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ARTICLE INFO ABSTRACT
Keywords: Background: Recent work showed that the temporal growth of the novel coronavirus disease (COVID-19)
COVID-19

follows a sub-exponential power-law scaling whenever effective control interventions are in place. Taking this
into consideration, we present a new phenomenological logistic model that is well-suited for such power-law
epidemic growth.

Methods: We empirically develop the logistic growth model using simple scaling arguments, known boundary
conditions and a comparison with available data from four countries, Belgium, China, Denmark and Germany,
where (arguably) effective containment measures were put in place during the first wave of the pandemic.
A non-linear least-squares minimization algorithm is used to map the parameter space and make optimal
predictions.

Results: Unlike other logistic growth models, our presented model is shown to consistently make accurate
predictions of peak heights, peak locations and cumulative saturation values for incomplete epidemic growth
curves. We further show that the power-law growth model also works reasonably well when containment and
lock down strategies are not as stringent as they were during the first wave of infections in 2020. On the
basis of this agreement, the model was used to forecast COVID-19 fatalities for the third wave in South Africa,
which was in progress during the time of this work.

Conclusion: We anticipate that our presented model will be useful for a similar forecasting of COVID-19
induced infections/deaths in other regions as well as other cases of infectious disease outbreaks, particularly
when power-law scaling is observed.

Subexponential power-law growth
Logistic growth
Non-linear least squares

1. Introduction

The COVID-19 pandemic has reinvigorated efforts at an unprece-
dented scale to better understand the dynamics and mechanism of
infectious disease spread. Presently, there is significant interest world-
wide to model region-specific infection and mortality curves, while
also working on effective intervention and containment strategies. It
is hoped that such a collective endeavor would contribute towards
preventing an uncontrolled proliferation of the disease, while simul-
taneously countering near irreparable socio-economic damage from
multiple waves of infections. This has resulted in a deluge of scientific
literature related to the pandemic, that have proved to be a challenge
to keep up with (Brainard, 2020). A large subset of research papers
investigated the spatio-temporal evolution of the disease (Chinazzi
et al., 2020; Gatto et al.,, 2020; Gross et al., 2020), mostly using
variants of the compartmental SIR (Susceptible-Infected-Removed) epi-
demiological model (Maier and Brockmann, 2020; Brandenburg, 2020;
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Barman et al., 2020; Wu et al., 2020b; Bustamante-Castafieda et al.,
2021; Li et al., 2020; Roques et al., 2020) to analyze the number of
infections (or deaths) in specific regions. Other methods involved the
use of phenomenological models (Majumder and Mandl, 2020; Roosa
et al., 2020), time-varying and non-linear Markov processes (Wang
et al., 2020a; Gourieroux and Jasiak, 2020), superpositions of epidemic
waves (Koltsova et al., 2020), hybrid nonparametric models (Wang
et al., 2020b) and other data-driven approaches (Salas, 2021; Schneble
et al., 2021; Altmejd et al., 2020), including those based on artificial
intelligence (Chen et al., 2020), etc. Along these lines, we recently
performed a random walk Monte Carlo study to make temporal growth
exponent predictions for COVID-19-like disease spread (Triambak and
Mahapatra, 2021), particularly for a spatially constrained, yet stochasti-
cally interacting population. In that work, similar to other simulational
approaches (Mollison, 1977; Filipe and Gibson, 1998), the spread of the
disease was modeled on the basis of ‘contact’ interactions. We identified
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Fig. 1. Power-law growth model fits to reported deaths for Belgium, China, Denmark and Germany, shown with +95% confidence interval (CI) bands (shown in green). The data
points (filled circles) are generated from a 5 day moving average of number of daily deaths reported by the World Health Organisation (2021), for the first wave of infections in
2020. In each case, the date of the first reported death (day 1) is indicated at + = 0 on the time axis. (For interpretation of the references to color in this figure, the reader is

referred to the web version of this article).

certain similarities between our simulation results and those obtained
from other differential-equation-based extended SIR models (Maier and
Brockmann, 2020; Brandenburg, 2020). Our results further showed
that spatial mobility plays a key role in determining the eventual
growth in the total number of infections/deaths as a function of time.
While this conclusion should not be surprising (Hallatschek and Fisher,
2014), it was corroborated by a recent data-driven analysis of the
‘mobility-network’ in Germany, using cellular phone data (Schlosser
et al., 2020). These investigations established a connection between the
three approaches (data-driven, simulation, and compartmental model)
used to better understand infectious disease spread.

In terms of phenomenological modeling, logistic growth models
(LGMs) (Roosa et al., 2020; Masjedi et al., 2020; Wu et al., 2020a;
Singer, 2020; Batista, 2020; Vattay, 2020; Morais, 2020; Shen, 2020;
Yang et al., 2021; Jia et al., 2020; Dattoli et al., 2020; Sonnino and
Nardone, 2020; Molina-Cuevas, 2020) were extensively used for mak-
ing COVID-19 related predictions. This is not completely unexpected,
as LGMs were successfully used in the past for predicting growth curves
in epidemics such as Ebola, SARS, HIN1, dengue, etc. (Pell et al.,
2018; Chowell et al., 2019; Wang et al., 2012). Along these lines, our
previous work (Triambak and Mahapatra, 2021) showed that although
the most commonly used generalized LGM (Richards, 1959) works well
for exponential growth, it fails to satisfactorily fit data that have power-
law scaling. As a continuation of our engagement with this problem, in
this work we present a logistic growth model that describes such data
more accurately.

2. Logistic growth models

In the context of the COVID-19 pandemic, the simplest LGM used
by some research groups (Singer, 2020; Batista, 2020; Vattay, 2020;
Morais, 2020; Shen, 2020) is described by the well-known Verhulst
differential equation
AN _ N (1 - 5) )

K

2 (€8]

where 1 is the intrinsic growth constant and K (also called the carrying
capacity) is the asymptotic (saturation) limit for N(z), as t - oo. The
general solution of Eq. (1) is of the form
___Kk
1+ Bexp(—=4t)’

where the point of inflection is at + = In B/A. The above is a special
case of the Richards LGM (Richards, 1959)

N@®»= @

N =K [1+ Bexp(—an] /"™, 3
which solves the differential equation
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Here, the parameter m decides both the shape of the growth curve as
well as its inflection point. For example, as m — 1, Eq. (4) becomes
the Gompertz growth curve (Gompertz, 1825; Laird, 1964). The special
case of m = 2 describes classical logistic growth, shown in Egs. (1) and
(2). To be consistent with other recent literature and given the fact that
we are only interested in the family of curves with m > 1, we rewrite
Eq. (4) as

()

where ¢ = |1 —m| and 2’ = A/q.

Recently, it was shown (Chowell et al., 2016) that in order to allow
for sub-exponential growth, one can further generalize the Richards
equation by replacing N with N? in Eq. (5), where p < 1 is a
‘deceleration’ parameter (Viboud et al., 2016). Such sub-exponential
growth was observed with initial COVID-19 data from China, where
an analysis (Maier and Brockmann, 2020) of the number of reported
cases from several provinces in the country showed a t* type power-law
growth in N. This was attributed to effective containment and mitiga-
tion measures, as well as behavioral changes of the population (Maier
and Brockmann, 2020). Such control interventions prevent a homo-
geneous mixing (Fofana and Hurford, 2017) of the population, which
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Fig. 2. Left panel: Various LGM fits to the daily death data from Belgium, China, Denmark and Germany, shown together with 95% prediction intervals for the power-law
model. The data points are the same as shown in Fig. 1 and correspond to the first waves in 2020. The red filled circles represent the ‘in-sample’ calibration points used to test
the forecasting ability of each LGM. Right panel: Cumulative data shown together with 95% prediction intervals from power-law growth model fits. The gray band shows the
approximate date range when the curves begin to flatten out. In each case, the date of the first reported death (day 1) is indicated at = 0 on the time axis. (For interpretation
of the references to color in this figure, the reader is referred to the web version of this article).

if unchecked would lead to exponential growth, provided there is no
appreciable depletion of the susceptible population (Bailey, 1975). Our
previous simulations (Triambak and Mahapatra, 2021) showed that the
minimum growth obtained under the most stringent mobility restric-
tions is quadratic in nature (« = 2). More realistically one would expect
growth exponents that are slightly higher than 2, even under effective
containment (Maier and Brockmann, 2020; Triambak and Mahapatra,
2021) and strict lockdown measures. It is reasonable to expect that
during the first wave of the pandemic (in 2020) most countries followed

similarly stringent containment strategies (at various levels) to counter
the spread of COVID-19 within their population. Therefore their cumu-
lative infection (and fatality) curves are expected to have power-law
growth exponents in the range of 2 to 3 (Triambak and Mahapatra,
2021). Below we develop a new LGM that can adequately describe such

data, and make reasonably accurate and consistent predictions.
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Table 1
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Out-of-sample forecasting performance metrics for the four countries, using different LGM models described in this work.

Country Growth Root mean Mean absolute Percentage coverage of
model squared error percentage error 95% prediction interval
Logistic 51.7 76.4 17

Belgium Richards 17.4 25.8 76
Gen. Richards 31.8 64.1 21
Power-law 18.8 56.9 60
Logistic 28.8 112.7 40

China Richards 22.7 175.2 32
Gen. Richards 109.3 1679.5 31
Power-law 11.4 40.8 58
Logistic 3.9 78.0 61

Denmark Richards 2.6 53.6 73
Gen. Richards 24.2 3434.0 15
Power-law 2.0 64.7 88
Logistic 57.1 85.7 26

Germany Richards 22.6 28.0 59
Gen. Richards 90.1 465.1 25
Power-law 25.1 56.8 47

3. Methods 3.2. Analysis

3.1. Development of the power-law LGM

To develop the model, we start similarly as in Eq. (1), with the
ansatz that the daily infection rate is proportional to N, the number
of individuals who are already infected by the disease. Furthermore, it
is apparent that for bounded (logistic) growth, one requires the daily
rate to also be proportional to a term similar to the ones described in
the parentheses of Egs. (1) and (5). Therefore, for power-law growth,
with N « 1%, we write a general form of daily infection rate, analogous
to Eq. (5) as

y16
()]

It is important to note that here d N /dt has an explicit dependence on
time, unlike Egs. (1) and (5). The parameter § is in units of time, so
that in the asymptotic limit as r — § (well past the peak of the epidemic
curve, for large values of #), d N /dt — 0. The «, y and § parameters are
dimensionless, while A has units of 1/z.

In the next step we empirically tested and developed this model,
by fitting the above function to available data from four countries,
Belgium, China, Denmark and Germany, during the first wave of in-
fections in 2020. These countries were chosen because the data show
a reasonably successful containment of the spread of COVID-19 within
their population (World Health Organisation, 2021), during the first
wave. Similar to our previous work (Triambak and Mahapatra, 2021),
we performed a time-series analyses for the number of reported daily
deaths,” instead of infections. This was due to several reasons. Firstly,
the death toll is far more important to quantify than the infection
rate in a given population, although they are related. Secondly, when
performing a global comparison of data from different countries, we as-
sume that COVID-19-related deaths are more accurately and uniformly
recorded in general. And finally, given the strong correlation between
the number of infected cases and number of deaths, the time-series
trends in both death and infection rates are expected to be similar to
one another.’

2 All data described in this work are 5-day rolling averaged.

3 We caution that one must be careful in making this assumption, which
may fail when live-saving treatment options are put in place (or inaccessible)
midway, thereby affecting daily mortality rates. Such real-time interventions
affect all phenomenological models.

The fits were performed using a non-linear least squares (NLS)
algorithm that minimized the sum of squared residuals (SSR), defined
by

Tdays
SSR= Y [D; - )|, @
i=1
with respect to the daily reported deaths D;, where
dN
ey =(55) - ®

and N is the cumulative number of deaths in the model. This initial
NLS fitting procedure showed that the five parameter fit in Eq. (6)
was not optimal for such analysis. The parameters were found to be
highly correlated, with correlation coefficients in the range of 0.83 <
|p] < 1. Successive fits to the same data, for different initial values
for the parameters resulted in arbitrary and widely-varying converged
fit parameters, particularly 4, p and §. Despite this, the fits yielded
very similar values for the minimum SSR and nearly indistinguishable
results. The above showed that the model in Eq. (6) was not feasi-
ble, particularly for an ‘out-of-sample’ forecasting using partial d N /dt
epidemic curves. Consequently, we modified Eq. (6) to

r1h/e
()]

as a means to bypass the problem. For this part of the analysis, the
p parameter was kept fixed at a large value (8 = 500 days). This
prescription reduced the problem to four parameters, while placing
significant restrictions on the allowed parameter space. Furthermore,
the fits showed a negligible dependence on g (as long as it is large
and fixed), with the parameters consistently converging to very similar
values.

4. Results and discussion
4.1. Results for first wave data from 2020

On fitting the data using our modified power-law logistic function,
we obtain good agreement with the daily mortality curves for the four
countries considered earlier. This is shown in Fig. 1. As expected, the
product of A and 7* mainly contribute to the rising part of the d N /dt
curve. The other two parameters y and e contribute to truncating the
rise. Together, these parameters describe the features of individual
epidemic curves. The tailing in each curve mainly depends on country-
specific mitigation and containment measures. It is found to be more
prominent in the cases of Belgium, Denmark, and Germany.
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Fig. 3. Power-law logistic growth model predictions using different ranges of data in the rising part of the d N /dt curve. The dotted lines mark the final in-sample calibration
points from the data in Fig. 2. Similar to the other plots, the date of the first reported death (day 1) is indicated at + =0 on the time axis. (For interpretation of the references to

color in this figure, the reader is referred to the web version of this article).
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Fig. 4. Left panel: Power law LGM fits to second and third wave fatality data from South Africa. The data are obtained from World Health Organisation (2021) and are represented
by filled circles. The start dates on the x-axis are for the years 2020 and 2021, for the second and third waves respectively. The red points show the in-sample calibration points
used for the forecasting. The green curves show +95% prediction intervals. In each case, the date that marks the beginning of the data-analysis region for the epidemic wave is
indicated at 7 = 0 on the time axis. Right panel: Cumulative deaths obtained from the World Health Organization, shown together with our model forecasts at the 95% prediction

interval.(For interpretation of the references to color in this figure, the reader is referred to the web version of this article).

While this part of the analysis was necessary to show the more
than satisfactory agreement of our power-law growth model with data,
particularly from countries where the pandemic peak had long passed,
this is not a robust test of the forecasting ability of the model. We

next performed an out-of-sample forecasting test, this time only using

data points from the rising part of the d N /dt curve. To avoid fit con-
vergences to ‘fake’ minima that do not correspond to realistic values,
we used a comparison with available data to empirically develop the
procedure described below. First the parameter space was mapped to
arrive in the vicinity of the correct SSR minimum. This was done
by performing a first round of non-linear SSR minimization with the
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constraints* 0 < 1 < 0.1, 2 <a < 3,2 <y <3and 05 < e < 1. After
this initial step, the restrictions on 4, « and y were removed and the
iterative grid-search NLS algorithm was used evaluate the values that
yielded the minimum SSR in that region of parameter space.

Our analyses showed that the procedure described above yielded
reasonable agreement with the full data from different countries con-
sistently. This agreement is illustrated in Fig. 2, that also compares our
fit results to those obtained from the classical LGM and both versions
of the Richards LGM. The forecasting performance of the four models
are further compared in Table 1, which lists three performance metrics.
These include the root mean squared (RMS) error,

RMSE = (%) 10)

where n is the total number of data points in the curve, the mean
absolute percentage error (MAPE),

Idays

1 |y(t)) — Dl

MAPE = — _— 100 11
Ly (M=t . av

i=1 i

and the coverage of the 95% prediction interval, which quantifies
the proportion of observations that fell within that range. As evident
in Fig. 2 and Table 1, the predictions of the classical LGM and the
generalized Richards model yield least agreement with the full data,
while the Richards model agrees with some of the data. The power-
law growth model is found to be the most consistent in its forecasting
performance, showing reasonable agreement with the data in all cases.
Fig. 2 also shows cumulative fatality data for each of the four countries,
together with predictions of the power-law model. Here as well one
observes excellent agreement with the data.

Another check of the robustness of our analysis was performed
by systematically reducing the number of in-sample calibration points
(marked in red in Fig. 2) in the NLS fitting procedure. This effectively
tested the stability of our model predictions. The results of this sys-
tematic check are shown in Fig. 3 and Table 2. The latter lists the
number of in-sample data points used for the fits in each case, and the
corresponding RMSE values as a forecasting metric. It is evident that
as long as a reasonable number of in-sample data points are used, the
power-law model makes reliable predictions.

4.2. Results for second and third wave data from South Africa (2020/
2021)

Once assured that our data analysis procedure was on a secure
footing, we performed a similar analysis for the second and third waves
in South Africa. It may be noted that strict lock down and containment
policies were not imposed in these scenarios (compared to the first
wave) and that only partial d N /dt data were available for the third
wave at the time of this work. Furthermore, the vaccinated status of
part of the population and the different variants of the SARS-CoV-2
virus add additional complications that allow a rigorous test of the
power-law growth model.

Fig. 4 shows power-law growth model fits to the second and third
wave fatality data from South Africa. The in-sample red data points
were fit similarly as before, with two minor differences. Since the
growth exponent is expected to be higher due to comparatively relaxed
lockdown scenarios (Triambak and Mahapatra, 2021), the ranges on
a and y were increased to 2-6 in the initial restricted fit. An addi-
tional ‘background’ parameter was required to be added to Eq. (9).
This parameter took into account the roughly constant number of
deaths/infections that occur between the waves. For the second wave,
we observe excellent agreement between the data and the model pre-
dictions, which further validates the power-law LGM. The model also

4 In some computer programs care should be taken that the fitted values
for the parameters do not converge to their upper or lower bounds.
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Table 2
Stability tests for power-law LGM forecasts, performed by a systematic
removal of in-sample data points.

Country Number of Color in RMSE
data points Fig. 3 (full data)
27 Green 18.4
Belgium 25 Blue 19.1
23 Magenta 19.5
21 Cyan 22.2
28 Green 10.0
China 26 Blue 16.6
24 Magenta 24.5
22 Cyan 31.7
17 Green 21
Denmark 16 Blue 2.7
15 Magenta 1.8
14 Cyan 2.2
31 Green 24.8
Germany 29 Blue 24.7
28 Magenta 30.5
27 Cyan 50.1

showed good agreement with cumulative fatality data, obtained from
the reported number of deaths during this time. Based on this valida-
tion, we used the power-law fit to make forecasts on the partial third
wave epidemic curve for South Africa. The fit indicated that during the
time of our data analysis, South Africa was approaching the peak of its
third wave for Covid-19 induced fatalities. Similarly, the corresponding
cumulative data showed that the flattening of it growth curve was
imminent .

5. Summary

In summary, we used an empirical analysis to develop a new logistic
power-law growth model (LGM) that was applied to COVID-19 fatality
data. This is relevant, as sub-exponential power-law growth is not
adequately described by earlier variants of LGMs. Our model is found to
be rather robust in accurately predicting peak and saturation values in
epidemic growth curves from Belgium, China, Denmark and Germany.
Following this validation, the power-law LGM is used to predict the
COVID-19 induced-fatalities in the second and third waves for South
Africa, after validating the model predictions for the former. We an-
ticipate that our presented growth model will be useful for forecasting
COVID-19 induced infections/deaths in other regions and for studies of
epidemic spread in general.
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