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ABSTRACT 

Telecommunications protocols and cellular modems are used in devices to 

facilitate wireless communication. Cellular modems produce log files, which have 

to be analyzed by engineers when issues occur. Performing the analysis for large 

logs manually can be very time consuming, thus different approaches for trying 

to automate or simplify the process exist.  

This thesis presents design and development for a cellular modem log analysis 

tool. The tool is designed to take into account peculiarities of telecommunications 

protocols and cellular modems, especially of 5G New Radio Radio Resource 

Control protocol. A notation for defining analysis rules used by the tool is 

presented to be used alongside the tool. 

The developed tool is a proof-of-concept, with focus being on how the tool 

performs the analysis and how the notation can be used to define the wanted 

analysis rules. The features of the notation include defining expected content of 

protocol messages and order of log message sequences. The tool performs well 

with artificial modem logs, though some flaws in the notation are recognized. In 

the future, the tool and the notation should be updated with support for real 

cellular modem logs and evaluated in field use cases by cellular modem engineers. 

 

Keywords: telecommunications, wireless communication, log analysis, cellular 

modem, 5G New Radio, metasyntax 
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TIIVISTELMÄ 

Tietoliikenneprotokollia ja matkapuhelinmodeemeja käytetään laitteissa 

langattoman tiedonsiirron mahdollistamiseksi. Matkapuhelinmodeemit 

tuottavat lokitiedostoja, joita insinöörien täytyy analysoida ongelmatilanteissa. 

Suurten lokitiedostojen analysointi manuaalisesti on työlästä, joten on olemassa 

keinoja prosessin automatisointiin tai yksinkertaistamiseen. 

Tämä työ esittelee suunnitelman ja toteutuksen matkapuhelinmodeemin 

lokitiedostojen analysointityökalulle. Työkalun suunnittelussa on otettu 

huomioon tietoliikenneprotokollien, erityisesti 5G New Radion radioresurssien 

hallintaprotokollan (RRC), ja matkapuhelinmodeemien erikoisuudet. 

Merkintäsäännöstö, jolla voidaan määritellä analyysisäännöt, esitellään 

työkalulle. 

Kehitetty työkalu on karkea prototyyppi. Kehityksessä keskitytään työkalun 

analyysiominaisuuksiin ja mahdollisuuksiin käyttää merkintäsäännöstöä 

määrittämään halutut analyysisäännöt. Merkintäsäännöstön ominaisuuksiin 

kuuluu odotettujen lokiviestien sisällön ja järjestyksen määrittely. Työkalu 

suoriutuu keinotekoisien modeemilokitiedostojen kanssa hyvin, mutta joitain 

vikoja merkintäsäännöstöstä havaittiin. Tulevaisuuden kehitystä ajatellen 

työkalu kannattaisi päivittää toimimaan aitojen matkapuhelinmodeemien 

lokitiedostojen kanssa, että sen kykyä suoriutua aidoista käyttötilanteista 

voitaisiin arvioida. 

 

Avainsanat: tietoliikenne, langaton tiedonsiirto, lokianalyysi, 

matkapuhelinmodeemi, 5G New Radio, metakieli 
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1. INTRODUCTION 
 

Wireless communication is used constantly in our daily lives. Smartphones depend on 

their ability to connect to internet services to provide us entertainment, ways to 

communicate, and even banking services. Wireless communication requires cellular 

modems, which transform digital information within devices to radio waves sent 

through the air. These cellular modems are built according to different standardized 

telecommunication protocols, for example protocols specified by 3GPP used in 4G 

and 5G communication. As cellular modems are complicated devices, creation of a 

perfect cellular modem is impossible. Sometimes cellular modems fail, and engineers 

have to find out what went wrong. This is when cellular modem logs come into play. 

The cellular modem writes different type of information about events preceding the 

failure in the cellular modem log. It can be necessary for the engineers to analyze these 

logs manually, sometimes going through hundreds of stored log messages. This 

process can be very time consuming and can require effort from specific expert 

engineers with in-depth knowledge about the inner workings of the cellular modem. 

The engineers’ time would be better spent on developing fixes and new features for 

the cellular modem, instead of going through countless cellular modem logs. Cutting 

down time spent on log analysis can both improve the efficiency of engineer work and 

mean that engineers can spend more time with more rewarding and interesting tasks.  

The goal of this thesis is to chart what kind of methods could be used to ease the 

workload of log analysis and develop an analysis tool for 5G cellular modem logs. The 

logs are message logs, where each log message corresponds to different action of the 

cellular modem. The tool is named Protocol Log Analyzer. Protocol Log Analyzer 

must be able to work with different log formats and support different message rules. 

The engineers know these message rules, but Protocol Log Analyzer must include a 

method for them to insert that knowledge into it. It will locate where in the log rule 

breaks or other interesting events can be found, based on the previous knowledge of 

the engineers. Most importantly, Protocol Log Analyzer must help the engineers with 

their log analysis activities, either by allowing for other people than the expert 

engineers to analyze logs, or by making it easier and faster for the experts to locate 

issues from logs. In practice, learning how to use Protocol Log Analyzer and 

integrating it to engineers’ daily work should be easier than continuing to analyze logs 

manually.  

This thesis presents requirements for Protocol Log Analyzer and a prototype that 

takes specialties of telecommunication protocols into account. Alongside Protocol Log 

Analyzer, a first version of a notation, meant for engineers to write rules about log 

analysis, is presented. The notation is based on previously existing metasyntax 

notations, with Extended Backus-Naur Form [1] serving as a major inspiration, though 

the developed notation is more specialized for defining information expected to be 

present in cellular modem logs. 

Chapter 2 of this thesis provides background information on already existing log 

analysis tools and researches what kind of data cellular modems could write in their 

logs, including presenting modern telecommunications protocols. Chapter 3 identifies 

the requirements for Protocol Log Analyzer based on wishes of engineers working on 

cellular modems. Chapter 4 presents the design for Protocol Log Analyzer, how it is 

split into different modules, and defines the developed rule notation. Chapter 5 

presents the implementation, including the class structure. Protocol Log Analyzer is 
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evaluated and results discussed in Chapter 6. Chapter 7 includes discussion on what 

was achieved and how development could proceed. Chapter 8 sums up the thesis.  
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2. BACKGROUND 

2.1. Telecommunications protocols 

Understanding what kind of messages are exchanged in telecommunication is essential 

for understanding how cellular modem logs can be analyzed. These messages are 

defined in different kinds of telecommunication protocols. Sharp [2, pp. 1-5] defines 

characteristics of protocols as a set of formal rules for information exchange and that 

following those rules is mandatory for successful information exchange. When it 

comes to communication between computer systems, all parties using the same 

protocol is requisite for successful communication. Protocol defines all possible 

messages and legal sequences of messages. It can be analyzed as a kind of language 

with its own set of sentences and symbols [2]. Hercog [3, p. 16] splits protocol 

language syntax into three sections, abstract syntax defines the available messages, 

transfer syntax defines the format of protocol messages, and supermessage syntax 

defines what kind of sequences of messages are allowed and when messages may or 

must be sent by devices using the protocol. Hercog [3, p. 17] notes that the sequence 

of protocol messages is the most important part of following a protocol. This means 

that it is something that should be paid extra attention to when trying to find faults on 

why message exchange fails using a telecommunication protocol.  

As Sharp [2, p. 64] explains, communication systems often use layered 

architectures. An example of a layered protocol architecture with different components 

highlighted can be seen in Figure 1. In these protocol stacks, lower layer provides 

services for the upper layer. Holzmann [4, pp. 27-32] describes how layered 

architecture can be used to split complicated communication tasks to smaller subtasks 

and that in a layered architecture lower layers provide ‘virtual’ communication 

channels that allow specific layers to communicate with their corresponding layers in 

other devices. When a user of communication system sends information from N-th 

layer, it first travels ‘down’ through each lower layer of the sender, through physical 

circuit between the sender and the receiver, and then ‘up’ the layers on the receiver’s 

end until the N-th layer is reached. Holzmann [4, p. 31] calls the entities existing in 

the same layer peer entities and connection between these entities a peer protocol. 

Boundary between adjacent layers is called an interface. Holzmann [4, p. 31] also notes 

that in communication systems only the peer protocols must be standardized between 

the communicating systems, and implementation of inter-layer interfaces can differ 

between the sender and the receiver. The messages exchanged by peer entities are 

called Protocol Data Units (PDUs) [2, p. 72]. Messages between adjacent layers in the 

interface are called primitives [2, p. 94]. These primitives facilitate information 

exchange between upper and lower layers. PDU of an upper layer is called Service 

Data Unit (SDU) in the primitive and lower layers [2, p. 72]. Lower layers do not 

process or analyze information within SDUs [3, p. 72]. When analyzing exchange of 

protocol messages, the focus is usually on a specific layer. As message contents of 

upper layers are not relevant for the functionality of lower layer, they can be ignored 

when analyzing message exchange on the lower layer. 

Common example of a layered architecture is the OSI Reference Model, which is 

visualized in Figure 2. Sharp [2, pp. 64-65] writes that important features of the OSI 

Reference Model is not the exact functionality of the seven available layers, but instead 

the layering principle and the notation introduced. Another example of a protocol stack 
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is Internet protocol suite, which has five different layers. In it, the three upper most 

layers of OSI Reference Model are considered as one Application layer [2]. According 

Hercog [3, pp. 70, 77-78], the uppermost layer being called application layer is usual. 

The application layer is composed of the users of the communication system using the 

protocol stack. The lowest layer is then physical and it is responsible for 

communication through the real physical communication channel. 

 

 

Figure 1: Protocol stack components 

 

Figure 2: OSI Reference Model, adapted from Hercog [3, p. 77] 

Hercog [3, pp. 56-58] presents a model of protocol entity and lists its requirements. 

A protocol entity can measure time, transmit and receive messages, memorize 

messages and values, interact with users of the protocol, and follow actions defined by 

the protocol. In order to fulfill these requirements the process entity requires a 

processor and memory. In order to measure time the process entity uses a timer. It can 
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activate or deactivate the timer when the protocol so requires. The timer expires after 

a predefined time, which can cause the protocol entity to react as defined in the 

protocol used. The protocol entity might not be able to process events such as new 

messages or timer expiries immediately. A queue in memory is used to store these 

inputs until the protocol entity can handle and react to them [3]. Example of timers 

used in protocol is Sharp’s [2, pp. 285-287] presentation of ISO Class 4 Transport 

Protocol. The protocol uses several timers in order to resist different type of failures 

including a window timer that is used to detect unindicated connection failures by 

making sure at least some PDUs are being sent during a specific interval. Timers can 

be relevant when analyzing telecommunication message logs. For example, if each 

message has a timestamp attached to it, those timestamps can be analyzed to see if 

timers defined in the protocol expire before a protocol entity has answered to some 

specific message.  

Telecommunications protocol implementations have to be tested. Dubuisson [5, pp. 

480-481] explains that testing for protocol implementations is done by examining the 

external reactions of the implementation. The implementation is not taken into 

account, just how it reacts and answers to specific input messages. If the 

implementation follows the protocol according to the tests, then it can work with other 

systems that implement the same protocol. TTCN (Tree and Tabular Combined 

Notation in Dubuisson [5], Testing and Test Control Notation for the newest version 

31) is a language designed for describing these protocol tests. TTCN focuses on the 

PDUs and service primitives. Its test suites are comprised of structures of tables. The 

test suites indicate possible events and they are either passed or failed depending on if 

the correct events are observed in the correct order [5]. Engineers use logs as one of 

their tools in finding out why implementations do not follow protocol when tests fail. 

The implementation can write to the log its reasons for sending or not sending specific 

messages, which can guide engineers to right path during issue diagnosis if they 

engineers can locate the relevant log messages.  

2.2. 3GPP 5G cellular network 

This Chapter elaborates on aspects of modern 5G cellular networks. Understanding the 

content of a cellular modem log is not possible without understanding which entities 

communicate with each other and what is relevant for the functionality of a 5G modem. 

The most relevant telecommunications protocols for cellular modems are defined by 

3rd Generation Partnership Project (3GPP). 3GPP was set up on 1998 in order to 

provide a forum for discussing global standards for WCDMA specification [6]. 3GPP 

has seven telecommunications standard development organizations as organizational 

partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC) as seen on their website2. 

3GPP specifications include radio access, core network and service capabilities, and 

other telecommunications technologies. 3GPP includes three Technical Specification 

Groups (TSG): Radio Access Networks (RAN), Services and Systems Aspects, and 

Core Network and Terminals. Each TSG is then further split into Working Groups, 

which focus on certain subsection of telecommunications. The TSGs produce protocol 

specifications as their output.  

 
1 http://www.ttcn-3.org/ 
2 https://www.3gpp.org/ 
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5G is the newest wireless telecommunication technology for mobile phone 

networks. Holma et al. [7] present the schedule for 5G standardization until 5G 

deployment was possible. 3GPP’s work on 5G started in 2015 but the content of first 

specification was finished in Release 15 in December of 2017. Deployment of Non-

Standalone (NSA) 5G was finally possible with 2018 December version, with Stand-

Alone (SA) following in March 2019. NSA and SA architectures are explained with 

more details below. First commercial 5G networks were then launched in April 2019. 

According to 3GPP’s website2, Release 16, which was finalized in June 2020, brought 

the full 3GPP 5G system to completion. As 5G has now launched properly, future 

developments with cellular modems focus on it, and so does this thesis. 

Toskala and Poikselkä [8] present an overview of 5G architectures. There are two 

main architecture options, NSA and SA. In NSA, 4G LTE is used as the anchor for the 

connection existing LTE core (Evolved Packet Core, EPC). In this architecture, 5G 

radio is only used on the user plane with dual connectivity with LTE, meaning that the 

UE is simultaneously connected to both LTE and 5G NR. NSA has a few different 

data routing options, which differ on how user plane is split between LTE and 5G. 

LTE and 5G nodes in NSA can exchange data between each other or they can both 

directly connect to the EPC. In SA, the 5G radio is connected to 5G Core Network. 

SA allows for full 5G functionality and does not need LTE-5G dual connectivity. The 

rest of the Chapter focuses on SA. 

In order to understand failures visible in modem logs, it must first be understood 

what kind of information is exchanged in those messages and how they affect the 

functionality of both protocol entities. As defined in TS 38.300 [9], the 5G node 

connecting to 5G Core Network is either a gNB or an ng-eNB. gNB NG-RAN node 

provides NR protocol terminations for the UE and ng-eNB provides the same for 

EUTRA. The 5G nodes are connected to the 5G Core Network via NG interfaces, with 

control plane connecting to Access and Mobility Management Function (AMF) and 

user plane to User Plane Function (UPF). The NG-RAN nodes are connected to each 

other with Xn interface. Xn interface is also split to user plane and control plane, with 

both having their own protocol stacks. NG-RAN nodes are connected to 5G Core 

Network with NG interfaces. Figure 3 visualizes different entities and their 

connections in the 5G SA architecture. The Uu interface between the gNB and the UE 

is the most interesting interface from the perspective of the cellular modem and this 

work. 
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Figure 3: 5G entities and connections, adapted from TS 38.300 [9] 

Working Group responsible for radio interface protocols between UE and RAN is 

RAN23. 3GPP derived radio protocols for 5G NR from 4G LTE but differ due to 5G 

requirements such as high data rates with low latency [10]. RAN2 specifications 

related to NR include but are not limited to “TS 38.300 NR; NR and NG-RAN Overall 

description; Stage-2”, “TS 38.304 NR; User Equipment (UE) procedures in idle mode 

and in RRC Inactive state” “TS 38.306 NR; User Equipment (UE) radio access 

capabilities”, “TS 38.321 NR; Medium Access Control (MAC) protocol 

specification”, “TS 38.322 NR; Radio Link Control (RLC) protocol specification”, 

“TS 38.323 NR; Packet Data Convergence Protocol (PDCP) specification”, “TS 

38.331 NR; Radio Resource Control (RRC); Protocol specification”, and “TS 37.324 

Evolved Universal Terrestrial Radio Access (E-UTRA) and NR; Service Data 

Adaptation Protocol (SDAP) specification”. RRC protocol is the one responsible for 

configuring the UE with parameters the other protocol layers need and for maintaining 

connectivity between the UE and the network [10].  

Working Group RAN5 focuses on conformance testing of radio interface for the 

UE, including radio interface protocols defined by RAN23. For 5G NR, RAN5’s 

specifications include “TS 38.508-1 5GS; User Equipment (UE) conformance 

specification; Part 1: Common test environment” and “TS 38.523-1 5GS; User 

Equipment (UE) conformance specification; Part 1: Protocol”, which describe 

message sequences and message contents that can be used to confirm UE’s 

conformance to that specific 3GPP release.  

As 3GPP’s website3 explains, 3GPP’s technologies evolve with generations of 

mobile systems, the newest being 5G, but 3GPP specifications update in Releases 

instead. Development of different Releases happens in parallel, meaning that the next 

 
3 https://www.3gpp.org/ 
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release is already underway when the previous release is ‘frozen’ and released ready 

for implementation. The purpose of Releases is to have a stable platform for 

implementation while simultaneously allowing for addition of new features for future 

releases. The Releases are backwards and forwards compatible when possible. This is 

to allow for devices within the network to function without interruptions, e.g. UE built 

with an older Release can still function when surrounding infrastructure is updated. 

This also allows the same methods to be used when analyzing modem logs of different 

releases, as different releases can add more procedures and message fields, but the 

same basic principles apply.  

Henttonen et al. [10] describe the 5G radio protocol stack between a gNB and a UE. 

The protocols are often split to two different planes, the previously mentioned user 

plane (UP), and a control plane (CP). When using the OSI Reference model as a 

reference, the UP of 5G New Radio (NR) has four different Layer 2 sublayers, and a 

physical layer (Layer 1). The four sublayers are Service Data Adaptation Protocol 

(SDAP), Packet Data Convergence Protocol (PDCP), Radio Link Control (RLC), and 

Medium Access Control (MAC). The topmost sublayer SDAP is connected to its 

counterpart in UPF, though SDAP is not necessary when the connection is NSA. The 

CP shares PDCP, RLC, MAC and Layer 1 with the UP, but has Radio Resource 

Control (RRC) on top of PDCP. Non-Access Stratum (NAS) is then on top of RRC. 

NAS is part of AMF of the 5GC. Protocol stack can be seen in Figure 4. 

 

 

Figure 4: 3GPP 5G Radio Protocol Stack, adapted from Henttonen et al. [10] 

There are three layers of channels in 5G New Radio [10]. MAC provides data 

transfer services with different types of logical channel types [9]. Different type of 

information is transferred using different logical channels. There two types of logical 

channels, control channels and traffic channels. There are four different control 

channels. Broadcast Control Channel (BCCH) is used for broadcasting system control 

information, Paging Control Channel (PCCH) for paging messages, Common Control 

Channel (CCCH) for control information transmission between the UE and the 
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network, which is used when there is no RRC connection (see 2.2.1 for RRC 

connections), and Dedicated Control Channel (DCCH) for control information 

transmission between the UE and the network when there is an RRC connection. 

Control channels are used for control plane information. There is only one traffic 

channel, Dedicated Traffic Channel (DTCH). It is used to transfer user information of 

the user plane. MAC maps these logical channels to transport channels. Transport 

channels are further mapped to physical channels, which are the lowest channel layer 

[10].  

2.2.1. Radio Resource Control Protocol 

 

Radio Resource Control (RRC) protocol is elaborated more in-depth here as an 

example of a cellular modem protocol. TS 38.331 [11] specifies three possible states 

for the UE in NR, RRC_CONNECTED, RRC_INACTIVE, and RRC_IDLE. The UE 

is in RRC_IDLE state if RRC connection has not been established. In 

RRC_INACTIVE and RRC_CONNECTED the RRC connection has been established, 

but in RRC_INACTIVE it is only stored instead of actively used to save power. In 

RRC_IDLE, gNB node does not have UE AS context stored, unlike the last serving 

gNB in RRC_INACTIVE and the gNB in RRC_CONNECTED, meaning that in 

RRC_IDLE the gNB node is not aware of the UE. In RRC_IDLE and 

RRC_INACTIVE the UE controls its mobility, but in RRC_CONNECTED mobility 

is controlled by the network. Possible state transitions between the states are resume, 

release, release with suspend, and establish, as seen in Figure 5.  

 

 

Figure 5: RRC states for the UE in NR, adapted from TS 38.331 [11] 

Mobility between radio access technologies (inter-RAT) adds three more possible 

state transitions, handover, reselection and redirection, visible in Figure 6.  
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Figure 6: RRC states including mobility to and from NR, adapted from TS 38.331 

[11] 

2.2.1.1. RRC procedures 

Procedures that lead to RRC state transitions have some general requirements. The 

UE shall process the messages in the receiving order, even if the gNB may initiate the 

next procedure before the UE’s response. If the UE’s response message includes a 

transaction identifier, it should have the same value as the gNB message’s transaction 

identifier had. Purpose of the transaction identifiers is to ensure the UE ignores 

duplicate RRC messages and that the gNB knows when the UE has finished its 

procedure to a specific message [10]. Most downlink messages include the transaction 

identifier, notable exceptions being broadcast messages and messages which cause the 

UE to move to RRC_IDLE or RRC_INACTIVE states. Transaction identifiers can be 

used when analyzing modem logs to pinpoint which RRC message was never 

answered to. By identifying specific sets of RRC messages in modem logs, specific 

procedures can also be identified and compared to successful cases.  

Henttonen et al. [10] say connection control can be considered the primary task of 

RRC because it allows the UE to transmit and receive data. They also note that RRC 

mobility procedures are done by reusing connection control procedures. Connection 

control actions presented include connection establishment, capability reporting, 

connection reconfiguration, and connection release. Certain connection control 

procedures can only start when the UE is in a specific RRC state. 

Examples for connection control procedures are RRC connection establishment and 

RRC reconfiguration. RRC connection establishment described in TS 38.331 [11] is a 

connection control procedure in which the UE in RRC_IDLE sends RRCSetupRequest 

to the gNB, which responds with RRCSetup. After the UE has processed RRCSetup 

and sent RRCSetupComplete, the procedure will finish with UE entering 

RRC_CONNECTED state. The successful procedure is visualized in Figure 7.  
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Figure 7: Successful RRC connection establishment, adapted from TS 38.331 [11] 

RRC reconfiguration procedure [11] can start when the UE is in 

RRC_CONNECTED. The gNB initiates the procedure when it modifies the details of 

an RRC connection. Procedure starts by the gNB sending RRCReconfiguration. The 

UE reacts to RRCReconfiguration accordingly and in the case of a successful 

reconfiguration responds with RRCReconfigurationComplete. Initial AS security 

activation and first RRC reconfiguration have to happen following RRC connection 

establishment until user data can be transferred [10].  

TS 38.523-1 [12] includes a test procedure for RRC connection establishment 

followed by initial AS security activation and RRC reconfiguration. The test procedure 

chains different test purposes together with different RRC reconfiguration following 

each other. In order to pass the conformance testing, the UE tested must answer to 

messages sent by the testing environment’s system simulator according to previously 

defined rules. E.g. when activating AS security, the system simulator sends both 

SecurityModeCommand and RRCReconfiguration messages. The UE then must 

answer with SecurityModeComplete and RRCReconfigurationComplete messages. 

The same elements tested in the test procedure can be extracted from modem logs. If 

the log includes messages of RRC connection establishment, initial AS security 

activation, and RRC reconfiguration procedures, the log can be further analyzed in 

order to find possible divergences when comparing to the example case.  

2.2.1.2. RRC messages 

TS 38.331 [11] specifies the contents of each RRC message using Abstract Syntax 

Notation One (ASN.1). ASN.1 is a notation used for describing messages between 

different computing applications [5]. ASN.1 and its encoding rules are platform 

agnostic, which makes it suitable for a wide array of applications, including 3GPP 

specifications. RRC messages often include several fields, which types are smaller 

information elements that are also defined in the specification. These RRC information 

elements can be reused in several different RRC messages. Not all fields in RRC 

messages are always present and the specification defines which fields are optional, 
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conditionally mandatory, or mandatory. Specification defines purpose, direction and 

logical channel for each RRC message.  

Certain fields in RRC messages or information elements contained within them are 

limited in when the network can configure or release them. For example, information 

element ServingCellConfig can only include field uplinkConfig when the network has 

configured field uplinkConfigCommon separately in information element 

ServingCellConfigCommon or ServingCellConfigCommonSIB for the UE [11]. 

Configuring uplinkConfig without the previous requirement is against the specification 

and may lead to faulty functionality.  

Error handling for faulty messages is defined for RRC messages [11]. Error handling 

procedure differs for different logical channels. For messages using BCCH, CCCH or 

PCCH, invalid abstract syntax handling is used when one or more fields in the message 

are set to values, which are not spare, reserved, or extended values. This causes the 

error handling to happen at message level. In these cases, the message is ignored. In 

the case of a spare, extended or reserved value in a field of the message, the UE either 

replaces it with a default value or handles the message as if the field was not present. 

If the entire field in the message is defined as spare or reserved, the UE handles the 

message as if the field was not present. Handling of missing mandatory fields in 

messages that do not use DCCH or CCCH works so that missing mandatory field in 

information element causes the UE to treat the entire information element as not 

present. If this happens at the highest level in the message, the UE ignores the message.  

Certain test procedures in TS 38.523-1 [12] require messages to include certain 

fields which differ from standard message contents. As said by Henttonen et al. [10], 

radio bearers are used in 5G for ensuring a specific Quality of Service at RAN-level. 

Radio bearers are necessary for data transfer. In order to test establishment of data 

radio bearer DRB1 for RRC reconfiguration, the specification dictates that 

RRCReconfiguration message must include a radio bearer config DRB1 and an RLC 

bearer for DRB1. In some test procedures, the specification specifies message contents 

for both the message starting the procedure and its response. E.g. in UE capability 

transfer, where the network requests radio access capability information from the UE 

with UECapabilityEnquiry message, which includes RAT-Type nr, to which the UE 

responds with UECapabilityInformation message which also specifies RAT-Type as 

nr. If modem logs include the complete content of RRC messages, this information 

can be used to recognize possible issues when analyzing.  

2.3. Log parsing 

Automating modem log analysis requires computers to read the log files. He et al. [13] 

explain that logs are used in software systems to record different types of runtime 

information. The developers of the software systems can then use this log information 

to diagnose problems in production settings. Logs of very complicated systems can 

easily grow too large for traditional manual inspection, so automated log analysis tools 

utilizing data mining have been developed. Log messages are often not in a machine-

readable form, thus first these unstructured messages have to be transformed to 

structured data. This process is called log parsing [13]. Log files can be as simple as 

output of printf()-calls saved to a specific file. Their file format can differ, from those 

simple text files to bespoke formats. A tool designed to analyze log files from different 

sources must be able to parse these different file formats. Jayathilake [14] mentions 

the lack of standard for logging as one of the biggest problems with log analysis. 
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Jayathilake [14] gives expected features for a log parser as a part of a log analysis 

system. According to them, a log parser should handle log files with various structure 

and syntax, recognize common tokens in log files, such as timestamps, be able to read 

from different log sources, and handle possible file corruptions and errors without 

stopping the parsing. For file formats, they mention text files, XML files, and binary 

files as formats that a log analysis system should support. Log parsers should store the 

parsed version of the log, so that time can be saved if the log data is needed again in 

the future [14].  

In order to parse messages properly, their structure must be understood. According 

to He et al. [13], the typical log message consists of three different fields. Timestamp 

field records when the event in question occurred. Verbosity level field records the 

severity level of the event recorded. Message content field includes the message itself, 

and it can be further split into constant and variable parts. The constant part is always 

the same for each occurrence of that event. The variable part includes information from 

the runtime related to the event, such as an IP address. This part can vary for different 

occurrences of the same event. During log parsing, the parser automatically separates 

the constant and variable parts of the message and then transforms them into a specific 

event. Usually, the constant part of the message specifies the event. An event could be 

specified as a string with asterisks in places where variable parts are place, e.g. 

“Receiving block * src: * dest: *” [13]. Kc and Gu [15] use a similar method in their 

log parser, where they refer the constant part as message type. When parsing cellular 

modem message logs, PDUs of particular protocol messages would be included in 

variable parts of log messages.  

He et al. [13] specify that in traditional log parsing, the parser requires regular 

expressions to transform messages to specific events. Creating these regular 

expression rules for modern software systems requires significant effort, and if the 

system changes over time through updates, these rules have to be updated 

continuously. Automated log parsing methods can allow the parser to evolve with the 

system [13]. 

Fu et al. [16] categorize log messages to five different categories. The first category 

is assertion-check logging, where Assert or similar functions are used to check if 

failures happen during execution. These are used to log messages before the execution 

is terminated. The second category is return-value-check logging, which means that 

return values of certain functions are checked and logged, if they are unexpected. They 

note that incorrect return values are used as indicators for potential errors. The third 

category is exception logging, where the exception context is logged after an exception 

has happened. This might happen in e.g. Java catch block. The first three categories 

concern unexpected situations. Unexpected situations can lead to system errors, thus 

logging them before the error happens is helpful when identifying the error from the 

log. The remaining two categories are execution points. First execution point category 

is logic-branch logging, where a code execution path chosen at a branch statement in 

the code is logged. This means e.g. logging after a switch-statement. Second execution 

point category is observing-point logging, which includes all logging situations which 

cannot be categorized in the four previous categories. This might be e.g. recording 

transactions or other critical events. As a whole, execution points are used to 

understand code flow and to help when trying to identify the root cause of a failure 

[16]. In cellular modem log’s case, the protocol message PDUs could be thought as 

either type of execution point log message depending on how the modem is 

implemented. 
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Following the survey done by Fu et al. [16], they see log filtering as one possible 

area for future improvements. Due to large size of files filtering logs with post-

processing in order to simplify the process of finding useful information from the logs. 

Other possible future improvements include better tools for log search, log analysis, 

and log visualization [16]. A log parser can handle log filtering when parsing the log 

e.g. by discarding messages which do not fit some predefined criteria.  

He et al. [13] provide four different implementations of widely used log parsers 

through Github. They are easily reusable for both research and practical use. First is 

Simple Logfile Clustering Tool (SCLT) that works with a three-step procedure. Step 

1 is word vocabulary construction during first pass over the data, 2 is cluster candidates 

construction during second pass over the data, and 3 is log template generation based 

on the created clusters. Iterative Partitioning Log Mining (IPLoM) is a four-step 

procedure utilizing heuristics. Step 1 is partitioning the data by message size, 2 is 

partitioning by word position, with split happening at position where the least amount 

of unique words appear, 3 is partitioning by search for mapping between unique 

tokens, and finally step 4 is log template generation similarly to SCLT. Log Key 

Extraction (LKE) has three steps and uses clustering algorithms and heuristic rules. Its 

step 1 is log clustering, where messages are clustered with clustering algorithms, then 

in step 2 clusters split using heuristic rules, and final step is again log template 

generation. LogSig also works with a three-step procedure, with messages first 

converted to sets of word-position pairs, then clustering based on those word pairs with 

multiple iterations, and finally generating log templates [13].  

Mariani and Pastore [17] use SCLT to separate event names from their attributes in 

event logs. Their technique performs the separation in several iterations. On first 

iteration, only log templates that constitute more than 5% of all events in the log are 

considered. If log templates are found, the process is repeated for the log events that 

do not fit the found log templates. If no log templates are found, the threshold is 

lowered by 25%. These two types of iterations are continued until all events are linked 

to log templates or the threshold is reduced to 1 event. The use of multiple iterations 

should help with identifying events, as constant parts of the log messages are more 

likely to be included in the log templates that satisfy higher thresholds [17]. 

He et al. [18] introduce Drain, which is an online log parsing method using fixed 

depth trees. Drain classifies log messages with five steps. The first step is 

preprocessing, where predefined regular expressions are used on raw log messages to 

remove commonly used variables, such as identifiers. In step 2, Drain starts to traverse 

the parse tree by classifying messages by message length. Message length is defined 

by the amount of tokens present in the message. Step 3 is based on the assumption that 

earlier tokens of the message are more likely to be constants, and thus better suited for 

classifying the message. How many tokens Drain uses to classify messages depends 

on the depth setting. Larger depth setting increases the amount of preceding tokens 

checked. Classification continues in step 4, with the log message being grouped within 

the category found in step 3 using token similarity. The final step is updating the parse 

tree based on the classification of the message. This can either modify an existing 

classification group, or create a new one. According to evaluation they present, Drain 

outperforms the other tested log parsers [18].  
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2.4. Failure detection 

Once log parser has transformed the log to a more workable form, they can be analyzed 

with the hope of identifying possible errors and their causes. Jayathilake [14] mention 

some use cases for log analysis. Software conformance to specification can be verified 

by comparing log of the software in action to a reference log. System administrators 

can use logs for system health monitoring and detecting possible unwanted actions, 

such as system breaches. A log can also be analyzed statistically, determining usage 

patterns, requirements, and bottlenecks. Anomaly detection is analyzing logs in order 

to detect problems [14].  

In order to analyze different types of logs with differing formats and sources, a log 

analyzer requires many different features. Jayathilake [14] list expected features for a 

log analysis system. The requirements for log parser part of the system are described 

previously in Chapter 2.3. A log analyzer should be able to show the data in a user 

friendly manner in a user interface. It should provide automation mechanisms for 

recurring analysis patterns, which allows for a collection of reusable analysis routines. 

Its user interface should provide information on intrusion detection and standard 

compliance [14].  

Mariani and Pastore [17] classify log file analysis approaches to three different 

categories: specification-based techniques, expert systems, and heuristic-based 

techniques. With specification-based techniques, log files are compared to models 

representing valid event sequences. As the specifications have to be updated manually, 

it can require a lot of effort by the users of the technique. Expert systems compare 

events in logs to event patterns that are specified in advance. These event patterns 

signify system failures, which means that a new pattern has to be specified for each 

different system failure. Creation and upkeep of these event patterns takes significant 

amount of effort. Heuristic-based techniques try to avoid the issue of upkeep and 

specification creation efforts, by applying machine learning to log files. The goal of 

the learning process is to generate models for accepted logs with little or no human 

input [17].  

Swatch by Hansen and Atkins in 1993 [19] is an example of an older expert system. 

Swatch watches log files until it encounters an event that matches regular expression 

provided in Swatch’s configuration file. The configuration file also defines how 

Swatch reacts to noticing that specific log event. The structure of the configuration file 

is explained more in-depth in Chapter 2.5. Some of the possible reactions to certain 

log events are echoing the log event to a central terminal where an administrator will 

see it, sending a bell signal to a central terminal, or mailing the event log to a previously 

defined list of users. In practical use Swatch was deemed useful. It helped in detecting 

intruders and prevented system meltdowns when air condition units failed [19].  

Jayathilake [14] present Inference Engine for their structured log analysis 

framework. Inference engine requires the log data to first be parsed by a log parser, 

which formats the data to a tree data structure. Users provide the Inference Engine with 

scripts, that it then uses to manipulate the data trees. The Inference Engine outputs a 

set of trees, which contain inferences made from the data and the scripts. The user 

interface then can show these trees in a dashboard. The log analysis framework uses 

SQLite for historical data, because it is lightweight and available for almost all popular 

platforms. However, in their testing they found that relational databases such as SQLite 

are not good with message logs that have varying message attributes and nested 

messages. Instead, NoSQL database that uses varying table schema could be better 
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[14]. As telecommunication protocol messages often include nested structures, it 

might be appropriate to avoid relational databases with fixed schemas or extra care 

should be applied for how those nested structures are stored.  

The Inference Engine Jayathilake presents in 2012 [14] uses a mind map based 

procedural language they presented in 2011 [20]. The language uses mind maps 

because the way mind maps represent information is more similar to the way human 

brain does it than alternatives. The mind map is implemented as a tree mentioned 

above. The language is Turing complete and allows for comments in order to improve 

usability. It allows for a creation of short scriptlets for automating analysis of recurring 

patterns in logs. These scriptlets can be used as a part of a larger script without 

affecting the rest of the script, allowing for different engineers to utilize their 

knowledge and expertise on log analysis with the same script [20].  

Kc and Gu [15] present Efficient Log-based Troubleshooting (ELT) system that is 

designed for use with cloud computing infrastructures. Their testing results show that 

it can be used to find previously unnoticed software bugs through log analysis. ELT 

analyzes log data with a two-step algorithm. First step has the analyzer perform 

hierarchical clustering using message appearance vector (MAV). After step one, there 

are several clusters with differing sizes. Small clusters are treated as anomalous 

clusters, because anomalies are less frequent than normal messages. Step two uses a 

more precise outlier detection method called message flow graph (MFG). It is used 

individually for larger clusters created in step one. Using the more fine-grained method 

only in step two significantly decreases the processing overhead of the analysis process 

[15]. 

ELT [15] further simplifies the manual analysis process for the user by extracting 

key messages from the anomalous clusters. These key messages are supposed to be 

the most relevant messages for determining the root cause of the anomaly. ELT locates 

key messages by first comparing anomalies with normal message instances, again 

using MFG. If certain sequence of messages is present in anomalies but not with 

normal message instances, the sequence of messages is added to a difference log where 

the differences are saved. After that clustering is done to the difference logs using 

MAV. Anomalies that are of the same type should be clustered together. Third step is 

to compare MFGs of different anomalies of the same type and finding out what 

message sequences they have in common. Message sequences in the difference logs 

that match the common sequence are outputted as key messages [15].  

ELT [15] can automatically perform invariant checking for the key messages if the 

invariants have been provided to it beforehand. Performing invariant checking only 

for the key messages saves execution time. Kc and Gu’s example for invariant 

checking is with Apache’s Virtual Computing Lab (VCL). The error they found in the 

VCL was a multiprocess forking error, which violated the invariant “a reservation 

request cannot be processed by multiple processes simultaneously”. They discovered 

this by checking the start and end timestamps for processes, which made it clear that 

execution of two processes overlapped [15]. For a 5G cellular modem log, these 

invariants could be based on the 3GPP specifications.  

2.4.1. Heuristic log file analysis by Mariani and Pastore 

Mariani and Pastore [17] present a heuristic-based log file analysis technique. Their 

technique does not require specifications to be created and works when failures are 

caused by multiple separate unexpected events. The technique requires logs of 



 

 

23 

successful executions. These success-case logs can be collected from real-world use 

cases or generated, as the technique does not care how they were created or collected. 

In the technique, models are generated from the success-case logs with three steps: 

event detection, data transformation and model inference. Once the models have been 

created, they can be used to compare failures to successful cases. The techniques 

comparison algorithm can identify both the acceptable and unacceptable event 

subsequences. The user of the technique can then check through the unacceptable 

sequences and hopefully identify the root cause of a failure [17].  

Mariani and Pastore’s [17] event detection requires the log files to be in a specific 

format before SCLT is used, as described earlier in Chapter 2.3. After event detection, 

new log files where the templates are included in the log itself are generated. Event 

detection is followed by data transformation, which replaces variable attribute values 

with data flow information. They note that attribute data in logs cannot be ignored nor 

directly compared between different logs when analyzing them. Direct comparison 

leads to many false positives, where perfectly normal variation in values is flagged as 

a possible failure. Not taking the data values into account at all causes the analysis to 

miss important pieces of information. Thus, they created three different strategies for 

dealing with variable attribute data by replacing them with data flow information. The 

strategies are global ordering, relative to instantiation, and relative to access. These 

strategies are applied to log message attributes that work on the same data. The 

technique works by expecting that correlation exists between attributes that share a 

certain amount of values. A cluster is created for attributes that correlate with each 

other. The strategies are applied for clusters individually. Global ordering works by 

replacing variable values with numbers depending on the order of appearance. This 

leads to the first value to be replaced with “1”, the second with “2” and so on unless 

the same value was already replaced with a number before. In that case the previously 

used number is reused. In relative to instantiation strategy variable values are replaced 

with “0”, or if the value was already replaced with a “0” before it is instead replaced 

with a number that is number new values observed since the value’s first occurrence 

plus “1”. This should be helpful in recognizing repeating sequences, where the values 

change for each separate occurrence. In relative to access strategy variable values are 

replaced with “0” for their first occurrence and in other cases with a number indicating 

how many events were in between the current and the last occurrence. This approach 

captures cases with repeating sequences, but that are missed with relative to 

instantiation because of reused variable values [17]. 

Mariani and Pastore [17] implemented a technique for automatically choosing one 

of the three data flow analysis strategies mentioned previously. This is done by using 

all three strategies to sets of log message attributes. The strategy that produces the least 

amount of new symbols is chosen, if it replaces more than 50% of variable values with 

less symbols. The extra requirements are so that variable values that are present only 

once in the set do not have too much of an influence on the result. The strategies should 

not be used if the data flow information requires more than 10 different symbols. In 

those cases, Mariani and Pastore recommend using only the log templates and not 

taking variable attribute values into account at all [17]. 

In Mariani and Pastore’s [17] technique after variable attribute values have been 

replaced with data flow information, they apply kBehavior inference engine to the 

modified log files. kBehaviour is an inference algorithm that updates the finite-state 

machine it is creating incrementally [21]. It can update sequences of the finite-state 

machine when event logs that fit to previously seen patterns are encountered in an 
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analyzed log. The finite-state machine kBehaviour creates generalizes and summarizes 

event sequences present in the log. Once a model, which is a finite-state machine, has 

been generated from the successful log, the technique’s final stage can begin. In the 

failure analysis phase these models are compared with failure logs. The technique aims 

to find log event sequences from failure logs that differ from the models created from 

successful logs. When these event sequences are located, the technique’s users can 

inspect them in depth. For a simple way to do the comparison, they present checking 

if the model compared generates log events (or a trace) found in the log. An anomaly 

is present if the model does not generate the log events. In some cases the model can 

generate the log events only to a certain point. In those cases the area around that point 

should be examined. If a single sequence of log events includes multiple successive 

anomalies, this method will not find the later anomalies due to it not being possible to 

match the log with the model after the first anomaly. In addition to the simple method, 

Mariani and Pastore also developed a matching process that can be used to recognize 

event sequences from the log no matter where they are located. They compare event 

sequences with different sections of the model, and in case of matches add them as 

possible extensions to the model. The users then have to inspect these extensions. This 

solves the problem of not being able to compare later log events with the model if an 

anomaly is found [17]. 

In order to test their technique, Mariani and Pastore [17] analyzed three different 

applications. For two of the applications, only one failure case was studied, but for the 

third application analysis was done for three different cases. They present the 

percentage of suspicious events, amount of false positives, the number of true positives 

and the precision of results for all five study cases. The technique cut down the amount 

of events the users had to analyze manually in all cases. They had a moderately high 

amount of false positives, which they blamed on incomplete samples used when 

generating the models and limited generalization during it. Some true positives were 

only found because of also analyzing data flow information, which demonstrates that 

analyzing variable attribute values is important [17].  

2.5. Metasyntax and data formatting 

A log analyzer needs a set of rules inputted in order to know what to look for in the 

logs. These rules can define for example what log messages and message sequences 

are acceptable, or what log messages or message sequences signify failures. The rules 

can be defined by the users of the analyzer, or automatically based on features of the 

source code or previous, usually successful, logs, as is the case in the article of Mariani 

and Pastore [17].  

Log parsers also need information on how to read the logs. The log format can be 

provided in the same configuration as the analysis rules. Format for each specific 

message can be defined with regular expressions, or the log parser can derive it 

automatically. In the latter case, there is no need to provide the format of specific 

messages, as the format of the log should be enough.  

For Swatch [19], one configuration file provides all the necessary information for 

both log parsing and analysis. The configuration file defines a pattern expression, 

action for that expression, time interval used for discarding redundant messages, and 

location of time stamp in the log message. Each field is separated with a tab. Line 

breaks separate different sets of fields. Pattern and action fields can optionally include 

more than one value. This can be used to configure the same reaction to multiple 
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different log messages, or many reactions to the same message with a single line in the 

configuration file. Values are separated with commas. The time interval field is 

optional and its default unit is seconds. It can optionally include minutes and hours 

also. The location of time stamp is also optional and it can only be used if time interval 

field is present. It consists of the start index of the time stamp and its length. The 

configuration file is read from top to bottom, with earlier lines having precedence in 

cases when a log message matches with multiple different patterns. The configuration 

file supports comment lines, which are created by starting a line with “#” character 

[19]. An example of a valid line of text for the configuration file can be seen in Figure 

8. 

 

 

 

 

 

 

Rules of communication for computer science can be defined with metasyntax 

notations. This includes rules of telecommunication protocols. Sellink and Verhoef 

[22] present some use cases for descriptions made with metasyntax notations for 

programming languages. They can be used as guides for compiler implementation, 

they can be used as manuals, and they can be used when implementing reengineering 

tools for the language described. Sellink and Verhoef focus on the reengineering use 

case, where for example language descriptions can be used to generate a full 

documentation for the language. They present some methods on how to extract 

language descriptions from electronic language manuals. The manual they analyze 

violates certain conventions it itself establishes, which complicates machine-reading 

it [22].  

One of the most commonly known metasyntax notation is Backus-Naur Form (BNF) 

and its many variants. Backus [23] described the original “metalinguistic formula” 

over 60 years ago in 1959 and used it to describe ALGOL syntax. The original Backus-

Naur form has strings inside “<>” symbols. These strings represent variables of the 

formula. Two metalinguistic connectives used are “:=” and “or”, signifying definition 

of a variable and alternate definitions for those variables. All other symbols are then 

symbols of the language being described. BNF supports recursive definitions, meaning 

that for example variable <String> can be recursively defined to be constructed of 

smaller strings. Backus et al. [24] describe a different variant of the formula, where 

“or” is replaced with “|”-symbol. Originally the formula was called Backus Normal 

Form. Knuth [25] proposed instead using the name “Backus Naur Form”, as the 

formula is not a conventional “Normal Form” and the same concept is known with 

different names in linguistics. “Backus Naur Form” also takes into account Naur’s 

additions and influence in the formula being adapted more widely. The abbreviation 

BNF works for both names.  

BNF has been expanded several times and adapted for different purposes, for 

example ISO/IEC 14977:1996 standard for Extended BNF [1]. EBNF includes many 

common extensions to original BNF, such as: quoting terminal symbols (smallest 

possible symbols of the language that cannot be split further) which allows for any 

character to be used as a terminal symbol of the defined language, “and” for optional 

symbols and repetition, explicit final characters for rules, and support for brackets for 

grouping. EBNF also includes other new features which are based on experience with 

Message received echo 20 0:24 

 

Figure 8: An example of valid line of configuration for Swatch 
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formal definitions: defining an explicit amount of items, such as a field with specific 

length; defining few exceptional cases; defining comments for the language; defining 

names of symbols in the language with several words; and support for later extensions. 

EBNF is designed for use with languages with simple grammars and it is not suitable 

for defining grammars that are more complex. This was done because EBNF’s main 

need was to be suitable for more common use cases. An example for EBNF provided 

by the standard can be seen in Figure 9. The example shows how consonants are 

defined from letters and vowels with an “except-symbol” (minus-sign) [1]. 

 

 

 

 

 

 

 

 

 

 

 

Different notations can be used to describe message syntaxes. Dubuisson [5, pp. 

487-494] lists some of them. ASN.1 is presented in Chapter 2.5.1. XDR (eXternal Data 

Representation) notation is designed for remote procedure call communication 

between a client and a server. XDR does not fit well to complex structures due to 

certain missing features, such as no support for optional components in structures. 

NIDL (Network Interface Description Language) notation resembles XDR notation, 

but it is used with a different encoding method, where the sender includes its own 

architectural information in the message that the receiver can then use to decode the 

message. This leads to a need for several different converters if the receiver receives 

messages from heterogeneous devices. IDL language for CORBA (Interface 

Definition Language and Common Object Request Broker Architecture respectively) 

is a language used to describe interfaces for classes and services in object-oriented 

CORBA architectures. It resembles ASN.1 and translation between the two notations 

are relatively simple, but some information is lost when translating from ASN.1 to 

IDL. IDL does not support generic integer types, forcing specification creators to use 

a pre-defined integer type. RFC 8224 notation is a simple way to exchange data for 

heterogeneous systems, but it is also bandwidth expensive. It is based on describing 

the data in an alphabet readable by both systems. EDIFACT (Electronic Data 

Interchange for Finance, Administration, Commerce, and Transport) notation is a 

graphical notation and encoding rules for messages that were designed to replace 

previous physical documents. It is not very flexible or extendable, as the encoding is 

position-based and all the messages have to be standardized [5].  

2.5.1. ASN.1 

As ASN.1 is used in 3GPP’s 5G standards, understanding how the messages use 

ASN.1 and how it can be decoded is important for analyzing message contents. 

Dubuisson [5, pp. 60-63] describes the history of ASN.1. ASN.1 can be traced back to 

 
4 https://tools.ietf.org/html/rfc822 

letter = "A" | "B" | "C" | "D" | "E" | "F" 

| "G" | "H" | "I" | "J" | "K" | "L" | "M" 

| "N" | "O" | "P" | "Q" | "R" | "S" | "T" 

| "U" | "V" | "W" | "X" | "Y" | "Z"; 

vowel = "A" | "E" | "I" | "O" | "U"; 

consonant = letter - vowel; 

Figure 9: One example of EBNF from the standard [25] 
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Courier notation, which was used to represent Remote Procedure Call data. The 

notation was adapted and standardized as X.409 by the Consultative Committee on 

International Telephony and Telegraphy (CCITT) in 1984, which was designed for use 

with email Message Handling Systems protocols, but could be used independently 

from it. This was not necessarily by design, as needs of email protocol were arbitrarily 

complex. This lead to the notation being adapted by industry and engineers working 

on different levels of the OSI model. ASN.1 was then created in 1987 using X.409 as 

a basis. ASN.1 is technically equivalent to abstract notation part of X.409, but its 

documents were fully rewritten to take into account the presentation layer of ISO 

model. In 1989, CCITT published X.208 document for ASN.1, which replaced the 

previous X.409, and in 1995 the standard called ASN.1:1994 was published in four 

parts (X.680, X.681, X.682 and X.683) [5]. The latest version of the standard was 

released in 2015 5. 

Dubuisson presents an indepth User’s Guide and Reference Manual for ASN.1 [5, 

pp. 95-98]. The User’s Guide acts as a guide for someone who is beginner when it 

comes to ASN.1. The Reference Manual is meant for experienced users. It is supposed 

to be used as a reference for particular details about ASN.1. ASN.1 grammar rules are 

expressed with EBNF in the Reference Manual. Thus ASN.1 type BOOLEAN is 

described in EBNF with “BooleanValue → TRUE | FALSE” [5, p. 129]. 

According to Dubuisson [5, pp. 463-467], the most important tool in protocol 

implementation is the compiler. For ASN.1, the compiler can generate encoding and 

decoding procedures for the data types defined in the specification given to it. Usually, 

an ASN.1 compiler reads ASN.1 modules that are linked with imports, and outputs C, 

C++, or Java code. Ideal ASN.1 compiler works in 4 stages: lexical analysis, parsing, 

semantic analysis, and code generation. The compiler should only start working on the 

next stage if the previous stage was completed without errors. Errors in the earlier 

stages can lead to errors in the later stages, but error messages of the later stages can 

in those cases be useless.  Errors during lexical analysis and parsing are usually caused 

by symbols or grammatical structures forbidden in ASN.1 grammar. Errors during 

semantic analysis are instead caused by incoherence in the input specification. If no 

errors happen, the final step is the compiler generating encoding and decoding 

procedures with the data types specified in the ASN.1 specification for the target 

language. If the target language is C, it often means a header file with the data types, 

and a source code file for the procedures. These files can then be given to another 

compiler (for example a C compiler) which generates the final executable [5]. 

Dubuisson [5, pp. 469-470] explains that ASN.1 grammar has some features that 

make it inherently difficult to parse. An example of such feature is the lack of a 

semicolon at the end of a definition. This is because ASN.1 was originally created for 

communication between a standardization committee and application designers, 

meaning that deriving encoding and decoding procedures directly from the 

specification was not a planned use case. This is demonstrated by analyzing 

ASN.1:1997 standard grammar with common parser generators (Yacc, ANTLR). This 

leads to the tools issuing hundreds of conflicts. The way to avoid this issue is to 

transform the standard to a new grammar that is easier to parse. An example of easier 

to parse version of ASN.1 grammar would be LL(1)-compliant versions, which 

Dubuisson used as preliminary works for their own Asnp-parser [5]. 

 
5 https://www.itu.int/rec/T-REC-X.680/ 
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2.6. Summary 

From this background research, assumptions about what type of data would be relevant 

to find in cellular modem logs can be made. 3GPP specifications define the 

functionalities of cellular modem layers. Cellular modems use primitives and PDUs 

for communicating within and between layers. For 5G NR RRC specifically, TS 

38.331 [10] is the primary source for how the RRC protocol works and what kind of 

operations could be detected in the logs.  

There already exists log parsers and analysis methods of various types. Log parsers 

are used to transform log message information to structured data. Exact features of log 

parser depend on the type of log being parsed, but automatic generic parsers also exist. 

For Protocol Log Analyzer, the log parser has to work with the likely proprietary log 

format used by the modem. Already existing analysis methods do not exactly fit with 

the needs of Protocol Log Analyzer as they lack the features for checking logs for 

event sequences that follow complex predefined patterns, but lessons can still be 

learned on how to develop and use the Protocol Log Analyzer. These include how the 

analysis method should take attribute values into account to improve accuracy and how 

an anomaly can be detected if the log does not include expected event sequences [17]. 

Analysis methods that utilize automated heuristics could be useful in cellular modem 

analysis, but implementing and testing them is outside of the scope of this work. 

Protocol Log Analyzer requires some way to define what to look for in the logs. 

Swatch [19] configuration file works as a simple example on how the events of 

protocol log could be provided for the it, with pattern and the reaction to that pattern 

defined separately. Metasyntax notations, such as BNF [23], provide tools for defining 

more complex event sequences, consisting of several log messages. Notation that 

integrates Swatch style configuration files with more complex grammar should be 

developed for Protocol Log Analyzer. It should combine that new notation with an 

analysis method that supports checking for events that can be described with the 

notation. The log parser’s output must be understandable for the analysis method 

implementation, so some type of interface has to be designed. As a whole, Protocol 

Log Analyzer should inform the user on log message sequences matching with the 

written rules found during analysis. 
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3. REQUIREMENTS 
 

This Chapter defines the requirements for Protocol Log Analyzer, which engineers 

analyzing modem logs could use to ease their workload. Engineers with industry 

experience in designing and implementing RRC protocol for cellular modems were 

consulted for advice and proposals. The consulting was organized as a group 

discussion at Mediatek Wireless Finland Oulu office in May of 2021, where the 

engineers were presented with the idea of a protocol log analysis tool (Protocol Log 

Analyzer) and could bring up their own ideas, wishes, and expectations for it. Notes 

written about the group discussion were later organized and used as a basis for the 

requirements.  

As some requirements are derived directly from wishes of the engineers, others are 

derived from features required for any type of log analyzer, based on previous 

understanding of software development and expected features of a log analysis system 

described by Jayathilake [14]. Wishes of the engineers are scoped into requirements 

with the perspective that the goal is to create a proof-of-concept tool for the techniques 

used, instead of a software product ready for their everyday use. This meant that wishes 

related to integration with specific systems are not included in the requirements. 

The requirements are split into three sections, starting with the highest-level or most 

abstract requirements called utility requirements. Analysis and technical requirements 

are more directly related to design and implementation of Protocol Log Analyzer, 

referred as the tool in this Chapter due to requirements being defined for a generic 

protocol log analysis tool. 

3.1. Utility requirements 

These requirements concern what the user, meaning the engineers, must be able to 

achieve using the tool, or what utility the tool must provide. Utility requirements are 

listed in Table 1. Important requirement is that the tool should help its users perform 

log analysis faster and more precisely than going through the logs manually (REQ_1). 

Without tangible time, efficiency, accuracy, and/or usability benefits the users will not 

adopt the tool to their daily usage. For this, the user experience must be good enough, 

meaning the tool must include a user interface (UI). The UI should be graphical 

(REQ_2) in order to better fulfill REQ_1. 

Fundamentally, a log analyzer must work with logs. One of the requirements is thus 

that the tool takes a log as input and outputs analysis based on predefined rules 

(REQ_3). The users must be able to define these analysis rules themselves for their 

specific needs (REQ_4), similarly to how configuration files work for Swatch [19]. 

The analysis rules are used to define different events that the tool looks for within the 

inputted log. Examples of defined events are a specific protocol message, which 

includes a PDU with a specific field, or specific message 

(RRCReconfigurationComplete) appearing in the log as a response to a previous 

message (RRCReconfiguration). Because the tool is primarily meant for cellular 

modem logs, the tool must understand 3GPP protocol messages found in the logs 

(REQ_5). 
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Table 1. Utility requirements 

Name Definition 

REQ_1 The tool shall provide tangible time, efficiency, accuracy, and/or usability benefits 

for its users compared to analyzing the logs manually. 

REQ_2 The tool includes a graphical UI. 

REQ_3 The tool takes a log as input and outputs analysis based on predefined rules. 

REQ_4 The tool allows the users to define the used analysis rules. 

REQ_5 The tool can read and analyze 3GPP protocol messages from the logs. 

 

3.2. Analysis requirements 

Requirements for analysis features are the features the tool’s users need for effective 

analysis. They are related to utility requirements REQ_4 and REQ_5. These 

requirements define what features the rule notation used in the tool must support and 

what type of analysis information it must provide to the users. Analysis requirements 

are listed in Table 2. 

The rule notation requirements (REQ_6 to REQ_11) are formed with the assumption 

that rule notation is an integral part of this work and that evaluation includes checking 

if it can be used to recognize different kinds of issues from logs. This means that its 

requirements for proof-of-concept stage are essentially identical to what is required 

from a complete product.  

REQ_12 is there to make sure the tool can link found events back to specific 

locations in the log. This is an important feature for log analysis, as it allows the user 

to instantly locate objects of interest from the log.  

Table 2. Analysis requirements 

Name Definition 

REQ_6 The rule notation allows for defining expected log message order. 

REQ_7 The rule notation allows for defining how the tool reacts to specific events in the 

log. 

REQ_8 The rule notation allows for defining both “X shall not if Y” and “X must if Y”-

type rules. 

REQ_9 The rule notation allows for defining new rules that include previously defined 

events within the new larger event. 

REQ_10 The rule notation allows for defining complex log message content, including PDU 

structures. 

REQ_11 The rule notation allows for defining expected timescale of messages within an 

event. 

REQ_12 The tool communicates the result of the analysis to the user, including where the 

log’s content does not match the expected. 

 

3.3. Technical requirements 

 

Technical requirements concern which features are needed from the implementation 

so that the tool can reach analysis and utility requirements. These are the requirements 

most closely related to design and implementation of the tool. The technical 

requirements are listed in Table 3. 
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Derived from REQ_3, the tool must read and parse log files (REQ_13). These logs 

must then be transformed to an internal representation model, which the tool uses 

during the analysis process. The internal representation model must work with the 

analysis requirements, see REQ_6 to REQ_12, which leads to REQ_14, REQ_15, and 

REQ_16.  

According to REQ_1, using the tool should be simple in daily use cases engineers 

encounter. As the defined analysis rules are an important part for the utility of the tool, 

they should be easily readable and modifiable. This means that the rule notation should 

guide towards writing understandable rules. Those rule-files should be small so that 

users can share their creations easily. The rule-file format should be common enough, 

that the users can open, modify, or create new ones with standard text editing 

programs, such as Microsoft Notepad.  

Table 3. Technical requirements 

Name Definition 

REQ_13 The tool parses logs to an internal representation model. 

REQ_14 The internal representation model retains message order and timestamps. 

REQ_15 The tool can link a message in the internal representation back to a specific message 

in the log. 

REQ_16 The internal representation model retains message contents, including PDUs. 

REQ_17 Rule-files are easy to create, read and modify with common programs. 

REQ_18 The rule notation encourages writing easy-to-read-files. 

REQ_19 Rule-files are small for easy distribution. 
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4. DESIGN 
 

This Chapter presents the design of Protocol Log Analyzer and a rule notation for it. 

The design aims for it to fulfill the requirements presented in the previous Chapter 

regarding the type of analysis it is able to do, the technical requirements needed for 

those features, and the type of utility the final version has to provide its user. 

4.1. Architecture 

Protocol Log Analyzer is designed with four different modules or sections:  

• log parser 

• analyzer 

• the rule notation and its reader 

• UI 

These different modules can then be developed and changed separately. This split is 

not necessitated by the requirements, but is instead made based on previous 

experiences. The parser, the analyzer, the rule reader, and the UI are connected through 

interfaces. The parser takes the log fine being analyzed as input and outputs the same 

log data in internal representation model form. The rule reader takes the rule file as 

input and outputs analysis rules in a format the analyzer can understand. Output of the 

parser and rule reader are the input for the analyzer. The analyzer outputs results, 

which are then input for the UI. Flow of data is visualized in Figure 10. 

 

 

Figure 10: Flow of data between the modules 

Protocol Log Analyzer uses internal representation model when applying analysis 

rules to the log data. REQ_10, REQ_12, REQ_14, REQ_15 and REQ_16 requirements 

are the base for the four fields for each log message in the internal representation:  

• index, the position of the log message in the log 

• timestamp, directly from the log 

• message, “name” of the log message 

• content, rest of the content of the log message after the other three fields have 

been extracted 
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During analysis, Protocol Log Analyzer has to compare several log messages to the 

analysis rules. The entire log is not in memory (in internal representation form) due to 

possible memory issues when there are thousands of messages. 

4.2. Log parser 

The log parser is responsible for transforming log messages to the internal 

representation model. Log parser must be configured for specific logs, so that it can 

extract specific fields with high enough accuracy for analysis. The log parser outputs 

a database file that acts as input for the analyzer.  

The log parser works message by message. How different log messages are 

separated in the log file varies. The design does not commit to any specific type of log 

file, but it does not include an option for separate configuration file that would allow 

the same parser to be used for different kinds of logs. The log parser handles each 

message and builds a database table where each row corresponds to a specific message 

in the log. The columns of the table are the same as the four fields of the internal 

representation model: index, timestamp, message, content.  

The operation flow, as can be seen in Figure 11, of the log parser starts with the 

creation of a database. The database is a relational database [26], with data stored in 

tables formed of columns and rows. This database is used to store the log data in a 

format closer to the internal representation model. After the creation of the database, 

the log parser handles the first message found in the log. It extracts information 

required for the analysis from the log message. How exactly the index and the 

timestamp are located in the log message, how the log parser names the log message, 

and what exactly are included in the content depends on the log. The extracted 

information is formatted to row of the database table. How the data of certain log 

messages is stored in the ‘content’-column has to be done so that the analyzer can 

handle contents of PDUs and other similar structures. At this point, if there are still 

unhandled log messages in the input log, the log parser starts handling the next one. 

The loop finishes when all the log messages from the log have been handled. Then the 

log parser finishes the creation of the database, which can include committing it to the 

disk. 
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Figure 11: Log parser inner operation flow 

4.3. Rule notation 

The user of Protocol Log Analyzer uses the rule notation for defining the analysis 

rules. When defining an event with the rule notation, the user has to name it, define 

the contents, and define how Protocol Log Analyzer should react to it. The end user 

does not have to be the same person as the user writing the rules, but Protocol Log 

Analyzer does not include any rules by default. Different types of logs most likely 

require different rule files, but properly made rule sets should be reusable for different 

logs of the same type. The rules are read left-to-right, top-to-bottom. The events can 

have arbitrary names consisting of letters (both uppercase and lowercase letters), digits 

and underscores. The different possible reactions for Protocol Log Analyzer are 

defined in the rule notation, thus when writing the rules the user chooses the best suited 

reaction. The user can define expectations for appearance and content of specific 

events and log messages. The rule notation relates mostly to requirements REQ_6 - 

REQ11. The user can use whitespace characters to format the rules to be easily 

readable by other users, following REQ_18. 
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The rule notation uses certain symbols for specific actions, called operators. These 

operators cannot be used in event names. The user uses operators to define the rules. 

The operators used were inspired by EBNF [1] and the C-language [27]. The operators 

can be seen in Table 4. 

Reserved keywords are another tool for the user. They are used for another set of 

predefined operations in conjunction with the reserved symbols. Additional arguments 

for the keywords are given within the parentheses, with optional arguments contained 

within circle brackets.  List of keywords and examples for each of them can be seen in 

Table 5. 

 

Table 4. Operators of the rule notation 

Operator Usage 

= Definition, ‘IS’ 

, Concatenate, separation within event definition, defines order of events and 

messages 

; Termination 

| ‘OR’ 

& ‘AND’ 

! ‘NOT’ 

{ } Event group, used to define borders of events 

( ) Grouping, used to define groups within events 

‘’ Used to define strings 

“” Used to define strings 

/* */ Comment 

== Left and right values are equal 

> Left value is larger than right value 

< Right value is larger than left value 

>= Left value is larger or equal to right value 

<= Right value is larger or equal to left value 

. Used to specify nesting in PDU-value definitions. 
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Table 5. Keywords of the rule notation 

Keyword Usage Example 

Event 
Used to signal the start of event definition. The 

definitions ends at termination “;”. 

Event event0 = 

{Message(“msg1”)}; 

Message(name, 

[other keywords or 

expected content]) 

Used to define a message that appears in an 

event. Name can be any string. Other parameters 

are either strings or other keywords specifying 

content or features of the message. 

See other examples. 

Maxdelay(time, 

[previous_msg]) 

Used when setting the maximum time delta 

between different messages. Is attached to the 

later message in the rule set. Uses the same unit 

of time as the log. 

Event event1 =  

{event0,  

Message(“msg2”, 

Maxdelay(200, 

previous_msg=”msg1”))

}; 

Mindelay(time, 

[previous_msg]) 

Used when setting the minimum time delta 

between different messages. Is attached to the 

later message in the rule set. Uses the same unit 

of time as the log. 

Event event1 =  

{event0,  

Message(“msg2”, 

Mindelay(200, 

previous_msg=”msg1”))

}; 

Pdu(start_index, 

PDUcontent 

**[PDUcontent], 

[end_index]) 

Used to define where PDUs in log message 

content are located and what they are expected to 

contain. There can be an arbitrary amount of 

different expected PDU contents, which are 

separated with concatenation symbol “,”. Start 

and end indices are used define where the PDU 

can be found in the message’s content-field in 

cases where the PDU is not the entirety of the 

message’s content. The analyzer splits the 

message’s content from the indices, and 

transforms the content between them to an 

appropriate format. 

Event event2 = { 

Message(“msg1”, Pdu(0, 

(PDU.rrc_TransactionIde

ntifier == 5), 

PDU.criticalExtensions.r

rcSetupComplete. 

nonCriticalExtension, 

end_index=128) 

)}; 

 

As can be seen in TS 38.331 [11], PDUs are defined with ASN.1 in 3GPP 

specifications. ASN.1 would however be too wordy for the rule notation. Instead, the 

user should only define the expected value for the specific field they want checked. 

This is done by specifying the location the same way a specific field is specified in 

nested C-language structs, with dot(.)-operator separating the name of the member and 

the variable [27]. There is no upper limit for the amount of nesting allowed in the 

analyzed PDUs. If the users want to make sure a PDU includes a specific optional 

field, they do not have to set any specific value for it in the rule set. Examples can be 

seen in Table 6. 

Table 6. PDU content examples 

Example Definition 

PDU.rrc_TransactionIdentifier == 5 Field ‘rrc_TransactionIdentifier’ is set to 5 in the PDU. 

PDU.criticalExtensions.rrcSetupCom

plete.nonCriticalExtension 

Field ‘nonCriticalExtension’ exists within 

‘rrcSetupComplete’, which exists within 

‘criticalExtensions’ in the PDU. 
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4.3.1. Event structure in the notation 

Events are defined with “=”-symbol. Event-name is on the left, the definition on the 

right. The right side contains the expected messages, other information related to the 

messages, and the reaction type if the event is observed in the log. At least one message 

has to be specified for a valid event definition, but there is no upper limit for the length 

of an event. Events defined previously in the file can be reused as sub-events in place 

of messages by using the names of those events. Figure 12 presents an example of how 

an event is defined from multiple messages and how the reaction is specified. The 

message in question can be read in English as follows: If “msg2” does not follow 

“msg1” within 100 time units, alert. 

/* Example event */ 
Event event_name =  
{ 
    Message(“msg1”),                                      
    !(Message(“msg2”, Maxdelay(100))),    
    notify=”Alert”                                             
}; 

 

Figure 12: Example event definition 

4.3.2. Specifying reactions 

The users can specify different type of reactions for each event. These are used as 

instructions for the analyzer and the UI on how to present information found in the 

logs for the user. If the reaction type is not specified, default reaction (Alert) is used. 

The reaction type is specified with “notify”-optional argument for Events. The three 

different types of reactions are explained in Table 7. 

Table 7. Types of reactions 

Reaction type Use case 

Alert 
Standard reaction. The UI informs the user with a notification. 

Used for possible errors and other uncommon events. 

Visualize 
The UI visualizes the area in which the event happens. Used for 

common events of interest, such as RRC connections.  

None 
The UI does not inform the user at all. Used when defining 

events which are used as sub-events. 

4.3.3. Chaining different operators and keywords 

In order to provide the users with enough options on how they can define events, 

the rule notation allows for chaining different symbols and keywords within event 

definitions. Parentheses (‘()’) are used to group these appropriately.  

Figure 13 shows 4 examples of different ways symbols and keywords can be used 

together. Event 1 has maximum delay applied to ‘msg2’, but not ‘msg3’, and the event 

is recognized if either message happens. Event 2 requires ‘msg2’ to follow ‘msg1’ and 

there to be no ‘msg3’ during the next 150 time units after ‘msg1’. ‘msg3’ appearing 

within that time invalidates the event. Event 3 utilizes ‘&’ for an event where both 

‘msg2’ and ‘msg3’ appear after ‘msg1’, but their order does not matter. In Event 4, 
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there is both a maximum and a minimum delay after ‘msg1’ before ‘msg2’ should 

happen for the event to be recognized. 

 

/* Example events with more symbols */ 
Event event_1 =  
{ 
    Message(“msg1”),                                      
    Message(“msg2”, Maxdelay(100)) | Message(“msg3”)   /* msg2 within 100 time units of  
                                                                                                               msg1, or msg3 */ 
}; 

Event event_2 =  
{ 
    Message(“msg1”),                                      
    Message(“msg2”) & !(Message(“msg3”, Maxdelay(150)))   /* msg2 and no msg3 within 
150 time units*/ 
}; 

Event event_3 =  
{ 
    Message(“msg1”),                                      
    Message(“msg2”) & Message(“msg3”)   /* msg2 and msg3, order does not matter */ 
}; 

Event event_4 =  
{ 
    Message(“msg1”),                                      
    Message(“msg2”, Maxdelay(200), Mindelay(100))  /* msg2 comes after msg1 with  
                                                                                                      a delay of 100-200 time units */ 
}; 

 
 

Figure 13: Example events using different operators and keywords 

4.4. Rule reader 

Similarly to the log, the rule file has to be parsed before it can be used in the analysis. 

This is done by the rule reader, which reads the rule file from top to bottom, event by 

event. Due to this approach, events defined later in the rule file can use previously 

defined as sub-events, but earlier events cannot use the later defined events. The rule 

reader outputs analysis rules to the analyzer. How the output is transferred to the 

analyzer is not part of the design and is left to the implementation.  

Because the rule notation is only used for this specific purpose, its reader does not 

require all the features of a full-fledged compiler or an interpreter. The reader works 

on the assumption that the writer of the rules writes them following a specific style 

and does not try to write rules that lead to unexpected consequences. Errors arising 

from unintended interpretation of rule notation syntax and examples are accepted as 

possible.  

In Figure 14 the high level logic of the rule reader can be seen. The rule reader 

recognizes variable definitions and event definitions from the rule file by iterating 
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through it character by character until it can build words that are either variable names 

or the keyword ‘Event’. The rule reader remembers variable definitions so that it can 

later replace the variables with appropriate values. Definitions begin with either of 

those two options. Rule reader has finished its task when it reaches the end of the rule 

file. Handling of non-valid sequences or syntax is not included in the design. 

 

 

Figure 14: High-level flow of rule reader 

Another loop exists within the high-level operation flow specifically for handling 

individual event definitions. Event definition handling is visualized in Figure 15. Left 

hand side of ‘=’ is handled first, as it gives the event its name. As the contents of an 

event are defined within curly brackets, the loop focuses on parsing contents within 

them. Whitespace characters are ignored. Characters that are valid in event names are 

used to build words. These words must match with ‘Message’-keyword or with the 

names of previously defined events, otherwise they are not recognized as valid and 

error handling starts. Operator handling happens when they are encountered. Certain 

operators affect messages that were already inserted into the event definition (e.g. ‘|’ 
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OR marking the previous message as optional), others only affect parts of the 

definition that are not yet handled.  

Messages and sub-events are handled similarly, but in sub-events’ case the rule 

reader must retrieve the previously defined event’s contents and insert them to the 

current event. As the ‘notify’ denotes the parameter for reactions, it is set for the event 

appropriately when encountered. When everything up to the closing curly bracket has 

been handled, the loop ends and the rule reader continues with the next definition. 

 

 

Figure 15: Event definition handling 
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4.5. Analyzer 

The analyzer is responsible for applying the rules to the log data. It takes two 

different inputs, the database that includes all the log messages from the log parser and 

the analysis rules from the rule reader. The design for the internal operation logic of 

the analyzer can be seen in Figure 16. 

The analyzer goes through the database in rising index order, matching the order of 

the messages in the original log. The analysis works by checking if a message’s name 

matches with the next expected message of an event as defined by the rule set. As there 

can be several occurrences of an event overlapping in the log data, the analyzer 

compares the names of all possible next messages. This is done by creating an 

‘ongoing’ event whenever a first message of an event is matched with the log data.  

After a message has been checked against the rules, the analyzer checks if all 

ongoing events are still valid. In case the event includes rules that would cause it to be 

invalid, it is removed from ongoing events. If a complete event has been located from 

the log data, its name, type of reaction, and indices of the messages are added to 

‘found’ events. These found events are the output of the analyzer. 
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Figure 16: Analyzer internal operation flow 

4.6. UI 

The UI-module is responsible for displaying the analysis results to the user, 

including drawing the graphical UI. The UI must fulfil requirements REQ_2 and 

REQ_12. It takes the found events as input. Each found event must include the reaction 

type (Alert or Visualize) as defined in the rules for the event. The UI handles each 

found event individually. For ‘Alert’-events, the UI shows which messages comprise 

the event and their indices in the original log along with the event name. ‘Visualize’-

events could differ in that they are placed on a graphical timeline, where the user can 
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see where exactly those events begin and end in comparison to other found events, but 

the version of the GUI designed and implemented in this thesis does not visually 

differentiate between ‘Visualize’ and ‘Alert’-reactions.  

For each event to be displayed for the user, the GUI shows the messages in order of 

appearance and their timestamp and index. Further message content is not elaborated, 

even in cases where the event requires certain content within messages. This should 

keep the GUI easily readable without overloading it with too much information. If the 

user wishes to check content of a specific message, they can use the index of the 

message to find it in the log. Each event visually flows from top to bottom, with 

different events situated side-by-side in the GUI. The GUI supports long events 

consisting of dozens of messages and high amount of found events with the help sliders 

in the case that screen real-estate runs out. Original sketch for the layout of the GUI 

showing found events can be seen in Figure 17, with the arrow symbolizing where the 

event continues beyond the currently visible messages. 

 

Figure 17: GUI sketch for found events 

As the UI module handles each found event individually, each column for the GUI 

is build one by one. The UI also handles each message of found logs individually. 

Name, timestamp, and index of the message found to be part of an event is shown as 

a row within the event column. When all the messages of an individual event have 

been handled, a new column is created for the next event. The GUI is drawn for the 

user when all the found events have been handled. The operation flow can be seen in 

Figure 18. 
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Figure 18: GUI module operation flow 

4.7. Summary 

This Chapter presented the overarching design of Protocol Log Analyzer. The 

design is split into four modules, the log parser, the rule reader, the analyzer, and the 

UI. Protocol Log Analyzer uses rules provided by the user for the analysis. The rules 

are written using the presented rule notation. For each module, design diagrams and 

other high-level design principles are presented. 
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5. IMPLEMENTATION 
 

Protocol Log Analyzer is implemented using Python programming language. Python 

is used as it is flexible, includes a diverse standard library for database and file 

manipulation, and supports many different platforms and environments. The greatest 

risk in using Python comes with the performance, as Python programs are usually 

slower than programs implemented in languages such as C, as tested by Fourment and 

Gillings [28]. To make sure Protocol Log Analyzer can be run in different devices and 

environments, only Python’s standard library is used. Only utilizing the Python 

standard library also simplifies the process of modifying it in the future, as the users 

can be provided with the complete source code for easy modification. 

5.1. Architecture 

The implementation follows the same architecture split presented in the previous 

Chapter. The log parser, rule reader, and analyzer are implemented in their own Python 

modules. The GUI is included in the main Python-file. When the main Python-file is 

run, it calls the other modules as needed. Each module can be run as main on their 

own, and in those cases simple test that were used during development are run. Users 

can use those tests as a way to check if their own modifications have the desired effects. 

Figure 19 shows the class diagram of the implementation. Error-classes are omitted, 

as they are not relevant when Protocol Log Analyzer works without issues. The four 

singleton classes correspond with the modules. The rule reader module also includes 

Event, Message, Delay, and PduContent-classes, which contain the rules extracted 

from the rule file. Negation-class is used to store data about negation-symbols found 

in the rule file when the rule reader is creating rule events. The analyzer module 

includes OngoingEvent-class, which is used by the analyzer when comparing rule 

event’s to messages found in the log.  
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Figure 19: Class diagram of the implementation 

5.2. Log parser 

The log parser is implemented as a class called LogParser. When the class is 

initiated, it creates a folder for the parsed logs. In case that folder already exists, the 

initiate function does nothing. The relational database chosen for the implementation 

is SQLite6. SQLite works cross-platform and it is popular and stable, which makes it 

a good option for Protocol Log Analyzer. In Python, SQLite is used with sqlite3-

module7. The database is created when parsing method (parse) of LogParser-class is 

called. Table that includes the four fields of the internal representation model is created 

straight after. If the creation of the table fails, a log with the same name has already 

been parsed and rest of the parsing sequence is skipped.  

For this version of the implementation, the parser is implemented to handle csv-style 

log files with four fields that match with the fields of the internal representation model. 

This approach was chosen because the parser would simply ignore any extra fields, 

thus their presence in the logs is unnecessary, and information learned when making a 

 
6 https://www.sqlite.org/index.html 
7 https://docs.python.org/3/library/sqlite3.html 
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parser for more complex logs might not be applicable to specific proprietary log file 

formats users would actually use Protocol Log Analyzer with. As described in the 

design in Chapter 4.2, the parser goes through each message one-by-one, and for csv-

logs this means line-by-line. When the whole log has been parsed, the parser returns 

the path where the database was created. If the parser cannot open the log file, the 

already created database is deleted and the parser returns an empty path to the database. 

5.3. Rule reader 

The rule reader’s implementation is more complicated. It utilizes two classes which 

have their own methods, its own Error-class called RuleReaderError, and four classes 

that are used to store and manipulate data in their attributes.  

First of the classes with methods is RuleReader, which provides other modules with 

a method (read) for reading a specified rule file. If the class is provided with a path to 

a rule file which does not exist, the reading never starts and no rules are found. The 

reading loop works as described in the design in Chapter 4.4. The rule reader keeps 

track of how many lines of the rule file have been handled, what rules including 

variable definitions have already been found, and what was the previous symbol found 

in the rule file. The rule reading method includes error handling that is triggered when 

RuleReaderError is raised, where the rule reader informs the user how many lines it 

managed to read before encountering something not deemed valid in the rule file. 

The rule reader works with a two-level design. The first level, which corresponds to 

Figure 14 of the design, looks for comments, variable definitions, and event definitions 

as those are allowed as top-level operations in rule files. The second level is called 

when the rule reader encounters an event definition. The second level handles building 

of event definitions and corresponds to Figure 15 of the design. The second level first 

creates a new Event-object. Event is the second class of the rule reader module with 

methods. It exists as a separate class because the analyzer reuses it. The rule reader 

reads the entire event definition before handling it, which causes the error handling to 

not be able to tell the user exactly which line causes an issue in invalid rule file. All 

whitespaces and comments are removed from the event definitions when the handling 

starts, which simplifies the rest of the handling procedure. The function for actually 

handling the event definition is implemented as a method (handle_raw_content) for 

the Event-object.  

The Event-class has attributes that it uses to keep track of several variables when 

building the event from the definition extracted from the rule file and attributes that 

serve as output for the analyzer. The output attributes are the name of the event, what 

reaction was defined for it, and a message tree that consists of all possible messages 

the event can include. Each message in the message tree is an object of Message-class. 

Attributes of message include name of the message, other rules that a message from 

the log must follow, such as delays and content requirements, and different child 

messages the message can have in the event. One child message is the main child 

message, but there exists also another (other_child_msg) that is used when definition 

uses brackets, and lists for messages defined with AND and OR-operators. Messages 

also have an attribute for their parent message, if it exists. These attributes that contain 

references to other messages allow for travelling up-and-down the message tree.  

Rules for specific messages are set immediately after the message is placed in the 

tree. Messages are set as negated messages if there are an odd number of negations 

valid for the message when taking brackets into account. When the rule reader 
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encounters a negation-operator within an event definition, it creates a new negation-

object using the Negation-class. The attributes of the class tell the rule reader if 

negations are valid when handling a specific message. This approach requires the rule 

reader to keep track of where it encountered negations, but it is easy to understand and 

debug when dealing with several layers of brackets and nested negations. Maxdelay, 

Mindelay, and Pdu keywords are handled in a loop. The resulting rules are stored in 

the message object’s attributes on lists, which means each message can have an 

arbitrary amount of extra rules. Classes for both delay and PDU-contents are used to 

store the rule information within messages in a clear format. Maxdelay and Mindelay 

keywords use the same class, but are placed to different lists in the message’s 

attributes. If target message is not defined for the delay in the rule file, it is kept empty 

in the output version as well. How Protocol Log Analyzer should handle those cases 

is left to the analyzer, because the analyzer has the information on what messages 

appeared in the log before the current message during runtime. For Pdu keyword the 

rule reader creates an object which includes the start index, optional end index, and the 

expected PDU structure, where the string from the rule file is split on each dot. Each 

substring is then used as a field name when building a nested dictionary, where the 

innermost field contains either the expected value or Boolean value ‘True’, depending 

on if expected value was defined or not.  

The rule reader inserts previously defined events or sub-events to later events if it 

encounters their name as a standalone symbol or word. The current version of the rule 

reader does not support adding new keywords, such as requiring a minimum or 

maximum delay for the whole event. This issue could perhaps be sidestepped by 

inserting the sub-events in a different manner and having the analyzer consider them 

as single messages instead of a normal part of the message tree, but that would add 

considerable complexity with little gained utility. Instead, the user can avoid using 

sub-events in cases where adding new keywords is necessary. 

5.4. Analyzer 

The analyzer module consists of three classes. Analyzer-class provides Protocol Log 

Analyzer with a method for running the analysis and it outputs a list of found events. 

For input, the analyzer requires path to the log database created by the log parser and 

list of rules from the rule reader. Found events are objects of OngoingEvent-class. Each 

ongoing event includes a reference to the event rule it matches with, which means the 

analyzer imports the rule reader module. Final class is error-class used as a catchall for 

when something unexpected happens during the analysis. Unlike the rule reader, the 

error handling does not inform the user where Protocol Log Analyzer encountered an 

issue. This is because errors caused by faulty user input should be caught before the 

analyzer is run. Errors during analysis instead point towards bugs in the 

implementation and information about them would be less useful for the end user.  

As in the design in Chapter 4.5, the analyzer starts analysis by opening the SQLite 

database that includes the parsed log messages. The analyzer fetches all items from the 

database, sorted ascending by their index. Messages are analyzed on a loop until no 

new messages can be found in the database. At that point, the analyzer returns found 

events.  

When analyzing an individual message, the analyzer starts with checking if the 

message continues an already existing ongoing event. Check for if the message starts 

a new ongoing event is done after. Initially the analyzer only adds the information of 
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the message found in the log to matching messages in events. Updating the ongoing 

events and creating new ongoing events is done after the message has been marked 

present.  

Log messages are deemed to match with messages in rule events if their names are 

the same and the rules for delays and PDU-content are not broken. The analyzer checks 

delay rules by going through previously matched messages on the ongoing event and 

comparing the analyzed log message’s timestamp with the newest message that is 

targeted by the delay. If the user has not set an explicit target message for the delay 

with “previous_msg”-parameter, the analyzer instead tries to compare the timestamps 

to the preceding message in the rule event. In the implementation this means checking 

the timestamp of the previous “top-level” message, which can be reached from the 

start of the message tree by going through main child messages only. Checking all 

possible messages that the message could target in these cases was deemed not viable, 

as in certain cases there could be dozens of options. This approach can cause issues 

when the event rules include other child messages, such as AND and OR-messages. 

When it comes to defining delays in more complex events, the users can circumvent 

this issue by defining target messages of the delays explicitly, and the issue should not 

affect the practical capabilities of Protocol Log Analyzer.  

The analyzer checks PDU content by first slicing the PDU string from the log 

message content with the indices defined in the rule. In the current implementation the 

string is loaded with Python’s standard json-module. JSON-format is used in the 

current implementation due to its easy readability and wide support, but it could be 

easily replaced in the implementation to support different kinds of log files. This 

creates a dictionary that the analyzer then compares with the one found in the rule. The 

comparison supports arbitrary amount of nesting. The comparison checks if each field 

in the rule exists in the PDU obtained from the log message. If necessary, it compares 

the specific values of the field found in the final nesting level. If all the fields required 

in the rule are found in the PDU and values satisfy the requirements, the PDU content 

rule is fulfilled.  

The analyzer creates new ongoing events and updates status of already existing 

ongoing events after log message information has been updated. Each ongoing event 

keeps a track of what log messages have been verified to be part of it, which log 

messages match with its rules, and to what point in the rule event has the log already 

fulfilled the event rules. From the analyzer point-of-view, the message tree of the event 

rule consists of levels. Each level includes the main message and its child messages 

except for the main child message. The main child message is the main message of the 

next level of the message tree. Each level can include an arbitrary amount of messages 

but in practice, it would be simpler for the user to define several different event rules 

instead of creating a single complex one. Level is considered detected from the log if 

all necessary messages have log message information attached, or in the case of 

negation messages, not attached. If the level includes child messages, the analyzer 

takes them into consideration while assessing if the level has been detected or not. If 

the analyzer considers the level detected, the next level of the message tree is set as 

the messages the analyzer compares following log messages with, and list of log 

messages that have been verified to be part of the event is updated to correspond with 

the log messages that the analyzer thinks fulfilled the levels requirements. An 

exception to this comes with negation messages as if they would be assessed with the 

same logic, the analyzer would skip those levels immediately. Instead, negation 

message levels are considered detected only after the level following them has been 
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deemed detected. This level logic for assessing the events allows the analyzer to keep 

track of multiple different options for messages that would fulfill the rule event while 

making it possible to easily discard not fulfilled options such as OR-message routes 

that were not found in the log. 

The analyzer creates a new ongoing event if enough log message information has 

been added for the rule event’s first level to be considered detected in the log. The rule 

event is deep copied to the new ongoing event and the first level is marked as already 

detected. When analyzing subsequent log messages, ongoing messages are thus always 

at least on second level of the message tree. After the creation of the new ongoing 

event has finished, the analyzer removes log message information from the rule event. 

This is because that information is now stored in the ongoing event and their presence 

in the rule event would lead to the analyzer creating a new ongoing event for every 

subsequent analyzed log message regardless of their content. 

Ongoing events are removed ongoing events list if they are completed or are judged 

to be impossible to complete. Events are completed when the final level of the message 

tree has been detected from the log. Events are impossible to complete when they 

include defined maximum delays and the timescales in those delays have already 

expired when comparing to the timestamp of the latest log message analyzed, or if 

messages which event requires not to exist have been detected in the log. Removing 

‘useless’ ongoing events is done because they would otherwise clutter the analysis 

process, hurting performance and leading to longer processing times. Current 

implementation still leads to a large amount of ongoing events existing during the 

analysis, but it is not expected to lead to meaningful performance issues.  

5.5. Main and UI 

The main module of the implementation includes a class for the graphical user 

interface. The UI module does not exist as a separate module as that would essentially 

leave no purpose for the main module.  The UI has two different views, with first view 

used to choose the analyzed log and the rule file used for analysis, and the second view 

displaying the user with the results.  

The UI is implemented with tkinter-package8, which provides a Tcl/Tk GUI toolkit 

interface for Python. Unlike other GUI toolkits such as GTK, Tkinter is part of a 

standard Python installation. Gui-class includes methods for building the UI and 

utilizing all other modules of the implementation. When the user starts Protocol Log 

Analyzer, the UI is loaded with the start view visible. The start view can be seen in 

Figure 20. This view includes four buttons. One button is for choosing a log file and 

another for choosing a rule file, which open an OS native file manager window. Two 

lower buttons are for starting the analysis and closing the program. When the user has 

chosen the files, they can start the analysis process whenever they choose. When the 

user starts the analysis process, Protocol Log Analyzer first runs the parser, then reads 

the rule file. If it finds no rules in the rule file, the analyzer is not run, as it would be 

useless. Instead, it shows an error about the lack of rules to the user. If rules are found, 

the analysis proper is performed and the UI moves to result view. 

 

 
8 https://docs.python.org/3/library/tkinter.html 
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Figure 20: Start view of the UI 

The design in 4.6 describes the result view. Columns and rows for each event are 

created with Listbox-widgets. Each column is its own listbox. Listboxes include 

vertical “sliders” by default. Vertically the UI limits the listboxes to 20 lines and first 

two lines are reserved for the name of the found event and an empty line that makes 

the UI easier to read. This means that the UI can show found events as long as 18 

messages before the user has to scroll down further on the listbox. Support for showing 

more than a few events is done by adding a horizontal slider to the listboxes. In addition 

to the information about the found events, the result view includes a button for 

returning to the start view and a button for closing Protocol Log Analyzer. 
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Figure 21: Result view of the UI with some testing data 

5.6. Summary 

This Chapter presents an implementation based on designs of Chapter 4. Log parser, 

rule reader, analyzer, and UI modules are presented, along with the interfaces they 

provide to other modules. These modules are distributed as default Python source code 

and running them requires a complete Python installation. Development was done 

using Python version 3.4.3. Packaging Protocol Log Analyzer as a singular executable 

would also be possible. 
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6. RESULTS 
 

This Chapter describes the evaluation of overall results for the implementation. 

Protocol Log Analyzer was evaluated from the perspective of a user who writes their 

own rule set, meaning the process of writing the rules and analyzing a log with Protocol 

Log Analyzer are performed. The goal of the evaluation was to demonstrate the utility 

of the developed rule notation, locate issues present in the current design of rule 

notation and Protocol Log Analyzer, and test for performance issues at least with 

relatively small logs.  

6.1. Evaluation preparation 

Some type of log is required to test the functionality of Protocol Log Analyzer. For 

this evaluation, the log was created artificially. Artificial log was used because it could 

be created in a format that could readily be parsed by the log parser, and it allowed for 

more freedom regarding the content. First, a Python script for creating a csv-style log 

file was created. The script writes 1000 rows with four fields that match with the fields 

of the internal representation model. The length of 1000 log messages was chosen to 

represent a modem log that has already underwent preprocessing filtering out 

unwanted log messages. Index for the log messages increases by one for each new 

message, timestamp increases by 10, and name of the message is string “msg” with the 

index added. Content of each message is left empty. These programmatically created 

log messages make up for most of the artificial log. Their purpose is to verify that the 

Protocol Log Analyzer handles large swathes of data that is irrelevant to the analysis 

results well.  

Certain programmatically created log messages were replaced with fake RRC 

messages and updates regarding UE’s state. The fake messages were inspired by NR 

RRC message sequences in TS 38.508-1 [29] and TS 38.523-1 [12] specifications. The 

log message names of fake RRC messages correspond with the names of real RRC 

PDUs, but content within the PDUs is not the same. In certain cases, PDU-content is 

not present at all and in other cases only partial PDU-content is added to the log 

messages. This is done because the advantage from having a complete PDU is 

miniscule when compared to the needed workload to create valid PDUs considering 

that Protocol Log Analyzer only reads the fields specified in the rules. The RRC 

procedures chosen for the fake RRC messages were connection establishment, access 

stratum security activation, network initiated connection release, UE capability 

transfer, DRB1 configuration, and handover from one NR cell to another. The 

procedures were inserted to the artificial log in realistic order, for example security 

activation follows connection establishment. Other manually inserted log messages 

were log messages which signal the UE changing its state. These were inserted in 

locations where RRC procedures would cause the UE to change its state. Content of 

those messages is always empty.  

6.2. Creating the rule set 

Creating the rule set works both as a preparation for evaluation of how Protocol Log 

Analyzer runs and as evaluation for the rule notation. Writing rules for NR RRC 

procedures described in the 3GPP specifications [11] [29] [12] should reveal possible 
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flaws and deficiencies in the rule notation. Same procedures that were inserted to the 

artificial log were used as basis for creating the rules. It is important to note that 

knowledge of what type of data is available in the log is necessary for writing the rules, 

thus writing the rules just based on the specifications is not possible. In this case it 

means taking into account what PDU-content is present in the fake RRC messages in 

the artificial log and focusing on rules that utilize that content.  

First rules relate to UE’s states. The user would like to know at what times the UE 

changes state. In the artificial log, there are special log messages which indicate UE 

state changes. The rules are written so that the user always knows at which state the 

UE is at any point in the log. In Figure 22, a rule for recognizing when UE enters 

RRC_CONNECTED state is presented. As the entire events consists of a single log 

message, the event is recognized whenever the log message signifying UE’s state 

changing to RRC_CONNECTED is encountered. When two similar events are created 

for the other two states, the user should be able to see from the analysis results what 

the most recent state change event is and thus, what is the state of the UE at any given 

point.  

 

/* UE enters RRC_CONNECTED state */ 
Event enter_connected = 
{ 
    Message("RRC_ENTER_CONNECTED") 
}; 

 

Figure 22: Event where UE’s state changes to RRC_CONNECTED 

When it comes to RRC procedures, these state change messages can be used to make 

sure the UE is in the correct state before and after the procedures. A rule for 

recognizing successful initial access stratum security activation, a procedure described 

in Chapter 5.3.4 of TS 38.331 [11], requires the UE to be in RRC_CONNECTED state 

when it receives SecurityModeCommand-message from the network. The rule can be 

seen in Figure 23. The rule defines the correct state with the help of negation-messages 

for IDLE and INACTIVE states. Appearance of those messages would mean the UE 

has changed state away from RRC_CONNECTED, which leads to the message 

sequence in the log not matching with the procedure. The RRC messages expected for 

the rule are defined after. For RRC connection release, it is important that the state of 

the UE matches the expected both before and after RRCRelease-message. This can be 

also be seen in Figure 23, where a rule based on Chapter 8.1.1.3.1 of TS 38.523-1 [12] 

is defined, including a 60 millisecond delay after receiving RRCRelease. 
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/* Access stratum security activation */ 

Event as_security_activation_success = 

{ 

    Message("RRC_ENTER_CONNECTED"), 

    !Message("RRC_ENTER_INACTIVE") & !Message("RRC_ENTER_IDLE"), 

    Message("SecurityModeCommand"), 

    Message("SecurityModeComplete") 

}; 

/* RRC connection release */ 

Event release =  

{ 

    Message("RRC_ENTER_CONNECTED"), 

    !Message("RRC_ENTER_INACTIVE") & !Message("RRC_ENTER_IDLE"), 

    Message("RRCRelease"), 

    Message("RRC_ENTER_IDLE", Mindelay(60)) 

}; 
 

Figure 23: Events for security activation and RRC release 

 

Checking of PDU-content is used in certain rules. When defining rules for UE 

capability transfer adapted from Chapter 8.1.5.1.1 of TS 38.523-1 [12], the rule 

requires UECapabilityEnquiry and UECapabilityInformation-messages to have their 

rat-Type-fields set to value “0”, which corresponds to “nr”-value of the specification. 

If those fields are not present in the PDU, or their values are not as specified, the rule 

should not be fulfilled when analyzing. The rule cannot match with the specification 

exactly, as the rule notation does not support defining content that is not allowed to be 

present in the PDU, like the specification describes for contents of 

UECapabilityEnquiry, and it also does not support checking that transaction identifiers 

of between two different messages are equal.  

Rules can use PDU-content to differentiate between events that share log message 

names. This is used for RRCReconfiguration-messages of DRB1 configuration and 

intra NR handover, with rules presented in Figure 24. In DRB1 configuration described 

in Chapter 8.1.2.1.1 of TS 38.523-1 [12], the RRCReconfiguration includes exactly 

one RLC-Bearer-Config IE in rlc-BearerToAddModList field of masterCellGroup 

field. The notation does not support defining length of arrays found in PDUs, so this 

part of the specification is ignored. RRCReconfiguration must also include a 

RadioBearerConfig IE in radioBearerConfig field. In comparison, in intra NR 

handover, presented in Chapter 8.1.4.1.2 of TS 38.523-1 [12], a RRCReconfiguration 

contains measObjectToRemoveList in measConfig with two measObjectIds in a 

specific order with different expected values in the list. The closest approximation rule 

notation supports is defining the expected value twice, but defining the order is not 

possible. Expected contents of masterCellGroup fields differ significantly. In intra NR 

handover it contains spCellConfig, which is a field that shall not be present in DRB1 

configuration. This difference however cannot be written in the rules with the current 

version of the notation, as it is limited to only defining what values and fields must be 

present. Outside of the contents of RRCReconfiguration, the two created rules are 
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identical, with requiring the UE to be in RRC_CONNECTED state beforehand and 

having RRCReconfigurationComplete follow after RRCReconfiguration.  

/* DRB1 configuration */ 

Event drb1_reconfiguration =  

{ 

    Message("RRC_ENTER_CONNECTED"), 

    !Message("RRC_ENTER_INACTIVE") & !Message("RRC_ENTER_IDLE"), 

    Message("RRCReconfiguration", Pdu(0, criticalExtensions.rrcReconfiguration. 

                       nonCriticalExtension.masterCellGroup. 

                       rlc-BearerToAddModList.servedRadioBearer.drb-Identity == 1),  

                       Pdu(0, criticalExtensions.rrcReconfiguration.radioBearerConfig)), 

    Message("RRCReconfigurationComplete") 

}; 

/* Intra NR handover reconfiguration */ 

Event intra_ho = 

{ 

    Message("RRC_ENTER_CONNECTED"), 

    !Message("RRC_ENTER_INACTIVE") & !Message("RRC_ENTER_IDLE"), 

    Message("RRCReconfiguration", Pdu(0, criticalExtensions.rrcReconfiguration. 

                       nonCriticalExtension.measConfig.measObjectToRemoveList == 1),  

                       Pdu(0, criticalExtensions.rrcReconfiguration.nonCriticalExtension. 

                       measConfig.measObjectToRemoveList == 2), 

                       Pdu(0, criticalExtensions.rrcReconfiguration.nonCriticalExtension. 

                       measConfig.measIdToRemoveList == 1),  

                       Pdu(0, criticalExtensions.rrcReconfiguration.nonCriticalExtension. 

                       masterCellGroup.spCellConfig.reconfigurationWithSync. 

                       rach-ConfigDedicated.Uplink),  

                       Pdu(0, criticalExtensions.rrcReconfiguration.nonCriticalExtension. 

                       masterKeyUpdate.keySetChangeIndicator == 1), 

                       Pdu(0, criticalExtensions.rrcReconfiguration.nonCriticalExtension. 

                       masterKeyUpdate.nextHopChainingCount == 0), 

                       Pdu(0, criticalExtensions.rrcReconfiguration.nonCriticalExtension. 

                       masterKeyUpdate.nas-Container)), 

    Message("RRCReconfigurationComplete") 

}; 
 

Figure 24: RRC reconfiguration event rules 

In addition to rules described above, certain very general rules were also created, 

such as a generic reconfiguration without any PDU-content limitations. In total, the 

rule file includes 97 lines of notation for 12 different rule events. Creating the rules 

exposed some defects in the rule notation regarding how the user can define the 

expected contents. Defining the overall structure of events according to RRC 

procedures is however quite simple and the resulting rules are easy enough to read and 

modify. When writing rules for similar events with differing keywords, the user has to 

repeat a lot of definition as sub-events cannot be used in cases where keywords would 

have to be inserted within the sub-event. 
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6.3. Analyzing the artificial log 

Once the rules had been written, Protocol Log Analyzer was used to analyze the 

created artificial log. Expectation for this was that Protocol Log Analyzer finds the 

state changes and log message sequences corresponding to RRC procedures. The time 

Protocol Log Analyzer spends on parsing the log file, reading the rule set, and 

performing the analysis was measured, with the rule set being tweaked in order to see 

if its complexity affects the overall performance. Measurements were done with 

Python time-module9, part of the standard library. For each variant of the rule set, the 

measurements were performed 5 times (N=5). The database created from the parsed 

log was deleted after each measurement to make sure the parser parses the log 

separately each time. The purpose of the measurements was to get an initial view on 

which modules require the most execution time, catch possible major performance 

issues, and see how the amount of rules affects the time needed for analysis. The 

figures should not be taken as estimates for the execution time of Protocol Log 

Analyzer in other environments or with a different rule or log file. The results for these 

measurements can be seen in Table 8. The execution time of analyzer is the most 

interesting, as it should vary with the complexity of the rule file. 

Protocol Log Analyzer with all 12 rules set with “Alert”-notification found 28 events 

in the artificial log. These 28 events were all the expected events, though some RRC 

procedures present in the log are recognized several times, as there is overlap with the 

rule events, for example the same message sequence can be detected as both Intra NR 

handover and generic reconfiguration. Going through all 28 events with the GUI 

proved to be cumbersome.  

For the second measurements, the rule events notifying the user about UE state 

changes were modified by setting their notification to “None”. This makes them 

invisible to the analyzer, though they are still handled by the rule reader. In total, this 

meant there were 9 rules given to the analyzer and it found 16 events.  

For the third and final measurements, notification were set to “None” for certain 

rules depicting RRC procedures in addition to UE state rules. This brought the total 

amount of rules given to the analyzer down to 6. With these rules, Protocol Log 

Analyzer found 11 events in the log.  

Table 8. Module execution time with different variants of the rule file 

Amount of rule events 
Total time 

(mean ms) 

Parser 

(mean ms) 

Rule reader 

(mean ms) 

Analyzer 

(mean ms) 

12 227, σ=22 94, σ=20 13, σ=3 115, σ=7 

9 215, σ=12 91, σ=7 15, σ=3 104, σ=6 

6 189, σ=11 83, σ=6 13, σ=3 88, σ=4 

 

Performance measurements did not reveal any major performance issues. With a 

relatively small log and rule file, the total execution time was around 200 milliseconds. 

When it comes to user experience, that time is very short, as the information Protocol 

Log Analyzer provides its user could significantly decrease the time it takes for the 

user to finish the analysis manually. The length of execution time for each module is 

visualized in Figure 25. It is clear that in the tested conditions parsing and analysis 

take the majority of overall execution time.  

 

 
9 https://docs.python.org/3/library/time.html 
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Figure 25: Share of execution time of different modules 

When the amount of rule events provided for the analyzer is reduced, its execution 

time also reduces. This is visualized in Figure 26, where the measured analyzer 

execution times are marked with the mean line showing the trend of execution time 

being longer with more rule events. From the visualization, the spread of measured 

analyzer execution times can be seen. There are no significant differences when it 

comes to spread of execution times for different amount of rule events. Reduction of 

execution time with less rule events is most likely because the analyzer then has to 

start significantly less ongoing events, and compare their next expected message to 

following handled log messages. As the meager amount of 12 rules has significant 

impact on the overall execution time, the amount of rules could be bigger factor in 

overall execution time than the length of the log. Overall, Protocol Log Analyzer 

performed according to expectations, and similar performance in real life use cases 

would mean Protocol Log Analyzer is helpful for the users.  
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Figure 26: Analyzer execution time on different runs 

6.4. Issues and possible solutions 

Though Protocol Log Analyzer and the rule notation perform well overall, some 

issues arose during the evaluation. Issues concerning the rule notation affect also the 

Protocol Log Analyzer itself.  

The lack of support for defining variables during analysis is a significant oversight. 

Without it, the rule notation cannot be used to check that transaction identifiers match 

between request and responses. Adding this feature might not even require a new 

keyword, as just using a previously undefined variable during an Event-definition 

could be defined to mean that the variable is filled from the log during runtime.  

Another rule notation issue is that it does not support defining content that is not 

allowed to be present in PDUs. Simple fix at the rule notation level would be to add 

support for “NOT”-operator (!) with Pdu-keyword. This would allow the user to define 

mutually exclusive rule events easier, as field that must be present in message of Event 

A, would not be allowed at all in message of Event B.  

Another lacking feature when compared to 3GPP standards is the inability to define 

lists. Current version of the rule notation and Protocol Log Analyzer handle lists by 

ignoring their structure and comparing all possible indices of PDU-content to expected 

values. This works fine in most cases, but some standard definitions expect the lists to 

be in certain order and of certain length. New keyword for list length and support for 

defining expected indices is needed in the rule notation.  

When it comes to performance, the biggest question is would a large amount of 

ongoing rules lead to execution time imploding. This could happen due with rules that 

have the first level of their message tree very often recognized in the log, but are rarely 

invalidated or completed by the following log messages. If this becomes a performance 

issue, the analyzer could be reworked to only start ongoing events after several levels 

of the message tree have been recognized, hopefully cutting down on the amount of 

ongoing events, or by setting a hard limit on how many ongoing events of the same 
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type can exist at the same time. Both approaches would have a negative impact on the 

accuracy of Protocol Log Analyzer. 

GUI being cumbersome when there are a lot of found events suggest that 

implementing support for “Visualize” if of high priority. As it is already included in 

the rule notation and taken into account in the design, changes are only needed in the 

GUI. Other option would be to add a priority setting for the rule events and only show 

for example 10 found events with the highest priority. The priority setting could also 

be used to make sure the GUI only shows the most precise version of a rule event in 

cases where a presence of a more generic rule is implied when another event is found. 

The rule events could be linked to more or less precise variants of the same event at 

the rule notation level with some kind of “child event”-option.  

The current implementation of sub-events cannot be used if any changes are needed 

within the messages of the sub-event. This does not affect the capabilities of rule 

notation or Protocol Log Analyzer regarding the analysis, but it can force the user to 

repeat a lot when writing the rules. Sub-events could be updated to take “arguments”, 

which could then be inserted to positions defined in the sub-event definition. This 

would however require significant changes to both rule notation and Protocol Log 

Analyzer implementation, as those sub-events would not be valid standalone and they 

would need to be inserted to other events by the rule reader in a very different fashion 

compared to the current implementation. 
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7. DISCUSSION 
 

Protocol Log Analyzer presented in this thesis is very much a proof-of-concept. It does 

not work with any real logs, but the methods chosen show promise. The rule notation 

can be used to define wanted and unwanted message sequences Protocol Log Analyzer 

looks for in the analyzed log in a way that is familiar for users due to similarities to C-

language [27] and EBNF [1]. As Jayathilake [14] mentions, lack of standards regarding 

log files constitutes an issue, and Protocol Log Analyzer assumes that its parser is 

modified when necessary to provide accurate parsing for different types of logs. RRC 

messages and PDUs presented in TS 38.331 [11] are used as examples of what kind of 

data could be found in cellular modem logs. The rule notation can be used, with some 

exceptions, to define expected PDU-content according to 3GPP RRC standards, and 

the developed analyzer can compare expected PDU-content to what is found in the 

analyzed log. Overall, Protocol Log Analyzer and rule notation differ from previously 

presented log analyzers, such as Swatch [19], by giving the users the ability to define 

message sequences to be looked for in the log. When given the ability to 

programmatically look for sequences from the logs, the users can cut down the amount 

of effort required when analyzing logs. 

Development and evaluation was limited by the fact that logs tend to be proprietary 

and when it comes to 5G cellular modem logs, there are not many different types 

available. Protocol Log Analyzer is not actually limited to be used with cellular modem 

logs, but development based on another type of log could have led to the design to 

overlook traits of 3GPP PDUs. Focusing on areas that are transferable between 

different logs, such as the rule notation and the analyzer, allows for easier future 

development. Nonetheless, the lack of results from using Protocol Log Analyzer on a 

real log limits the confidence of any statement about the utility of Protocol Log 

Analyzer.  

Lessons learned include focusing on what distinguishes the developed log analyzer 

earlier on. When the decision was made to focus on the rule notation and analysis 

methods instead of parsing, a lot of background research into different types of existing 

parsers was already done. Most of that research had very little direct impact on the 

final developed Protocol Log Analyzer. Instead, interfaces for the different modules 

could have been defined earlier and the focus could have been on the interworking of 

the analyzer and rule notation. This would include evaluation that is more extensive 

and would thus provide more concrete results.  

Next phase for the development of Protocol Log Analyzer is to get it to work with 

a proper cellular modem log. This requires significant changes in the log parser, but it 

would allow for Protocol Log Analyzer to be evaluated in a real use scenario. User 

feedback would then be important in tweaking the rule notation and Protocol Log 

Analyzer to improve on how users define rules and analyze logs accurately and 

efficiently. This would include developing the GUI for better user experience to better 

fulfill the goal of Protocol Log Analyzer being useful for daily activities of the users. 

The rule notation should be presented to users to see what kind of rules they write with 

it and if that exposes flaws or missing features.  

Long-term future work would be to try to integrate automated log analysis 

techniques to writing the rules, log parsing, or log analysis. Automated rule writing 

could ease the workload of the users by generating either partial or complete rules 

based on previous logs. Automated techniques in the parser could allow Protocol Log 

Analyzer to be adapted to work with different types of logs more easily, assuming the 
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parser could locate the name of the message, timestamp, index, and content from the 

log file automatically.  
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8. CONCLUSION 
 

Devices such as smartphones use cellular modems for wireless communication. 

Cellular modems use telecommunications protocols, which define rules for wireless 

communication methods. Sometimes, cellular modems fail and engineers are required 

to diagnose issues. To help with the engineers’ task, cellular modems write log files, 

which contain information about the events of the modem. These modem logs can be 

very large and the analysis process time consuming, so methods to automate parts of 

the process are needed. Tools for log parsing and log analysis are not a new thing, but 

previous implementations lack some features required in the modem log analysis. 

In this thesis, design and development of a cellular modem log analysis tool called 

Protocol Log Analyzer and a metasyntax notation for rule definition are presented. 

Requirements for Protocol Log Analyzer and the rule notation are based on wants of 

cellular modem engineers. Traits of 3GPP telecommunication protocols are presented 

and then taken into account during the design process. Radio Resource Control 

protocol of 5G New Radio is used as an example of a telecommunications protocol. 

Both Protocol Log Analyzer and the rule notation support expected message 

sequences, expected PDU-content, and maximum and minimum delays between log 

messages. 

Focus on the development of Protocol Log Analyzer and the rule notation is on 

performing the analysis and giving users tools to define analysis rules. Design is split 

into four different modules, the log parser, the analyzer, the rule reader and the rule 

notation, and the UI. Operation flow for each module is presented. The rule notation 

is inspired by already existing notations, but is focused on features needed in modem 

log analysis. Complete keyword and operator list for the rule notation is presented. 

The implementation follows the same module split as the design. The implementation 

presentation includes class structure of each module as it is in the developed Python-

modules. 

Protocol Log Analyzer is not usable with real modem logs. All development and 

testing was done with artificial modem logs, that include messages as defined in RRC 

protocol standards. Adapting Protocol Log Analyzer to work with real modem logs 

would require changes to the log parser at least. During evaluation, Protocol Log 

Analyzer is used to analyze an artificial log of 1000 log messages. The artificial log 

includes log messages corresponding to RRC protocol messages and other modem 

events. Evaluation revealed some lacking features in the current version of the rule 

notation regarding defining lists and unwanted fields within PDUs. Performance of 

Protocol Log Analyzer is good within the evaluation environment. Methods for 

defining telecommunications protocol rules for log analysis, such as message 

sequences and PDU-content, work as intended and flaws detected in the rule notation 

are fixable. If Protocol Log Analyzer and the rule notation perform similarly in real 

life use scenarios, it would be a great help for the engineers. The next step in 

development of these methods is updating Protocol Log Analyzer to work with real 

modem logs and seeing how it and the rule notation perform in daily activities of 

cellular modem engineers. 
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