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Diploma Thesis 
 

LEARNING METHODS FOR NATURAL DISASTER STUDY 

Christos Adamakis 
 

Review 

 

My diploma thesis is about natural disaster prediction using available resources, 

learning algorithms and more particularly is about flood prediction using precipitation-

discharge data. According to WHO floods make up for more than 80 % of natural disasters 

during the past ten years [2]. There are two categories that are widely used on flood 

prediction, physical based and data driven models. Machine learning methods started to 

integrate into these methods during the last few decades [4]. It appears, floods are 

common, and their frequency is believed to become greater due to global warming. The 

first chapter of the study is an introduction in flood prediction, the history and evolution of 

prediction models. The second chapter refers to the most common methodology used, 

some of the most popular machine learning algorithms in the flood prediction field and the 

algorithms I use for the study are explained, artificial neural networks, decision trees and 

more. In the third one, the process I went through to finalize my study area and the tools 

used in the programming part are presented, with the study area being the Po River basin 

and python libraries for the programming part. The fourth chapter is about implementing 

the models using the data acquired for the Po River valley. In the experimental part of the 

thesis, we run machine learning algorithms with the help of python libraries, achieving up 

to 78% accuracy. Finally, I refer to the conclusions, some remarks I was led to and possible 

future work to create a better flood warning system.  

 

 

Keywords: Machine Learning, Neural Networks, prediction, flood research, warning 

system, Po River, flow prediction, rainfall-runoff. 
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Διπλωματική Εργασία 
 

ΜΕΘΟΔΟΙ ΜΑΘΗΣΗΣ ΣΤΗΝ ΜΕΛΕΤΗ ΦΥΣΙΚΩΝ 

ΚΑΤΑΣΤΡΟΦΩΝ 

Χρήστος Αδαμάκης  

 

Περίληψη 

 

Η διπλωματική μου εργασία αφορά την πρόβλεψη φυσικών καταστροφών 

χρησιμοποιώντας διαθέσιμα δεδομένα και αλγόριθμους μάθησης, πιο συγκεκριμένα που 

επεξεργάζονται δεδομένα ποσότητας βροχής για να υπολογίσουν την πιθανότητα 

πλημμύρας. Σύμφωνα με τον παγκόσμιο οργανισμό υγείας πλημμύρες ήταν το 80 % των 

φυσικών καταστροφών που συνέβησαν τα τελευταία 10 χρόνια [2]. Υπάρχουν δυο 

κατηγορίες μοντέλων πρόβλεψης τα physical based και τα data driven μοντέλα. Οι μέθοδοι 

μάθησης έχουν ενσωματωθεί τις τελευταίες δεκαετίες στον τομέα της πρόβλεψης ροής 

ποταμών [4]. Ακόμα, οι ερευνητές υποθέτουν ότι η υπερθέρμανση του πλανήτη συμβάλει 

σε μια αύξηση της εμφάνισης πλημμυρών στον πλανήτη. Στο πρώτο κεφάλαιο της 

εργασίας υπάρχει μια εισαγωγή και μερικά ιστορικά μοντέλα πρόβλεψης. Στο δεύτερο 

κεφάλαιο αναλύεται η μεθοδολογία που χρησιμοποιείται στον τομέα αυτόν, αλλά και οι 

αλγόριθμοι που εφαρμόζονται κατά την διάρκεια της δικιάς μου εργασίας, τεχνητά 

νευρωνικά δίκτυα, δένδρα απόφασης (decision trees) και άλλες μέθοδοι. Το τρίτο 

κεφάλαιο περιέχει την διαδικασία επιλογής δεδομένων και εργαλείων, ο Πάδος ποταμός 

είναι η περιοχή που διάλεξα και τα πειράματα έγιναν με την βοήθεια βιβλιοθηκών της 

python . Το τέταρτο κεφάλαιο είναι για την εφαρμογή και αξιολόγηση των πειραμάτων 

πρόβλεψης πλημμύρας, τα μοντέλα καταφέρνουν να φτάσουν 78% ακρίβεια που μπορεί 

να θεωρηθεί καλό αποτέλεσμα. Στο πέμπτο, τελευταίο, κεφάλαιο παρουσιάζω κάποια 

συμπεράσματα, παρατηρήσεις αλλά και κάποιες προτάσεις για το μέλλον. 

 

 

Λέξεις-κλειδιά: Μηχανική Μάθηση, Τεχνητά Νευρωνικά Δίκτυα, Πρόβλεψη Πλημμύρας, 
Σύστημα προειδοποίησης, Ποταμός Πο, Πρόβλεψη Ροής, Δεδομένα ύψους βροχής, 
Δεδομένα Ροής. 
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CHAPTER 1 INTRODUCTION 

 

This study was conducted for the purposes of my diploma thesis and tries to deal 

with the most common natural disaster, which are floods[2]. For more than two decades, 

complex models and procedures have taken form in hydrology research. There is an 

important reason to analyze this phenomenon, which is to be able to deal with the disasters 

derived from them. Researchers have created warning systems for river basins that were 

used as study areas and try to create models that can be applied to different basins, 

regardless of the physical characteristics these basins may have throughout their whole 

study areas. Learning methods have been integrated into this sector of hydrology study, 

this process has been undergoing changes for several decades now. Nowadays, the 

creation of warning systems follows certain formulas that are known to have results, 

according to reference [15], for the prediction of floods several parameters are needed, 

those are real time rainfall and discharge observations and other parameters that define 

the soil composure of the drainage area. Researchers refer to extreme events of floods as 

1 in X year’s floods, which does not mean they occur every X years but represent the 

percentage of such events happening during the span of a year.  

More particularly, as shown in [16] the area of Po basin receives a fair amount of 

precipitation each year. The basin is surrounded by high mountains including the European 

alps, so the flow of the river could have a seasonal behavior due to the melting of snow 

each spring. The area is heavily populated and is one of the biggest industrial areas of Italy. 

For these reasons and more I try to create a prediction model, which would predict the 

flow in key locations of the Po River in order to predict in time the event of an overflow. 

Close to the city of Ferrara lies a hydrological station, which was the one used for the 

research. This station is situated towards the end of the river, close to its delta so it drains 

water from most part of the basin. Furthermore, rainfall data from seven available station 

located within the margin of the Po River were acquired from a data center that provides 

free historical meteorological observations from European countries.  

The purpose of the study is to use the available resources to predict flood events, 

which are closely related to high discharge volume prediction. The methods used are 

learning models that produce a regression line that models the flow of the river. The 



2 

 

models explored are multilayer perceptron along with support vector machine, decision 

trees, nearest neighbor and adaptive neuro-fuzzy interference systems. In this study, 

among those methods mentioned the MLP, nearest neighbor and ensemble decision trees 

were used. The mean used to prepare the data, visualize them, transform them and run 

the networks was python, since it offers a great variety of tools for data analysis. In order 

to have the results validated, the mean squared error (MSE), the root-MSE and the 𝑟2 error 

functions were used. The best  𝑟2 value achieved was a little above 0.78 making it relatively 

good for the research. The peak values of discharge were predicted with good accuracy, 

sometimes though the models failed to predict them. 

 

1.1 MACHINE LEARNING IN FLOOD RESEARCH 

 

The topic of flood prediction research appears in many papers and using machine 

learning algorithms in them is common. In this chapter, several papers were chosen to be 

referred to as references. Those are the reasons that inspired me to write about flood 

prediction. Moreover, those papers were the ones that acted like a guide towards my 

research. 

In reference [18], the authors used ensemble empirical mode decomposition, radial 

basis function and autoregression model for prediction. The focus of this study is an area 

with few data and seeks to create a model to overcome the problem. The problem of time 

scaling exists in hydrological research so the transformation of time was implemented in 

the paper. EMD is well integrated into hydrology studies and may lead to incomprehensive 

results though due to a problem named ‘mode mixing’ [18]. The writers chose to use for 

their case, data derived from north-western China where the hydrological stations are 

scarce. The writers compare the EEMD using the standard deviation stopping criterion with 

G. Rilling stopping criterion and with computing the energy difference MTED stopping 

criterion. The comparison gave satisfying results for these stopping criteria, but the MTED 

was better in general. Then, the radial basis function and autoregression methods are used 

for forward prediction, the EEMD along with MTED came on top of this research giving 

better statistic results. As a remark, the authors proposed those methods to be used for 

scarcely observed basins. 
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Next in reference number [19], three ANNs used for studying monthly streamflow 

prediction were developed, RBF, the extreme learning machine and the Elman networks 

with single and weighted averages. A basic condition for good performance in networks is 

to find satisfying input vectors to use. The lower portion of Jinsha River is the area of 

interest. The monthly observations for almost 55 years, preprocessed with empirical 

wavelet transform, were used and split for test and evaluation and then reconstructed for 

the result. EWT was proved to increase the accuracy and when used with Elman they 

provided the best results of the study. The study conducted in this paper is a good reference 

for monthly streamflow prediction and the authors indicate that deep learning methods 

would make a good solution for flood prediction, as well. 

Reference [20], this paper is about predicting floods linked to extreme events like 

typhoons with the help of self-organizing-map and back-propagation neural networks. The 

lower part of the basin of Wu River in Taiwan is used as a study area. Based on rainfall and 

discharge data the authors clustered the data into four categories. During the beginning of 

such events, the rainfall intensity tends to be lower, then starts to intensify and then loses 

its power till the rainfall is considered low again and eventually stop. During the event, the 

rise and fall of the river flow has a time lag compared to the intensity of rainfall [20]. The 

traditional prediction processes produce good results but using hybrid networks the writers 

were able to lower the uncertainty. In order to find the best parameters for the network, 

the authors use trial and error methods. Making smart clusters using SOM can be helpful 

when dealing with typhoons. In conclusion, the hybrid neural network produced results 

that satisfied the writers. 

The next reference [21]  is about flash flood prediction in high altitude. Mountain rain 

prediction is uncertain. In this paper, the Random Forest algorithm is proposed as a solution 

to these problems. The upper catchment area of the Tomebamba river was researched for 

this study. The technique used for prediction in the paper is Random Forest, which predict 

sufficiently discharge values based on higher altitude observations. Feature selection with 

reduced correlation, up to 80%, was achieved. Similar basins should be studied with these 

models as suggested by the authors. The Random Forest algorithm has not enough 

documentation on flash-flood prediction, so the researchers encourage other scientists to 

further research the topic. 
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1.2 Thesis Structure 

This study is focused on the prediction of natural disasters based on real observations 

using deep learning techniques. We try to interpret the results in an understandable way, 

find patterns, and then evaluate the accuracy of them. The thesis is organized in five 

chapters, in this section the contents of each one will be briefly explained.  

The first chapter is an introduction to flood research using learning algorithms, what 

is the cause of these disasters and how could a warning system be created to protect lives 

and prevent damages. On top of that, the papers I got my inspiration are mentioned and 

summarized. 

The second chapter, starting describes the methodology usually used in flood 

prediction and the categorization of them depending on the available data resources. The 

theory of using data, coming from meteorological stations, radar, satellite and hydrological 

station to predict a flood event, is explained in detail. Furthermore, there is an introduction 

to machine learning theory regarding this field, the algorithms used on the thesis and the 

ones that are popular for flood prediction are explained in an extensive way.  

The third chapter refers to the data and tools needed for my study. The chapter starts 

by explaining the procedure that led me into choosing the Po River basin as a subject for 

my study. The websites from where the data were extracted are mentioned and a visual 

representation of the stations on map along with the plot of the data are presented. Lastly, 

in the third chapter the tools used for prediction are mentioned, those are python libraries 

and the configuration done to fit my study into them is explained. 

The fourth chapter presents the results of the study and the evaluation of the 

algorithms. Initially, the evaluation indices are mentioned. After, the configuration phase 

is explained, the tables containing the indices of each algorithm are presented and the 

visual representation using real scale are displayed. In the end, the explanation of the 

results and the power of the flood predicting model is stated. 

The last chapter, the fifth, is a conclusion to the thesis. The value of the study and some 

remarks of it are mentioned. I describe my experience doing this study and my ideas for 

expanding the research in the future. 
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CHAPTER 2 METHODOLOGY 

 

2.1 Introduction 

One of the best traits of our brain is the ability to learn. Researchers have tried for 

many years to model the ways our brain works, eventually they were able to create models 

that would mimic human thinking, those were the neural networks. The learning ability of 

neural networks drew the attention of many researchers who integrated those models in 

their study fields, one of them being the flood prediction. In this diploma thesis our focus 

is pointed towards algorithms that have been proven to have good compatibility with flood 

prediction whether it is short term or long term. There are many single models used for 

this purpose which are considered popular in artificial intelligence. Single models are those 

that create an output from one simple algorithm, like linear regression. On the other hand, 

an ensemble model usually takes the output of many single models and uses an algorithm 

to combine all of them to create a single outcome. Researchers have tried to improve the 

flood prediction algorithms by combining single models with various others resulting in the 

also known as hybrid methods. The models chosen to be used vary, a factor for choosing a 

model is the type of data available like monthly, daily, hourly observations and more. 

Depending on the data available and the research purpose, we can create models that 

predict ahead of a short or long amount of time. For example, if hourly precipitation data 

and daily discharge data are available, a model can be created to predict the flow of a river 

using the N hours before the discharge measurement[4]. This model could predict on time 

the possibility of a flash flood occurring, warning the study area. On the other hand, an 

event of flood may show signs of taking place for a long time before actually happening. 

On that note, models that use data from weeks ahead manage to be a strong tool for a 

flood warning system. The process of flood predicting is not an easy task, for every river 

the conditions are different. Each river has its own basin, this basin is composed of different 

spatial and geological characteristics from the others. Moreover, depending on the time 

and weather of the year the soil may have components that vary, like the soil moisture. 

Scientists split the flood prediction process into two further categories the ones that use 

the physical models and the ones using the data-driven algorithms. Physical models use a 

set of geospatial information in combination with meteorological and discharge data. 
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Acquiring these data is challenging, an extensive monitoring of the area is needed which is 

sometimes impossible with the funds available. On top of that, it takes a scientist with 

excellent knowledge of the field to accumulate and utilize on a correct manner those data 

that would lead in a predicting model with comprehensive results. Run-off models using 

rain simulations were mostly used in these models. On the contrary data-driven methods 

achieve non-linearity without using complex physical parameters. The results from running 

them lead to an outcome that is considered acceptable and sometimes can be even more 

accurate than physical models with faster performance. It is mentioned in [4] that there 

are ways to create hybrid data-driven models by combining the single methods with soft 

computing, numerical simulation and physical techniques. In summary, the task of flood 

prediction is a challenging one and the ones that are engaged in this research need to have 

an extensive knowledge of machine learning. In the next subsection the methodology used 

is analyzed.  

2.2 Machine Learning Methodology 

In chapter one, the contents of some papers that could act as a hint to flood research 

are mentioned. Along with those papers, in literature there are certain guidelines for 

developing an efficient flood warning system using precipitation and flow datasets. The 

methodology used has been summarized below. 

Most studies regarding flood prediction follow certain steps: 

1. An area of interest needs to be defined, a hydrological station that measures the 

discharge volume of the river is needed for this area. Given the flow measurements 

acquired the process can continue for the timeline of the dataset. Furthermore, 

meteorological data for those years from stations, sensors, satellites etc. are 

needed. 

2. The datasets most of the times lack values or may have some mistakes, those 

problems can influence the study. In order to keep the study as close to reality as 

possible, the data are processed to fit each proposed model and any missing values 

or noisy data need to be dealt with. The way they are dealt with is up to the 

researcher, some ways are to insert zeros or create an average to fill the values. The 

data could be then normalized or standardized. 
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3. Although, many models are proven to be accurate and have a good generalization 

ability, each study area needs to be studied separately in order to choose a model 

suitable for the study, single or hybrid. After, creating a model that theoretically fits 

the area, the data are inserted to the model to find its performance. Frequently, 

defining an accurate model is challenging and one way to solve this setback is 

through trial and error. 

4. The last step is to evaluate the results and use error indices to compare the output 

with the target values. For a complete study many models should be created since 

it is not always clear which are the most fitting ones for the area of interest. The 

values of the error indices should be optimized, however a good score on them is 

not always the most suitable evaluation method, at least not exclusively. Since the 

purpose of the study is flood prediction, the most important asset of a model is to 

be able to predict the peak flows which could most likely lead to a flood event. 

 

The most common ML algorithms used for hydrological analysis are Artificial Neural 

Networks, Multilayer Perceptron, Support Vector Machines, Decision Trees and Adaptive 

Neuro Fuzzy Inference Systems etc. [4]. 

2.2.1 Artificial Neural Networks (ANNs) 

ANNs are one of the most popular machine learning models for creating a flood 

warning system. The away these networks are designed is for machines to ‘think’ like our 

brain does. Massive parallel distributed processors mimic in some ways the way a brain 

works, storing data, like humans remember things, being able to make decisions with those 

and the ways the cells are connected and interact alike [5]. The first neural network 

designed consisted of a single neuron, known as the perceptron model. The perceptron 

algorithm takes the inputs X and pushes them through the network, the formula for 

computing them looks like this: 𝑦 = ∑ 𝑤𝑖
𝑛
𝑖=0 ∗ 𝑥𝑖  , where 𝑤0 ∗ 𝑥0  =  − θ that is the 

threshold. If the equation for x from one to n is higher than 0 then the function is activated. 

This model deals with linear separation, the activation of the function means that the 

values are split into two categories whether they surpass the threshold or not. The ANNs 

can create regression lines to model the behavior of a phenomenon.  A basic example of 

regression algorithms is the linear regression. The goal of the algorithm is to create a line 
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that links the output 𝑦 with the input 𝑋, for example 𝑦 =  α ∗ 𝑋 +  β. The mean squared 

error can be used to bring the line as close to the actual values. In short, the values α and 

β need to be computed in a way that mean squared error is minimized [31]. 

At first scientist were not able to create models that separate non-linearly the 

surface, however they were eventually able to do it using multiple layer networks that 

resulted in nonlinear results. For our study of flood, we are mostly interested in some 

characteristics of ANN which are nonlinearity and fault tolerance. This network consists of 

the inputs, the weights, the sum, the activation function, the biases and then the output. 

First, the network pushes in forward direction from the input towards the output layer. 

Then, using various methods the weights are adjusted, for example, to minimize an error 

function. In flood prediction there are some popular ANNs which are feed-forward 

networks, recurrent networks, extreme learning machines and back-propagation 

multilayer neural networks [4]. Furthermore, artificial neural networks are considered 

data-driven hydrology models. These ML models have an acceptable performance and 

generalization ability in flood prediction. However, disadvantages exist like great 

complexity, difficult interpretation of the output, low accuracy, slow compared to other 

methods and others, all these according to the Literature Review for flood prediction by 

Amir Mosavi, Pinar Ozturk and Kwok-wing Chau [4]. 

2.2.2 Multi-Layer Perceptron 

MLPs are considered one of the most important types of neural networks. Defining 

a single perceptron neural network, it is a network consisting of a single neuron. Usually, 

MLPs have the format of a feed-forward network and may have hidden layers, layers that 

are not directly connected to inputs and are not the output layer [7]. MLP was designed to 

tackle the problem of linearity, using multiple layers with nonlinear activation functions 

complex separation surfaces can be created. It has become a powerful tool for prediction 

and classification. As stated in reference [7], using one or more hidden layers any function 

could be modeled if it is continuous. MLP users prefer to train their models with a back-

propagation algorithm. The research in flood prediction showed that MLP is efficient and 

has an exceptional generalization ability [4]. The freedom of using multiple layers and 

having as many neurons as anybody wants for their research has led to the development 

of a great variety of neural networks. Some basic theory of MLP is shown below. 
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Utilizing reference [7] we get some information for MLP networks, multilayer 

perceptron is the most popular solution when it comes to solving problems with neural 

networks. A common way of implementing MLP is by pushing the inputs towards one 

direction towards the output, so there is no involvement of the output in the shaping of 

the parameters of the network. Moreover, algorithms that take advantage of the output 

with help of error functions exist in order to influence the function of the network. There 

are three layers the input, the hidden and the output, some researchers consider the input 

as a hidden layer though. The need for multiple layers in neural networks was necessary to 

separate the space into non-linear surfaces since the single layer perceptron can split the 

surface only in a linear pattern.  

The use of non-linear activation functions gives the opportunity to MLP networks 

to gain non-linear characteristics. Famous activation functions are the sigmoid function, 

hyperbolic tangent and the logistic function. The below figures picture those exact 

functions. First, the sigmoid takes values from 0 to 1, the tangent from -1 to 1 in both 

function the transition from lower value to 1 happens close to 0. Lastly, the ReLU function 

is zero for negative values and takes the form of 𝑦 =  𝑥 after 𝑥 =  0.  In figures Figure 2-1, 

Figure 2-2 and Figure 2-3 three main activation functions are shown those are the sigmoid, 

the Hyperbolic tangent and the ReLu functions. 

Sigmoid function:  

𝑓(𝑢) =
1

1 +  𝑒(−𝑢)
(2. 1) 

 

Figure 2-1: Sigmoid Activation Function 
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Hyperbolic Tangent function: 

𝑓(𝑢) =
𝑒(𝑢)− 𝑒(−𝑢)

𝑒(𝑢) + 𝑒(−𝑢)  ( 2. 2)   

 

Linear Unit (ReLU) function: 

𝑓(𝑢) = 𝑚𝑎𝑥(0, 𝑢) (2. 3)      

 

Figure 2-3: Rectified Linear Unit (ReLU) Activation Function 

  

Using more hidden neurons we can create more separation lines. Considering we 

have n layers, and the network is feed-forward (one directional), each layer connects 

exclusively to the next layer, the k layer connects in forward direction only to the k+1 layer.  

 Figure 2-2: Hyperbolic Tangent Activation Function. 
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We talked a bit about the famous activation functions, there are a few more parameters 

that are needed to define a multilayer network. There are the input data X, the output data 

y, the weights, the bias and as mentioned the activation functions. For a given layer the 

value of a neuron is computed like this: 

𝑣𝑖 = 𝑓 (∑ 𝑤

𝑗=𝑁

𝑗=1 𝑖𝑗

𝑣𝑗(𝑝𝑟𝑒𝑣) + 𝑤𝑖0) (2. 4) 

The weights connect the neuron of the previous layer with the neuron of the current 

layer, each neuron connect with each neuron of the next layer. The weight 𝑤𝑖𝑗 of a given 

layer is the value that connects the 𝑖𝑡ℎ neuron of the previous layer with the 𝑗𝑡ℎ neuron of 

that layer. The  𝑣𝑗(𝑝𝑟𝑒𝑣) is the value of the 𝑗𝑡ℎ neuron of the layer before the current layer. 

The 𝑤𝑖0, also known as bias, is a constant that acts in a helpful way to the model making it 

more flexible and finally the 𝑓 function is the activation function chosen for the model. 

2.2.3 Back Propagation Neural Network 

One of the most notable multilayer neural networks is the one that use the back 

propagation algorithm. The algorithm is feeding back to the network different values in 

order to adjust the various parameters of the network, mainly the weights. Those values 

usually are computed using the error functions, like mean squared function. According to 

[5] there are various steps to the algorithm. 

a. The first is to define the values that form the network, the weights can take random 

values but depending on what they take it can have an effect on the results. It is 

not recommended to initiate the weight with zeros or to very high values which 

makes the training process slower. 

b. The next step is the start of the first epoch, epoch is a run of all the values of a 

training set through the neural network. Two more values are needed to proceed 

the error E and the difference of weights from epoch to epoch Δ𝑤𝑖𝑗, both are 

initiated to zero.  

c. After each passing of an input value through the network the error is updated like 

following:  
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𝐸 = 𝐸 +
(𝑒𝑘(𝑝))

2

2
(2. 5)    

 The value added to the initial error is the mean squared error. 

d. When all values have passed from the network, the epoch has ended, we need to 

compute the gradient of the error function: 

𝛿𝑘 = 𝑓′(𝑦(𝑝)) ∗ 𝑒𝑘(𝑝) (2. 6)  

Where  𝑓 is the activation function. Then, the weight gradient is computed: 

𝛥𝑤𝑗𝑘(𝑝) = 𝛥𝑤𝑗𝑘(𝑝) + 𝑦𝑗(𝑝) ∗ 𝛿𝑘(𝑝) (2. 7)  

Next the gradient for the neurons is computed for the layer prior the outcome: 

𝛿𝑗(𝑝) = 𝑓′(𝑦(𝑝)) ∗ ∑ 𝛿𝑘(𝑝)𝑙
𝑘=1 ∗ 𝑤𝑗𝑘(𝑝) (2. 8)    

Given 𝑙 is the number of training sets. The weight errors are updated as following: 

𝛥𝑤𝑖𝑗(𝑝) = 𝛥𝑤𝑖𝑗(𝑝) + 𝑥𝑖(𝑝) ∗ 𝑑𝑗(𝑝) (2. 9)  

e. Finally, before a new iteration starts the weights are adjusted: 

𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝛽 ∗ 𝛥𝑤𝑖𝑗 (2. 10)  

 𝛽 is a value use to dictate the rate of learning. 

f. A stopping criterion is used in order to reach the better solution and to avoid 

infinite iterations.  There are some ways to stop the algorithm. First, have a 

predefined number of epochs. Second have a criterion where if the error is 

minimized, under a predefined threshold ϵ, the algorithm stops. Third is to take 

into account the results of two consecutive epochs, if the values of the errors have 

a small difference between the two iterations, under a predefined threshold ϵ, the 

algorithm is stopped since the results are not going to get much better. Lastly, using 

the same logic, end the loops if the weights remain relatively stable. 

On top of that a parameter which can act as the learning rate is β. When the rate is 

initiated in a small value close to zero the model can reach in a more accurate solution, 

however the process is slow and can be time consuming. If the rate is big, the model could 

have an unpredicted outcome away from the desired one or even lead to infinity. As a 



13 

 

result, each researcher has to initiate this value depending on the model into consideration, 

usually a small β is preferred. Furthermore, a model with multiple layers could have 

different learning rates in each layer and even the learning rate could be adjusted after 

each epoch. The reason for adjusting the rates is that each layer has a different speed of 

learning. The way the β is changed by a criterion whether the learning rate is adjusting the 

weights slow or fast, if slow the rate gets a higher value and a lower value if the change is 

considered big [5]. 

2.2.4 Support Vector Machines (SVMs) 

This machine learning algorithm is used for prediction and classification mainly. In 

the linear case the SVM performs classification by maximizing the margin, by margin could 

be referred to as the distance between two lines that can divide the data into separate 

cases [9]. In order to deal with nonlinear separable problems, the kernel functions can be 

used [10]. Applying a Kernel function the data can be moved to high dimensional spaces. 

Observations about flood prediction using support vector machines are stated in Reference 

[4]. This algorithm converts the input data into higher dimensions. The solution splits the 

space with a n dimensional function, this leads to many solutions which are not always 

optimal, the algorithms may fail to find the global minimum of the plane. SVM use functions 

known as kernels to create new dimensions, the values of the model are selected in a 

manner that minimizes the distance on the VC dimensions. In more detail:  

The model data are in pairs (𝑦𝑖, 𝑋𝑖), where (𝑖 = 1, … , 𝑚). The prediction functions 

take the following form: 

𝑦(𝑥) = 𝐹 (∑(𝛼𝑖 ∗ 𝑦𝑖  𝑌 (𝑥, 𝑥𝑖) + 𝛽)

𝑚

𝑖=0

) (2. 11) 

Where α𝑖  are positive constants and 𝑌 are the kernel functions, some examples of a 

kernel function: 

• The Linear Kernel:  𝑌(𝑥, 𝑥𝑖) = 𝑥𝑖
𝑇𝑥       (2.12) 

• The Polynomial Kernel, 𝑛 the power:  𝑌(𝑥, 𝑥𝑖) = (𝑥𝑖
𝑇𝑥 + 1)𝑛    (2.13)    

• The Radial Basis function kernel:  𝑌(𝑥, 𝑥𝑖) = 𝑒
−||𝑥−𝑥𝑖||

2

2

𝜎2       (2.14)        

Where 𝜎 is a constant. 
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If the activation function used maps the values to (-1) for negative values and (+1) for 

positive ones, the results of the network have the following characteristic: 

𝑦𝑖 ∗ (𝑤𝑇𝛷(𝑥𝑖) + 𝛽) ≥ 1 (2. 15)   

However, sometimes the above function may not always be true. A new parameter is 

introduced to avoid that. The following must be true: 

𝑦𝑖 ∗ (𝑤𝑇𝛷(𝑥𝑖) + 𝛽) ≥ 1 − 𝜁𝑖 (2. 16)   

Where ζ𝑖 ≥ 0 always. The minimization of the error is found with the below equation: 

𝑚𝑖𝑛𝑈(𝑤, 𝜁𝑖) =
1

2
𝑤𝑇𝑤 + 𝑑 ∗ ∑ 𝜁𝑖

𝑚

𝑖=1

(2. 17) 

By using 2.16 the LaGrange function is formed: 

𝐿(𝑤, 𝜁𝑖) = 𝑈(𝑤, 𝜁𝑖) + ∑[𝛼𝑖 ∗ (𝑦𝑖 ∗ (𝑤𝑇𝛷(𝑥𝑖) + 𝛽)) − 1 + 𝜁𝑖]

𝑚

𝑖=1

− ∑ 𝑡𝑖

𝑚

𝑖=0

𝜁𝑖 (2. 18) 

The α𝑖  and 𝑡𝑖 are factors that are used in the LaGrange formula, which have to be 

maximized. On the other hand, the rest parameters need to be minimized. Next, the partial 

derivative with 𝑤, β and ζ𝑖 is computed, then the result of the derivatives is set to zero to 

find the values that minimize those variables. The next formula is applied: 

𝜙(𝑥)𝑇 ∗ 𝜙(𝑥𝑖) = 𝑌(𝑥, 𝑥𝑖) (2. 19)   

Using the result of the partial derivatives and (2.18) the following formula is created: 

𝑚𝑎𝑥𝛼𝑖
𝑅(𝛼𝑖 , 𝑌(𝑥, 𝑥𝑖)) = −

1

2
∑ 𝑦𝑗

𝑚

𝑖,𝑗=1

∗ 𝑦𝑖𝑌(𝑥𝑗 , 𝑥𝑖)𝛼𝑗 ∗ 𝛼𝑖 + ∑ 𝛼𝑖  

𝑚

𝑖=1

(2. 20) 

The above equation leads to the optimal solution of the classification problem. 

In flood prediction, SVM is a popular model and has a great robustness, 

generalizability and efficiency. As stated SVM tries to minimize the structural risk. 

Moreover, it poses a great prediction algorithm for flood warning systems, sometimes 

better than the ones mentioned above. However, the cost is higher, and the results can be 

difficult to interpret. The least squares version of the algorithm has been utilized to improve 

its shortcoming. In conclusion, support vector machines are a powerful tool but need great 

resources to predict such phenomena, like floods. 
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2.2.5 Decision Trees (DTs) 

Decision Trees are among the popular algorithms in machine learning. In flood 

prediction the DTs are one of the top picks for prediction. They consist of the root and the 

branches, that is the reason they are called trees. When applied for classification purposes 

the algorithm tries to distinguish the values in separatable surfaces. The way decision trees 

look, work is easily understood with Figure 2-4 taken from [33]: 

 

Figure 2-4: Decision Tree deciding whether to play or not Badminton by using weather 
conditions restrictions [33]. The algorithm first checks whether it is cloudy or not, if not 

then checks if sunny and the amount of humidity or rainy and the wind speed. 

 

In non-discrete values a combination set of trees is used, like regression tree, the 

result can be visualized as a hyperplane [10] and we can control the computational cost by 

selecting a respective stopping criterion aiming to optimize the performance of it. The cost 

in time is considered low for this algorithm. The difficult part of tree algorithms is deciding 

the separating values for the predictors. A specialization of DTs is the random forest 

algorithm, which is popular, as well. Random forest is considered a good contender of SVMs 

but with better performance than SVMs [4]. A great variety of the decision trees have been 

applied to flood prediction like naive-bayes trees, random forest trees and more. 

Random Forest is an ensemble method, the models combined are decision trees, in 

ways that improve the accuracy of the prediction. The performance of the model is based 

on different theorems of randomization and is proven that the combination of the different 
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random models leads to lower error at total. The theory following was acquired from 

reference [29] which gives a detailed insight of the algorithm.  

The Random Forest is an ensemble method, its purpose is to lower the 

generalization loss function. The model introduces random configuration to a certain 

learning model, decision tree in this case, that later are combined into one outcome. The 

basic idea of how Random forests trees are combined can be pictured in Figure 2-5. 

 

 

Figure 2-5: Random Forest is a combination of a set of DTs as shown above. 

Given each model has a random initialization seed θ and the loss function used is the 

squared one the result after combination of each model is as follows: 

𝑦𝑓𝑖𝑛𝑎𝑙(𝑥) =
1

𝑀
∑ (𝜙𝜃𝑖

(𝑥))

𝑀

𝑖=1

(2. 21) 

Where M is the number of models combined and ϕ(𝑥) refers to the loss function of each 

randomized network. This will lead to a solution that considers all the separate models the 

same and consequently lead to an outcome that respects their loss functions the same. 

In practice, the algorithm starts with M decision trees that each one splits the data 

into trees that have a less or equal of a certain number of values on their leaves. As 

mentioned above the trees have different parameters that define their initialization. 

Output
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2.2.6 Adaptive Neuro-Fuzzy Inference Systems 

The ANFIS algorithm is based on the fuzzy logic, this logic associates some non-

numerical values like a language’s words to numbers. Next the rules describing the system 

are defined, those rules take the form of if-then functions. This algorithm uses functions 

known as membership directly connected to the fuzzy rules, they indicate the association 

of a certain point x to a rule. The next picture taken from [35] shows an example of a 

membership function: 

 

 

Figure 2-6: A membership function for weather classification [35]. By applying if- then rules 
the probability of an activity taking place can be predicted. 

 

The exact values of the intervals in Figure 2-6 are not clear since everyone has a 

different perception of temperature, that is the reason it is called fuzzy logic since the 

boundaries are not clear. In Figure 2-6, if we use T3 as a temperature we get that the 

atmosphere is 1 out of 1 Nominal but zero cool and warm. Another case is, for example, 

take a value between T1 and T2 that is closer to T2, then the membership function returns 

a values m1 (for cold) and m2 (for cool), where 0 < 𝑚1 < 𝑚2 < 1  meaning it’s closer to 

cool than cold. 

In more detail [34], the input data are inserted to a set of membership functions in 

order to find their belongingness to them, this step is known as fuzzification. Second, the 

system checks which of the fuzzy rules apply (inference). The creation of table relating 
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linguistic values with actual numeric values for all the membership functions helps as 

compute further values which show the relation between those functions, one way is by 

computing the union for each linguistic values which a rule exists. Lastly, the output of the 

rules is combined to calculate the output membership functions (defuzzification). After 

acquiring the degree of membership, the algorithm needs to provide a result through the 

fuzzy rules, one way is to get the value at the center of the defined area on the output 

membership function. A special form of ANFIS is the Tagani-Sugeno model, which provides 

an output for rule that have the form of functions. For example: 

𝑅𝑢𝑙𝑒1: 𝑖𝑓 𝑥 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠 𝑡𝑜 𝐴1𝑡ℎ𝑒𝑛 𝑦1 = 𝛼1
𝑇 ∗ 𝑥 + 𝛽𝑖 (1)  

Where 𝑦1 is a formula for a line. The way the rules are combined in TS model is simple like 

following: 

𝑦𝑜𝑢𝑡 =
∑ 𝐵𝑘

𝑁
𝑘=1 ∗ 𝑦𝑘

∑ 𝐵𝑘
𝑁
𝑘=1

(2. 22) 

Where 𝐵𝑘 is the vector that is created by the membership functions in fuzzification. 

Adaptive Neuro-Fuzzy Inference Systems neural networks consist of FIS (Fuzzy 

Inference Systems), ANFIS are considered an ensemble model using soft computing and are 

connected to the membership functions [13]. As ANNs do, ANFIS also try to imitate human 

learning through FIS and aim to find the missing fuzzy rules using the data available for the 

study. Fuzzy networks are a tool used mainly for identification. Moreover, they are good 

for nonlinear prediction, especially for extreme events of flood. The most common used 

ANFISs are based on the Tagani-Sugeno fuzzy systems which is a multi-layer neural network 

[12]. These networks have exceptional performance when used on complex procedures 

and a great learning ability. In flood prediction practice the low cost in time, the less 

complex implementation and having an acceptable generalization ability makes them a 

popular choice among researchers[4]. It is a model more frequently used for short-term 

flood prediction, though. 

2.2.7 Gradient Boosting Regression 

[28] In neural networks there are various methods that can combine the available 

resources leading to ensemble methods. One of those methods is the gradient boosting 

method, which most of the times combines decision trees. The essence of this solution is 

creating, after each passing iteration, a new improved network. At first the model produces 



19 

 

poor results but after each iteration the model becomes more accurate. This method uses 

the loss function to create new networks and is considered a supervised neural network. 

The way gradient boost is initially parameterized could lead to good results. However, there 

is no way knowing which loss function is suitable and each experiment has its own most 

suitable one. The difference with common networks is that gradient boost uses a base-

learner ℎ(𝑥, θ).  After each iteration a base-learner is added to the model to correct the 

deviation from the desired output. 

 

 

Figure 2-7: Example of how gradient boost base learners work [36]. 

 

  Three rounds of how gradient boost operates, creating base learners after each 

epoch can be seen in Figure 2-7. The purpose of the algorithm is to create better base-

learners using the negative gradient of the error function, in the direction that the error is 

minimized. The neural networks using the gradient boosting machines have provided 

exceptional results in solving problems and this is also the case for flow discharge 

prediction for my datasets. The gradient boost source behind its implementation is by 

Friedman, who gives a good explanation in his paper [30]. 
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2.2.8 K-Nearest Neighbor Algorithm 

The nearest neighbor algorithm is considered a greedy solution, since in every step 

we choose the closest values to a certain point without knowing anything else. In this study, 

the algorithm is used to create a prediction line. The algorithm is simple, it may use 

different K values. The K values define the number of neighboring observations needed to 

be considered to find the predicted value. Given a set of data X, y, these sets are split into 

training and test data. The training data can be represented by points in the n dimensional 

space that they use. The algorithm given those set of points can create a regression line. 

The way k-NN create the prediction line is using, for example if in the two-dimensional 

space, the k nearest values to the current X value. The algorithm starts computing for the 

set of values in interest for each x the corresponding y creating a line. The distance is 

computed using different methods like Euclidian or Manhattan distance [37]. The 

Manhattan distance can be computed as follows: 

𝑑 = (∑|𝑥𝑖 − 𝑦𝑖|
𝑘

𝑘

𝑖=0

)

1
𝑘

(2. 23) 

The following figure shows an example of regression line created by k-nearest neighbor 

algorithm. 

 

Figure 2-8: An example of a k-NN regression line. Th line is created using the distances of 
the existing instances on the surface computing the distance for each x value. Figure from 

[37] 
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For each X of the available data span, the KNN creates a line using the nearest neighbor 

algorithm eventually leading to a regression line like shown in Figure 2-8. 

2.3 Short Review 

 The flood prediction models consider various performance parameters like 

accuracy and generalizability. Most studies use the route-mean-squared error and the R2 

parameter to evaluate the proposed models. Researchers seek to lower, as close to zero as 

possible, the RMSE and to keep R2 above 0,8. Moreover, the speed the results can be 

processed, even with big data, is crucial. More specifically, if the proposed system is 

intended to be a warning system, then time is of great importance. According to Reference 

[4] ANNs are a great tool for flood prediction even for other study areas different from the 

initial study’s one. Back propagation performs with great complexity, though. Various 

Decision Trees are used with ADT outperforming the rest. Furthermore, according to [4] 

SVMs are promising for rainfall-runoff with small lead times and hybrid ones are good even 

with bigger lead times. Noticeable good results are provided by models that contain ANFIS 

in them. In general, hybrid methods can improve the accuracy and other performance 

indices. Learning algorithms that proved to be helpful to my study are explained above like 

gradient boost regression and nearest neighbor regression. 
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CHAPTER 3 DATA AND TOOLS USED 

3.1 Introduction 

The choice of the study area is one of the most important aspects of this study. Some 

areas are more likely to experience some form of flood than others. The area I chose is in 

Europe, my criteria for choosing this area is whether this place is prone to flooding and 

there are enough data for studying. The following map shows the average rainfall for the 

European continent [16]: 

 

 

Figure 3-1: Average rainfall throughout Europe [16], area with darker blue receive more 
rain. 

As shown in the above map (Figure 3-1) the areas around the alps in the north borders of 

Italy seem to receive high amount of rainfall. Taking into consideration that, the study area 

I chose is the Po River catchment, this plain is sinking in some areas faster and in others 

slower [17]. Furthermore, after human intervention the flood risk have lowered for some 

area but got higher for lower parts of the basin. Located in Northern Italy this river is 

surrounded by high mountains and is provided with high amounts of precipitation 

throughout the year, there are two risky periods, that the level of the river gets higher, 

autumn due to rain and spring because of the melting of snow. The data was collected from 
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various climatological sites and the data was adjusted to a certain time period from the 

available data. Python was the programming tool used and some of the utilities are 

explained in this chapter. 

3.2 Choice of Study Area and Data Collection 

The data are provided by two websites one for discharge data and one for 

precipitation. The stations used were carefully chosen, in order to have a big portion of the 

Po River basin covered. The main basin consists of a plain which is heavily populated and 

industrialized. At first, we requested the discharge data from the global runoff data center 

for the entirety of the Po basin and we received discharge information for them, but we 

were focused on the ones regarding the main river of the basin. On the main river, there 

were three stations Piacenza, Boretto and Pontelagoscuro stations. Among the files we 

received from the global runoff center there was a geojson file containing the basin area of 

each station. By running a python script, I created the figures as shown below that show 

the catchment area of each station. 

 
Figure 3-2: Piacenza hydrological station and its catchment area (42.030,0 𝑘𝑚2) 

 
Figure 3-3: Boretto hydrological station and its catchment area (55.183,0 𝑘𝑚2) 
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Figure 3-4: Pontelagoscuro hydrological station and its catchment area (70.091,0 𝑘𝑚2) 

Figure 3-2 is about the Piacenza hydrological station, Figure 3-3 is for the Boretto station 

and Figure 3-4 is regarding the Pontelagoscuro station. The blue area represents the 

catchment area of each station respectively. 

The next step was collecting precipitation data around the area. The website I used 

to collect the rainfall data is the European’s Climate Assessment and Data [16]. From the 

stations available, I found the ones located inside the Po basin before reaching the 

hydrological stations. There are many stations available for the region. Unfortunately, most 

stations provided data for a different period of time than the discharge data and we were 

led to choose the following stations that appear on the map as the ones for my study. In 

Figure 3-5, the map shown visualizes the study area and the stations used. 

 
Figure 3-5: This map contains three overlays, the blue area represents the catchment area 
of Pontelagoscuro station, the red dots shows the hydrological station in Po River and the 
yellow triangles show the coordinates of the meteorological stations. 
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Those stations used in my study are Turin, Milan, Mantua, Ferrara and Lugano 

station, as a good addition to them there are the Bologna station placed on the edge of the 

basin towards the southeast edge,  the Verona Villafranca station that is placed close to 

Mincio River which eventually meets the Po River near Mantua and the last station is the 

Monte Cimone one which is the highest peak of the north Apennine Mountains [22].  

The period of the study depended entirely on the available values for the discharge 

data. The available discharge datasets for the station on the Po River were three. Those 

had daily discharge mean observations from 1980 till 1986. The precipitation observations 

spanned for a greater time period, so I isolated the values from 1980 to 1986. The following 

figures portray the visualization of the discharge data in comparison to the rainfall data 

(rain values are on millimeters). The rainfall for some of the stations from 1980-86 is 

presented next. 

 

Figure 3-6: The above graph represents the daily precipitation data of the Ferrara 
meteorological station and the below the Mantua's station observations. The dates are 
represented on the X axis and the amount of rain in millimeters (mm) is on the Y axis. 
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Figure 3-7:The above graph represents the daily precipitation data of the Verona 
meteorological station. The dates are displayed on the X axis and the amount of rain in 
millimeters (mm) is on the Y axis. 

The graphs above (Figure 3-6, Figure 3-7) show the daily rainfall accumulation in 

millimeters, one millimeter is one liter of water per square meter. The Y axis is for the 

rainfall accumulation in millimeters and the X axis contains the dateσ from 1980-86. Among 

the available meteorological stations Lugano receives significantly more rain than the other 

stations, Ferrara and Mantua stations receive the least amount of rain. The discharge 

volume for the Pontelagoscuro station is shown in Figure 3-8 in Y axis is for the discharge 

volume in 𝑚/𝑠𝑒𝑐 and the X axis contains the dates from 1980-86. 

 

Figure 3-8: Discharge Data in (𝑚3/𝑠𝑒𝑐) for the Pontelagoscuro station for the time period 
1980-86. The peak volume is a little more of 6000 (𝑚3/𝑠𝑒𝑐). 
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There are not many obvious conclusions from the visual representations. One 

conclusion visible from the graph is that during the spring and autumn months the flow 

seems to peak. This is well pictured before and after the winter of 1982-83. One other 

obvious observation is that during the second half of 1985 there is an absence of rain in the 

three station of Figure 3-6 and Figure 3-7 resulting in low discharge flow for that specific 

time period as shown in Figure 3-8. Last, in Figure 3-7 Verona’s peak daily rainfall is around 

200 millimeters and in Figure 3-8 a peak of the river flow is observed. 

3.3 Programming Tools and important Libraries for the study 

The programs of the study were developed in a windows environment using an 

environment in anaconda prompt created for the thesis. The programming language used 

for the study is python. My decision to choose this language was that there are many 

libraries available for data processing and application of machine learning algorithms. The 

following libraries were namely the most important ones used in my study sk-learn, 

matplotlib, geojson and Descartes. 

The following part explains the way the maps were created using python. The data 

available are in a raw state meaning they have the form of a txt file. For that purpose, the 

open () function was used to assess the content of the file. After opening the file, the 

program reads line by line the contents with the readline () function and split the contents 

with the split (``) function and appended the contents needed to a table with append (). 

Using matplotlib’s functions, pyplot, I was able to create the plots visualizing the data. Since 

all the data files were in txt format, the procedure was repeated for each file. 

The parsing and visualization of the geojson files was more complex. Python provides 

a function to read those types of files, the geojson.load (). The features of the file are in 

fact coordinates and form a polygon on the map. In order to show the result on a real map 

the functions from basemap and PolygonPatch (descartes) libraries were needed. 

3.3.1 Data Representation: 

 

The data acquired were in .txt format so they were read in a manual way line by line 

with the help of readline() and line.split functions. The precipitation variables timeline was 

different from the discharge variable, so the data not needed was overlooked. Also, there 

was also a small percentage of missing values, which were replaced with zeros. The rainfall 
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data were represented by integer positive numbers with 1 equaling to 0.1 millimeter (𝑚𝑚) 

of rain, so for the study all the rainfall data were multiplied with 0.1 for more accuracy. In 

addition, the values were plotted with the help of the matplotlib library, using the pyplot 

functions. This procedure was followed for all the available rainfall data. As of the discharge 

data the values were read without making any adjustments to them, the values were 

measured in 𝑚3/𝑠𝑒𝑐. 

3.3.2 Data Training: 

 

Python offers various libraries suitable for learning processes, my choice was the 

scikit-learn one which was used for prediction purposes. The functions were used to create 

regression lines and project the data in two-dimensional space. Scikit-learn library gives to 

the user the freedom to have different parameters for the algorithms. Moreover, the 

functions used in this study are mentioned below: 

First, the multi-layer perceptron algorithm (MLPRegressor()) was applied using a 

method that finds the steepest descent. The ReLU activation function was used. The 

algorithm run for 1000 iterations. 

Second, the gradient boosting regression (GradientBoostingRegressor()) was 

chosen with 1000 stages. The algorithm had the following restrictions: the data could be 

modeled with a minimum five per split and the height of the tree derived from it could 

reach up to seven. The error function optimized was the mean squared error and the way 

the divisions of the data were evaluated was as well with the MSE.  

The third algorithm applied was the random forest (RandomForestRegressor()). The 

number of decision trees was 1000, as well, but the depth of the trees reached up to 

twenty-two deep. The functions used the squared error to optimize the trees, there are no 

limitation of how many nodes a tree might have. On the same note the extra tree regressor 

(ExtraTreesRegressor()) was applied. 

The forth algorithm used is the k-nearest neighbor algorithm 

(KNeighborsRegressor()). The algorithm used the 1 nearest neighbor to create the 

regression line, since it provided the best results compared to using 1 to 10 neighbors.  
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Lastly, two ensemble methods were used to combine the above algorithms for better 

performance. The first was the voting regressor (VotingRegressor()) that takes as input 

methods to combine, in this study it combines the above three algorithms plus the extra 

tree regressor. This algorithm creates the mean regression line of all the lines inserted. The 

second ensemble method was the Stacking Regressor (StackingRegressor()), that used the 

same inputs as the voting one. The difference with it is that stacking algorithm uses the 

sum of the results that are inserted as input.  
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CHAPTER 4 APPLICATION OF MACHINE LEARNING ALGORITHMS IN PO 

RIVER, ITALY 

4.1 Introduction 

This chapter is the experimental part of the thesis, we perform some tests on the 

data available and evaluate the results. Moreover, the datasets are inserted in various 

machine learning algorithms to predict the streamflow level of the Po River for the 

hydrological station near the city of Ferrara. The available data are from 1980 to 1986, the 

precipitation data were taken from various stations scattered in the Po basin. The distance 

of the meteorological stations from the gauge station differs, so the way they affect the 

outcome differs as well depending on the time series chosen. The time series for each 

station was found through trial and error, for most of the time seven days precipitation 

observations prior to the discharge ones were used but with different lead times, 

depending on the distance from the discharge stations. Going through reference [4] , we 

were able to find what researchers use more frequently for daily discharge prediction and 

intergrade some traits in the study. Among those the multi-layer perceptron, back 

propagation neural networks, decision trees, K-NN regression and ensemble methods were 

the ones that interested me the most. My model used the observations to create a 

regression line that approximates the real observations, the way a certain amount of 

precipitation on a meteorological station corresponds to the discharge values measured. 

The most important part is the model to predict a rise that may occur and warn the area. 

4.2 Evaluation of the Neural Networks: 

The next step which needs explanation after describing the theory of the algorithms 

used in the experimental part of the study, are the error indices needed to evaluate the 

results of the networks. The ones used during this study were the mean-squared error 

(MSE), the root-MSE and the 𝑅2. The following equations refer to those indices: 

𝑀𝑆𝐸 =
(∑ (𝑌𝑝𝑟𝑒𝑑𝑖 − 𝑌𝑖)

𝑚
𝑖=1

2
)

𝑚
(4. 1) 
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𝑅𝑀𝑆𝐸 = √
(∑ (𝑌𝑝𝑟𝑒𝑑𝑖 − 𝑌𝑖)

𝑚
𝑖=1

2
)

𝑚
(4. 2) 

 

𝑅2 = 1 −
∑ (𝑌𝑖 − 𝑌𝑝𝑟𝑒𝑑𝑖)

2𝑚
𝑖=1

∑ (𝑌𝑖 − 𝑌)
2

𝑚
𝑖=1

(4. 3) 

Where 𝑚 is the total number of predicted values, 𝑌𝑝𝑟𝑒𝑑𝑖 is the predicted value from the 

model, 𝑌𝑖 is the real value and 𝑌 is the mean value of the real 𝑌  variable. 

Those are among the main methods used in flood prediction literature to evaluate 

the prediction models. The RMSE and MSE need to be minimized and the 𝑅2 needs to take 

a value as close to 1 as possible. In regression lines, the RMSE shows how far from the 

actual values the prediction line produced is from the regressor and the 𝑅2 indicates how 

much of the variance of the model is explained or how many points (percentage) are in 

proximity to the regression line. 

4.3 Experimental Results 

The procedure of experimenting on the given datasets was mostly of trial and error 

since the data available have their own way to influence the results. The precipitation data 

were derived from seven different meteorological stations located near the Po River basin, 

as mentioned in 3.2. The target of our research is the streamflow prediction on the 

Pontelagoscuro Hydrological Station, daily mean discharge volume in 𝑚3/𝑠𝑒𝑐. The rainfall 

data used on the model were transformed using a mean value of a set of daily observations 

with a time lag, linked with the distance of the station that produced the rainfall 

observations from the hydrological station. The data, after, were inserted into two tables 

having 𝑋 as an input and 𝑦 as the target. Moreover, both tables were transformed to be 

introduced to the models used, two transformation methods were tested the standard 

scaler and the quantile transform. Eventually,  𝑋 and 𝑦 are split into train and test datasets 

and are inserted accordingly to predict the mean discharge data. The models used are the 

MLP regression, the gradient boost regression, random forest regression, k nearest 

neighbors’ regression, an ensemble of those methods with the help of voting and stacking 

regressors. Lastly, for each model the MSE, RMSE and 𝑅2 are calculated to validate the 
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outcome, the results are plotted in an understandable way to visualize the results and an 

explanation is given for the results. 

4.3.1 Configuration of Data 

The data available needed to go through transformation for them to make sense to 

the model and produce more accurate results. The delays we concluded with are portrayed 

in the tables below. First, we need to mention that the data used refer to 1980-86 daily 

precipitation data, since the target discharge data available refer to that period. The delays 

are chosen driven by the distance from the discharge station. The exact days averaged were 

found through trial and error but on average they are weekly means. The results could be 

explained since the biggest delay is for Lugano station which is the furthest away from the 

target station and the river goes through many dams to reach the main river. On the other 

hand, the Ferrara and Mantua stations which are located the closest to the hydrological 

station have the least amount of delay. The delay and averages multilayer perceptron had 

been slightly different from the delay gradient boosting and random forest algorithms had, 

the first table below is for the MLP and the second for the rest models configurations. 

However, the models used the same inputs to create the predictions for comparison. 

Precipitation 1980-86  

Station Days Averaged Delay (Days) 

Ferrara T[k − 1] + ⋯ + T[k − 5]

5
 

𝑇[𝑘 − 1] 

Lugano T[k − 6] + ⋯ + T[k − 12]

7
 

T[k − 6] 

Mantua T[k − 1] + ⋯ + T[k − 8]

8
 

T[k − 1] 

Milan T[k − 2] + ⋯ + T[k − 8]

7
 

T[k − 2] 

Monte Cimone T[k − 3] + ⋯ + T[k − 7]

5
 

T[k − 3] 

Bologna T[k − 1] + ⋯ + T[k − 5]

4
 

T[k − 1] 

Verona T[k − 2] + ⋯ + T[k − 7]

6
 

T[k − 2] 

Target Discharge T[k] T[k] 

Table 4-1: Delay function for prediction functions. 
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The inputs, after inserting a time lag (Table 4-1), needed to be further configurated, 

so they are in the same scale as the output. The data consist of positive values, since they 

are hydrological observations, so their scaled value would range from zero to one and this 

is achieved with the help of, first with a standard scaler. The standard scaler formula is as 

follows: 

𝑋𝑠𝑡𝑎𝑛𝑑 =
𝑋 − 𝑋

𝜎
(4. 4) 

Where 𝑋 is the mean value of 𝑋 computed and σ is the standard deviation of 𝑋 as follows: 

𝑋 =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
(4. 5) 

𝜎 = √
∑ (𝑥𝑖−𝑥)2𝑛

𝑖=1

𝑛
(4. 6)   

Given 𝑛 is the number of values of X. Second, the quantile transformation was used, which 

transforms the data in a way that they follow a gaussian distribution or a uniform one. The 

uniform distribution was used since the data have a certain numerical range. The 

transformer uses a density function which indicates the probability of the value being left 

or right of a specific number of the range. 

4.3.2 Customization of Models  

in this chapter, we will mention the variables that were used to form the models 

used. We are dealing with numerical-time values, so we tested various regressors using 

different configurations that lead us to an optimal solution with the available data. The 

methods used were the multilayer perceptron, the gradient boost algorithm, the random 

forest algorithm, the extra trees, nearest neighbor regressor and a combination of the 

produced results. 

In the section 2.2.2 and 2.2.3, the MLP and the back-propagation algorithms were 

explained. In this session, we will analyze the parameters that defined the MLP regressor 

for my study. The regressor uses the BPNN to train the model with the help of ReLU 

activation function, the maximum number of iterations was 1000, the number of hidden 

layers was one having 100 neurons and as of the error function the mean squared one was 

used. Last, the learning rate was stable and equal to 0.0001. 
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In section 2.2.5 the random forest algorithm was explained. In practice the 

parameters used were the following. The separate random trees generated were 1000, the 

maximum depth of a decision tree was 20 and the stopping criterion was the mean squared 

error. On the same page another ensemble method was applied the extra trees regression 

that had the same configurations with the random forest one. 

The 2.2.6 chapter mentions the theory of gradient boost regression. In practice, for 

the purposes of the experiment we conducted the customization of GB: there were used 

1000 iterations with maximum depth of 7 and minimum samples per batch 5. In more 

detail, the model was optimized one thousand times and the decision trees had a depth of 

seven reaching up to five values in each branch. The K-nearest neighbor regressor was 

implemented, mentioned in 2.2.8, for this study the 1 nearest neighbor was used.   

Last, two ensemble methods were used which combined the results of the above 

regressors, with them being the voting and the stacking regressors. The way voting 

regressor works is simple, it takes the mean of the regression lines and combines them into 

a new regressor which is the ‘mean’ of the regression lines inserted. The stacked one is a 

bit more complicated. It creates the linear combination of the regression lines that are 

validated based on their predicting ability and determine the parameters of the neural 

network according to the result. 

4.3.3 Validation Results 

The next step is validation of the results. The models create a regression line based 

on which the predicted output 𝑦 is calculated. The predicted values are compared with the 

original test values with the 𝑀𝑆𝐸, 𝑅𝑀𝑆𝐸 and 𝑟2 indices. The algorithms were chosen 

consulting the literature and what is more fitting for the data. Furthermore, to improve the 

model several parameters were taken into account and the difference of the results can be 

seen below. 

The process of reaching more accurate results can be seen in the following results, 

coming from the execution of the program while using different parameters. In the 

beginning the results of the data, while being split 80% train and 20% test, are shown: 

Uniform Transform; Data Split: 0.80 - 0.20; R2 score 

The r2 Score for MLP 0.306203723594219 
The r2 Score for GB 0.7318219826038943 
The r2 Score for 0.6999271782860171 
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The r2 Score for 0.6594612888268778 
k = 1 The r2 Score for KNN 0.5223969992914699 
Stacking Regressor: The r2 Score is 0.7565549711212558 
Stacking Regressor: The MSE Score is 0.003962327906806834 
Stacking Regressor: The RMSE Score is 0.0629470246064644 
The number of instances exceeding the upper limit are 10 the model 
predicted 18 a percentage of 55.55555555555556 % 
 

Standard Scaler; Data Split: 0.80 - 0.20; R2 score 

The r2 Score for MLP 0.41629518138777644 
The r2 Score for GB 0.7296990778641429 
The r2 Score for ET 0.7002618044344966 
The r2 Score for RF 0.6572784286699199 
k = 1 The r2 Score for KNN 0.6002596114547485 
Stacking Regressor: The r2 Score is 0.758781788552696 
Stacking Regressor: The MSE Score is 0.003968306874375394 
Stacking Regressor: The RMSE Score is.06299449876279192 
The number of instances exceeding the upper limit are 11 the model 
predicted 18 a percentage of 61.111111111111114 % 
 

The above results show that the performance of the models used are good. 

However, the MLP score is low, but the standard scaler improved the results of it. The 

stacking regressor is used to ensemble all the results and the score of the percentage of 

peak values predicted comes from it. The prediction of the peak value is neither bad nor 

good, but it needs improvement. Next, the data were split 75-25 train-test data giving the 

following results. 

Uniform Transform; Data Split: 0.75 - 0.25; R2 score  

The r2 Score for MLP 0.4296309061219866 
The r2 Score for GB 0.750234514827764 
The r2 Score for ET 0.7028527751944214 
The r2 Score for RF 0.6641626772966324 
k = 1 The r2 Score for KNN 0.5297936565288037 
Stacking Regressor: The r2 Score is 0.7590492104621834 
Stacking Regressor: The MSE Score is 0.004051510612347564 
Stacking Regressor: The RMSE Score is.06365147769178311 
The number of instances exceeding the upper limit are 17 the model 
predicted 21 a percentage of 80.95238095238095 % 
 

 

 

Standard Scaler; Data Split: 0.75 - 0.25; R2 score 

The r2 Score for MLP 0.5129347073208046 
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The r2 Score for GB 0.7389924588667269 
The r2 Score for ET 0.6937957501053675 
The r2 Score for RF 0.6616000742441872 
k = 1 The r2 Score for KNN 0.5874535414236972 
Stacking Regressor: The r2 Score is 0.7600366490798802 
Stacking Regressor: The MSE Score is 0.00413344068441808 
Stacking Regressor: The RMSE Score is 0.06429183995203497 
The number of instances exceeding the upper limit are 16 the model 
predicted 21 a percentage of 76.19047619047619 % 
 

The results are more accurate than using the 80-20 % split. The standard scaler 

works better for KNN and MLP, while the uniform distribution gives better results for the 

decision trees algorithms. Overall, the ensemble method has similar results for both 

transformations. However, the uniform one seems to predict slightly more accurately the 

extreme values. Next is the final configuration on the split of data, using the 70-30% split 

the models can predict better and was the configuration we focused most. 

Standard Scaler; Data Split: 0.70 - 0.30; R2 score; Ensemble without KNN 

The r2 Score for MLP 0.49642521103655524 
The r2 Score for GB 0.7473807834788602 
The r2 Score for ET 0.7229112745651889 
The r2 Score for RF 0.6873840555854442 
Stacking Regressor: The r2 Score is.7666453164903837 
Stacking Regressor: The MSE Score is 0.004351310592275981 
Stacking Regressor: The RMSE Score is 0.0659644646175195 
The number of instances exceeding the upper limit are 24 the model 
predicted 28 a percentage of 85.71428571428571 % 
 

Standard Scaler; Data Split: 0.70 - 0.30; R2 score; Ensemble without MLP 

The r2 Score for GB 0.7473807834788602 
The r2 Score for ET 0.7229112745651889 
The r2 Score for RF 0.6873840555854442 
k = 1 The r2 Score for KNN 0.6324709585915951 
Stacking Regressor: The r2 Score is 0.7838686996774168 
Stacking Regressor: The MSE Score is 0.004189022339289383 
Stacking Regressor: The RMSE Score is 0.06472265707840943 
The number of instances exceeding the upper limit are 25 the model 
predicted 28 a percentage of 89.28571428571429 % 
 

The above results show the difference of having an ensemble method with or 

without KNN and MLP. Starting, it is already obvious that the overall model seems to 

produce better results than 0.75 - 0.25 and 0.8 - 0.2 splits. The error scores have been 
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improved and the peak flows are predicted with a significantly better accuracy. The model 

without MLP produced better results. Finally, the results of using all the methods 

ensembled are shown: 

Standard Scaler; Data Split: 0.70 - 0.30; R2 score 

The r2 Score for MLP 0.49642521103655524 
The r2 Score for GB 0.7473807834788602 
The r2 Score for ET 0.7229112745651889 
The r2 Score for RF 0.6873840555854442 
k = 1 The r2 Score for KNN 0.6324709585915951 
Stacking Regressor: The r2 Score is 0.7832741573404219 
Stacking Regressor: The MSE Score is 0.004197684240948026 
Stacking Regressor: The RMSE Score is 0.06478953805166407 
The number of instances exceeding the upper limit are 25 the model 
predicted 28 a percentage of 89.28571428571429 % 
 

Uniform Transform; Data Split: 0.70 - 0.30; R2 score 

The r2 Score for MLP 0.3975139623258548 
The r2 Score for GB 0.7602554492416338 
The r2 Score for ET 0.71536703476207 
The r2 Score for 0.6876049920014204 
k = 1 The r2 Score for KNN 0.526204948783872 
Stacking Regressor: The r2 Score is 0.7690127944796455 
Stacking Regressor: The MSE Score is 0.004485936533887677 
Stacking Regressor: The RMSE Score is 0.06697713441083962 
The number of instances exceeding the upper limit are 24 the model 
predicted 28 a percentage of 85.71428571428571 % 
 

The above are the final experimental results. The standard scaler performs better 

for the available data, the error indices have identical values for the standard scaler 

meaning MLP may not be needed to be ensembled with the other models. The uniform 

distribution gives better results for the decision trees but overall, the standard scaler gives 

the best results. The prediction of the times the flow exceeds the threshold seems 

significantly more accurate reaching close to 90% accuracy.  
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The following are the results for each neural network run: 

 MSE RMSE 𝑹𝟐 

MLP 0.01105 0.1051 0.5302 

GBR 0.00465 0.0682 0.7603 

ET 0.00445 0.0667 0.7229 

RF 0.00515 0.0718 0.6876 

KNN (K =1) 0.00939 0.0969 0.6325 

V(ALL) 0.00470 0.0685 0.7391 

S(ALL) 0.00420 0.0647 0.7832 

Table 4-2: Evaluation results for each model, error indices values. 

 

The results in Table 4-2 indicate that strength of each neural network tested. 

Among those the best method is the gradient boosting regression with the best scores in 

𝑀𝑆𝐸,𝑅𝑀𝑆𝐸 and 𝑟2 error measuring parameters, while the worst performing model was 

the multi-linear perceptron. However, each individual model is needed to achieve the best 

result that comes from the stacking regressor, which combines every other model and has 

the best result of the two ensemble models. The voting has relatively good results but not 

as good as the gradient boost outcome, that is not very surprising since the voting regressor 

is formed from the means of the other models. We can notice the difference between the 

GB, ET and RF algorithms which are ensemble methods whilst the MLP using BPNN is not. 

The ensemble methods had a significantly better accuracy compared to the single ones 

making them more suitable for the purposes of discharge prediction. 

In general, the outcome could always become better, compared to results found in 

the literature the results are in the low end of accuracy but could be considered relatively 

good. However, the scores are not what defines the model, since the biggest part is 

interpreting them to find a logical explanation to them.  The precipitation data available for 

this study are few since the timeline of the experiment is from 1980-86. On top of that the 

Po River consist of a set of rivers that spring from tall snowcapped mountains that during 

the spring months melt giving rise to the level of the river. In general, given the data 

available and the time span of the data the results could be considered satisfactory. 

A visual representation of the error indices for comparison purposes Figure 4-1: 
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Figure 4-1: Visual representation of Table 4-2, error values representation. 

 

In conclusion, it is noticed in Figure 4-1 that the ensemble methods were able to 

predict with better accuracy the fluctuations of the discharge level. The original data use 

an optimized time lag, so the way to improve the outcome is to find the correct 

parameters that define the models. This could be considered achieved in a great amount, 

since the model reached 0.78 r squared value, 78% of the variance is explained and the 

peak flow was predicted for a big percentage of the observations. 

4.3.4 Visualization of the Results 

Finally, for a better understanding of the results we need to show the predicted 

values compared to the original test dataset in a visual way. It is not a way to validate our 

results, but it is a way to process better the results. In the first page, the results of MLP, 

GBR, RF and are visualized. The X axis represents the dates, starting from 0 which is the first 

day predicted till more than 600 days tested, the Y axis represents the discharge volume or 

flow of the river. Also, for visual purposes a green line was added, this line represents a 

threshold that indicates whether the discharge shows signs of peaking. Those signs could 

warn about a situation where the river could overflow in some areas. Despite the difference 

in accuracy, both MLP and GB seem to notice that the discharge is peaking but most of the 
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time they fall a little short on that prediction. The random forest regression is shown next 

which is an ensemble decision tree method. These methods seem to pick up the sudden 

rise of the river. However, the accuracy is not as good as the gradient boost algorithms.  

Last, the ensemble outcome of the above methods with the help of voting and 

stacking regressor are visualized. The ensemble methods were used to create a result that 

combines each model, they provide results that are better than most of the simple 

methods. Those ensemble methods seem to predict with good accuracy the peak flows, 

with stacking regression being slightly closer to the actual values of the flow. The algorithms 

need many data, from many years, to predict with the higher accuracy possible, that is one 

reason that many times we fail to predict a peak flow. There are many reasons that could 

probably influence the model to provide better results, some other variables that could be 

considered are the seasonality of the flow which comes from the melting of the snow high 

in the mountains or comes from intense rainfall in areas where we failed to acquire 

precipitation data, since there are areas in the Po basin that we failed to acquire data for 

the years 1980-86. In the following pages, the predicted values of the models are displayed. 

The below graphs Figure 4-2, Figure 4-3 and Figure 4-4 show the result of each 

algorithm applied, on the X axis the number of the random test samples is shown and in 

the Y axis indicates the discharge in 𝑚3/𝑠𝑒𝑐. The green line indicates a threshold for 

possible flood events. The results have the following order 1st the MLP algorithm, 2nd  the 

gradient boost, 3rd the random forest, 4th the voting regression and 5th the stacking 

regression. 
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Figure 4-2: MLP, GBR and RF visual representation of the regression models. Red 
represents the predicted values and blue are the actual values.  
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Figure 4-3: Voting Regression visual representation, the mean values of MLP, GBR, RF 
ensembled by voting method. 

 

 

Figure 4-4: Stacking Regression visual representation. The method that provided the best 
results. Using RF, MLP, GBR, ET and k-nearest neighbor regression models. 

 

The most important thing in a flood warning system is to be able to measure when a 

peak flow might be observed. The models seem to pick most of them. Also, it is very 

noticeable that despite predicting a peak flow most of the times, the models show values 

quite far from the original values. The accuracy could be improved using more precipitation 

data, one reason we believe that is because the catchment of Po River is 74.000 km with a 
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lot of the landscape being mountainous, meaning the data available for the specific time 

period are too few and scarce to create better prediction results.  
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CHAPTER 5 CONCLUSION AND REMARKS 

 

In this chapter, we will summarize what was learned during this study and our 

understanding on the experiments taking place in the thesis and from other studies. 

Dealing with natural disasters is not an easy feat but being able to predict them, even with 

some error, is going to protect lives and minimize the cost they bring with them. Between 

the natural disasters, floods are the most common one around the world and amount for 

most of the cost in human lives and the economy. During the last decades, many studies 

have tried to create early warning systems to minimize the consequences of this event. In 

flood research there are two big categories for predicting an event of flooding, the physical 

model and the data-driven one. Physical models are complicated, require good knowledge 

of the geological characteristics of the study area and have large computational cost. On 

the other hand, data-driven models mostly rely on rainfall-discharge data from stations, 

satellites etc. Requiring fewer parameters and less knowledge of the area makes them less 

expensive economically and in computational cost, with good generalization ability.  

However, creating a warning system with good generalization ability is difficult most of the 

time, so researchers should take each study area’s physical traits into account to create a 

more accurate model. Creating a physical model requires good knowledge of geology and 

to accumulate a lot of geospatial data from the study area making it hard. Those were the 

reasons we mainly focused on creating a data-driven model. 

Neural networks along with machine learning tools can create powerful prediction 

systems. During the last decades ML has drawn the interest of researchers in the flood 

prediction field. For this thesis we studied several algorithms that have been proven good 

in predicting the discharge volume of rivers and applied those algorithms on data taken 

from the Po River valley. Initially, a study area needed to be defined, after researching the 

available options and the actuality of getting data from reliable sources we decided to 

choose this study area for our thesis. The data were daily observations from European 

Climate Assessment & Dataset and The Global Runoff Data Center. The software used was 

anaconda for windows using python libraries, which provide good implementation of 

machine learning algorithms. 

For our experiments we used neural networks and machine learning algorithms. Those 

were MLP, Gradient boost, decision trees (Random Forrest), nearest neighbor regression 
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and ensemble methods. The criteria used to evaluate the models were the Mean Squared 

Error, the Root-MSE and the 𝑅2 error value.  The ensemble methods along with gradient 

boost regressors performed the better. More specifically, the best models were the 

gradient boost regression scoring a 𝑅2 value of 0.760 and the stacking regression with 

0.783. In the visual representation, the peak discharge of the river can be seen and how 

close our prediction has managed to model it. 

5.1 Future work 

 

The field of flood prediction is growing, new methods and ideas are formed 

constantly, the possibility of creating a model with great generalizability could solve some 

of the issues and create a warning system to inform people in time and act accordingly. The 

models of the study lack in some ways, to improve them there are a few solutions. First, 

acquire up to date data from an extensive network of the area. Consider the seasonality of 

the peak flows and correlate the flow with the amount of snow in the mountains with 

regards to the temperature. Using those improvements, a warning system, could be 

created that would provide with messages every day or every hour if the data available are 

hourly to the researchers. Machine learning is a field that interests me, working on this 

thesis improved my knowledge on the field and I really enjoyed working on the topic of 

flood prediction, since it is really important for many areas to know with more accuracy the 

probability of a flood.  
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ANNEXES 

The annex contains the code of the programs used in this study. 

 

Geojson Read: 

The first program displayed is geojson read and as the tittle suggests is about reading a 

geojson file. This file contains the perimeters of the Po River basin depending on the 

hydrological station chosen, the program displays on the map the basins and the point of 

the stations. Moreover, the meteorological stations used for the study are displayed on 

map.  

Geojson_Display.py 

 

import geojson 

from descartes import PolygonPatch 

import matplotlib.pyplot as plt 

from mpl_toolkits.basemap import Basemap 

import numpy as np 

 

with open('stationbasins.geojson') as f: #Load the Geojson format file 

    gj = geojson.load(f) 

 

#Use the first set of features since the file has for every hydrological 

station a different area 

features = gj['features'][0] 

 

#Initiate the size of the plot 

plt.clf() 

ax = plt.figure(figsize=(10,10)).add_subplot(111) 

 

#Initiate the map, "zoom" to the area specified 

m = 

Basemap(llcrnrlon=4,llcrnrlat=43,urcrnrlon=15.,urcrnrlat=47.,resolution='

i', projection='cass', lat_0 = 40, lon_0 = 0.)  

 

#Use the parameters for the map plot as specified below 

m.drawmapboundary(fill_color='white', zorder=-1) 
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m.drawparallels(np.arange(44., 49., 2.), labels=[1,0,0,1], dashes=[1,1], 

linewidth=0.25, color='0.6',fontsize=10) 

m.drawmeridians(np.arange(5.,15.,2.), labels=[1,0,0,1], dashes=[1,1], 

linewidth=0.25, color='0.6',fontsize=10) 

m.drawcoastlines(color='0.6', linewidth=0.1) 

m.drawmapboundary(fill_color='aqua') 

m.fillcontinents(color='#B8860B', lake_color='aqua') 

m.drawcoastlines(color ='cyan' ) 

m.drawcountries() 

 

 

coordlist = gj['features'][2]['geometry']['rings'] 

 

#Loop to create the polygon on the map according to the coordinates of 

the geojson file 

for j in range(len(coordlist)): 

    for k in range(len(coordlist[j])): 

        

coordlist[j][k][0],coordlist[j][k][1]=m(coordlist[j][k][0],coordlist[j][k

][1]) 

    poly = {"type":"Polygon","coordinates":coordlist}#coordlist 

    ax.add_patch(PolygonPatch(poly, fc=[0.2,0.3,0.8], ec=[0,0.3,0], 

zorder=1 )) 

  

ax.axis('scaled') 

 

#Each set of (Xi,Yi) represent the point of the stations on the map 

x, y = m(11.6, 44.883335) 

plt.plot(x, y, 'or', markersize=4) 

plt.text(x, y, 'Pontelagoscuro', fontsize=8,weight='bold'); 

 

x1, y1 = m(10.55, 44.900002) 

plt.plot(x1, y1, 'or', markersize=4) 

plt.text(x1, y1, 'Boretto', fontsize=8,weight='bold'); 

       

x2, y2 = m(9.666667, 45.016666) 

plt.plot(x2, y2, 'or', markersize=4) 

plt.text(x2, y2, 'Piacenza', fontsize=8,weight='bold'); 

 

x3, y3 = m(9.1121, 45.2818) 

plt.plot(x3, y3, '<y', markersize=4) 

plt.text(x3, y3, 'Milan', fontsize=8,weight='bold'); 
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x4, y4 = m(10.79, 45.16) 

plt.plot(x4, y4, '<y', markersize=4) 

plt.text(x4, y4, 'Mantua', fontsize=8,weight='bold'); 

       

x5, y5 = m(8.95664, 46) 

plt.plot(x5, y5, '<y', markersize=4) 

plt.text(x5, y5, 'Lugano', fontsize=8,weight='bold'); 

 

x6, y6 = m(11.50, 44.80) 

plt.plot(x6, y6, '<y', markersize=4) 

plt.text(x6, y6, 'Ferrara', fontsize=8,weight='bold'); 

 

x7, y7 = m(7.73, 45.03) 

plt.plot(x7, y7, '<y', markersize=4) 

plt.text(x7, y7, 'Turin', fontsize=8,weight='bold'); 

 

x8, y8 = m(10.42, 44.12) 

plt.plot(x8, y8, '<y', markersize=4) 

plt.text(x8, y8, 'Monte Cimone', fontsize=8,weight='bold'); 

 

x9, y9 = m(10.82, 45.34) 

plt.plot(x9, y9, '<y', markersize=4) 

plt.text(x9, y9, 'Verona', fontsize=8,weight='bold'); 

 

x10, y10 = m(11.20, 44.30) 

plt.plot(x10, y10, '<y', markersize=4) 

plt.text(x10, y10, 'Bologna', fontsize=8,weight='bold'); 

 

plt.show() 

plt.draw() 

f.close() 

 

Discharge Data Read: 

The second program scans a txt file to get the data of the discharge flow. On the txt file 

there are no missing values. The data are later displayed for visual purposes on a plot having 

time on the X axis and the discharge volume on the Y axis. 
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dischargeread.py 

from matplotlib import pyplot as plt 

import numpy as np 

 

f = open('6348800_Q_Day.Cmd.txt') 

line = f.readline()   # include newline 

k = 0; 

table = [] 

while line: 

        line = line.rstrip()   

         

        k = k + 1 

        #The values on txt file start on line 37 

        if k > 37: 

        #Split the line and append values to a table 

            table.append(line.split(';')) 

        line = f.readline() 

l = k - 37  

#Two tables one for the values and one for the dates 

table1 = [] 

table2 = [] 

#Ite table for the plot 

ite = [] 

for i in range(len(table)): 

    #Table2 contains the dates which are on the first column of the table 

    #Table1 contains the float values of the discharge which are on the 

third column of the table 

    ite.append(i) 

    table2.append(table[i][0]) 

    table1.append(float(table[i][2])) 

 

#Plot the values with the X axis showing every 365 days 

plt.title("Pontelagoscuro Mean Daily Discharge Data (m³/s)") 

plt.xticks(np.arange(0, len(table1)+1, 365)) 

plt.plot(table2, table1) 

plt.show() 

 

f.close() 
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Precipitation Data Read: 

The third program reads from each meteorological station’s txt file the daily amount of rain 

in millimeters. Each station needed a different offset in the file since the start of 

measurements differed. After, computing this offset the file was scanned and the desired 

observations were displayed on a plot with time on X axis and rainfall in millimeters on Y 

axis. For every station a unique program was created to fit each txt file. 

RainRead.py 

from matplotlib import pyplot as plt 

 

f = open('RR_SOUID100554.txt') 

line = f.readline()   # include newline 

k = 0; 

table = [] 

while line: 

        line = line.rstrip()  # strip trailing spaces and newline 

        # process the line 

        k = k + 1 

        if k == 19: 

            print(line) 

        elif k > 19: 

            table.append(line.split(',')) 

        line = f.readline() 

l = k - 19 

table1 = [] 

table2 = [] 

ite = [] 

for i in range(44559,46751): 

    ite.append(i) 

    table2.append(table[i][2]) 

    if table[i][3] != '-9999': 

        table1.append(float(table[i][3])*0.1 ) 

    else: 

        table1.append(float(0) ) 

 

plt.plot(table2, table1) 

plt.show() 

f.close() 
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Algorithm Test and Visual Representation:  

The fourth program which is the last one was created to experiment with the available 

data. First, the program reads all the data needed and puts them in their corresponding 

tables. The data are split into test and train datasets, they are also transformed in order to 

be on the same scale. The precipitation data are the input data and the discharge volume 

are the target data. Various algorithms are executed mostly neural networks and ensemble 

methods. The predicted values are visualized and compared with the original ones. 

Models_Visual.py 

 

from matplotlib import pyplot as plt 

from sklearn.metrics import mean_squared_error 

from sklearn.neural_network import MLPRegressor 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

from sklearn.preprocessing import MinMaxScaler 

from sklearn import preprocessing 

from sklearn.metrics import r2_score 

from sklearn.ensemble import GradientBoostingRegressor, 

RandomForestRegressor 

from sklearn.ensemble import ExtraTreesRegressor 

from sklearn.ensemble import VotingRegressor 

from sklearn.ensemble import StackingRegressor 

from sklearn.neighbors import KNeighborsRegressor 

import warnings 

from sklearn.exceptions import ConvergenceWarning 

warnings.filterwarnings('ignore', category=ConvergenceWarning) 

import numpy as np 

 

def readPrecipitation(name, minvalue, maxvalue, mi, offset): 

    f = open(name) 

    line = f.readline()   # include newline 

    k = 0; 

    table = [] 

    while line: 

        line = line.rstrip()  # strip trailing spaces and newline 

        # process the line 

        k = k + 1 
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        if k > offset: 

            table.append(line.split(',')) 

        line = f.readline() 

 

    l = k - offset 

    table1 = [] 

    table2 = [] 

 

    for i in range(minvalue - mi,maxvalue): 

     

        table2.append(table[i][2]) 

        if table[i][3] != '-9999': 

            table1.append(float(table[i][3])*0.1 ) 

        else: 

            table1.append(float(0) ) 

 

    f.close() 

    return table1, table2 

 

def readDischarge(name, offset): 

    f = open(name) 

    line = f.readline()   # include newline 

    k = 0; 

    tableDis = list() 

    while line: 

        line = line.rstrip()  # strip trailing spaces and newline 

        # process the line 

        k = k + 1 

        if k > offset: 

            tableDis.append(line.split(';')) 

        line = f.readline() 

    l = k - offset 

 

    tableD = list() 

    tableD2 = list() 

 

    for i in range(len(tableDis)): 

        tableD.append(tableDis[i][0]) 

        tableD2.append(float(tableDis[i][2])) 
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    f.close() 

     

    return tableD, tableD2 

 

 

fig, axs = plt.subplots(1, 2) 

 

mi = 12; 

 

table1, table2 = readPrecipitation('RR_SOUID100551.txt', 36889, 39081, 

mi, 19) 

table3, table4 = readPrecipitation('RR_SOUID100751.txt', 28854, 31046, 

mi, 22) 

table5, table6 = readPrecipitation('RR_SOUID119285.txt', 28854, 31046, 

mi, 22) 

table7, table8 = readPrecipitation('RR_SOUID100553.txt', 51134, 53326, 

mi, 19) 

table9, table10 = readPrecipitation('RR_SOUID100554.txt', 44559, 46751, 

mi, 19) 

table11, table12 = readPrecipitation('RR_SOUID112197.txt', 10591, 12784, 

mi, 22) 

table13, table14 = readPrecipitation('RR_SOUID100550.txt', 60985, 63187, 

mi, 19) 

table15, table16 = readPrecipitation('RR_SOUID100550.txt', 10592, 12784, 

mi, 19) 

 

tableD, tableD2 = readDischarge('6348800_Q_Day.Cmd.txt', 37) 

 

mini=383 

maxi=6330 

 

l = len(table1) 

tablea1 = np.zeros((l)) 

tablea3 = np.zeros((l)) 

tablea5 = np.zeros((l)) 

tablea7 = np.zeros((l)) 

tablea9 = np.zeros((l)) 

tablea11 = np.zeros((l)) 

tablea13 = np.zeros((l)) 

tablea15 = np.zeros((l)) 

 

for i in range(len(table1)): 

    if i > mi-1: 
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        tablea1[i] = (table1[i-1] +table1[i-2] +table1[i-3] + table1[i-4] 

+ table1[i-5])/5 

        # # tablea3[i] = (table3[i-5] +table3[i-6] +table3[i-7] 

+table3[i-8] +table3[i-9] +table3[i-10] +table3[i-11] +table3[i-12])/7 

        tablea5[i] = (table5[i-6] +table5[i-7] +table5[i-8] +table5[i-9] 

+table5[i-10] +table5[i-11] +table5[i-12])/7 

        tablea7[i] = (table7[i-8] +table7[i-1] +table7[i-2] +table7[i-3] 

+table7[i-4] +table7[i-5] +table7[i-6] +table7[i-7])/8 

        tablea9[i] = (table9[i-2] +table9[i-3] +table9[i-4] +table9[i-5] 

+table9[i-6] +table9[i-7] +table9[i-8])/7 

        tablea11[i] = (table11[i-3] +table11[i-4] +table11[i-5] 

+table11[i-6] +table11[i-7])/5 

        tablea13[i] = (table13[i-1] +table13[i-2] +table13[i-3] 

+table13[i-4] +table13[i-5])/5 

        tablea15[i] = (table15[i-2] +table15[i-3] +table15[i-4] 

+table15[i-5] +table15[i-6] +table15[i-7])/6 

 

FTable = np.array([tablea1[mi:],  tablea5[mi:], tablea7[mi:], 

tablea9[mi:], tablea11[mi:], tablea13[mi:],tablea15[mi:]], float) 

 

X = FTable 

X = X.transpose() 

y = np.array(tableD2) 

 

y = (y - mini) / (maxi - mini) 

X_train, X_test, y_train, y_test = train_test_split(X, y,random_state=1, 

test_size=0.3) 

 

#scale 

scale_X = StandardScaler() 

X_trainscaled=scale_X.fit_transform(X_train) 

X_testscaled=scale_X.transform(X_test) 

 

''' 

q_t = preprocessing.QuantileTransformer(n_quantiles=1500, 

output_distribution='uniform', random_state=0) 

X_trainscaled = q_t.fit_transform(X_train) 

X_testscaled=q_t.transform(X_test) 

 

''' 
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reg1 = MLPRegressor(solver='lbfgs', activation="relu" ,random_state=0, 

max_iter=1000).fit(X_trainscaled, y_train) 

 

 

y_pred=reg1.predict(X_testscaled) 

print("The r2 Score for MLP", (r2_score(y_pred, y_test))) 

 

reg2 = GradientBoostingRegressor(random_state = 1,n_estimators= 

1000,max_depth=7,min_samples_split= 5,loss= 'ls').fit(X_trainscaled, 

y_train) 

 

y_pred=reg2.predict(X_testscaled) 

print("The r2 Score for GB", (r2_score(y_pred, y_test))) 

 

 

reg3 =  ExtraTreesRegressor(n_estimators = 1000, random_state = 

1,max_depth = 22).fit(X_trainscaled, y_train) 

 

y_pred=reg3.predict(X_testscaled) 

print("The r2 Score for ET", (r2_score(y_pred, y_test))) 

 

reg4 = RandomForestRegressor(n_estimators = 1000, random_state = 

1,max_depth = 22).fit(X_trainscaled, y_train) 

 

y_pred=reg4.predict(X_testscaled) 

print("The r2 Score for RF", (r2_score(y_pred, y_test))) 

 

K = 1 

reg5 = KNeighborsRegressor(n_neighbors = K).fit(X_trainscaled, y_train) 

y_pred=reg5.predict(X_testscaled) 

print("k= ", K," The r2 Score for KNN ", (r2_score(y_pred, y_test))) 

 

reg6 =  VotingRegressor(estimators=[('mlp', reg1),('gb', 

reg2),('et',reg3),('rf', reg4),('kn', reg5)]).fit(X_trainscaled, y_train) 

 

reg =StackingRegressor(estimators=[('mlp', reg1),('gb', 

reg2),('et',reg3),('rf', reg4)]).fit(X_trainscaled, y_train) 

 

y_pred=reg.predict(X_testscaled) 
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for i in range(1,len(y_pred)): # Cut the outliers 

    if (y_pred[i] < 0) or (y_pred[i] > 1.25): 

        y_pred[i] = y_pred[i-1] 

 

MSE = mean_squared_error(y_test, y_pred) 

RMSE = np.sqrt(MSE) 

 

 

print("Stacking Regressor: The r2 Score is ", (r2_score(y_pred, y_test))) 

print("Stacking Regressor: The MSE Score is ", MSE) 

print("Stacking Regressor: The RMSE Score is ", RMSE) 

 

tablea17 = np.arange(len(y_test)) # Reverse the scale to real values 

y_new = (y_pred )*(maxi-mini)+ mini 

y_newt = (y_test )*(maxi-mini)+ mini 

 

ytes=3500 

numP = 0 

numT = 0 

 

for i in range(len(y_new)): # Find cases above threshold 

    if (y_new[i] > ytes): 

        numP = numP +1 

    if (y_newt[i] > ytes): 

        numT = numT +1 

 

p = (numP/numT)*100 

 

print("The number of instances exceeding the upper limit are" ,numP,"the 

model predicted",numT,"a percentage of" ,p,"%") 

 

fig = plt.figure() 

 

ax = fig.add_subplot(111) 

ax.set_title("Stacking Regressor Predicted Points") 

ax.scatter(tablea17,y_newt,s=10, c='b', marker="s", label='real') 

ax.plot(tablea17,y_new, c='r', marker="o", label='MLP Prediction') 

ax.plot(tablea17,ytes*np.ones(len(tablea17)), c='g', label='MLP 

Prediction') 

 

plt.show() 


