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ABSTRACT

Building voting systems for secret ballot elections has many challenges and is the

subject of significant academic research efforts. These challenges come from con-

flicting requirements. In this paper, we introduce a novel architectural approach

to voting system construction that may help satisfy conflicting requirements and

increase voter satisfaction. Our design, called Open Voting Client Architecture,

defines a voting system architectural approach that can harness the power of in-

dividualized voting clients. In this work, we contribute a voting system reference

architecture to depict the current voting system construction and then use it to

define Open Voting Client Architecture. We then detail a specific implementation

called Op-Ed Voting to evaluate the security of Open Voting Client Architecture

systems. We show that Op-Ed Voting, using voters’ personal devices in an end-

to-end verifiable protocol, can potentially improve usability and accessibility for

voters while also satisfying security requirements for electronic voting.
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CHAPTER 1

INTRODUCTION

Building technology solutions for secret ballot elections is an endeavour full of

intrigue and challenges. While technology has enhanced our ability to commu-

nicate and perform everyday transactions, the use of technology in voting has

been met with trepidation: Why is it so difficult to engineer a solution for secret

ballot elections? One potential answer lies in the number and severity of con-

flicting requirements [49]. While some of these conflicts are addressed in current

solutions, some of the more challenging conflicts remain largely unsolved. The

conflict between individual verifiability and accessibility, for example, remains an

area where significant trade-offs are necessary. Current approaches to voting sys-

tem construction attempt to solve the conflicting requirements with sophisticated

engineering and complicated multi-channel voting [37]. The difficulty and cost of

this approach are compounded by heavy regulatory demands which tightly control

system changes leading to expensive and complicated solutions [40]. In this work,

we argue that this approach is fundamentally flawed and that a more open, flexi-

ble approach is necessary to satisfy conflicting requirements. We call our approach

Open Voting Client Architectures. We believe Open Voting Client Architectures

may be the solution to increasing flexibility, reducing complexity, and reducing

cost of voting system construction. This architectural approach can improve the

voter experience by allowing the voter to use the voting client she is most com-

fortable with. Voting clients will ideally be tailored to various needs such as voters

with visual impairment, cognitive disabilities, color-blindness, dexterity limits, and
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others. In this work, our goal is to define this architectural approach and assess

its security implications with the hope of inspiring others to look at ways we can

innovate through more open designs. Due to the inherent risks of bringing outside

technology into the voting processes, we submit that all Open Voting Client Archi-

tecture implementations are insecure except those specific implementations that

are proven secure. To illustrate this architectural approach and assess its security,

we designed a new voting system called Op-Ed Voting, short for Open in-Person

Electronic Device Voting. Op-Ed supports open voting clients in a secure way by

extending an established end-to-end verifiable voting protocol and controlling the

physical environment of the voting operation.

Organization In Chapter 2, we describe voting system requirements and provide

a model of their conflicts. In Chapter 3, we present our voting system reference

architecture and define the components we will use to define Open Voting Client

Architecture. In Section 4, we define Open Voting Client Architecture and present

its security risks. In Section 5, we present Op-Ed as a sample Open Voting Client

Architecture implementation. In Section 6, we provide a security evaluation of

Op-Ed. In Section 7, we discuss future work and conclude this work.

– 2 –



CHAPTER 2

Voting System Requirements and Conflict Model

Secret ballot elections are often performed today with electronic voting systems.

An electronic voting (e-voting) system is a system for casting, collecting, and re-

porting voter intent using predominately electronic means. The Council of Europe

defines e-voting as “the use of electronic means to cast and/or count the vote”[34].

While building a computer system to collect votes seems simple at first, creating

a system to run binding elections under a rigid set of technical specifications and

complex legal frameworks is riddled with difficulties due to conflicting require-

ments. A system developer or researcher who begins without a full understanding

of the goals and requirements for an e-voting system is likely to become frustrated

by rework and unexpected sacrifices. A person with a better understanding the

requirements is likewise likely to become frustrated by the overwhelming number

of conflicts and a lack of a natural starting spot. This is where conflict identifica-

tion and modeling can help. For our conflict identification and modeling effort, we

have chosen to use a goal-oriented approach [44]. Managing conflicts at the goal

level provides more freedom for an implementer to find adequate ways to handle

conflicts, such as alternative goal refinements and operationalizations, which may

result in different system proposals [45]. By applying a goal-oriented approach

to identifying e-voting requirement conflicts, this work hopes to enable eventual

conflict analysis and full conflict resolution leading to better and more robust elec-

tronic voting solutions for secret ballot elections.

Electronic voting can refer to various implementation models ranging in the
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level of assistance and reliance on electronic components. [46] identifies at least

eight different elections forms ranging from paper-based electronic voting systems

to remote electronic voting. In nearly all cases, electronic voting systems are sys-

tems of systems that work together to define the election, design the ballots or

voting interface, deliver ballots, collect voter intent, tabulate and report results.

Moreover, a jurisdiction may deploy more than one electronic voting system or

merge various implementations to meet the demand of their diverse voting popu-

lation. This creates complex interactions which are difficult to evaluate without a

proper identification of the high-level goals for an electronic voting system. Rely-

ing upon related work in requirements engineering, this work presents four primary

goals as the basis for its analysis. These goals are universal for any secret ballot

election and must be met by any viable electronic voting system. These are:

• Voters are afforded a Secret Ballot

• One Person is afforded and limited to One Vote

• Voters are provided Universal Access to the voting process

• The voting process is Transparent and Auditable

Further descriptions for these goals and a mapping to Volkimer’s principles [47]

are provided in 2.2.

2.1 Our Approach

Our approach builds upon these main goals to identify sub-goals which we then use

to identify and classify conflicts. We selected a goal-oriented approach because it

provides flexibility for implementation while showing the natural tension between

requirements. According to [44], goals are recognized to provide the roots for de-

tecting conflicts among requirements and for eventually resolving them. Modeling

– 4 –



the interaction of goals supports a requirements elaboration process that is more

accurate and more likely to yield a viable product.

We selected a manual approach to conflict identification, as opposed to au-

tomated techniques. A manual approach is where conflicts are identified by a

requirements engineer or subject matter expert, which the author is both. An

automated approach applies conflict identification techniques using software tools.

Automated techniques typically require the use of formal specifications for require-

ments and any mistake that occurs during the formalization may lead to incorrect

conflict detection. Our specific conflict identification approach analyzes the goals

as implemented in real and theoretical e-voting applications and identifies examples

of where trade-offs were necessary due to goal conflicts.

Finally, we classify conflicts as either interference or divergence. Interference

is defined in [28] as the negative contribution of one requirement on another. In-

terference causes tradeoffs in satisfying a set of requirements and often means

the requirements cannot be satisfied at the same time. Divergence between re-

quirements refers to situations where some combination of circumstances can be

found that makes the goals/requirements conflicting [45]. Divergence is a frequent,

weaker form of conflict [45].

Managing conflicts is a requirements engineering activity that consists of three

main activities: conflict identification, conflict analysis, and conflict resolution.

Conflict identification detects the potential conflict. Conflict analysis evaluates

and investigates potential conflicts and their tradeoffs. Conflict resolution resolves

the potential conflict [28]. Our effort focuses on conflict identification with some

discussion of conflict analysis. Conflict identification is visualized using a goal

modeling graph. This model can be used to evaluate current implementations, to

assist in making trade-off decisions for future implementations, to assist researchers

in conducting more focused conflict analysis, and to identify the primary areas in
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Figure 2.1: Decomposition of Secret Ballot goal.

need of conflict resolution. Future research is proposed for conflict analysis and

conflict resolution.

2.2 Electronic Voting Goals

In this section, we elaborate on our 4 primary goals and how they decompose into

sub-goals (not soft goals).

2.2.1 Secret Ballot Goal

A Secret Ballot election is fundamental to a voting process where voters feel they

have the freedom to vote their true conviction. This is achieved by giving voters

confidence the process will not divulge their vote and by preventing voter coercion.

Our Secret Ballot goal maps to the Secret and Free principles from Volkamer [47].

The Secret Ballot goal is decomposed into the following two sub-goals (see Figure

2.1):

Voter Anonymity Voter’s selections must only ever be known to the voter

and anyone he/she willingly shares them with. There must be no means for anyone

to obtain the identity of the voter who cast an individual vote or ballot, now and in

the future. The concept of everlasting privacy was expressed by Moran and Noar

in [32] to define the future portion of this requirement.

Coercion-Resistance The system must protect against vote selling and voter

– 6 –



coercion. This is achieved by allowing a given voter to cast their ballot as they

truly wish even in the event someone is coercing them to vote a certain way. Voters

must also not be able to prove how they voted to anyone even if they wish to do so

[7]. Systems achieving coercion-resistance often do so with the property of receipt-

freeness [8]. This property requires that voters not be allowed to retain possession

of anything that can be used as proof to another person of how she voted.

2.2.2 One Person One Vote Goal

In democratic elections, each voter’s vote has equal weight with every other voter’s

vote. This is represented in the Equal principal in Volkamer’s work [47]. This is

achieved by treating all votes equally and by ensuring a voter only cast one valid

ballot. This is often referred to as the One Person One Vote concept. There are

some special elections where entities, such as corporations and property owners,

may be given multiple votes. Thus, this goal could alternatively be written as "one

person has the number of votes specified by law". The goal for One Person One

Vote is achieved by satisfying the following two sub-goals (see Figure 2.2):

Voter Authenticity The voting process must only be utilized by legitimate

and authenticated voters. The identity of the person must be established with

proof that the person is who they claim to be.

Ballot Accountability Known in [47] as the Direct principle, the system must

record who has received a ballot and prevent attempts to introduce more than one

binding ballot per voter. The system must provide a means to audit the number

of binding ballots compared to the number of authenticated voters.

2.2.3 Universal Access Goal

Giving all voters who wish to vote an equal opportunity to vote is critical to a

fair and legitimate election. This is achieved by executing a voting process which

– 7 –



Figure 2.2: Decomposition of One Person One Vote goal.

does not introduce any undue burden on any voter. This concept of Universal

Access is codified in various international laws and incorporated by Volkamer as

the Universal principal [47]. The following sub-goals are required for Universal

Access (see Figure 2.3):

Voter Usability The voting process must be simple and intuitive for voters

of various cognitive abilities and cultural sensitivity [34]. Voters must be able to

negotiate the process effectively, efficiently, and comfortably [17].

Figure 2.3: Decomposition of Universal Access goal.
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Figure 2.4: Decomposition of Transparent and Auditable goal.

Voter Accessibility The voting process must allow voters with various phys-

ical impairments to vote[34]. Accessibility is measured by the degree to which the

system is available to, and usable by, individuals with disabilities [17]. The most

common disabilities include those associated with vision, hearing and mobility, as

well as cognitive disabilities [17].

Provisional Voting Voters with questionable authenticity or eligibility at the

time of voting should be allowed to cast their ballots and prove their eligibility

later. Once voted, such ballots must be kept separate from other ballots and are

not included in the tabulation until after the voter’s eligibility is confirmed [17].

This type of voting is not deployed everywhere.

2.2.4 Transparent and Auditable Goal

Transparency and auditability ensure that the public can verify the process was

accurate and reliable. This is covered by Volkamer with her Trust principle [47].

Our goal covers the actual accuracy and reliability in the voting process as well as

the ability to prove the process was accurate and reliable. This leads to correct

results which are accepted by all parties, including and especially the party which

lost. To achieve this goal, we lean on end-to-end verifiability principles from [36]

which are included as sub-goals below (see Figure 2.4):

Cast as Intended Verifiability The voter must be provided the opportunity
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to verify the voting system correctly interpreted her selections on the ballot [36].

This verifiability is individual and must be done while the voter can still revoke or

choose not to cast her ballot.

Recorded as Cast Verifiability The voter must be provided the opportunity

to verify that her vote or ballot was received and correctly recorded by the voting

system [36]. In addition, the public must be able to verify that each recorded ballot

is subject to the recorded as cast check.

Tallied as Recorded Verifiability The public must have the option to verify

the vote was correctly tabulated from the same set of ballots which were cast by

voters, and that only ballots from eligible voters were included in the final tally

[36]. Verifying that the same set of ballots subject to the recorded as cast check is

the same as the set of ballots subject to the tallied as record check is referred to

as Consistency by Popoveniuc, et al. We incorporate this concept into the Tallied

as Recorded verifiability goal for simplicity.

The 3 sub-goals provided above are considered the minimum requirements for

an end-to-end verifiable voting system. End-to-end verifiable voting systems are

one type of software-independent voting system discussed by Rivest and Wack in

[38]. A voting system is software-independent if an undetected change or error in

its software cannot cause an undetectable change or error in an election outcome

[38].

2.3 Electronic Voting Goal Conflict Model

Identification of goal conflicts was performed by literature review, review of e-

voting implementations, and reasoning with the definitions provided in the previ-

ous section. In this section, we discuss each conflict by providing our rationale and

citing implementation examples which demonstrate the conflict. It is important to

mention that conflict identification is an ever-changing task. As new implementa-
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Figure 2.5: Secret Ballot Elections Goal Conflict Graph.

tion ideas surface, the potential for additional conflicts may exist.

Drawing from goal modeling [44], the graph in Figure 2.5 depicts the main

goals, their sub-goals, and the edges between sub-goals. Edges between sub-goals

capture the conflict classification as Interference or Divergence. Conflicts (negative

relationship) are represented by minus (-) signs and red color. Some positive rela-

tionships are depicted with the plus (+) sign. Discussion of positive relationships

is outside the scope of this work.

2.3.1 Voter Authentication Interferes with Voter Anonymity

Voter anonymity is best accomplished in a system where the identity of the voter

is never introduced for any purpose. Thus, the goal of voter anonymity conflicts

with voter authentication since voter authentication requires the identity of the

voter be known and proven to the system.

Direct or indirect links between the voter’s selections and the voter’s identity

could lead to a compromise of the voter’s anonymity. Any voter authentication
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process will require a record of the voter along with other attributes necessary to

authenticate the person as that voter. This information, along with metadata such

as the time of the authentication, is ripe for intentional or unintentional misuse

and connection with the voter’s selections. This is especially true when voting

system artifacts are retained for many months or years depending on local law.

The longer the artifacts are retained, the more likely the procedural or technolog-

ical mitigations put in place to limit the interaction of voter identities and voter

selections are to be circumvented.

The most common resolution for mitigating this conflict in electronic voting

systems is separation of responsibilities. In this approach, the capturing of voting

selections is done in a system which has no knowledge of the voter’s identity. The

voter authentication is done on a separate system and there is no connection be-

tween the systems. This is achievable in scenarios such as in-person voting where

procedural controls ensure that only authenticated voters can use the vote capture

component of the system. In other scenarios, such as absentee balloting or inter-

net voting, separation of responsibilities is much more difficult, if even possible. In

those scenarios, weaker resolutions are deployed such as the two-envelope system

used in postal voting. In the two-envelope system, the ballot is inserted inside an

inner envelope which is then inserted in an outer envelope. The outer envelope

is used for postal delivery. The voter is authenticated using his signature on the

inner envelope. Authenticated voters’ ballots are removed from the envelope and

separated to preserve voter privacy. Digital implementations encrypt and digitally

sign the voter’s selections and don’t allow them to be decrypted in the same sys-

tem or process where the digital signature is still associated. These systems use

decryption mixnets or homomorphic encryption to ensure the plain text vote and

voter identities are not associated [4]. Since even the best of these mitigations rely

on procedural controls and lack of collusion to protect voter anonymity, we classify
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this conflict as interference.

2.3.2 Voter Authentication Interferes with Voter Usability

Determining the best and most usable way to evaluate a voter’s identity and eli-

gibility to vote is a matter of intense political and technical debate. The debate

centers around the balance of permitting every eligible voter the ability to vote

and with requiring a certain level of proof. The more proof required, the lower the

usability and the more likely eligible voters are to be incorrectly rejected. Since

nearly all voter authentication implementations hurt voter usability to some level,

this conflict is classified as interference.

Voter authentication can take many forms. The most common form of voter

authentication in American election processes are polling place check-ins with gov-

ernment identification and signature-based authentication for absentee ballots. In

remote electronic voting systems, voters use digital forms of authentication such

as username/password, requests for personal identifiable information (name, gov-

ernment issued ID numbers, date of birth), smart cards, etc.

Authentication and usability are both essential in the voting process. How-

ever, access control requirements and adequate usability are frequently in conflict

with each other [10]. According to [10]’s comparative analysis, the authentication

methods which achieve the highest security rating only achieve a moderate usabil-

ity rating at most. Electronic voting does not present any unique aspects to this

conflict, so we intentionally abbreviate the discussion of this conflict.

2.3.3 Voter Anonymity Diverges with Voter Accessibility

The 2002 Help America Vote Act (HAVA) requires all American election juris-

dictions to provide the same opportunity for access and participation, including

privacy and independence, equally to all voters [1]. Providing privacy is difficult
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while providing universal access to voters with various disabilities. For instance,

one of the easiest ways to provide voters with disabilities a full voting experience

is to provide qualified help. However, doing this will violate that voter’s right to a

secret ballot. As discussed in [4], adapting voting systems to provide audio/visual

aids or human assistance for voters with disabilities may create situations where

the voter’s candidate choice is revealed to a third party. Likewise, remote voting

systems, such as postal or internet voting, are significantly more accessible com-

pared to in-person voting at polling stations but result in a marked deterioration

in voter anonymity. We classify this conflict as divergence because the techniques

discussed do reduce the risk to voter anonymity to a level accepted by most voters

with accessibility needs.

While outside of the scope of this work, not all requirement conflicts are pair-

wise. In reality, there are many complex interactions that occur when 3 or more re-

quirements are combined. One example is the interaction between voter anonymity,

voter accessibility, and voter verifiability. For example, Votegrity [14] was one of the

very first voter verifiable, privacy preserving end-to-end verifiable voting schemes.

In this scheme, Chaum uses visual cryptography to split an image into multiple

shares. Individual shares do not yield any meaningful information about the orig-

inal image. While in the voting booth, the voter can see her vote by combining

two strips of paper. The voter randomly chooses one of the strips as a receipt to

take home [4]. This provides voter verification and privacy protection but is not

accessible since the use of visual cryptography is not usable by persons with visual

impairments. While this limitation is unique to the use of visual cryptography,

non-accessible mechanisms are often used to provide voter verification in a private

way. Another example is the provision of ballot receipts which can be compared

to a public bulletin board later. These are often long, seemingly random, and

otherwise meaningless strings which are difficult for voters with cognitive or other
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impairments to use.

2.3.4 Coercion Resistance Interferes with Voter Usability

Many of the methods used to achieve coercion resistance ultimately hurt voter

usability. This is intuitive because voting in the most straight forward, usable

manner allows a coercer the opportunity to simply observe the act of voting. This

is especially true in any remote voting method, such as postal or internet voting.

Only supervised in-person voting can truly provide coercion resistance without

hurting voter usability. In many remote voting proposals, the approach to coercion

resistance is multiple voting. These proposals allow the voter to vote multiple

legitimate ballots and take the last one while other schemes allow the voter to cast

fake ballots which look real to a coercer. Each of these schemes, however, present

usability challenges for voters who are often confused about which ballot was cast

or – worse – if they cast a real ballot at all. Therefore, we classify this conflict as

interference.

JCJ and its successor Civitas, for example, are known for their high level of

coercion resistance but have significant usability issues as detailed in [33]. JCJ/-

Civitas allows voters to generate fake credentials which are indistinguishable from

real ones and can be used to cast dummy votes. Dummy votes show up on the

bulletin board for verification but are ultimately not counted. Usability is hurt

with this scheme because the voter is forced to manage multiple tokens and know

which one is the right one and make sure to use the right one in the free moment(s)

she may have away from her coercer. The usability of JCJ/Civitas was improved

by [26] by adding smart card support. If the voter enters his correct Pin, the

correct ballot is created with his real credentials. Otherwise, a fake credential is

used. This could create a scenario where the voter mistypes his PIN, thinks he

cast his legitimate ballot, but he did not cast a ballot at all.
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2.3.5 Coercion Resistance Diverges with Cast as Intended

Cast as intended verifiability is intended to prove to the voter that the system

properly interpreted how they voted. The simplest way to do this is to show the

voter the results of the interpretation, or tabulation. This is not possible, however,

because it would give the voter proof that the she can take away and provide to a

coercer. Therefore, providing cast as intended verification must be done in a more

complex and less straight forward manner. It must provide proof to the voter

in such a way that the voter can’t take that proof to others. There are known

techniques to achieve both of these goals, such as the Benaloh Challenge [8], so

we classify this conflict as divergence. It is critical to mention that many of the

implementations which meet both of these goals negatively impact voter usability.

A good example of this is seen in the Norwegian Internet Voting Protocol

[23]. In this internet voting system, cast as intended verification is provided by

means of distributing voting cards to voters and then transmitting return codes

to the voters via text message. If the return codes calculated by the system and

provided to the voter via text message match the values on the voting card, the

voter can be assured the system interpreted her vote correctly. This practice,

however, introduces concerns over vote buying as discussed in [5]. Text messages

simplify the task of coercers and vote-buyers because they need only ask the voter

to provide the appropriate proof generated by the internet voting system itself

[5]. Supporters of this protocol point to the multi-voting support as the means

by which the voter can provide proof to the coercer while casting a different, non-

coerced ballot. As discussed earlier, multiple voting often leads to usability issues

so while this approach may satisfice this conflict, it moves the concern to a different

conflict.
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2.3.6 Coercion Resistance Diverges with Recorded as Cast

As first highlighted in Benaloh’s seminal work on receipt-freeness [8], cryptographic

election schemes have the potential to suffer from a deficiency which allows the

voter to prove to a third party how their vote was cast. Benaloh points out that

this deficiency is a result of attempting to produce correctness proofs of the election

tally.

Recorded as cast implementations must provide proof to the voter that her

ballot was received in its correct form by the election authority. Since this operation

is often not immediate, implementations of this verification typically rely on a

public bulletin board mechanism. Further, this verification approach is not a

simple ballot tracking verification – which would verify the system received a ballot

from the voter – but a verification that proves the system received the ballot the

voter cast. This distinction is important because it means the system must provide

proof to the voter that the contents of the ballot are the same as when the voter

cast it. Because of voter coercion concerns, this proof must not actually convey

the contents of the voter’s ballot. This forces the implementation to use a more

complex and less straight forward mechanism to provide proof to the voter but

no one else. Here again, this conflict is satisfiable with current technology so we

classify it as divergence with the note that its satisfaction is often at the expense

of voter usability.

One example that failed to sufficiently address this conflict was the Rijnland

Internet Election System (RIES), used by about 20,000 expatriate voters in the

2006 Dutch parliamentary elections [25]. The system works by publishing a refer-

ence table before the elections, including (anonymously) for each voter the hashes

of all possible votes, linking those to the candidates. The original votes are only

derivable from a secret key handed to the voter. After the elections, a document

with all received votes is published. This allows for two important verifications: a
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voter can verify his/her own vote, including the correspondence to the chosen can-

didate, and anyone can do an independent calculation of the result of the elections,

based on this document and the reference table published before the elections [24].

The voter is provided recorded as cast verification because if the voter’s vote has

been registered incorrectly, or not at all, the voter can detect it. This system’s

fundamental flaw is that the voter verification scheme can also be used to sell votes.

If the voter lets someone else verify their vote, he or she could pay the voter for

making the right choice [24].

2.3.7 Provisional Voting Diverges with Voter Anonymity

Provisional voting is sometimes referred to as conditional or second-chance voting.

As these names indicate, provisional voting provides voters an opportunity to

vote if something goes wrong on Election Day under certain conditions. Often,

the voter has appeared at the wrong precinct or forgotten a required form of

identification. While the ballot is cast on Election Day, the ballot is not counted

until the conditions are met. This means the ballot must be held separate from

counted ballots and stay associated with the voter herself, so it can be identified.

In fully electronic systems, this creates a significant risk to voter anonymity. In

paper ballot systems, the voter’s identity is only associated with the ballot until

the eligibility is determined and then the ballot is separated from the identification.

In a digital system, the ballot and voter identity may never be fully separated even

though the ballot is counted. Since this concern is limited to digital systems, we

classify this conflict as divergence.

One example of this conflict is blockchain voting schemes. To support provi-

sional voting, records of the ballot must be added to the blockchain which are not

completely anonymous. There must be a link – indirect or direct – back to the

voter. There may be another block added to the chain later to denote the bal-
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lot’s ultimate status, but the original block still contains the ballot and the voter’s

identity. In one blockchain implementation we are aware of and likely others, the

ballot is encrypted and the voter identification is a unique ID related only to the

voter through an offline system. These techniques mitigate the conflict, but they

do not solve it. This conflict is also present in offline e-voting devices.

2.3.8 Cast as Intended Interferes with Voter Usability

The desire to add cast as intended verifiability to the voting process requires that

voters perform some action. This action may be as simple as deciding whether to

verify the ballot. As expressed in [4], requiring voters to verify their vote negatively

impacts usability by adding extra steps to the process and possibly confusing the

voter. Since there is no current implementation that provides voter verification

without an extra, undesirable step in the voting process, this conflict is classified

as interference.

One example of this conflict is in the Prét à Voter [39] scheme. The key

idea behind the Prét à Voter approach is to encode the vote using a randomized

candidate list. The randomization of the candidate list on each ballot form ensures

the secrecy of each vote while providing one half of the ballot as a receipt for cast as

intended verification. Because the scheme used in Prét à Voter alters the printing

of the ballot, the voter must also have a way to verify the ballots are well-formed

[36]. This check is provided by giving the voter the ability to request two ballots,

one to audit and spoil and one to cast. Similarly, in the PunchScan system, the

voter can detect maleficence by choosing either the top or the bottom page to keep

as her receipt [36]. In both cases, the cast as intended check requires the voter to

perform actions well outside the nominal voting experience. Collecting more than

one ballot or choosing which receipt to keep contributes to voter confusion and

detracts from usability.
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It is also important to note that usability is the main factor in whether voters

choose to perform the verification process. When given the choice, voters will

not choose to perform the verification if it is confusing, inefficient, and seemingly

unimportant. This is also reported in a usability study performed on end-to-end

verifiable internet voting systems by the US Overseas Voting Foundation [43].

The less voters who choose to audit the system, the less effective the verification

becomes. Therefore, conflicts such as this one not only hurt usability but also

negatively impact the verification goal. This dynamic is discussed in [7] and leads

to many questions about how to best perform the verification, how to track whether

voters performed the verification, and whether the verification can be abstracted

away from voters.

2.3.9 Cast as Intended Interferes with Voter Accessibility

Cast as intended schemes rely on generating proof to the voter that the voting

system has correctly handled her ballot. Most schemes fall into one of three buck-

ets: independent encryption and compare, Benaloh challenge, and return codes. In

each of these cases, the voter is asked to compare values between the voting system

and a definitive source which is often on physical media or a separate system. This

is very difficult for voters with disabilities, particularly with visual or dexterity

limitations. We, therefore, classify this conflict as interference.

A good example of this is code voting schemes first introduced by Chaum in

[13]. Code Voting gives each voter a sheet of codes with one for each candidate.

Assuming the code sheet is valid, the voter can cast a vote on an untrusted machine

by entering the code corresponding to her chosen candidate and waiting to receive

the correct confirmation code [7]. This scheme and its successors require voters to

manage the interaction between a code sheet and the system and then confirm the

confirmation codes and the code sheet. This is not possible for voters with visual
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impairments.

2.3.10 Recorded as Cast Diverges with Voter Anonymity

In many voting schemes, voter identities are maintained along with the ballot

until late into the voting process. This is true in postal voting and many forms of

internet voting. This makes it difficult to provide recorded as cast verification while

maintaining voter anonymity. Recorded as cast verifiability provides voters the

assurance that their ballot has reached the voting authorities without compromise

or deletion. This is unique proof that the ballot fidelity remained intact but must

be given is such a way that no one can determine from the proof how any voter

voted. Each individual proof must be free from any evidence linking the voter to

a vote and there must be no way to take the collection of proofs to determine a

voter’s selections.

Since several schemes have been proposed which address this conflict, we clas-

sify it as divergence. These schemes provide the voter only a confirmation code

which is tied somehow to the content of the ballot. In Scantegity, ThreeBallot, and

other paper ballot-based systems, the voter takes part of the ballot while the cor-

responding part is posted to a public bulletin board [4]. The voter can reconstruct

the ballot and be assured her ballot was recorded as cast. In electronic systems

like Helios, a probabilistic ballot hash or ballot encryption is posted to the public

bulletin board for the voter to review [4].

2.3.11 Tallied as Recorded Diverges with Voter Anonymity

As discussed in the prior conflict, voter identities are often maintained late into

the voting process to provide recorded as cast verification and to generally prove

the legitimacy of the ballots in the ballot box. This is necessary to show that the

ballots being tallied are in fact the same ballots which came from legitimate voters.
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This creates tension for the actual tabulation process which must strip away voter

identification information to preserve privacy while also producing a tabulation

result which is verifiably calculated from the original set of ballots. This conflict

was first addressed by Chaum using decryption mixnets [4]. These mixnets rely

on multiple rounds of decryption each owned by a separate election official. Each

mix can be verified but it takes all trustees to accomplish the full decryption. This

provides voter anonymity and tallied as recorded verifiability, but voters must trust

that all trustees are not colluding.

Several improvements have been proposed which significantly address this prob-

lem using homomorphic encryption. Homomorphic encryption is a cryptographic

primitive which enables ballot tabulation while still in encrypted form. The result

of a homomorphic addition on a set of cipher texts is equivalent to an addition

operation performed on the set of plaintexts. Only the result of the addition opera-

tion is decrypted, thereby preserving the individual voter’s privacy [4]. Scratch and

Vote, VoteBox, and STAR-Vote are examples of systems which use homomorphic

encryption. We, therefore, classify this conflict as divergence.
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CHAPTER 3

Voting System Reference Architecture

3.1 Definition

In order to propose a new architectural framework for solving requirement con-

flicts, we first define the current voting system reference architecture in Figure 3.1.

Our reference architecture provides a template solution for any type of voting sys-

tem solution, including solutions which mix digital and analog components. Our

components are generalizations of commonly found components from specific im-

plementations. We will use this reference architecture to discuss and differentiate

our proposed Open Voting Client Architecture concept.

3.2 Components

3.2.1 ElectionDesigner

The Election Designer component is responsible for capturing the data and rules

for the election, including the districts, offices, questions, candidates, and options

which will appear on the ballots. There is typically only one Election Designer

component in an election jurisdiction’s voting system.

3.2.2 BallotDesigner

The Ballot Designer component is responsible for preparing voter-ready ballot ob-

jects from the Election Definition. Voting systems will contain one Ballot Designer

component per ballot type (e.g. paper ballot, electronic ballot), such a one which
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Figure 3.1: General Voting System Reference Architecture

builds PDF ballots and another which programs an electronic ballot marking de-

vice.

3.2.3 BallotProvider

The Ballot Provider component is responsible for delivering the ballot to the Voting

Client component. There will be at least one Ballot Provider type per ballot type

and there may be many instances of each Ballot Provider type.

3.2.4 VotingClient

The Voting Client will interact with the voter to authenticate the voter with the

Registrar component and obtain the correct blank ballot from the Ballot Provider.

The Voting Client component then captures voter intent, applies the intent to
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the blank ballot to create a voted ballot, and will submit the ballot to the Ballot

Processor component. There will be at least one type of Voting Client per ballot

type and there may be many instances of each Voting Client type.

3.2.5 BallotProcessor

The Ballot Processor component receives the ballot submission from the Voting

Client. The Ballot Processor will validate and store the ballot.

3.2.6 BallotTabulator

The Ballot Tabulator component will process the voted ballot to create a cast

vote record (i.e. a record of how the ballot is scored). There will be at least one

type of Ballot Tabulator per ballot type and there may be many Ballot Tabulator

instances within a voting system.

3.2.7 ElectionReporter

The Election Reporter component will receive the cast vote records, aggregate

them, and generate results reports.

3.2.8 Registrar

The Registrar component is responsible for managing the list of eligible voters,

performing voter authentication, and providing the Voting Client the information

necessary to obtain the correct ballot from the Ballot Provider. Depending on

the implementation, the Registrar component may or may not be included in the

voting system.
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CHAPTER 4

Open Voting Client Architecture

The goal of the Open Voting Client Architecture is to help solve several requirement

conflicts by allowing an an open-market of voting clients to fully and safely interact

with the voting system. This approach removes the Voting Client component from

the voting system and places it outside of the voting system trust boundary. This

has the significant potential benefit of engaging voters in ways specific to their needs

and preferences. Among other benefits, we believe it will alleviate the conflicts of

• Voter Authentication Interferes with Voter Usability

• Cast as Intended Verifiability Interferes with Voter Usability

• Cast as Intended Verifiability Interferes with Voter Accessibility

4.1 Definitions

Let us first offer three formal definitions of Open Client Voting Architecture.

Open Voting Client Architecture A system employs an Open Voting Client

Architecture if it implements all of the following publicly defined and exposed

interfaces:

1. iRegistrar component for submitting the voter’s credentials and obtaining

the voter’s ballot assignment.

2. iBallotProvider component for sending the ballot assignment and obtaining

the blank ballot.
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3. iBallotProcessor component for accepting voted ballots.

Permissioned Voting Client Architecture A system described by Open

Voting Client Architecture which authenticates the voting clients to limit which

clients can interact with the voting system.

End-to-end Verifiable Open Voting Client Architecture A system de-

scribed by Open Voting Client Architecture with end-to-end verifiability properties.

See [36] for a review of end-to-end verifiability properties.

Figure 4.1: Open Voting Client Reference Architecture

4.2 Description

In order to support an open marketplace of voting clients, the voting system must

provide interfaces that can be consumed by various voting client implementations.

As shown in the use case diagram in Fig. 4.2, voting clients support three use
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cases which depend on other components: Authenticate, Obtain Blank Ballot,

and Submit Ballot. A voting system with an Open Voting Client Architecture

must expose interfaces to support these use cases. We define these interfaces as

iRegister, iBallotProvider, and iBallotProcessor. We have defined these interfaces

to be a simple as possible to ease implementation burden and make our architecture

design technology-agnostic.

Figure 4.2: Voting Client Use Case Diagram

4.2.1 iRegistrar

The iRegistrar interface defines a single function to AuthenticateVoter which must

be implemented by the voting system’s Registrar component. The Authenticat-

eVoter function accepts the voter’s credentials and returns the voter’s ballot as-

signment in a BallotAssignmentToken, if successful. The token identifies the ballot

assignment and conveys the voter’s right to obtain that ballot.

4.2.2 iBallotProvider

The iBallotProvider interface defines a single function to GetBlankBallot which

must be implemented by the voting system’s BallotProvider component. The

GetBlankBallot function accepts the BallotAssignmentToken and returns the Bal-
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lotBallot, if successful.

4.2.3 iBallotProcessor

The iBallotProcessor interface defines a single function to SubmitVotedBallot which

must be implemented by the voting system’s BallotProcessor component. The

SubmitVotedBallot accepts the VotedBallot from the Voting Client and returns a

ConfirmationCode.

4.3 Architectural Comparisons

We completed an architectural analysis of six voting systems, three paper based

systems and three electronic voting systems, to determine how well current systems

conform to Open Voting Client Architecture.

4.3.1 Paper Ballot Voting Systems

First, we examined the paper based voting systems EVS 6.0.0.0 [18], Democracy

Suite 5.5 [48], and VSAP Tally 2.1 [19]. In all three systems, only one of the

three required interfaces is provided. Due to their use of ballot papers, the paper

systems implement an iBallotProcessor interface that can be used by various voting

clients. Examples of voting clients include hand marking paper ballots, polling

place electronic ballot marking devices, and absentee electronic ballot marking

systems. However, we did not identify the presence of iRegistrar or iBallotProvider

interfaces in any the paper ballot voting systems we examined. We found that voter

authentication and blank ballot provisioning are only available in proprietary or

incomplete public formats.
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4.3.2 Electronic Voting Systems

Second, we examined remote electronic voting systems Helios [2], Swiss Post [42],

and Voatz [41]. We found the Helios voting system provides all three required in-

terfaces, but authenticates the voting client so is therefore an example of a Permis-

sioned Voting Client Architecture. Helios implements the iBallotProvider interface

by exposing an REST API to obtain the election definition. The election defini-

tion is a JSON file whose specification is available on the Helios github site [3].

Helios also implements the iBallotProcessor interface by providing a cast API that

accepts the encrypted ballot as a JSON file. Finally, Helios implements an iRegis-

trar interface using OAuth which requires pre-shared client IDs and client secrets

to authenticate the voting client. Helios voting client, heliosbooth is a Javascript

client that could be replaced with different client, if not for the pre-shared client

values. We also evaluated the Swiss Post and Voatz remote voting solutions. Both

of these systems separate the voting client into a unique component and offer in-

terfaces for authentication, ballot provisioning, and ballot submission. However,

all three interfaces are proprietary and their public documentation is limited or

non-existent.

4.4 Benefits

In addition to alleviating several requirement conflicts, this new architectural ap-

proach can have far reaching implications on voting system construction and voter

satisfaction. We discuss the benefits here as potential, but unproven, since our

focus is on the security analysis of this type of architecture.
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4.4.1 Improved Usability

Voters will be able to choose a voting client that provides the most usable interface

based on their preferences. Usability is different for each voter and involves their

past experiences, expectations, and capabilities.

4.4.2 Increased Comfort/Familiarity

Voters will be able to choose a voting client that runs on their personal device (i.e.

mobile phone). This will increase the voter’s comfort and familiarity. Depending

on how well the interfaces become standardized (something we discuss in Next

Steps), the voters will likely be able to use the same voting client if they move to

a different jurisdiction.

4.4.3 Flexible Accessibility

We anticipate voting clients will be built to serve voters with various disabilities:

blindness, color blindness, lack of dexterity, and others. These clients can offer an

experience that meets the specific needs of voters with those specific disabilities,

as opposed to current solutions that generalize disabilities.

4.4.4 Reduced Costs

It is possible that the cost to build and maintain voting systems will be reduced over

time as heavily engineering voting clients are replaced by open voting clients. The

majority of engineering and testing costs are spent on the voting clients because

they currently have to service a wide variety of voters. By removing the voting

client, the overall engineering and testing cost of the voting system will be reduced.
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# Risk Description

R1 Ballot Privacy Com-
promise

The voter’s ballot privacy is compromised by a
malicious voting client

R2 Enable Voter Coer-
cion

Coercer controlled voting clients can force or
observe voting behavior

R3 Enable Vote Buying Buyer in control of voting client can verify the
vote

R4 Ballot Misrepresenta-
tion

Voting client presents an incomplete or different
ballot to the voter

R5 Voted Ballot Corrup-
tion Voting client submits malformed ballot

R6 Voted Ballot Alter-
ation

Voting client discards ballot or submits an al-
tered ballot

R7 Cryptographic Com-
promise Voting client compromises keys or randomness

R8 Identity Misuse Voting client steals voter credentials and reuses
to cast more ballots

R9 Malicious Payload In-
jection

Voting client injects malware or commands
through interfaces with voting system

Table 4.1: Open Voting Client Architecture Security Risks

4.5 Security Risks

Given the shift in the trust boundary, security risks are the paramount concern

with Open Voting Client Architecture implementations. Using the threat trees

from [35], we derived the a list of risks that are introduced or exaggerated by the

shift in voting client construction in Table 1. We specifically choose an internet

voting threat model because internet voting shares the similarity that voting clients

can not be trusted. We later use this list to evaluate the security of our proposed

Op-Ed voting system.
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CHAPTER 5

Op-Ed Voting Implementation

Our goal with Op-Ed voting is to create a voting system that meets the End-to-end

Verifiable Open Voting Client Architecture definition in a simple and secure way.

Our hypothesis is that we can utilize and extend an existing end-to-end verifiable

protocol in our open voting client architecture to mitigate the risks identified in

Table 4.1. We believe our implementation shows the potential for this architectural

approach to improve universal voting access voting and increase voter satisfaction.

The Op-Ed, Open in-Person Electronic Device, voting system allows voters to

bring their own voting clients (e.g. mobile phones, tablets) into a polling location

to cast their vote. See Fig. 5.1 for a conceptual diagram.

Figure 5.1: Op-Ed Voting Concept
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5.1 End-to-end Verifiable Protocol Selection

We evaluated two published end-to-end verifiable protocols for use in Op-Ed:

Guasch-Neuchâtel protocol [12, 22] and Microsoft’s ElectionGuard [6]. Both these

protocols have robust implementations, have been used to mitigate the risks of

untrustworthy voting clients, and are usable in a polling place context.

In our evaluation, we looked at three aspects to determine the most suitable pro-

tocol: usability, complexity, and extensibility.

Usability. On usability, the main difference is in their approach to voter verifi-

ability. The Guasch-Neuchâtel protocol uses a code-based approach, while Elec-

tionGuard uses a challenge-based approach [27]. Studies like [29], consistently find

code-based approach more usable than challenge-based.

Complexity. On complexity, we found that the Guasch-Neuchâtel protocol is sig-

nificantly more complex than ElectionGuard. Guasch-Neuchâtel [22] defines nine

algorithms for the voting scheme: Setup, Register, Vote, ProcessBallot, RCGen,

RCVerif, Confirm, FCGen, Tally, and Verify - seven of these are used during the

act of voting. The act of voting with ElectionGuard requires their Encryption algo-

rithm and their Tracking Code Generation algorithm. ElectionGuard’s simplicity

reduces the information communicated to and from the voting client, which will

yield simpler interfaces and less complex voting clients.

Extensibility. On extensibility, we found that ElectionGuard offers an advantage

here due to its open source license. Whereas, the Guasch-Neuchâtel protocol has

been implemented by a private company and is harder to reuse and extend.

For the above reasons, we selected ElectionGuard for Op-Ed voting. But we believe

open voting client architectures can also be built using Guasch-Neuchâtel protocol.

– 34 –



5.2 About ElectionGuard

ElectionGuard is an open source software development kit (SDK) that makes vot-

ing more secure, transparent and accessible, according to Microsoft[11]. Elec-

tionGuard enables end-to-end verification (E2E-V) of elections. Microsoft licenses

ElectionGuard under an MIT License [31] which enables voting systems to incor-

porate ElectionGuard SDK into their products.

To achieve end-to-end verifiability, the ElectionGuard SDK leverages homo-

morphic encryption. In 1985, Benaloh first applied homomorphic encryption to

electronic voting [16] and he is the lead cryptographer for ElectionGuard. Ho-

momophic encryption allows ballots to be tabulated while still in encrypted form.

Using an encryption algorithm with homomoprhic properties, the result of the ad-

dition of ciphertext ballots is equivalent to an addition operation performed on

the set of plaintexts. Voter privacy is maintained by only decrypting the result

of the addition operation [4]. Benaloh, and others since, use partially homomor-

phic encryption (PHE). PHE only allows one type of operation, such as addition

or multiplication, but not both. PHE algorithms, like ElGamal and Pallier, have

been widely used for this purpose.

With ElGamal encryption at its base, the Electionguard SDK uses a complex

protocol to generate election parameters, generate key pairs for various guardians,

generate an election key pair, encrypt ballots, aggregate ballots, and decrypt the

aggregate result. With each cryptographic operation, ElectionGuard generates

cryptographic proofs about election keys, ballots, and tallies using a combina-

tion of four techniques [6]: Schnorr proof [9], Chaum-Pedersen proof[15], Cramer-

Damgård-Schoenmakers technique [20], and Fiat-Shamir heuristic [21].
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5.3 ElectionGuard Crytographic Techniques and Key Concepts

To understand the ElectionGuard, we need to offer a basic primer on the key

cryptographic techniques used. Using the techniques described below, it is possible

for ElectionGuard to demonstrate that keys are properly chosen, that the ballots

contain the voter’s intent, that ballots are properly formed, and that decryptions

match claimed values.

5.3.1 Exponential ElGamal

ElectionGuard encrypts votes using an exponential form of the ElGamal cryptosys-

tem. First, the crypto system is established with two prime numbers p and q. p is

a prime for which p− 1 = qr with q being a prime that is not a divisor of integer

r. A generator g of the order of q subgroup Zr
p is also fixed. The private key is a

random s ∈ Zq and the public key is K = gsmodp. As discussed in the threshold

encryption section, the actual public key used to encrypt votes is a polynomial

combination of separately-generated public keys.

One of the advantages of the exponential form of ElGamal encryption is its

additively homomophic property. This permits two messages M1 and M2 to be

encrypted as (A1, B1) and (A2, B2) such that the component-wise product (A,B)

is an encryption of the sum of M1+M2. This property is exploited in ElectionGuard

by taking the individual encryptions of a single ballot option across all ballots and

multiplying them together to form an encryption of the sum for that option. Since

each of the individual encryptions on the ballot are either a 0 or a 1, the sum of

the for that option is the tally of votes for that option.

Specifically, in ElectionGuard, a zero is encrypted as (gR mod p,KR mod p)

and a one is encrypted as (gR mod p, g∗KR mod p). The difference is the exponent

of the generator g which is not shown in the encryption of a zero because g0 = 1
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and is shown as g in the encryption of one which is short for g1. When these

encryptions are multiplied, the result is (g
∑

i Ri mod p, g
∑

i Vi ∗K
∑

i Ri mod p). This

is the encryption of
∑

i Vi which is vote total.

The R referenced in the encryption is a nounce derived from a single 256-bit

master nounce RB for each ballot.

5.3.2 Threshold Encryption

Threshold ElGamal encryption is a form of encryption that combines individual

public keys into a single public key. It also offers a homomorphic property that

allows individual encrypted votes to be combined to form encrypted tallies.

This method of encryption is useful because elections are governed by an elec-

tion board comprised of three or more people. Threshold encryption allows us to

disperse control of decryption across the multiple people that ElectionGuard refers

to as guardians. The guardians of an election will each generate a public-private

key pair. The public keys will then be combined into a single election public key

which is used to encrypt all selections made by voters in the election.

This approach makes the key generation process much more complex than

usual. First, each of n guardians, denoted by Ti, generates an independent ElGamal

public-private key pair. Each key is published in the election record along with

a non-interactive zero-knowledge Schnorr proof of knowledge of the private key.

These public keys are then joined into a single election public key of

K =
n∏

i=1

Ki mod p

At the end of the election, guardians are able to create partial decryptions using

their individual private keys. These partial decryptions are verified and combined

for the full decryption.
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5.3.3 Schnorr Proof

A Schnorr proof allows the holder of an ElGamal secret key s to interactively prove

possession of s without revealing s. The proof can be converted to a non-iterative

proof when combined with the Fiat-Shamir heuristic discussed later.

The Schnoor proof works with discrete logarithms which is how the ElGamal

public key is derived from the private key. Therefore, it can be used to be proof

knowledge of the private key. First, the prover commits to randomness r by cal-

culating t = gr, where g is the group generator. The verifier then replies with a

challenge c chosen at random. The prover then combines the original commitment

r, the challenge c, and the private key s with x = r + cs. If gs = tyk, where k is

the public key, is satisfied, the prover has satisfied the Schnorr proof.

In ElGamal, the Schnorr proof is used heavily during the key generation pro-

cess. Each guardian generates their public-private key pair along with a random

commitment and challenge value. These values are published and available for a

verifier to check that the guardians did not cheat the process.

5.3.4 Chaum-Pedersen Proof

A Chaum-Pedersen proof allows an ElGamal encryption to be interactively proven

to decrypt to a particular value without revealing the randomness used for encryp-

tion or the secret decryption key s[6].

In our case, the system wants to prove that the encryption is an encryption

of a zero or a one. Since Chaum-Pedersen is also a proof of knowledge based on

discrete logarithms, the prover commits to a random value in Zq with (a, b) =

(gu mod p,Ku mod p). The prover also create a pseudo-random challenge value

c using the Fiat-Shamir heuristic and calculates v = (u + cR) mod q. A verifier

can then verify the claim by checking that both gv mod p = a ∗ αc mod p and

Kv mod p = b ∗ βc mod p are true. This is the basic Chaum-Pedersen proof for
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one value, but we need an approach that works for zero or one without revealing

which one it is. This is where the Cramer-Damgård-Schoenmakers technique is

used. With this approach, the prover selects a single challenge value c and must

then provide challenge values c0 and c1 such that c = c0+ c1mod q, where c0 is the

commitment to the zero value and c1 is the commitment to the one value. Since

the prover has freedom to chose one of the commitment values, the provider can

fix one in advance, the prover can generate a faux claim with its chosen challenge

value. The verifier can see that one of the two claims is true but cannot tell which.

Chaum-Pedersen is also used to prove that the selection limits for each contest

limit for each contest has not been exceeded. This is important because it is not

enough to only prove that encryptions are of zero or one. Since we don’t know if it

is a zero or one, a malicious actor might encrypt all ones which is an invalid vote

and, therefore, we have to make sure the vote limit is not exceeded. To do this,

each encrypted vote of zero or one is homomorphically combined for a contest.

The Chaum-Pedersen proof is then generated to proof it is an encryption of L, the

selection limit.

Finally, the Chaum-Pedersen proof is used by each guardian to prove the cor-

rectness of their partial decryption of the result. This proof establishes knowledge

of the guardian’s private key s for which the decrypted results, Mi, was decrypted

and that it is the same private key for the public key, Ki, that was published.

5.3.5 Cramer-Damgård-Schoenmakers Technique

The Cramer-Damgård-Schoenmakers technique enables a disjunction to be inter-

actively proven without revealing which disjunct is true. We discuss how this is

used in the previous section.
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5.3.6 Fiat-Shamir Heuristic

The Fiat-Shamir heuristic allows interactive proofs to be converted into non-

interactive proofs. It does this by converting the interactive challenge into some-

thing that can be calculated by the prover, but is equally as random as the inter-

active challenge. This is done using a hash function which operates like a random

oracle[30]. If the right inputs to the hash function are chosen, or defined like they

are in the ElectionGuard prototype, the output of the hash function is random and

uncontrollable by the prover, thus providing the same assurances of the interactive

proof without the need to interact with a prover.

5.3.7 Tracking Codes

ElectionGuard produces tracking codes, sometimes referred to a verification code,

to anonymously identify a ballot and allow the voter to confirm its presence in the

final tally. The tracking code is formed as follows Hi = H(Hi−1, D, T,Bi) where

i in the index of the ballot, D is the voting device information, T is the date and

time of the ballot encryption, and Bi is an ordered list of the individual encryption

on the ballot. Voters are provided Hi as their tracking code and the entire hash

chain is published as a part of the election record.

5.3.8 Challenge Ballots

When in possession of a tracking code, and not before, a voter is given the option

to either cast the ballot or challenge it. Challenging a ballot is the process voters

use to challenge the integrity of the voting system by forcing it to reveal what

it would have submitted if the ballot were actually cast. A challenge ballot is

verifiably decrypted, and the voter is given the opportunity to cast a new ballot.

The decryption of the challenged ballot is published as a part of the election

record so the voter can verify whether the system had encrypted the ballot and
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she intended it.

5.3.9 Election Record

Once voting is complete, the ElectionGuard election record is published containing

all of the following artifacts.

• All cast encrypted ballots

• Proofs that all cast encrypted ballots are properly formed

• A tally ballot formed as the homomorphic aggregation of all cast ballots

• A verifiable decryption of the tally ballot

• All spoiled ballots

• Verifiable decryptions of all spoiled ballots

With this information, independent verifiers can confirm the correct operation

of the election.

5.4 Op-Ed Components and Voting Workflow

5.4.1 Op-Ed Voting Clients

For Op-Ed voting, we consider that there exist a market of voting clients appli-

cations which can run on voter’s mobile devices (i.e. smart phones and tablets).

These voting clients may be constructed by altruist third parties, malicious third

parties, or the voter herself. We assume that there will be high-quality voting

clients implementations that vary in their target audience with focuses on demo-

graphics, ideology, or physical and mental impairments. Voters may choose from

among these voting clients or choose to use an option provided by their election

jurisdiction. We selected QR barcodes as the communication medium between
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the voting clients and the voting system components. This decision reduces the

attack service and reduces interoperability issues. In future iterations, we would

like to explore NFC as an alternative. Since Op-Ed voting system is a polling place

system, we stipulate that voters must provide a form of ID external to the voting

client and must be present in the polling location to cast their vote.

5.4.2 Voter Authentication

The Op-Ed Register component is an electronic pollbook (epb) and the iRegistrar

interface is a barcode reader/writer. The epb, assisted by the pollworker, accepts

and validates the voter’s credentials. The epb generates the ballot assignment

token, encodes it in a JSON string, and presents it as a QR code. The voter will

use her voting client to scan the barcode and obtain the ballot assignment token.

Op-Ed defines the ballot assignment token return object as:

• BallotStyleName - string value that identifies the ballot style

• BallotClaimId - nounce produced by the epb

• BallotClaimToken - HMAC-SHA256 computed from the concatenating the

BallotStyleName and BallotClaimId and using a secret key, kv, that we refer

to as the VoterAuthorization key. This key is unique per polling location.

5.4.3 Ballot Provisioning

The iBallotProvider interface is implemented by the Op-Ed Ballot Terminal com-

ponent and accepts the ballot assignment token, validates the BallotClaimToken is

valid. If the request passes validation, the Op-Ed iBallotProvider interface returns

the blank ballot corresponding to the BallotStyleName provided. Op-Ed defines

this blank ballot return object as:

• BallotStyleURL - URL to download the correct ballot style
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• BallotStyleHash - SHA256 hash of the BallotStyle and used by the voting

client to verify it downloaded the correct ballot style

• BallotClaimId - nounce produced by the epb

• BallotSubmissionToken - HMAC-SHA256 computed from concatenating the

BallotStyleHash and BallotClaimId and using a secret key, kb, that we refer

to as the BallotSubmission key. This key is unique per polling location.

• ElectionGuardParameters - ElectionGuard values of prime number p, gener-

ator g, and public key K.

We choose to provide the ballot style as a URL in order to reduce the size of

the blank ballot object, making it easier to provide as a barcode from the Ballot

Terminal component. In theory, the voter may also download the blank ballot

prior to entering the polling location and pre-mark it in their voting client. The

voter can then check the integrity of the ballot they pre-marked with the hash

value and proceed immediately to casting the ballot without taking time in the

polling location to cast the ballot. This approach enables many other variations

such as drive through voting.

5.4.4 Ballot Marking

Once the voter has obtained the ballot, the Voting Client will verify the integrity

using the BallotStyleHash provided. The Voting Client will display the ballot to

the voter and allow the voter to mark the ballot. The details of how the voter

interacts with the ballot will vary per implementation. Once the voter has made

her selections on the Voting Client, the client will encrypt the voter’s selections

and generate the zero-knowledge proofs specified in the ElectionGuard protocol.

This consist of a proof that the encryption associated with each option is either an

encryption of a zero or an encryption of one, and a proof that the encrypted values
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in each contest is equal to the selection limit for that contest. After encryption of

the ballot is complete, the voting client generates a tracking code. ElectionGuard

defines the code is a hash of the encrypted ballot and acts as the voting client’s

commitment to the encrypted ballot [6].

5.4.5 Ballot Submission

To submit the ballot, the Voting Client builds a barcode with the Voted Ballot con-

tents formatted as a JSON string. The voter will present the barcode to the Voting

Terminal which implements the iBallotProcessor interface and accepts VotedBallot

objects. Op-Ed defines the Voted Ballot object as:

• BallotStyleName - identifier for the ballot style

• BallotClaimId - nounce produced by the epb

• BallotSubmissionToken - provided by the BallotProvider component

• EncryptedBallot - ElectionGuard encrypted ballot

• Zero Knowledge Proofs - ElectionGuard specified zero-knowledge proofs of

ballot correctness generated by Voting Client

5.4.6 Ballot Verification and Finalization

The Voting Terminal will validate that the BallotClaimId is unique and the Bal-

lotSubmissionToken is valid. Next, the terminal will validate the zero-knowledge

proofs of ballot correctness. Finally, the terminal will re-compute the tracking code

and display it to the voter along with a copy of the blank style contents. The voter

can compare the tracking code provided by the voting client to the one displayed

on the Voting Terminal to gain confidence her client submitted the same ballot.

Furthermore, the voter can check the ballot contents to confirm they match what
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her voting client presented to her. Since the tracking code itself doesn’t reveal how

the voter voted, a blind voter can get assistance comparing the values or can use a

barcode scanner to read the tracking code from the voting terminal. At this point,

the voting terminal provides the voter the option to cancel the ballot (known as

challenging in the ElectionGuard specification [6]) or finalize the submission. The

voter may choose to cancel the ballot because 1. The tracking codes do not match,

2. The voter wishes to challenge her voting client’s encryption, or 3. The voter

submitted that ballot under the direction of a vote coercer or vote buyer. The voter

may repeat the ballot submission process until the voter is comfortable finalizing

the submission.
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CHAPTER 6

Op-Ed Voting Security Evaluation

6.1 Assumptions

Our evaluation makes the following assumptions:

• The VoterAuthorization and BallotSubmission secret keys are unique per

polling location and are kept secret.

• The Voting Clients and Voting Terminal do not collude.

• For privacy, we assume the voting client is honest. This same assumption is

made by all remote voting schemes, but is improved in Op-Ed voting since

voters can select their voting client.

6.2 Analysis

6.2.1 R1-Ballot Primary Compromise.

Ballot Privacy is maintaining the intention of a voter unknown to others. Other

than observing the voter selections or the encryption randomness from the voting

client (which we assume does not happen because we assume the voting client

is honest for privacy), the only way to attack the privacy is to brute force the

encryption. Since ElectionGuard uses a strong encryption algorithm, this type of

attack is not feasible.
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6.2.2 R2-Enable Voter Coercion and R3-Enable Vote Buying.

Voter Coercion and Vote Buying is not enabled unless the coercer/buyer is provided

proof of how the voter voted. Since the voting is taking place in a supervised polling

location, the coercer/buyer can not directly observe the act of voting. Furthermore,

since the finalization of the ballot is performed on the Voting Terminal instead of

the Voting Client, the coercer/buyer can not be convinced that what the Voting

Client (which may be controlled by the coercer/buyer) observed was the final ballot

the voter cast.

6.2.3 R4-Ballot Misrepresentation.

The Voting Client can only submit the ballot style assigned based on the Ballot-

SubmissionToken. However, a malicious Voting Client could remove options from

its display. This maleficence is detectable by the voter when the Voting Terminal

displays the ballot contents of the ballot style. Diligent voters can detect if options

were not shown to them.

6.2.4 R5 and R6-Voted Ballot Corruption/Alteration.

Attempts by malicious Voting Clients to submit corrupt or altered ballot will be

rejected by the Voting Terminal through a combination of verifications performed

by the Voting Terminal and the Voter. First, an attempt by the voting client

to present a malformed ballot will be rejected when the Voting Terminal verifies

the cryptographic proofs for ballot correctness. Second, an attempt to submit a

different ballot other than what the Voting Client committed to in its tracking

code will be caught by the voter comparing the two codes. Ultimately, the voter

can verify the validity of the encryption by using the Cancel (i.e. spoil) feature

and checking the ballot’s decryption on the public bulletin board [6].
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6.2.5 R7-Crytographic Compromise

Op-Ed voting does not rely on voting clients managing keys thus eliminating a set

of attacks. However, the voting clients are responsible for generating the random

values used in the encryption. Compromising the randomness will lead to ballot

privacy attacks. While we assume honest voting clients for privacy protection,

these attacks can be detected using the Cancel (spoil) feature. Since spoiled ballots

are decrypted, the random values are revealed and corrupt voting clients could be

exposed. The threat of detection mitigates the likelihood of an attack on encryption

randomness.

6.2.6 R8-Identity Misuse

To prevent this risk, Op-Ed stipulates that voter authentication requires an ex-

ternal component to the authentication routine. For example, the Voting Client

may submit partial voter credentials but the pollworker will verify a signature or

picture before the electronic pollbooks responds with the ballot assignment token.

This approach prevents the reuse of the voter credentials. Furthermore, the use of

single-use, HMAC-SHA256 based tokens prevents forgery and replay attacks.

6.2.7 R9-Malicious Payload Injection

The selection of barcodes limits the interaction between the voting client and voting

system components. This limit reduces the types of attacks to a code or command

injection attack. Both of these are preventable with proper input handling, but

the use of barcodes also makes these attacks uniquely detectable. Any party can

observe what is being transmitted in the barcodes and malicious input can be

detected.
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CHAPTER 7

Conclusions and Future Research Directions

In this work, we define a new approach to voting system construction called Open

Voting Client Architecture. This architectural approach uniquely allows for any-

one to write voting clients and not trust the voting system manufacturers, and

allows for voting clients to be written to assist voters with a variety of needs and

preferences. We offer a formal definition for this architecture and discuss its bene-

fits and security risks. We then presented a specific voting system implementation

called Op-Ed Voting which meets our definition of Open Voting Client Architec-

ture, and we evaluated how it meets electronic voting security requirements. Our

security evaluation shows that it is possible to have a secure Open Voting Client

Architecture while realizing all of the potential voter benefits. This was possible

because we utilized and extended the existing ElectionGuard end-to-end verifiable

protocol in our implementation.

Open Voting Client Architecture represents a new direction in voting system

construction, one that allows for security assurances and voter flexibility. Our

hope is that others are inspired to present other Open Voting Client Architecture

implementations, like Op-Ed voting, for consideration. Future work to refine and

prototype Op-Ed voting is planned along with work to standardize the interfaces

between the Voting Client and voting system components. Investigation into the

impact of new technology, such as those that use block chain, is also planned.
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