are
not within the scope of this paper. [11, 10]
A test environment and a synthetic load is required to test for the web application

performance. To generate predictable load some knowledge of the actual use cases of
the software are required. This could be a formal description such as some software
specifications but those might not exist or be available. It can be difficult to model
the user sequences, but even more difficult is to pull these sequences without any
data about actual traffic. By using production environment traffic data to create the
models, one aims to achieve a strong relation between modeled users and production
environment network traffic. This similarity would mean that the synthetic load is
very similar to that of the production environment. This similarity can be evaluated
by comparing the properties of the synthetic load to the load in the production
environment.
One major difficulty in testing software performance is the imitation of production

environment in all aspects, such as database state, usage profile and network requests.
Also sometimes the environment replication is difficult because the application is
deployed dynamically and the load is very high. In these extreme cases it makes sense
to scale down the performance test setup from the production setup. A scaled down
performance test setup would have cheaper and less performant hardware but also a
smaller load. In the scaled down version it is easier and cheaper to isolate performance
metrics and their correspondence to the software. The scaled down test environment
is not a silver bullet though, as some new problems could arise as the test environment
differentiates from the production environment. One particular problem is that some



15

of the performance issues could be hidden altogether as some components such as
autoscaling have different configurations. The actual test environment should be built
with a lot of thought and care.
Other difficulty in replicating the production environment is privacy. The production

environment will almost always contain information of actual users, which is subject
to privacy legislation and is not available for testing purposes. When replicating
production network load, a one way obfuscation process could be applied to anonymize
any identifiers, thus allowing us to utilize the relationships and characteristics of the
production data set, while anonymizing the actual data. This method of replicating
production data can be used to create a test environment that represents the production
environment. Testing should not be done in the actual production environment,
although production environment is ultimately the environment of which we’re
interested in. [12]
Network traffic volume is not the only predictor for application performance, but

it is what this thesis focuses in. Client and server are not the only components to be
considered in a distributed application, as there is usually some hosting infrastructure,
such as routers, proxies, load balancers, databases and other devices and software
utilized in conjunction with the client and the server. For testing purposes it makes
reasonable sense to isolate a component and inspect its performance individually so
that the number of measured variables can be reduced and the root causes are easier to
identify. Although, both end-to-end and single-component performance measurements
can be useful to benchmark the system as a whole. Typically both testing approaches
are utilized to pinpoint the reasons that are causing issues. [11]
Often the coupling between a server and a client is defined and implemented in an

application programming interface (API). API is something that the backend describes
and implements as can be seen in figure 1. Typically an API is accessed with HTTP
requests, but alternatives exist too. The most common web application API is a so
called Representational State Transfer (REST), which is a set of methods to access and
modify hierarchical resources [13]. Through API design one may choose to expose
only a very specific set of resources and their actions per user. This granularity of
access control allows the developers to cater for different kind of needs and users with
just a single API. The wide range of uses, users and clients could make the API more
complicated, which in turn makes it more difficult to simulate client behaviour. In this
thesis I focus on the backend part of web application.

2.2.2. Test Definition

Methodologies exist for defining a single performance test. The formalized nature of a
test definition helps in producing a replicable environment for the test, and results too.
The test case could be split into 7 steps which are:

1. Definition of SUT and the environment.
2. Definition of test parameters.
3. Definition of failure thresholds.
4. Deployment of SUT.
5. Initialization of SUT (like database, network, etc.)



16

6. Conducting the test, collecting performance data.
7. Result analysis & visualization.

The definition of SUT is essentially the system and its version that are to be tested
and the environment it is run in during the test. Test parameters are the scenarios the
SUT is exposed to, such as the number concurrent simulated users using the service
and their tasks. The definition of failure thresholds goes hand in hand with the test
parameters; what sort of behaviour is acceptable within the parameters of the test.
The deployment and initialization of the SUT are also closely related, as they describe
how the SUT should be executed in the test environment and what sort of state should
the whole system be in to start the test. This could include steps such initialization
of persistent storage, in memory storage and the application state. It also includes
the configuration of the test environment, such as network devices, firewall, remote
access control and the physical hardware that the software runs on. Finally, when the
configuration is all done, the parameterized test can be executed on the well defined
and initialized SUT that is deployed in the desired environment. As the test is executed,
different metrics are collected, which are then automatically aggregated, analyzed and
visualized. [14]
One of the more challenging aspects in creating a good performance test definition is

finding the right test parameters. In the case of web application backends the number
of different possible types of user a system could have is virtually endless. One way of
solving this issue and finding the most crucial sequences of user requests that can be
used as an input for the test is sequence modeling which is introduced in section 2.3.

2.3. Sequence Modeling

Sequence modeling is about manipulating a set of sequences into a model that enables
information extraction or generation. In its core sequence modeling is about clustering,
abstraction, and model synthesis. However, it could also be a classification problem
where the groups might not be known before the clustering. These models may then
be utilized to synthesize new sequences that have same properties as the original set of
sequences used to create the model. Describing user behaviour with a model and then
using that description to generate network traffic is what sequence modeling is used
for in this thesis.
If the sequence model describes behaviour of a user using a web application, the

sequence can likely be modeled as a decision tree [15]. Decision tree is a model
which represents all the actions a user can make as transitions and the states those
actions lead to as nodes. A decision tree should cover all the states for the specific
application. Decision tree models can be used in recommendation systems and other
similar systems where user behaviour needs to be described [16]. The simplest of
decision trees might be too simple model if the states can be cyclic. A cyclic state
means that a transition returns the user to the same state as it was in before. The cyclic
nature in a model could also be observed over multiple states which form a loop. In
those cases, a directed cyclic graph could be more suitable. Both the decision tree
and graph may also be viewed as Markov chains. A Markov chain is a probabilistic
model which describes the relation of states by having a likelihood of transitions. For



17

example, one may say that "if it rains today, there is a 30 per cent chance it rains
tomorrow, and a 70 per cent chance the sun will shine." In that model, the probability
of a transition from state "it rains" to "it rains" would be 30 per cent and the transition
from "it rains" to "sun is shining" is 70 per cent. A real world model would likely have
many more states, but the idea stays the same.
Sequences of web traffic can be used as an input for testing a system that handles

network traffic. In this thesis a sequence of web traffic is useful as a method of
simulating client behaviour, but the traffic could simulate other sources of traffic as
well. Testing which requires actual network requests is often some system level end-
to-end test and in the scope of this thesis it is performance testing.
Specification mining is a type of process mining which aims to infer likely

specifications by observing system behaviour [17]. Network data can be used as
input data for specification mining processes to extract system information. Process
mining a web log has been used to find probabilities for the users next possible clicks
in website navigation [18]. Intrusion detection within various control systems such
as home automation systems is one field where specification mining is applicable.
Other field is network forensics in general, which includes all networked appliances.
Specification mining can be used in identifying malicious users, by using a host-based
algorithm to detect connection chains [19]. Network traffic in a control system is quite
predictable so anomalies stand out. In the case of home automation systems intrusion
anomalies are often unauthorized resource accesses. [20]
There are more methods to classify sequences by their features, such as support

vector machines (SVM), hidden markov models (HMM), and sequence distance model
[21]. Hidden Markov model is an extension to the Markov model described earlier,
in which the real states are not examinable. One may not view the state itself, but
instead only some secondary phenomenon, i.e. how the state affects something else.
The conversion of sequence of events to a vector that describes the sequence and its
features, and then using those vectors to classify the original sequences shows promise
in making the process less time consuming [22]. The difference between two distinct
sequences can be found out for example by calculating the non-euclidean distance
between two sequences with sequence alignment method (SAM) [23]. The sequences
are more alike the closer they are, which could be useful information when modeling
sequences.
Sequence classification has also been used extensively in other fields, such as

classifying proteins [24, 25] and categorizing DNA sequences [26]. Process mining,
which closely resembles sequence classification has been used extensively in business
processes [27], which typically have complicated states and transitions between them.
A couple of prominent free tools exist for analyzing processes and process mining,
such as ProM [28].



18

3. IMPLEMENTATION

The purpose of this thesis is to enhance performance regression testing capability by
providing a tool to synthesize parameterizable network load. This web application
backend has been in the focus of performance testing earlier, but the performance
testing environment had trouble in imitating production load for the SUT. The target of
the network traffic which I am trying to imitate is the SUT. It is a Java backend which
serves different kinds of clients and applications. This synthetic load generated in the
process can be utilized in a performance testing setup, where the backend is put under
stress to reveal its performance characteristics.

Figure 6. The 4-step process used in the thesis to synthesize network traffic. The text
on the left describes the inputs and outputs of the phases.

This thesis consists of four sequential steps which are illustrated in Figure 6 and split
into detail below:

1. Recording: In the first step web application network traffic is recorded.
2. Sequencing: Network traffic is then parsed in the second step. Parsing the TCP

traffic outputs HTTP requests with its metadata. HTTP requests are then grouped
into sequences, where each sequence contains requests by one user.

3. Modeling: In the third step the user sequences are analyzed statistically and
a model is created to represent groups of user sequences. This is a clustering
method, where action similarity is used to measure similarity for grouping.
Each modeled group is then identified as a type of user, and a typical user
sequence within that group is parameterized to represent the group as a whole.
Parameterization is the process of defining parameters for every request within
the sequence.

4. Synthetic traffic generation: The fourth step is about creating synthetic
requests using the parameterized user sequences from step 3. The synthetic
requests can then be used to create load, for example, in a performance testing
environment.

This implementation and the 4 steps should not be completely unique to this web
application. The approach I am using to model traffic should be usable for all web



19

applications. There are many application specific implementation details though which
decrease code portability. Step 1 might be the most specific, as the network data
collection is unique to AWS and will not work for other cloud solutions. The method
of collecting data should apply for all use cases though. Step 4 is also quite application
specific, as in that step the modeled users are parameterized to match the API so they
can be used for synthesizing network traffic. On a generic level this approach should
be applicable to virtually any web application. However, some application specific
tuning is required for the approach to produce meaningful output.

3.1. Traffic Recording

The environment in which network traffic is recorded is a staging environment. Staging
environment is identical to production environment infrastructure and code wise, but
the user base is different. Production environment handles paying customers, where
as staging serves developers, internal testers, sales and other similar personnel. Using
staging environment is sufficient for implementing and demonstrating the process used
in the thesis, but is obviously a bad choice for analyzing customers. In this sense, the
recorded traffic describes the behaviour of developers, testers and so forth.
The first step is about recording inbound network traffic coming to a web application

backend. Network traffic in this case consists of individual HTTP requests, which are
sent by individual clients and rerouted through a proxy to the backend, as seen in
Figure 7. There are other components within the infrastructure, but they are left out
for the sake of clarity. The content of the HTTP packets is REST API requests. The
network traffic is captured within a predetermined time frame, which is a week in our
case. A weeks worth of requests is approximately 300 000 requests in a 750 megabyte
packet capture file.

Figure 7. Existing application architecture.

The system under test which is the component in focus, is a Java-based web
application backend. As it is developed further, changes to code happen daily
and new versions are deployed on a weekly basis. Each of the new versions go
through automated continuous integration (CI) pipelines which verify that no logical
regressions are introduced to the code base. This is a completely automated step in the
process with no human interaction.



20

Figure 8. Application life cycle environments.

The application versions go through a life cycle of testing before putting to
production as seen in Figure 8. After the automated test efforts, the software is
published to a staging environment that imitates the production environment very
closely, where it can be tested manually. Alternatively, the software can be put
up for performance testing. The performance testing environment, like the staging
environment, mimics production environment as closely as possible. The easy part is
to mimic the deployment and the configuration of the production environment, but the
difficult task is to imitate production-like load in the form of API calls and user actions.
One way of putting the performance testing SUT under a load would be to duplicate
the production traffic as is. The problem with that approach is the unpredictable
nature of real world traffic, resulting in unrepeatable tests. Also, the back end state
could be inconsistent with the incoming traffic. Another point is privacy. Production
network traffic contains private information, which should be kept out of all testing
environments to not weaken security.
The simplified architecture of the backend deployment is visualized in Figure 7. The

most important parts in this thesis; the application instances and the proxy network
interfaces, are circled in green. The proxy network interfaces circled in green are the
points in the network where the network traffic is recorded in step 1. The function of
the proxies in normal usage is to spread API calls between the backend applications
and to serve some static assets. For network traffic collection the proxies also act as an
aggregated source, which routes all traffic. By using the proxy network interfaces as
a traffic mirroring source, one may use just one mirroring session to collect the traffic
going to multiple backend applications.
Other components that depend on the backend are different types of clients, such as

web clients and mobile clients. In staging and production environments the application
is deployed in an AWS EC2-stack as illustrated in Figure 7. Below is a simplified list
of the components that are required in the backend deployment.

• EC2 instances running the backend software in an autoscaling group
• Proxies that act as load balancers and route requests to available backend nodes
• Internet gateway (IGW) that connects the virtual cloud (VPC) to the internet
• Other AWS service integrations, such as KMS (key management service) etc.
• Route tables, routes etc. that allow the right traffic to pass to the nodes

The cloud deployment architecture of the backend application relies on AWS virtual
servers called EC2 (elastic computing cloud) instances. Each EC2 instance hosts a
single backend application, as illustrated in Figure 7. The number of EC2 instances
running the backend applications is determined by an automated auto scaling group,
which is an AWS mechanism to create or destroy virtual servers based on usage



21

thresholds. This means that there could be a different number of the same application
running at any given time, which is called horizontal scaling. The HTTPS traffic
coming from the internet is routed to two different proxies, Application Load Balancer
(ALB) and HAProxy, which act as load balancers distributing traffic to the backend
instances. HTTPS is terminated at the proxy level, so backend only receives plaintext
HTTP traffic. As the TLS encryption is already decrypted at this stage, the captured
traffic is easier to use without any further processing.
The monitoring account has relatively similar core infrastructure as the production

account, however it does not contain the backend application nor its dependencies.
It contains a VPC that contains EC2 instances which run tcpdump and record
incoming packets. The monitoring account has similar networking configuration as the
production account, but lacks all the overhead, such as databases and load balancing.

Figure 9. Simplified VPC mirroring & traffic capturing setup. Mirroring and capture
components shown in green and existing components in black. EC2 instances connect
to the internet gateway (IGW) either directly or through a proxy.

HTTP packets are captured with the system described in Figure 9. The system
consists of two AWS accounts: a staging account that existed prior to this thesis, and
a monitoring account. None of the monitoring components are on the staging account
because of access control and security concerns. Isolation at the account level helps
with a secure configuration.
Some AWS tools are required when using the AWS VPC mirroring to copy network

traffic. Some of these are visualized in more detail in Figure 9. VPC mirror
configuration, which consists of traffic filters and filter rules allow us to filter the routed
traffic to consists only of the HTTP requests we are interested in. The mirrored traffic
appears just as any other incoming traffic for the target of the VPC mirroring except
for the protocol and port. Mirrored traffic uses VXLAN (Virtual Extensible LAN)
wrapped UDP (user datagram protocol) as it provides higher throughput than TCP
does.



22

3.2. Sequence Identification

The second step in using network data to synthesize artificial requests (Figure 6) is to
identify the user sequences from the recorded traffic. In this process the user sequence
identification consists of 3 steps, which are presented below.

1. Packet reconstruction: Reconstruct HTTP requests from a list of TCP packets
by using TCP segment headers.

2. Data cleansing: Remove unnecessary requests, such as those performed by
internal diagnostic tools.

3. Sequence ordering: Split the HTTP requests into lists by the user who sent the
requests. Reorder by time.

Sequencing a data set consisting of large number of requests is processed with the
goal of mining user sequences. It is possible to identify the user sequences from the
packet capture dump from the access token headers, user-agents, and request origin,
that go with each HTTP request. The user sequence also contains the timestamps of
the operations, which can be used to calculate the intervals at which each operation is
made. It also confirms the order of the requests. In the context of sequence modeling,
the combination of HTTP method and request URL can be viewed as the action that
client performs in a request. All the user sequences then are then iterated through, and
the number of transitions between every two states is counted. This count reveals how
prevalent each state is and how likely are the following states after that. The "time
spent" in each state or the time between two states is also tracked, as it allows us to
calculate the mean transition time and its standard deviation.
The network traffic dump is parsed so that all unnecessary items, such as non-HTTP

frames are discarded. Only the interesting content which portrays context or purpose is
kept. At this point it is possible to also tokenize any information that attaches request
content to an actual user. For example, access tokens, usernames or similar fields
could make it possible to view sensitive or identifying data. For this purpose, a one
way process should be applied that obfuscates all identifiers into different ones so that
mapping a user to a real person is no longer possible. In the case of AWS traffic
mirrored requests, UDP decapsulation must be conducted before any other steps, to
reveal the underlying TCP packets which contain the HTTP requests. A single HTTP
request could also be split into multiple TCP packets based on the size of the request, in
a process called IP fragmentation. A single dataframe can only hold as much data as is
allowed by the maximum transfer unit (MTU) parameter in the network configuration.

3.3. Modeling

Third step in synthesizing network traffic (Figure 6) is about creating model from the
request data that allows us to generate similar requests. In this thesis project the
sequences are grouped by their characteristics into so called topics with a machine
learning method called the Latent Dirichlet Allocation (LDA). LDA is a probabilistic
generative model, which takes a list of documents as an input and outputs a set of
topics in which the input documents belong to. The great thing about LDA is that



23

as a unsupervised method, the topics do not need to be predefined and the input data
does not need to be labeled. However, one needs to define the number of topics that is
expected to exist. Typically LDA has been used to classify text documents such as news
articles into categories. Text documents consist of words, which are the tokens that
LDA uses to classify a document into a topic. In the case of API sequences the tokens
are formed from a combination of request URL and request method (GET, POST, etc.)
and the documents are user sequences, which are then categorised to topics. For news
articles the topics represent the actual topic of the article, whereas for API sequences
the topics represent a type of user.

Figure 10. Multiple sequences of requests are processed into a sequence model.

LDA takes in a set of sequences (i.e. documents) which all together are called a
corpus, with each of the sequences containing tokens (a combination of a URL and a
method). To find the topics within the corpus and that which sequence belongs to which
topic, LDA tweaks its generative model so the a new permutation of probabilities is
picked. The probabilities mean that how likely is it for a token to belong to a specific
topic. LDA then tries to create a new corpus consisting of artificial documents with
the probabilities for the topics and words. It then compares this artificial corpus to the
input data sequence. The more the artificial corpus represents the original data, the
better the LDA performed and thus the generated topics explain the input data. This
closeness metric allows us to optimize the generative model so that we get the most
likely probabilities for the tokens to belong to a specific topic. [29]
When thinking about how a token can be categorized into topics, it can be beneficial

to go through an example. Lets take token "POST-login" as an example. It is a very
common token of logging into the application, and every complete sequence must
have at least one occurrence of the token. It is a generic token which is just as likely
to belong to any topic. Now let’s consider "POST-register", which creates a new user.
This is a much more specific token that could correspond to a topic "new user", as all
new users must register but existing users will not perform this operation. In practise
many of the token have a non zero probability to belong to each of the topics. LDA is a
purely probabilistic model, with no built in context about the meaning of the documents
or the tokens. This means that the model creates topics that carry no meaning other
than the similarity between the documents it contains. A tool of some sort or user
interaction is often applied to a define semantic meaning for the topics. For example, a



24

human could go through the topics and give context for the sequences within the topic
by looking at the contents.

3.3.1. Dataset

The data used for modeling is the same exact set of lists of requests, output in section
3.2. The lists of requests are varying in length and content but each list has a common
factor which is the individual user who sent the requests. The same user means that
each list is a so called user sequence. All the sequences are in this dataset are complete,
which means that they have a beginning either by logging in or by registering a new
user. Sequences can end in any request, which means that the actual user using the
application would just stop using the application. Only a couple of sequences ended
in a logout request. The dataset used for modeling has 312 sequences in total, which
altogether cover 3000 requests.
The reason why the tokens are chosen to be a combination of a URL and a HTTP

method springs from REST semantics and how the API is implemented. A URL
defines the address name which specifies a resource in the system, and the method
defines the type of interaction with the resource: GET, POST, PUT, DELETE and so
on. Using both of these identifiers together enables a more fine grained distinction
between different types of actions. For example, the user has a different intent when
sending a GET request to a resource compared to a PUT request. The former is about
retrieving information and latter is about updating information.

3.3.2. Modeling Results

In this thesis project LDA was used to categorize user sequence into topics in which
all the users share common key operations that ultimately define the action the user
is trying to achieve. None of the LDA algorithms were implemented by hand, but
rather through the lda python library1. The input of LDA categorization was user
sequences and output was 10 topics, which had the sequences allocated within them.
After the sequences were allocated into topics (T1-T10) and the topics were also named
manually. Naming was performed by looking at all the sequences, categorized within
the topic and a list of all the requests. The goal was to identify whether the sequences
had some common characteristics between them, and if there was any ambiguity
between the sequences within a topic. There were some topics which made perfect
sense, and were unambiguous in what all the sequences in the topic tried to achieve
- for example, to change their account credit card details. There were also some
topics which had no clear common purpose, as some of the sequences were short or
incomplete or the LDA algorithms just didn’t perform well on these cases for some
other reason. These are called interpretability issues. Clustering inaccuracy issues
where the topics change between classification runs are typically referred to as topic
instability.

1https://pypi.org/project/lda/



25

User categories
Topic number User topic name # of user

sequences
Avg. sequence
length

0 New user 12 11
3 Device buyer 26 15
7 Password reset 3 9

Table 1. Some LDA output topics. Topic name is based on the assumed purpose of the
sequence.

Table 1 shows statistics of a couple of of the topics output by the LDA. The user
types which are shown later in the performance testing section as well are types 0, 3
and 7 which we named "New user", "Device buyer" and "Password reset" based on the
functionality the user type seemed to perform. The total number of sequences per user
type is the same as the number of individual users, as there was no multiple sequences
of the same type for the same user in the recorded data set. Average length of the
sequences in a topic is the number of requests a user of that type typically sends.
After the user topics are defined, the next step is to convert the information in

LDA topics into some formal description that enables programmatical synthesis of API
requests. I call this conversion of topics to request constraints the parameterization of
a user model. In a sense parameterization of a user model can be seen as a simulation
of client software and an end user, as the real world network traffic and the output of
user models should be similar. In this thesis project, some of the edge cases are not
interesting whereas the bulk of the user sequences are in the focus. This is because
the goal of the performance testing is to find weaknesses in the most common usage
flows. Distinguishing the most common flows can be done by comparing the number
of sequences in the topics of the LDA output.
The parameterization of a user model is equal to writing to a set of rules which define

the order, timing and content of each request for a user type. Large portion of the rules
is about how data transforms from request to request in a sequence. For example, some
authentication tokens are returned as a user logs in with their credentials. These tokens
must then be used in consecutive requests to authenticate the user. The combination
of all parameterized user types should define all the requests that are required to reach
the goal of the user modeling.
As the sequences within each topic are very similar to each other I decided to

parameterize one user sequence within each user group. The decision which user to
parameterize was easy, as the users did not have highly differing API usage patterns
or number of API calls which are the key features in user parameterization. In a sense
the reasoning on which sequence to parameterize was quite vague. In future a more
precise method could be used to pick a sequence to represent the whole user group.
To increase variety, it would also be possible to parameterize multiple slightly varying
users for some or all of the topics.



26

Figure 11. Markov model represented as a directed graph.

3.3.3. Markov Chains

I also experimented with a Markov chain model. As seen in Figure 11, a Markov chain
can also be visualized as a directed and weighted graph. The input data for the specific
model was a subset of the dataset described in section 3.3.1. Markov chain is a discrete
model, in which states may connect to other states and the transitions from one state to
another may have varying probabilities, which can be thought as edge weights in graph
theory. To construct the model I implemented a python script which utilised pandas2
and networkx3 libraries for the data structure and matplotlib4 for visualization.
In the graph each node represents a URL or a client state. The starting point in

the model is the login endpoint and all flows either end at the logout endpoint or an
arbitrary "END" endpoint to denote incomplete sequences. The transition from one
state to another can be thought as making a request to the URL in the target node.
The out edges from each node are weighted by their normalised frequency so that the
weights represent the probability at which the transition happens. For example, if a
transition from state A to B happens 30 times and a transition from A to C happens 10
times in the dataset, the probability of transition A to B is 75 % and A to C is 25 %.
Each edge also has the mean transition time and its standard deviation attached to it.
I decided against using a Markov chain model for traffic synthesis, as I couldn’t find
a well working method of generalizing the most common user types. Markov chain
model was used for analyzing the timings of transitions.

2https://pandas.pydata.org/
3https://networkx.org/
4https://matplotlib.org/



27

3.4. Synthetic Traffic Generation

To generate network requests using the model created in the previous step one needs to
create a program that translates the modeled sequence into actual network requests. In
this thesis a python script was written which defines the parameters and timing to create
synthetic network requests and then measures the response delays for each request.

Figure 12. Overall process of modeling users for performance testing.

The performance testing script contains three main sections; API definition class,
the parameterized user models, and a main program that ties these together. The API
definition class contains an implementation for interacting with the web application
interface. The user models contain each of the modeled user sequences so that they
define a sequence of API requests which is typical within that topic. A parameterized
sequence defines all the required data for each sequence and in this case it is also able
to randomly generate data to populate the parameters. The required data consists of
fields such as email, password or street address. The main program then creates 3
parallel instances of the user model, which start executing their built-in sequences.
As the users go exhaust their sequences, new users are spun up until a time threshold
is reached. Output and metrics of each user instance and each request is saved for
analysis. The simplified code can be viewed in the appendices.
Wait times between each request in a sequence are drawn from the graph model

created in step 3. In the graph each transition between two states contains the average
time and deviation it takes to transition from one state to another. With this knowledge



28

one may create artificial timings by generating a sample of values that conforms to
the distribution in the recorded traffic. Each transition has its own timing distribution,
which was derived from the model created in Section 3.3.3. Finally a main function
spins up a few of the users in parallel and they go through their sequences, recording
the response times and other metadata. New users are spun up as the existing users
exhaust their sequences. If the model created in step 3 (Section 3.3) is done correctly,
the synthetic traffic generated with this process should have similar properties as the
recorded traffic.
In Figure 12 is described the process of converting a network traffic dump into

parameterizable synthetic network load through user modeling. The first step is using
LDA to classify the users into topics, which are then assessed and the classification
is repeated after changing parameters in LDA if necessary. Then the required API
commands are implemented and user sequences are parameterized. The combination
of sequences and API commands is then used to generate synthetic requests. The
synthetic requests are analysed and the parameterization is repeated if the requests are
not satisfactory. When the results are good enough, one may use the synthetic requests
in whatever is the required use case.

Figure 13. Output of one execution of the synthetic request script.

Figure 14. One simulated user sequence. This sequence would be interleaved with
other sequences to generate traffic. The bars illustrate the execution of a HTTP request
and the space in between is the time when the simulated user is thinking.



29

Output of one run of the network request creating script is visualized in Figure 13.
It shows the response times for each request. Figure 14 shows the response times
for each request in one simulated user sequence. The operations performed by the
simulated user are on the y-axis and are in chronological order from top to bottom.
The x-axis shows the passage of time. These graphs give an overview of how the
application performs under stress - in this case 3 simultaneous users. The number
of simultaneous users was extracted from the original network traffic data and then
finding the average number of users using the application simultaneously. The number
of users could easily be scaled up or down, depending on the needs of the use case.
From these graphs it is possible to find the slowest methods to return, which could be
an indication of performance issues that require more study. One could also average
all the requests of certain type and then compare these numbers between software
versions. This way it is possible to identify changes in the software performance, i.e.
software regressions.
Alternatively to the method that was used to synthesize traffic, one could also

generate requests by traversing a random walk within the Markov chain graph, which
was the other method of modeling user behaviour that was implemented. This,
however, is a more complicated method of generating sequences rather than defining
each topic as a sequence in code. The Markov model has a few starting points for the
random walk, a login URL, sign up URL, and a fake login URL. To complete each
random walk, is a logout URL and a fake end URL, which is always the last node
that a random walk visits. The reason fake login URL and fake end URL exist is
that incomplete user sequences were imputed with start and end nodes in the sequence
identification step in Section 3.2. The random walk algorithm is a recursive function
which keeps track of the generated sequence, chooses the next node and then calls
itself with the next node as the new start node.



30

4. EVALUATION

The research questions as defined in Section 1 are:

• RQ1: How effectively can Latent Dirichlet Allocation (LDA) be used to
categorise user sequences in network traffic?

• RQ2: How effective are synthetic requests in conducting controlled performance
tests for a back end application.

These questions were answered through prototypical implementation of traffic
synthesis and evaluation through simple performance testing. The overall method
seems promising in simulating user sequences to create artificial load, and LDA shows
promise in classifying user sequences to topics to help in the process.
The statistical similarity of the packet capture and the synthetic requests was

analyzed using a two-sample Kolomogorov-Smirnov (K-S) test. The basic K-S test
is typically used to answer the question: "is this distribution of tokens drawn from
a specific distribution, such as the normal distribution", and the two-sample version
of K-S test tries to answer whether any two distributions differ [30, 31, 32]. In this
case, the distributions are the original packet capture O with a length of n, and a set of
synthetic requests S with a length of m. Distributions O and S contain the number of
each type of request in the data sets.

FO(x) =
number of elements  x

n
FS(x) =

number of elements  x

m
(1)

The 2-sample K-S test measures the maximum distance between two distribution
functions [31]. Distribution functions are functions, which have a fraction of all
less than or equal observations of the variable as their value at any given point
[33]. The empirical cumulative distribution functions (eCDF) FO(x) and FS(x) need
to be calculated for datasets Oi and Sj with the Formulas 1. The eCDF is the same
as cumulative distribution function except that as an empirical function it is a step
function and its values are calculated by observing the values in the distribution [34].
Variables n and m are the total number of elements in the samples.

D = max|FO(x)� FS(x)| (2)

The test for the two-sample K-S is done with Formula 2. In essence the formula
finds the maximum distance between the two functions FO(x) and FS(x). The test was
done with a python implementation of K-S, and scipy5 6 package was used. The two-
sample Kolmogorov-Smirnov test resulted in a distance D of 0.38 and p-value of 0.09.
The distance D is low enough and the p-value is high enough (p > 0.05) to not reject
the hypothesis that the distributions of the two samples are the same. In light of the
K-S test, it can be concluded that the original packet capture and the set of synthetic
requests are statistically similar.
The statistical test outputs values that indicate statistical similarity between the two

distributions. When comparing the two traffic data sets, it is clear that some patterns
5https://pypi.org/project/scipy/
6https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ks_2samp.html



31

are present in both samples and that are some differences. The statistical K-S test likely
outputs valid values, but they might not paint a complete picture or could be misleading
when judging the usefulness of the approach. Even though the statistical analysis
indicates similarity, the method could likely be improved further. One difference
originates from the removal of environment specific requests in a preprocessing step
in Section 3.2. The environment specific requests are produced by internal diagnostics
tools and test procedures, and are not required for testing the application software.
The environment specific requests are quite prevalent in the recorded traffic. The
preprocessed traffic was then an input for the modeling phase in Section 3.3. As
one may guess, the topics only contain sequences and requests that are in the input
data. Second reason that explains differences in similarity was that not all user topics
were modelled and parameterized. Not all the original users were represented in the
synthetic traffic. This skews the distribution of requests away from the recorded traffic.
It is also to be noted that perfect similarity between the original and synthetic load

may not be necessary for the synthetic traffic to be useful in performance testing.
Performance testing needs typically only require the load to contain the most common
or critical user sequences - not necessarily all the corner cases. However, this is a future
consideration that the similarity could be improved through better data cleaning, topic
clustering, modeling, parameterization, and synthesis.
The value that utilizing LDA brings in the process is the sequence categorization

through topics. The process of creating synthetic user sequences could be done without
any preexisting information about actual user behaviour, but that would leave room for
a lot of guessing about the actual sequences. Guessing the artificial sequences would
likely result in more uncertainty about the similarity between the test environment and
the production environment. Although the model-based approach aids in finding the
user sequences to parameterize, it is wise to take the approach with a grain of salt, as
there is some level of uncertainty included. Some other method for model could be
used in conjunction or just for verification to have an increased level of confidence in
the result.
In the perspective of this web application, the created model and the performance test

script are applicable but work on a proof of concept level. The type of output from the
performance testing script is exactly what is needed for analyzing the performance of a
web application in a load test. For the approach to actually test the production software,
some modifications should be made throughout the process. The recorded traffic would
need to be either from a different environment or more thoroughly processed and
parameterized. In the case of this thesis, the recorded traffic was not representative
of the actual usage but rather of some testing scenarios.

4.1. Discussion

User sequence classification with LDA was the most study intensive part of this thesis.
LDA is a machine learning classification method with unsupervised training process
and it is not known to be the easiest to evaluate. Most important part of determining
whether the user models are good seemed to be labeling the topics with experts of the
application usage. The labeling was conducted by a software developer working in
the project and a lead tester who focuses in the application. The tester had no prior



32

knowledge of the method for user modeling. They were very quick to realise that
most of the user groups seemed to have some sort of theme within them. As the LDA
categorises the sequences only by the tokens within each sequence, they lack some
context of the complete sequences. It is a useful convention to try to name each user
type within the model, to see if it makes sense as a user. It was possible to name most
of the output groups, and they seemed to map to a type of user we would presume to
exist such as a "new buyer" or "password reset".
Topic instability is another thing to consider. It is something that could lead to

erroneous results in the topic clustering, and parameter optimization could improve
the stability of the results [35]. In this thesis I did not go very deep into whether the
model is good or bad other than by eyeballing the results. There are methods that could
compress the model characteristics into a single metric, which helps in fine tuning the
LDA training parameters. In the case of LDA these are often coherence metrics and
the perplexity measure.
The most time consuming task was to implement the network data collection in

the cloud. In an automatically scaling environment it was surprisingly complicated to
create the required infrastructure to capture traffic in a secure way. The network data
collection is now a capability that we have in the company as all the components and
infrastructure required for the capture is written as code to allow for faster setup next
time. This part of the process would be much faster in a less complicated environment
with fewer constraints to consider.
The basic parameterization of the user model was not very difficult. In fact, I think

it was only a matter of putting in a days work to write the parameters and constraints
that define the API requests and their sequences. There is not many things that could
go wrong with the content or ordering of requests within a sequence, as there is often
only one valid way of using an API. It also helps, that I also develop the API so the
requests and usage flow is rather familiar to me. A more error prone and difficult task is
deciding on which topics to parameterize for traffic synthesis. Also, creating realistic
timings between each request is not trivial, as one need to simulate human behaviour
to achieve realistic timings. One could tweak with the values of the parameters, but in
some cases that gets more into the area of model-based testing. Once the modeling is
complete, which is the difficult part, it is a rather straightforward process to get into
sending requests and measuring some metrics from them.
Another interesting aspect is whether the traffic generation should be more

adjustable or have deterministic qualities. Currently there is no way of configuring
the generated requests with any other parameters but the number of sequences.
Deterministic generation would be able to create same results each time for a given
seed, using the same seed for any randomizing functions within the generation process.
This would allow reproducing of the results of a previously used seed. The current
implementation falls short on this front, as it is not able to create the same set of
sequences twice, unless by completely random chance. The parameters that change
between executions are wait times between requests and request parameters such as
a username or the number of bought devices. Currently the timing parameter is
constrained by the distribution by which it is picked at random for each execution and
the other changing parameters are generated with a python library called faker7. The

7https://faker.readthedocs.io/en/master/



33

optimization of these parameters could be part of the process to improve the quality of
the generated traffic.
Performance test result visualization and analysis could also be an interesting topic

for a further study. In Section 3.4 two diagrams were drawn to visualize the output
of the performance testing script. Currently the visualization is implemented with a
python script and produces static image files. A more interactive process could be
implemented, which could also be used to compare the changes in the output between
different runs of the performance test software. Visualization and analysis of the results
are important topics to consider if this approach was used in large scale for application
performance testing. After all, raw data is often not as useful for us humans, compared
to processed information.
One more thing to consider when using LDA or any other modeling method is the

life cycle of the system. In this thesis the implementation of user modeling takes a
snapshot of the application traffic as an input. What is not taken into consideration
is the evolution of the interfaces, user flows and consequently the network traffic. In
the case of this application, an outdated model would likely result in poor synthetic
traffic and unpredictable performance testing results. The quality of the synthetic
traffic is a measurement whether it matches the application and how well it simulates
its users. The quality of the traffic might not be obvious at first, but would probably
cause problems in the long run. The evolutionary model decay could be addressed
by updating the models regularly. This is something that should be studied, if the
approach was to be deployed in large scale.

4.1.1. Future Work

A thing to study further would be how such user modeling could be used to help in
business decisions. As the model helps in distinguishing user groups, it could be very
helpful in finding business insight about the user base. The information could help,
for example, when making business decisions about which features to prioritise for
development. Another thing could be about learning how a specific group of users
uses the application. In this case, the models should represent actual traffic exactly,
which is not a requirement for performance testing. Some of this information is
typically recorded at the client level, such as with Google analytics, but the method
I am proposing could help in discovering a more complete picture of the users.



34

5. SUMMARY

In this thesis a 5-stage approach for creating a synthetic network load for a web
application backend was implemented. The approach consists of network traffic
recording, user sequence identification, user modeling, sequence parameterization, and
finally performance testing.
Using network traffic recordings for identifying user sequences in a cloud

environment is a data-oriented way of finding input data for modeling users. The
data-oriented nature of the process increases the quality of the output, by making the
output more similar to the environment that is simulated. The field of web application
user modeling is still in development and the solutions require a lot of manual labour
to work. This is also the case for the method used in this thesis, for example the
parameterization requires manual work, as shown in Section 3.3.2. The next step in
automation would be to estimate the parameters for the synthetic traffic automatically,
based on the recorded network traffic.
The most interesting part of this thesis is the modeling of the users. This is also

the step where there are multiple different ways of accomplishing a similar result. In
this thesis a machine learning technique, LDA (latent dirichlet allocation) was used to
help in categorizing user sequences. The applicability of LDA to help in clustering
sequences shows promise, but a lot of care should be put in the tuning for optimal
results. Depending on the tuning, a different output could be observed.
The overall process of data transformations is delicate with many different phases

that could go wrong. In this thesis some of the phases such as traffic recording, data
preprocessing, and LDAmodel tuning were not optimal. Regardless of the non-optimal
phases, a Kolmogorov-Smirnov statistical test shows similarity between the original
traffic data and the simulated traffic. This implies that the 5-stage approach used in the
thesis is able to produce simulated traffic, which shares characteristics of the real world
network traffic. The overall approach seems applicable for using in this particular case
of web application and is likely usable in other applications too.



35

6. REFERENCES

[1] Papazoglou M.P. & Georgakopoulos D. (2003) Introduction: Service-oriented
computing. Communications of the ACM 46, pp. 24–28.

[2] O’reilly T. (2009) What is web 2.0. " O’Reilly Media, Inc.".

[3] Srirama S.N., Iurii T. & Viil J. (2016) Dynamic deployment and auto-
scaling enterprise applications on the heterogeneous cloud. In: 2016 IEEE 9th
International Conference on Cloud Computing (CLOUD), IEEE, pp. 927–932.

[4] Andrews J.H. (1998) Testing using log file analysis: tools, methods, and issues.
In: Proceedings 13th IEEE International Conference on Automated Software
Engineering (Cat. No. 98EX239), IEEE, pp. 157–166.

[5] Pomata S., Mirror production traffic to test environment with vpc traffic
mirroring. URL: https://aws.amazon.com/blogs/networking-
and-content-delivery/mirror-production-traffic-to-
test-environment-with-vpc-traffic-mirroring/.

[6] Ammann P. & Offutt J. (2016) Introduction to software testing. Cambridge
University Press.

[7] Harrold M.J., Jones J.A., Li T., Liang D., Orso A., Pennings M., Sinha S., Spoon
S.A. & Gujarathi A. (2001) Regression test selection for java software. ACM
Sigplan Notices 36, pp. 312–326.

[8] Shoaib Y. & Das O. (2011) Web application performance modeling using layered
queueing networks. Electronic notes in theoretical computer science 275, pp.
123–142.

[9] Alam M., Gottschlich J., Tatbul N., Turek J.S., Mattson T. & Muzahid A.
(2019) A zero-positive learning approach for diagnosing software performance
regressions. In: Advances in Neural Information Processing Systems, pp. 11627–
11639.

[10] Hooda I. & Chhillar R.S. (2015) Software test process, testing types and
techniques. International Journal of Computer Applications 111.

[11] Molyneaux I. (2014) The art of application performance testing: from strategy to
tools. " O’Reilly Media, Inc.".

[12] De Barros M., Shiau J., Shang C., Gidewall K., Shi H. & Forsmann J. (2007) Web
services wind tunnel: On performance testing large-scale stateful web services.
In: 37th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN’07), IEEE, pp. 612–617.

[13] Fielding R.T. & Taylor R.N. (2002) Principled design of the modern web
architecture. ACM Transactions on Internet Technology (TOIT) 2, pp. 115–150.

[14] Meier J., Farre C., Bansode P., Barber S. & Rea D. (2007) Performance testing
guidance for web applications: patterns & practices. Microsoft press.



36

[15] Sarker I.H., Colman A., Han J., Khan A.I., Abushark Y.B. & Salah K. (2020)
Behavdt: a behavioral decision tree learning to build user-centric context-aware
predictive model. Mobile Networks and Applications 25, pp. 1151–1161.

[16] Cho Y.H., Kim J.K. & Kim S.H. (2002) A personalized recommender system
based on web usage mining and decision tree induction. Expert systems with
Applications 23, pp. 329–342.

[17] LiW. (2013) Specification mining: New formalisms, algorithms and applications.
University of California, Berkeley.

[18] Mukhiya S.K. (2016) Predicting the next click with Web log Process Mining.
Master’s thesis, NTNU.

[19] Almulhem A. & Traore I. (2007) Mining and detecting connection-chains
in network traffic. In: IFIP International Conference on Trust Management,
Springer, pp. 47–57.

[20] Caselli M., Zambon E., Amann J., Sommer R. & Kargl F. (2016) Specification
mining for intrusion detection in networked control systems. In: 25th {USENIX}
Security Symposium ({USENIX} Security 16), pp. 791–806.

[21] Xing Z., Pei J. & Keogh E. (2010) A brief survey on sequence classification.
ACM Sigkdd Explorations Newsletter 12, pp. 40–48.

[22] Gundersen O.E. (2012) Toward measuring the similarity of complex event
sequences in real-time. In: International Conference on Case-Based Reasoning,
Springer, pp. 107–121.

[23] Hay B., Wets G. & Vanhoof K. (2004) Mining navigation patterns using a
sequence alignment method. Knowledge and information systems 6, pp. 150–
163.

[24] Wang D. & Huang G.B. (2005) Protein sequence classification using extreme
learning machine. In: Proceedings. 2005 IEEE International Joint Conference on
Neural Networks, 2005., vol. 3, IEEE, vol. 3, pp. 1406–1411.

[25] Wu C., Berry M., Shivakumar S. & McLarty J. (1995) Neural networks for full-
scale protein sequence classification: Sequence encoding with singular value
decomposition. Machine Learning 21, pp. 177–193.

[26] Chuzhanova N.A., Jones A.J. & Margetts S. (1998) Feature selection for genetic
sequence classification. Bioinformatics (Oxford, England) 14, pp. 139–143.

[27] Veiga G.M. & Ferreira D.R. (2009) Understanding spaghetti models with
sequence clustering for prom. In: International conference on business process
management, Springer, pp. 92–103.

[28] van der Aalst W.M., Bolt A. & van Zelst S.J. (2017) Rapidprom: mine your
processes and not just your data. arXiv preprint arXiv:1703.03740 .



37

[29] Blei D.M., Ng A.Y. & Jordan M.I. (2003) Latent dirichlet allocation. the Journal
of machine Learning research 3, pp. 993–1022.

[30] Massey Jr F.J. (1951) The kolmogorov-smirnov test for goodness of fit. Journal
of the American statistical Association 46, pp. 68–78.

[31] Lopes R.H., Reid I. & Hobson P.R. (2007) The two-dimensional kolmogorov-
smirnov test .

[32] Fasano G. & Franceschini A. (1987) A multidimensional version of the
kolmogorov–smirnov test. Monthly Notices of the Royal Astronomical Society
225, pp. 155–170.

[33] Weibull W. et al. (1951) A statistical distribution function of wide applicability.
Journal of applied mechanics 18, pp. 293–297.

[34] Drion E. (1952) Some distribution-free tests for the difference between
two empirical cumulative distribution functions. The Annals of Mathematical
Statistics 23, pp. 563–574.

[35] Mantyla M.V., Claes M. & Farooq U. (2018) Measuring lda topic stability from
clusters of replicated runs. In: Proceedings of the 12th ACM/IEEE international
symposium on empirical software engineering and measurement, pp. 1–4.



38

7. APPENDICES

import j s o n
import t ime
import random
import uu id

import a s yn c i o
import a i o h t t p

from f a k e r import Fake r

o u t p u t _ l i s t = [ ]
max_input = 0
i n s t a n c e s = [ ]
s e s s i o n = a i o h t t p . C l i e n t S e s s i o n ( )

c l a s s Apicommands ( ) :
def _ _ i n i t _ _ ( s e l f ) :

s e l f . a p i u r l = " h t t p : / / 1 2 7 . 0 . 0 . 1 : 8 0 8 0 "

def t im e r ( func ) :
def wrapper (⇤ a rgs , ⇤⇤ kwargs ) :

s t a r t _ t i m e = t ime . t ime ( )
r e s u l t = func (⇤ a rgs , ⇤⇤ kwargs )
t o t a l _ t i m e = t ime . t ime ( ) � s t a r t _ t i m e
o u t p u t _ l i s t . append { " f u n c t i o n " : func . __name__ ,

" u s e r " : a r g s [ 2 ] ,
" d u r a t i o n " : t o t a l _ t im e ,
" s t a r t _ t i m e " : s t a r t _ t i m e }

max_input += 1
re turn r e s u l t

re turn wrapper

def s a v e_ t im i ng ( s e l f ) :
o u t p u t _ f i l e _ n ame = t ime . s t r f t i m e ( "%Y:%m:%d�%H:%M:%S" ) + " . csv "
wi th open ( o u t p u t _ f i l e _ n ame , ’ a ’ ) a s ou t :

ou t . w r i t e ( "method , use r , d u r a t i o n , s t a r t _ t i m e " )
ou t . w r i t e ( " \ n " )
f o r i t em in o u t p u t _ l i s t :

row = [ ]
f o r p a i r in i t em :

row . append ( s t r ( i t em [ p a i r ] ) )
row = " , " . j o i n (map ( s t r , row ) )
ou t . w r i t e ( row )
ou t . w r i t e ( " \ n " )



39

@timer
async def p o s t _ l o g i n ( s e l f , s e s s i o n ,

c a l l e r , username , password , b e a r e r _ t o k e n ) :
r e q _ u r l = s e l f . a p i u r l + " l o g i n "
r e q _ h e a d e r s = {

" Conten t�Type " : " a p p l i c a t i o n / j s o n " ,
" A u t h o r i z a t i o n " : " Bea r e r " + b e a r e r _ t o k e n }

r e q _ d a t a = j s o n . dumps ({ " ema i l " : username ,
" password " : password } )

async wi th s e s s i o n . p o s t ( r e q _ u r l ,
d a t a = r eq_da t a ,
h e a d e r s = r e q _ h e a d e r s ) a s r e s p on s e :

h tml = awa i t r e s p on s e . t e x t ( )
re turn j s o n . l o a d s ( h tml )

# TODO: De f i n e a l l t h e r e q u i r e d ap i commands here

c l a s s User ( ) :

def _ _ i n i t _ _ ( s e l f ) :
i n s t a n c e s . append ( s e l f )
s e l f . a p i = Apicommands ( )
s e l f . f a k e r = Fake r ( )

a sync def g e t _ t a s k s ( s e l f ) :
t a s k s = [ ]
t a s k = a s yn c i o . c r e a t e _ t a s k (

s e l f . s equence ( s e s s i o n ) )
t a s k s . append ( t a s k )
pr in t ( t a s k s )
awa i t a s y n c i o . g a t h e r (⇤ t a s k s )

a sync def s c h e du l e ( s e l f ) :
t a s k s = [ ]
a sync wi th a i o h t t p . C l i e n t S e s s i o n ( ) a s s e s s i o n :

t a s k = a s yn c i o . c r e a t e _ t a s k ( s e l f . s equence ( s e s s i o n ) )
t a s k s . append ( t a s k )
re turn t a s k s

async def _ g e n e r a t e _ u s e r d a t a ( s e l f ) :
u s e r = {

’ ema i l ’ : s e l f . f a k e r . a s c i i _ s a f e _ em a i l ( ) ,
’ password ’ : s e l f . f a k e r . password ( )

}
re turn u s e r



40

def _ c r e a t e _ i d ( s e l f ) :
re turn s t r ( uu id . uu id4 ( ) ) [ : 8 ]

c l a s s Re tu rn ing_Buye r ( User ) :
def _ _ i n i t _ _ ( s e l f ) :

super ( ) . _ _ i n i t _ _ ( )
s e l f . name = s e l f . _ _ c l a s s _ _ . __name__ +

" : " + ( s e l f . _ c r e a t e _ i d ( ) )

# Signup , l og i n , g e t c on t e n t , g e t p r i c e s

async def s equence ( s e l f , s e s s i o n ) :
l o g i n = awa i t s e l f . a p i . l o g i n ( s e s s i o n ,

s e l f . name ,
" u s e r@ i n s t i t u t i . on " ,
" s e c r e t " ,
o au th [ " a c c e s s _ t o k e n " ]
)

awa i t a s y n c i o . s l e e p ( 1 )

# TODO do a l l t h e r e q u i r e d r e q u e s t s he re

i n s t a n c e s . pop ( )
re turn l o g i n

# TODO pa r ame t e r i z e a l l u s e r t y p e s

# u s e r s must have t h e " sequence " method d e f i n e d

c l a s s e s = ( Re tu rn ing_Buye r )
whi le True :

pr in t ( l en ( o u t p u t _ l i s t ) )
i f l en ( i n s t a n c e s ) < 3 :

i n s t a n c e = random . c ho i c e ( c l a s s e s ) ( )
pr in t ( " i n s t a n c e s : " , i n s t a n c e s )
t a s k s = i n s t a n c e . g e t _ t a s k s ( )
a s y n c i o . e n s u r e _ f u t u r e ( t a s k s )
awa i t a s y n c i o . s l e e p ( 3 )

i f l en ( o u t p u t _ l i s t ) > max_input :
break


