
University of North Florida University of North Florida 

UNF Digital Commons UNF Digital Commons 

UNF Graduate Theses and Dissertations Student Scholarship 

2021 

Energy Considerations in Blockchain-Enabled Applications Energy Considerations in Blockchain-Enabled Applications 

Cesar Enrique Castellon Escobar 
n01453427@unf.edu 

Follow this and additional works at: https://digitalcommons.unf.edu/etd 

 Part of the Computational Engineering Commons, Other Computer Engineering Commons, Other 

Electrical and Computer Engineering Commons, Power and Energy Commons, and the Signal Processing 

Commons 

Suggested Citation Suggested Citation 
Castellon Escobar, Cesar Enrique, "Energy Considerations in Blockchain-Enabled Applications" (2021). 
UNF Graduate Theses and Dissertations. 1102. 
https://digitalcommons.unf.edu/etd/1102 

This Master's Thesis is brought to you for free and open 
access by the Student Scholarship at UNF Digital 
Commons. It has been accepted for inclusion in UNF 
Graduate Theses and Dissertations by an authorized 
administrator of UNF Digital Commons. For more 
information, please contact Digital Projects. 
© 2021 All Rights Reserved 

http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
https://digitalcommons.unf.edu/etd?utm_source=digitalcommons.unf.edu%2Fetd%2F1102&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=digitalcommons.unf.edu%2Fetd%2F1102&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.unf.edu%2Fetd%2F1102&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=digitalcommons.unf.edu%2Fetd%2F1102&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=digitalcommons.unf.edu%2Fetd%2F1102&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=digitalcommons.unf.edu%2Fetd%2F1102&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=digitalcommons.unf.edu%2Fetd%2F1102&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=digitalcommons.unf.edu%2Fetd%2F1102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/etd/1102?utm_source=digitalcommons.unf.edu%2Fetd%2F1102&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/


Energy Considerations in Blockchain-Enabled
Applications

by
Cesar Enrique Castellon Escobar

A thesis submitted to the School of Engineering in partial fulfillment of the requirements for the
degree of

Master of Science in Electrical Engineering

University of North Florida
College of Computing, Engineering and Construction

November 2021



This thesis titled Energy Considerations in Blockchain-Enabled Applications, submitted by Ce-
sar Enrique Castellon Escobar in partial fulfillment of the requirements for the degree of Master
of Science in Electrical Engineering, has been:

Approved by the thesis committee: Date:

O. Patrick Kreidl, Ph.D.
Associate Professor of Electrical Engineering
Committee Chair

Swapnoneel Roy, Ph.D.
Associate Professor of Computing
Committee Co-Chair

Touria El Mezyani, Ph.D.
Assistant Professor of Electrical Engineering
Committee Member

Brian T. Kopp, Ph.D.
Associate Professor of Engineering - Jacksonville University
External Committee Member

ii



ACKNOWLEDGEMENTS

This research study was supported in part by NSF CPS 1932300 and CYBER FLORIDA 220408

grants.

The author wishes to thank Dr. Touria El Mezyani and Dr. Brian Kopp, members of the thesis

committee, for their valuable comments and suggestions to strengthen this work.

The author wishes to thank the research group’s faculty members: Dr. Ayan Dutta for his profes-

sional advice, Dr. Swapnoneel Roy for sharing his knowledge and support throughout the research

journey, and Dr. O. Patrick Kreidl for his continuous and thoughtful guidance.
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ABSTRACT

Blockchain-powered smart systems deployed in different industrial applications promise opera-

tional efficiencies and improved yields, while mitigating significant cybersecurity risks pertaining

to the main application.

Associated tradeoffs between availability and security arise at implementation, however, triggered

by the additional resources (e.g., memory, computation) required by each blockchain-enabled host.

This thesis applies an energy-reducing algorithmic engineering technique for Merkle Tree root and

Proof of Work calculations, two principal elements of blockchain computations, as a means to

preserve the promised security benefits but with less compromise to system availability.

Using pyRAPL, a python library to measure computational energy, we experiment with both the

standard and energy-reduced implementations of the Merkle Tree for different input sizes (in bytes)

and of the Proof of Work for different difficulty levels. Our results show up to 98% reduction in

energy consumption is possible within the blockchain’s Merkle Tree construction module, such

reductions typically increasing with larger input sizes. For Proof-of-Work calculations, our results

show an average energy reduction of 20% across typical difficulty levels.

The proposed energy-reducing technique is potentially applicable to other key elements of blockchain

computations, potentially affording even ”greener” blockchain-powered systems than implied by

only the Merkle Tree and Proof of Work results obtained thus far.

vii



Chapter 1

Introduction

1.1 Engineering Motivation: Smart Inspection

Quality control inspections are common to many different industrial sectors. In factories, for ex-

ample, inspection systems prevent defective products from reaching a final packaging process

and, ultimately, wasting expenditures to market. Most modern-day factories require inspection to

be automated (or at least semi-automated) by virtue of small part dimensions, the need for high

production rates or possibly hazardous materials or by-products; even in factories that still imple-

ment manual inspection, human factors such as boredom and tiredness may render mistakes too

frequently. Analogous quality control inspections arise within other societal sectors such as trans-

portation (e.g., highway management, rail safety), power and infrastructure (e.g., delivery lines,

energy storage) and agriculture (e.g., crop yields, sustainable practices), all seeking to similarly

increase resource efficiency or operational value by leveraging new automation technologies.

Adoption of new automation technology has become an exciting challenge in all the above-mentioned

possible inspection scenarios, driven by the need for better and improved sensing (i.e., obtaining

measurements with finer resolution and/or broader scope), improved actuation (i.e., invoking re-

sponses with greater effectiveness and/or reduced delay), and real-time coordination. However, the

subsequent integration of new automation frequently also entails refining objectives or incurring

new costs, including time-consuming redesigns of the data analytics in support of the operational



decision processes. Such considerations in the context of modern-day quality control applications

have been coined ”smart inspection” [28, 1, 25, 20].

As Figure 1.1 illustrates, most contemporary smart inspection solutions are envisioned around so-

called “Internet-of-Things (IoT)” technologies (e.g., advanced sensors, cameras, mobile drones,

wireless communications) [30, 12, 42, 8]. Indeed, the many technical challenges identified by

the IoT community are also challenges for smart inspection. In IoT, any intelligent device may

create value from information exchange between connected devices, data repositories and other

networks [12]. This feature also makes IoT prone to failure from numerous kinds of faults (e.g.,

natural disasters, equipment breakdowns, energy exhaustion) as well as attack from numerous

kinds of adversaries (e.g., malicious insider, data exfiltration, data tampering). Such threats are

often organized by the degree to which they pose risk to the system’s overall Confidentiality, In-

tegrity and Availability (CIA) [36]. Similar threat vectors arise within the connected ecosystem

envisioned for smart inspection solutions, implying their potential uses and benefits must also ad-

dress the associated fault-tolerance and cybersecurity challenges [31, 44].

(a) (b) (c)

Figure 1.1: Outdoor Inspection Solutions: (a) Field Inspection, (b) Road Inspection and
(c) Pipeline Inspection. (Sources: Geoeye Egypt Remote Sensing [http://geoeyeegypt.com], Air-
port Technology [https://www.airport-technology.com/contractors/airfield-safety/canard-drones/]
and Aerial Inspecting Services [https://www.indiamart.com/aerialair-goa/])
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1.2 Technical Motivation: Blockchain Security

IoT solutions integrate numerous disruptive technologies e.g., big data, cloud computing. The so-

called blockchain is another such technology that gets identified for select IoT security issues, the

data integrity problem in particular—a blockchain essentially constrains how information may be

shared among component devices, establishing trust in a distributed network without the need for

oversight by centralized authorities [30]. Blockchain technology originated for crypto-currency

systems, but its main properties (i.e., privacy and non-repudiation mechanisms within a decentral-

ized setting [47, 40, 4] ) have since been promoted for various other applications.

At its technical core, a blockchain is merely a data structure within which certain cryptographic

tools make it possible to evolve a digital ledger of transactions among a network of independent

participants. These participants manage the ledger in a peer-to-peer fashion, without a ruling mas-

ter participant. Change or removal of stored data is rendered extremely difficult by the blockchain’s

cryptographic tools [27]; in essence, any one participant cannot add or modify a transaction record

without other participants collectively validating the proposed transaction, accomplished through

some type of ”consensus” protocol.

The implementation details by which participants identify themselves and register to the ledger, as

well as the rules that govern information sharing and consensus, are varied. The most prominent

implementation is that within the original Bitcoin proposal, the so-called ”Proof-of-Work” (PoW)

scheme [41] . It involves number scanning for such a value that, when hashed, produces a result

that starts with a determined number of zero bits. The average work required is known to be

exponential in the number of zero bits required; on the other hand, any given number is verified by

running only a single hash. Furthermore, PoW helps determine representation in majority decision-

making because it is essentially ”one-CPU-one-vote;” the majority decision, or the mechanism to

force consensus, is related to the longest chain with the greatest PoW effort invested.

To better appreciate both the benefits and pitfalls of blockchain-enabled smart systems, consider the

3



illustration of Figure 1.2, showing a Blockchain ledger and its participants, on both demand-side

and supply-side, connected in a logical star topology; conventional source devices (e.g., analog

temperature sensors) can connect through the IoT Gateway, while “smart” source devices (e.g.,

digital valve, camera drone) may connect to the ledger using a more direct physical or logical con-

nection. In addition, the ledger may permit exclusively supply-side actors to connect for special-

purpose information retrieval or data monitoring (e.g., by regulatory agencies).

Figure 1.2: A general Blockchain ledger, participants, and threats.

Critical security issues arise from the necessary direct connections between the ledger and the

”smart” source devices or supply-side actors. For example, an attacker interested in getting infor-

mation about production quantities may try eavesdropping a supply side actor. As another example,

an attacker interested in causing harm to a plantation may tamper with humidity measurements by

a smart sensor, perhaps to cause irrigation to exceed desired or permitted levels. The risks of

such security vulnerabilities have well-established mitigations, such as encryption and digital sig-

natures, but the associated extra communications and computations also cost additional resources

(e.g., memory, processor, power) [3]. The quest for efficient and secure blockchain-powered smart

systems becomes the core challenge, where energy is emerging as the fundamental measure of

resource consumption associated with any given implementation.

4



1.3 Thesis objectives

This thesis explores possibilities for reducing the energy consumption of blockchain functionali-

ties, preserving the motivating security features even within applications having limited or fixed

power budgets (e.g., smart inspection in IoT systems). Our approach first employs an established

Energy Complexity Model [26] upon key algorithmic components of any Blockchain Layered

Integrated Architecture, specifically a core cryptographic hashing algorithm implemented in the

Merkle Tree Root calculation as well as the original Proof-of-Work mining protocol. Then, using a

recently-developed energy measurement tool interface called RAPL [19] on both the baseline and

optimized algorithms, the achieved energy reduction is quantified. The results provide a proof-

of-concept for our energy-reducing algorithmic engineering approach, inviting future work into

whether other key components of blockchain computations can similarly be more efficient without

sacrifice to functionality.

1.4 Thesis organization

The remainder of this thesis is organized as follows. Chapter 2, which is a reproduction of a

paper accepted and presented in the 2021 IEEE Trustcom Conference [7], examines the effect on

energy savings for an ECM-optimized Merkle Tree calculation. Chapter 3 presents the analogous

approach and results on an ECM-optimized Proof-of-Work calculation. Finally, Chapter 4 presents

the document’s conclusion and recommendations for future research.

5



Chapter 2

Energy Considerations in Merkle Tree Root

Operations

This chapter is a reproduction of Castellon et al. [7] accepted and presented in the 2021 IEEE

Trustcom Conference. The article’s authors are Cesar Castellon, Swapnoneel Roy, O. Patrick

Kreidl, Ayan Dutta and Ladislau Boloni.

2.1 Introduction

Blockchain technology, popularized by different crypto-currency systems, is seeing extensive use

in different fields. Advocates for such uses cite the blockchain’s inherent properties of a decentral-

ized structure alongside enhanced security with mechanisms for privacy and non-repudiation [13,

10, 16, 2]. One particularly promoted use case is the Internet of Things (IoT) [48, 41, 5], which

embodies the vision by which different computing devices may communicate with each other to

map a physically connected world onto its digital mirror. The IoT vision also motivates prospects

of so-called smart systems [32] e.g., smart cities, smart homes, smart grid, smart health, smart

agriculture. The potential uses and benefits of smart systems recognizably also raises critical se-

curity and privacy challenges to be addressed, which motivates the vision of blockchain-powered

smart systems.

Smart and secure systems implemented upon IoT technology require device inter-connectivity for

6



extended time frames, delivering continuous data. Such operations demand constant power sup-

ply [32]—within a world that demands more environmentally-friendly (or “green”) solutions, in

general, IoT realizations also face the challenge of energy efficiency i.e., minimizing their en-

ergy footprint. Thakore et al. [43] acknowledge the additional energy optimization requirements

that blockchains require when implemented together with IoT. Depending on the specific type of

blockchain-IoT combination, precise analysis of performance and energy requirements becomes

critical [37]. As an example of these challenging tradeoffs, consider a particular blockchain-IoT

implementation with a fixed power budget. To be viable for an application that values autonomy

for greater lengths of time, the system must be configured to make more efficient use of energy.

Disabling the blockchain will certainly save energy, but also weaken security: it is in such contexts

that the exploration of ways to reduce energy consumption of blockchain functionality alone can

be of tremendous practical significance.

2.1.1 Related Work

Energy efficiency in computation is a widely studied topic, with numerous points-of-view: hardware-

specific platforms, operating systems, hypervisors and containers [45]; software development and

security [17]; and algorithms [34, 35]. Energy measurements are sometimes obtained by uniquely

instrumented equipment [33], while other times can leverage hardware providers’ Application Pro-

grammer Interfaces (APIs) in which firmware counters are recalled to provide near real-time infor-

mation e.g., Running Average Power Limit (RAPL) technology [38]. Blockchain implementations

are actively under study as providing a decentralized ledger (i.e. record of transactions) by which

to optimize energy management in a variety of scenarios (e.g., generation & distribution [18, 46],

micro-grid networks [26, 23, 30] and smart contracts [27]). In contrast to our motivation, however,

these studies define the optimized management objectives such that the energy footprint of the

blockchain itself is out of scope.

There are past studies who also recognize that the blockchain itself will draw energy away from

7



any symbiotic system it is integrated with. Examples include Sankaran et al. [37] and Sanju et

al. [36], who perform power measurements and evaluate real experiments on the energy consump-

tion of two different blockchain implementations, namely Ethereum and Hyperledger. A similar

analysis of energy consumption is presented in [33] for XRP validation, which is a key element

of decentralized consensus processes within many Internet services. A particularly novel theoret-

ical approach is reported by Fu et al. [15], first modeling a blockchain-IoT caching infrastructure

and posing its energy optimization within a geometric programming formulation whose solutions

allocate resources accordingly. A recent performance evaluation survey, also conducted by Fu et

al. [13], illustrates how diverse and sophisticated current implementations of blockchain ledgers

are. Despite this diversity, however, all existing implementations at their core remain faithful to

Nakamoto’s original blockchain concept [29], within which the Merkle Tree construction module

is essential.

2.1.2 Our Scope and Contributions

We study the extent to which Merkle Tree construction, a principal element of blockchain com-

putations, can be made more energy efficient. Our approach employs an energy-reducing algo-

rithmic engineering technique, based upon an Energy Complexity Model (ECM) proposed by Roy

et al. [34, 35], on the SHA256 encryption algorithm, which is central to the Merkle Tree. Using

pyRAPL, a python library to measure an executable’s Runtime Average Power Limit, we exper-

iment with both the standard and energy-reduced implementations of the Merkle Tree for input

sizes (in bytes) that are commonly seen within blockchain implementations. Our results show

significant reductions in energy consumption, up to 98% but on average 50% across the tested

input sizes. At present, it is only a conjecture that reduced energy consumption in the Merkle Tree

construction module itself extrapolates to comparable reduction of a blockchain on the whole. In

any case, to the best of our knowledge our work is the first to address energy optimization of

blockchains by re-engineering the implementation of one of its component algorithms. Moreover,

the proposed energy-reducing technique is similarly applicable to other key elements of blockchain

8



computations, potentially affording even ”greener” blockchain-IoT systems than implied by only

the Merkle Tree results obtained thus far.

2.2 Methodology

This section describes our application of the Energy Complexity Model (ECM) [34, 35] to the

Merle Tree (MT) root construction module of the blockchain. Described first is the process by

which a block of the blockchain is computed based on the MT root, in which so-called hash calcu-

lations play a central role, followed by a summary of how the ECM works, in general. This section

ends with a detailed description of how the central hash calculations of the MT are re-engineered

based on the ECM.

2.2.1 Merkle Tree Based Block Generation

A graphic representation of a simple block generation in a blockchain is shown in Fig. 2.1. The

bottom layer shows the stored transactions (e.g., T 001) for the block, which later are converted

to their SHA256 Hash signatures (e.g., H001) and represent the Merkle Tree leaves. Merkle Tree

root calculations involves the recursive hash computation starting from these leaves until a final

hash determines the Merkle Tree root (labeled TX ROOT in Fig. 2.1).

Conceptually, the process of Merkle Tree calculation through hashing can be viewed as a state

transition in which an investment of computational resources is required e.g.,

δt
f (T )−−→ δt+1 (2.1)

T = cost[energy, time] (2.2)

That is, the block generation is represented by the state transition in (2.1), which depends upon

a function f (T ) with parameter T denoting the cost as represented by (2.2). This cost has two

main components: one is the energy consumed by the hardware devices to compute the hash of

9



Figure 2.1: Basic Block Generation in Blockchain.

the input vectors, while the other is the execution time of those computations. This paper strives to

reduce the overall transition cost T by reducing the energy consumption of the hardware devices,

employing a technique based upon the ECM next described.

2.2.2 The Energy Complexity Model (ECM)

The ECM developed in [34] is built upon an abstraction of the Double Data Rate Synchronous Dy-

namic Random Access Memory (DDR SDRAM) architecture [14], which is illustrated in Fig. 2.2.

Main memory in DDR is divided into banks, each of which contains a certain number of chunks1.

Data is allocated over chunks in each bank, and each bank also contains a special chunk called the

sense amplifier. When data needs to be accessed, the chunk containing the data is fetched into the

sense amplifier of the corresponding bank. The sense amplifier can only hold one chunk at a time,

so the current chunk has to be put back to its bank before the next one can be fetched for access.

While only one chunk of a particular bank can be accessed at a time, chunks of different banks

1The term “block” is used in DDR specifications, but we use the term ”chunk” to avoid confusion wiithin our
blockchain context.

10



(each with their own sense amplifier) can be accessed in parallel. Therefore, if the DDR memory

is organized into P banks (where P = 4 in Fig. 2.2), then P chunks can be accessed at a given time.

In the popular DDR3 architecture, the DDR1 notion of the per-bank sense amplifier is referred to

as the per-bank cache, albeit still only capable of accessing one chunk at a given time.

Figure 2.2: Internal DDR SDRAM memory chip block diagram.

The ECM denotes the P banks of a given DDR3 SDRAM resource by M1,M2, . . . ,MP, each such

bank Mi comprised of multiple chunks of size-B (in bytes) and its own cache Ci. The illustrative

example of Fig. 2.3 assumes P = 4 banks, as was the case in Fig. 2.2, with just four chunks per

bank, assigning numerical labels 1,2, . . . ,16 to the memory’s collection of data chunks. Heeding

the DDR constraint that each cache Ci may access exactly one chunk at a time, the access patterns

(1,2,3,4) or (5,6,7,8) imply a completely serial execution, while the access patterns (1,5,9,13)

or (3,8,10,13) are each completely parallel. The authors of [34] discovered two key properties of

11



DDR memory: firstly, the difference in power consumption between the same number of chunks

accessed sequentially or in parallel is not significant; however, the execution time of an algorithm

when chunks are accessed in parallel is significantly lower than when chunks are accessed sequen-

tially. Because the associated energy consumption depends upon both power and time, it follows

that parallelizing chunk accesses offers the potential for energy reduction of any algorithm! More

formally, as derived by Roy et al. [34], the energy consumption (in Joules) of an algorithm A with

execution time τ , assuming a P-bank DDR3 architecture with B bytes per chunk, is given by

E(A ) = τ +(P×B)/I (2.3)

where I denotes the so-called parallelization index, essentially the number of parallel block ac-

cesses across memory banks per P block accesses made by A on the whole. That is, under the

ECM, an algorithm’s potential for energy reduction is inversely proportional to the degree to which

it can be re-engineered for parallelization of its memory accesses.

Figure 2.3: ECM for DDR3 Resource with P = 4 Banks

2.2.3 Re-engineering Hash Calculations Using ECM

In this work, we engineer the hash algorithm of Merkle Tree (MT) construction based on ECM to

reduce energy consumption. First, we briefly describe how any algorithm A can be parallelized

based on ECM. We then illustrate how MT’s hash calculation, specifically the SHA encryption

12



algorithm, is re-engineered for parallelization.

Parallelizing any algorithm

Given an algorithm A , the input to A is considered to identify the most common access sequence

in A . The required level of parallelism for the vector formed by the desired access sequence is

then engineered using a logical mapping over chunks of memory that store data accessed by A .

As mentioned above, the order of chunk accesses is different for different levels of paralleliza-

tion. But the physical location (chunks) of the input in the memory is static, and is handled by

the memory controller of DDR. Therefore, to implement parallelization of access over physical

chunks, a different page table vector V is generated for each level of parallelization, which defines

the ordering among the chunks to be accessed (see Fig. 2.4).

Figure 2.4: Memory Layout (P = 4) and Role of Page Tables

For 1-way access, the page table vector V has the pattern (1,2,3,4, . . .) and for 4-way access it has

the pattern (1,5,9,13, . . .). A function is then created to map the pattern of the page table vector V

to the original physical locations of the input. Algorithm 1 shows the function to create an ordering

among the chunks. The ordering is based on the way we want to access the chunks (P-way would

mean full parallel access).
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The page table is populated by picking chunks with jumps. For P-way access, jumps of P are

selected that ensure the consecutive chunk accesses lie in P different banks. Going by the above

example, for P = 1, jumps of 1 ensure that 4 consecutive chunk accesses lie in the same bank (bank

1 of Fig. 2.3). On the other hand, for P = 4, jumps of 4 ensures that 4 consecutive chunk access lie

in 4 different banks (banks 1 through 4 of Fig. 2.3).

Algorithm 1: Create a Page Table for N Chunks
Input: Page table vector V, jump amount jump.
factor = 0;
for i = 0 to N

B −1 do
if i > 1 and (i× jump) mod N

B = 0 then
factor = factor +1;

end
Vi = (i× jump+ factor) mod N

B ;
end

Parallelizing SHA Encryption

As described earlier, Merkle Tree construction performs its hash calculations via repeated use of

the SHA256 encryption algorithm. Specifically, as shown in Fig. 2.5, the input is partitioned into

fixed size message blocks, presented in sequence to separate compression functions.

Figure 2.5: SHA256 for Merkle Tree Calculation

This block sequence is identified in correspondence with the access pattern of the SHA256 al-

gorithm, which we subject to re-engineering based on the ECM. The input vector, in a Merkle

14



Tree being the concatenation of three strings (see Fig. 2.5), is pre-processed into another vector by

applying Algorithm 1.

The mapping is then stored in a page table to be used in subsequent hash calculations. An example

of this operation for 16 blocks and a parallelization index (jump) of 4 is shown in Fig. 2.6.

Figure 2.6: Mapping of SHA Input Blocks based on ECM.

Fig. 2.7 shows the outcome of re-engineering the SHA256 algorithm based on ECM.

Figure 2.7: ECM-Enhanced Merkle Tree Calculation

In our experimentation, an 8-bank DDR3 SDRAM is used and the parallelization index is set to
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I = 8. This essentially means that for any set of eight consecutive block access in SHA256, we

created a virtual mapping using techniques described in [35] to ensure that each size-8 access

occurs across all eight banks.

2.3 Experiments

We now proceed to describe computer experiments designed to quantify the energy savings of the

methodology detailed in the previous section. By virtue of the ECM’s formulation, the enhanced

implementation requires computer hardware using a DDR RAM architecture. Maximum energy

reduction is promised by a parallelization index taken to equal the number of memory banks, which

depends upon the DDR version: 4 for DDR2, 8 for DDR3 and 16 for DDR4 and higher. The ma-

chine used for our experiments features a 64-bit dual-core processor (Intel i5-2410M @ 2900MHz

with cache size L2 256KB and L3 3072KB), running Linux Mint version 19.3 with a 8GB DD3

RAM and 500GB SSD storage. We use pyRAPL, a software toolkit to measure a host machine’s

energy footprint along the execution of a piece of Python code, to compare energy consumptions

between the standard and ECM-enhanced implementations. pyRAPL is built upon Intel’s Running

Average Power Limit (RAPL) technology that estimates a CPU’s power consumption; depending

on the hardware and operating system configurations, pyRAPL can measure energy consumption

of the following CPU domains: CPU socket, GPU, and DRAM [38].

2.3.1 Implementation Details and Setup

Our experimental objectives could not be met by using the SHA256 function in the Hash Python

library. This is because memory management in Python involves a private heap, containing all

objects and data structures. The control of this private heap is ensured internally by the Python

memory manager, with different components dealing with sharing, segmentation, pre-allocation or

caching. Our ECM-enhanced implementation of SHA256 requires greater control over memory

allocation than Python’s memory manager permits. Such low-level control on memory manage-
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ment is possible in the standard C programming language. We thus implement the standard and

ECM-enhanced versions of the SHA256 algorithm within separate C programs, which are called

from a Python script (upon importing the ctypes module) as an external routine. This permits the

use of pyRAPL for the needed energy measurements without denying low-level memory control

to implement the ECM-enhanced SHA256 functionality during Merkle Tree calculations.

Our experiments simulated the Merkle Tree calculation with Python code that runs 103 consecu-

tive two-leaves-input hashes with pyRAPL invoked. Each execution of the code yields an energy

measurement, but because the instrumentation is subject to noise we invoke 5000 repetitions and

report the average energy (mean and deviation). Our experiments also vary the input size (i.e., the

compounded-leaf size) to the Merkle Tree calculations, choosing 1, 64, 96, 128, 512, 1024, 16384

and 262144 bytes motivated as follows:

1. the 1B input is the bare minimum that the ECM permits for any algorithm [34];

2. the 64B, 96B and 128 inputs are common in blockchain applications [41];

3. the 512B and 1024B inputs are common in file hashing applications [11]; while

4. the 16384B and 262144B inputs for the Interplanetary File System (IPFS) [21, 9].

2.3.2 Results and Discussion

Recall that our experimental setup features two implementations of Merkle Tree (MT) calculations,

the standard one (which we label by “O” as it uses the original SHA256) and the re-engineered

one using ECM (which we label by “E” as it uses the enhanced SHA256), as well as eight different

input sizes. Per implementation and per input size, our experimental Python script leverages the

pyRAPL toolkit to measure the average energy (mean and deviation over 5000 trials) of simulated

Merkle Tree calculations.

Fig. 2.8 summarizes the sixteen average energy measurements in two bar charts, per input size
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comparing the Standard MT (O) and the Enhanced MT (E) average energy (in µJoules).

Fig. 2.8 (a) renders the comparison over the six smallest input sizes (using a linearly-scaled vertical

axis), while Fig. 2.8 (b) is over the two largest input sizes (using a log-scaled vertical axis).

(a) Versus Small Input Sizes (in Bytes)
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Figure 2.8: Comparison of Average Energy Consumption

It is seen that the ECM-enhanced implementation consistently requires less energy that the standard

implementation, the difference being increasingly significant with the larger input sizes that befit

file hashing applications (i.e., 512B and above) (but still meaningful for input sizes 64B, 96B and

128B that befit blockchain applications).
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This observed dependence on input size may be a consequence of CPU memory caching. DRAM

memory often allows the memory controller to optimise accesses by L1/L2/L3 caching of data.

With smaller inputs, such caching enables parallelization of bank accesses even in the standard

implementation.

The comparison for the 1B input size corroborates this point, where we observe the enhanced

implementation consume more energy than the standard implementation.

Fig. 2.9 presents the average energy comparison on more relative terms, namely as a percent reduc-

tion achieved by the enhanced implementation over the standard implementation versus all eight

input sizes. The energy savings for the blockchain-motivated input sizes range between 19% and

34%, while the energy savings for the file-system-motivated input sizes range between 69% and

98%, the case of 16384B exhibiting that maximum 98% savings. As noted in Fig. 2.8, the 1B input

renders a savings of -4%, meaning the standard implementation is more energy-efficient by virtue

of the parallelism invoked within the CPU’s L1/L2/L3 cache in this case.

Figure 2.9: Comparison of Energy Savings
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Chapter 3

Energy Considerations in Proof-of-Work

Operations

The preceding chapter demonstrated significant energy savings are possible within Merkle Tree

calculations by simply relying on a re-engineered version of the Sha256 hashing algorithm. This

chapter pursues the natural next question, namely whether energy savings remain significant for

other blockchain operations. Arguably the most popular blockchain operation is so-called Proof-

of-Work (PoW), which essentially achieves distributed consensus by requiring members of the

network to expend effort and solve an arbitrary mathematical puzzle in order to be trusted. PoW

is used widely in Bitcoin mining to validate transactions and mine new tokens, for example—it is

through PoW that Bitcoin transactions can be processed peer-to-peer in a secure manner without

the need for a trusted third party.

This chapter begins by framing PoW within the well-studied Byzantine Generals problem, which

in the theoretical computer science literature embodies numerous impossibility results and fault-

tolerant bounds known for distributed consensus. The chapter continues by describing details of

PoW, illustrating how the required work increases as more members join the network and, at scale,

requires huge amounts of energy. Preserving the roles of PoW but with smaller energy footprint

is, in turn, of great interest. We employ the experimental methodology of Chapter 2 within a

blockchain emulation with results pointing to at least modest energy savings being possible.
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3.1 Proof-of-Work and The Byzantine Generals Problem

The Byzantine Generals Problem describes the difficulty that decentralized systems have in agree-

ing on a single truth. The problem is setup as a set of generals having to coordinate an attack on a

given city—only if a sufficient number of these generals agree will the city be taken. Bitcoin uses

a Proof-of-Work (PoW) mechanism within a blockchain to solve the Byzantine Generals Problem,

effectively ensuring that stored information has not been changed or replaced either internally or

externally. The allegorical analogy is that any general (i.e., member of the Bitcoin network) can

announce an attack (i.e., a next transaction) at any given time with two considerations:

1. The first attack time heard is considered the official one.

2. Different generals may receive other plans at this first time because message transmission

times among generals may differ.

Figure 3.1: Byzantine Generals Problem

All the generals must solve a time-consuming puzzle based on the plan decided. As soon as

one general calculates a solution, the solution is added and the resulting plan is sent to the other

generals. Every general who receives the new plan starts over again, continually working on the

latest updated possible plan.
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After numerous rounds, the official determined attack time is in the longest chain of calculations,

whose creation will have expended more than half the computational power of the generals; an

attacker with less than 50% of the computational power could not have timely created another

chain of equal length. In crypto-economic Blockchains, such as Bitcoin or Ethereum, node miners

run PoW and essentially compete to create new blocks filled with processed transactions. The

node first solving the math puzzle shares the new block with the rest of the network and earns

cryptocurrency units, producing a cryptographic link between the current block and the preceding

block in the chain.

Proof-of-work (PoW) in blockchains is the mechanism that allows the decentralized blockchain

ledger to agree on essential elements such as the order of transactions, the costs of each task, and

the actual account balances. The inputs to a PoW algorithm are the operational rules and a mining

difficulty, which determines the pace for adding valid blocks to the chain—the more blocks are

added, the more difficult successful mining becomes and the more certain the whole network is

about the current state of things. To create a block in PoW, a miner will repeatedly put an actual

downloaded dataset through a mathematical (hashing) function, looking for a result below a target

nonce as dictated by the so-called block difficulty, where a lower target nonce permits a smaller

set of valid hashes. Once a successful result is generated, other miners and clients can verify the

validity of the block with a single hash operation. If one transaction on the chain were to change,

the hash would be completely different, thus signaling possible fraud.

The standard blockchains will accept that an agreement of more than 50% of the total computing

capacity suffices to reach a consensus. Thus, although a possible disagreement may appear, the

majority vote will solve opposite opinions. That is, another key element of a blockchain’s con-

sensus mechanism is the so-called chain selection rule by which the “correct” chain is decided in

the event that multiple paths evolve in parallel (e.g., Bitcoin, uses the so-called Nakamoto rule,

selecting the “longest chain” as the correct one).

Finally, PoW is not only for consensus protocols in blockchains: it also works as block author se-
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lector and a Sybil resistance mechanism. Sybil attacks occur when a group of colluding nodes pre-

tend to be many participant nodes. Resistance to this attack is crucial for decentralized blockchain

ledgers. Pow makes users expend a lot of energy or crypto value as protection, as an economic

deterrents to Sybil attacks.

3.2 Methodology

To summarize the preceding subsection, Proof-of-Work (PoW) mechanisms involve the following

essential steps local to each member of the network sharing a common blockchain:

1. Update the local copy of the chain to the latest version.

2. Solve a mathematical puzzle and create the ”mined” block header hash.

3. Advertise the solution as soon as the math puzzle is solved.

4. Append the block to the chain if authorized.

It is during Step 2, the Puzzle Solving process, that a hashing algorithm such as SHA256 plays

its role. In turn, the energy measurement methodology of the preceding chapter should permit a

comparable analysis of PoW operations within a blockchain; that is, we consider two blockchain

implementations in which all things are equal except whether Step 2 uses the standard SHA256

implementation or the energy-optimized one. However, because a blockchain involves many func-

tions other than hashing, what is unclear is whether the energy savings will be comparable to that

demonstrated in Chaper 2 for Merkle Tree calculations in isolation.

One complicating factor to PoW energy analysis is that the operations involve an iterative hashing

process. As Figure 3.2 illustrates, the first value of each block’s header is the previous block’s hash

(labeled “Hash(n-2)”), also referred to as the prevhash. The second value of each block’s header is

the associated transaction’s Merkle Tree Root ID (labeled “TXROOT”). The third value is the time
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stamp (labeled “TIMESTAMP”) associated with that block’s generation and, finally, the fourth is

a variable value that is iteratively adjusted during the computations (labeled as “NONCE”).

Figure 3.2: PoW Basic Principle

Recall that the nonce determines the degree to which mathematical puzzles become harder to solve

as the blockchain grows. More specifically, the puzzle to be solved for block creation requires the

“mining” node to find a nonce such that the Block’s resulting SHA256 Hash is sufficiently small

to fall into a small target space of possible solutions for that header. In other words, the purpose of

the “NONCE” value is to render it resource demanding to satisfies specific conditions for adding

new blocks [22, 6]. Such behavior is illustrated in Figure 3.3

Arguably the most widely adopted algorithm for Proof-of-Work is the Hashcash scheme. Despite

its popularity, two issues are commonly identified in its use. Firstly, the high energy consumption

of the scheme is perceived as wasteful because the solutions found provide no useful output [24,

39]. Secondly, the computational complexity class of the scheme is at least NP-Complete [24],

which means solving PoW is intractable by the Turing Model. To expedite our experimentation,

yet still reliably emulate blockchain hashing operations, we bypassed the Hashcash scheme and

rather implemented a simplest version of the PoW algorithm—see Algorithm 2.

3.3 Experiments

The PoW experiments use the same hardware setup as discussed in the preceding chapter, remain-

ing compliant with architecture requirements: an Intel i5 64-bit dual-core processor computer with

Linux Mint version 19.3 with an 8GB DD3 RAM and 500GB SSD storage. The PoW emulations
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Figure 3.3: Example of Nonce Calculation Process

Algorithm 2: BlockHash mining algorithm
Data: nonce = 0,Block(B), parameters,di f f iculty = 1
Result: B.hash,nonce
di f f = f ill(”0”,di f f iculty);
for nonce = 0 do

B.Hash = SHA256(B.Params+nonce);
if substr(B.Hash,di f f iculty) = di f f then

break;
else

if i = 2∗∗256 then
nonce = 0;
break;

and energy measurements are also similarly accomplished, namely through a combination of a

main Python wrapper program (with the measurement logging routine and API) and a C program

(containing all the logic for the hashing and the Proof of Work calculation.)
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We first used a single standard program for the PoW for a given input and low difficulty. Then,

following Fig 3.4, we performed a baseline measurement. The measurement process was repeated

Figure 3.4: Standard Measurement Schema - PoW

after modifying the previous program so that hashing employed the re-engineered algorithm of

Chapter 2, all other things equal, as illustrated in Figure 3.5. In particular, both steps ensured that

the exact same input conditions were provided.

Figure 3.5: ECM Enhanced Code Measurement Schema - PoW

3.3.1 Implementation Details and Setup

The standard PoW implementation is labeled by “O,” using the original SHA256 hashing algo-

rithm, while the implementation using the re-engineered SHA256 algorithm is labeled by “E.” The

input size is fixed 256 bytes, including all the Block Header Parameters and byte padding, while

the difficulty level ranged from 1 to 6 (encoded by H0, H00, H000, H0000, H00000 and H000000).
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Per implementation and difficulty level, our experimental Python program leverages the pyRAPL

toolkit to measure the average energy (mean and deviation over repeated trials) of the emulated

Proof-of-Work calculations.

3.3.2 Results and Discussion

Fig. 3.6 summarizes the average energy measurements (using a log-scaled vertical axis) per diffi-

culty level size, at each level comparing the Standard PoW (O) and the Enhanced PoW (E) average

energy (in µJoules).

Figure 3.6: PoW Energy Measurements per Difficulty level (with 1-sigma standard deviation over
1000 trials)

It can be seen in the figure that there exists some energy savings when comparing both implemen-

tations, although the savings in percentage is inversely related to difficulty level.

Fig 3.7 the average energy comparison in relative terms versus difficulty level, namely as a per-

cent reduction achieved by the enhanced implementation over the standard implementation. The

energy savings range between 20% and 4%, the case of Difficulty 1 exhibiting that maximum 20%

savings. Observe the steady energy reduction as the difficulty level increases. We conjecture this

to be an artifact of the exponential increase in computational resources with increasing difficulty,
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Figure 3.7: Average PoW Savings per Difficulty

which hinders the parallelism upon which energy optimization rests. With the Merkle Tree exper-

iments of Chapter 2, the number of iterations did not exceed hundred per data point, while in PoW

measurements these range from 9 in Difficulty 1, 150 thousand in Difficulty 4 and up to more than

37 million in Difficulty 6. Figure 3.8 displays the exponential rise in the number of iterations

within the PoW operations.

Figure 3.8: Iterations Per Difficulty level
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Chapter 4

Conclusion and Recommendations

4.1 Summary of Thesis

This thesis was motivated by technological trends in business and industry (e.g., smart inspection

applications), in which sensors are integrated with the ability to retrieve, process and report infor-

mation through a mesh connected network towards a central information repository. Specifically,

this thesis addressed some associated cybersecurity challenges among these trends, such as pre-

serving information integrity, ensuring confidentiality of transactions and validating authenticity

of participants. Business and industries are addressing such cybersecurity challenges by adopting

Blockchain ledger solutions, employing cryptographic primitives in a manner by which certain

cybersecurity risks become mitigated.

However, the benefits of a blockchain-enabled solution also raises some drawbacks in the form of

necessitating extra communications and computations that divert resources (e.g., processor, stor-

age, memory, power) from the original application’s purpose. If not properly managed, these

trade-offs emerge as its own threat to the system’s health; for example, while the blockchain may

well-maintain integrity, confidentiality, and non-repudiation, there is little value to the increased

security if the additional resources it requires compromises the overall availability of the original

system or service. This is particularly important in applications (e.g., inspections systems, Internet-

of-Things) where the technological devices are already power-constrained (e.g., battery-powered
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robots). In such power-constrained applications, any additional drain on the power budget in the

name of security implies a diminished endurance of the baseline autonomy.

In this context, this thesis explored ways to reduce the energy consumption of specific blockchain

operations, namely Merkle Tree (MT) Root calculations and Block Hash generation within Proof-

of-Work (PoW) calculations. Our approach firstly employed the Energy Complexity Model to

re-engineer the popular SHA256 hash operation, which is a core sub-routine within both MT and

PoW operations. The second step in our approach was to emulate a basic version of the blockchain

functionalities, using both the Python and C programming languages so that either the baseline

or the re-engineered hash algorithm could be employed, all other things equal. The final step of

our approach leveraged a third-party energy measurement tool, using the Intel RAPL interface,

to experimentally evaluate the energy footprints of both the baseline and optimized implementa-

tions. Numerous practical challenges were raised and tackled, including the experimental hard-

ware to guarantee certain boundary conditions as well as repeatability and accuracy of the energy

measurements. Also important was the validation that both the baseline and the optimized im-

plementations retained their correctness, involving bit-by-bit debugging rounds between our hash

implementations as well as hashing tools out of our experimental scope.

It is worth emphasizing that the energy savings was observed over a variety of input size assump-

tions. For Merkle-Tree operations, sizes were selected according to what is typical in blockchain

applications as well as file-sharing applications. The Proof-of-Work operations were fixed to sizes

appropriate for blockchains. It should be noted that the set of sizes are in the realm of what

emerging standards in IoT devices are prescribing within both inter-device communications and

on-device formats for data collection. Thus, while energy savings are demonstrated in this thesis

only within emulations of actual IoT-based systems, that these savings are evident for input sizes

and variables that are aligned with IoT technologies remains encouraging.
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4.2 Suggestions for Future Work

Arguably the most natural next steps of this work is to assess analogous energy-saving opportuni-

ties in other applications of the Sha256 Merkle Tree data structure. These include selected network

protocols, authentication schemes and a number of file-sharing services.

While the results in this thesis demonstrate the potential for energy savings using the algorith-

mic re-engineering techniques, it remains conjecture that the reduced energy consumption in our

blockchain emulation would extrapolate to comparable reduction in complete and operational

blockchains. Future work could examine directions by which the emulation testbench developed

herein can be merged with an actual blockchain implementation, offering all the functionalities

that a peer node uses while connected to other peers in true distributed fashion. Real-world us-

age may also feature different sequencing and/or intermittent reliance on hashing primitives, so

achieved energy savings may be only probabilistically related to the results demonstrated under

deterministic usage patterns here.

Another avenue for future work is to examine the sensitivity of energy savings to different hard-

ware platforms. The energy measurement tool employed here, namely RAPL, is developed for

only Intel processors; meanwhile, the Energy Complexity Model (ECM) by which the hash func-

tion was re-engineered, is developed currently only for DDR memory architectures. However,

current ”smart” devices technologies are anticipated to use other hardware configurations, such

as ARM platforms, for which the ECM is not yet developed to analogously exploit prospects of

memory/CPU parallelization.
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