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S-SMART++: a Low-Latency NoC Leveraging
Speculative Bypass Requests

Iván Pérez, Enrique Vallejo and Ramón Beivide

Abstract—

Many-core processors demand scalable, efficient and low latency NoCs. Bypass routers are an affordable solution to attain low latency in
relatively simple topologies like the mesh. SMART improves on traditional bypass routers implementing multi-hop bypass which reduces
the importance of the distance between pairs of nodes. Nevertheless, the conservative buffer reallocation policy of SMART requires
a large number of Virtual Channels (VCs) to offer high performance, penalizing its implementation cost. Besides, SMART zero-load
latency values highly depend on HPCMax, the maximum number of hops that can be jumped per cycle.

In this paper, we present Speculative-SMART++ (S-SMART++), with two mechanisms that significantly improve multi-hop bypass.
First, zero-load latency is reduced by speculatively setting consecutive multi-hops. Second, the inefficient buffer reallocation policy of
SMART is reduced by combining multi-packet buffers, Non-Empty Buffer Bypass and per-packet allocation.

These proposals are evaluated using functional simulation, with synthetic and real loads, and synthesis tools. S-SMART++ does
not need VCs to obtain the performance of SMART with 8 VCs, reducing notably logic resources and dynamic power. Additionally,
S-SMART++ reduces the base-latency of SMART by at least 29.2%, even when using the biggest HPCMax possible.

Index Terms—SMART; SMART++; Speculative-SMART++; multi-hop bypass
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1 INTRODUCTION

Low latency in NOCs for a wide range of traffic loads is
critical for the performance of multiprocessors and other
accelerators. Different approaches have been considered for
this goal, including very large crossbars (such as [27], [31]),
low-diameter topologies based on high-radix routers (such
as [1], [3]) or aggressive lookahead routing, speculative
stages and router bypass mechanisms (such as [17], [19],
[21]). SMART [17], which belongs to the last group, is a very
effective solution which implements multi-hop bypass, this
is, it skips several intermediate transit routers in a single
hop to dramatically reduce latency. SMART combines the
simplicity and regularity of traditional 2D tiled designs
with near-optimal latency (close to an ideal point-to-point
interconnect) and very high throughput.

However, practical implementations of SMART result in
overly large, power-hungry and slow router designs, for
several reasons. First, the Virtual Channel (VC) reallocation
scheme employed requires the corresponding buffer to be
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empty to reassign any VC buffer. This is often required
in several contexts such as wormhole (WH) networks us-
ing fully-adaptive routing protocols [11], [23]. However,
SMART neither employs WH nor is fully adaptive. Addi-
tionally, obtaining good performance using this reallocation
scheme requires a large number of VCs, each of them
holding a whole packet. This large number of VCs makes
allocators more complex, which increases the critical path
latency, and drastically increases router area and power
consumption. Second, the buffers to bypass must be empty;
otherwise the packet would not be forwarded. With a lim-
ited amount of VCs, this increases Head-of-Line Blocking
(HoLB), reducing performance. Third, even though traffic
is sent following Virtual Cut-Through (VCT) flow control,
flit-by-flit arbitration collisions may make a packet spread
through multiple routers, blocking the buffers in the inter-
mediate routers. Finally, the setup of each consecutive multi-
hop requires three clock cycles, significantly larger than sim-
pler single-hop bypass mechanisms based on LookAheads
(LAs); as evaluated in this work, SMART is not competitive
in small networks or with small HPCMax because of this
per-multihop latency.

This work presents Speculative-SMART (S-SMART++),
which extends SMART++, first introduced in [29].
SMART++ is an efficient multi-hop bypass mechanism that
avoids the main limitations of SMART and allows for much
simpler implementations. SMART++ combines SMART by-
pass [17], multi-packet buffers, Non-Empty Buffer Bypass
(NEBB, [28]) and per-packet allocation using grant-hold
circuits. SMART++ supports efficient configurations with
a small amount of deeper buffers, rather than the large
number of individual VCs required in SMART, which re-
sults in much better area, power and critical path delay.
S-SMART++ additionally reduces per-multihop latency by
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speculatively configuring the subsequent multi-hop while
data are traversing the previous one.

S-SMART++ is evaluated using the BST simulation
framework [30], which combines the functional simulator
Booksim [15], the full-system simulator gem5 [6] and HDL
implementations based on OpenSMART [22]. S-SMART++
combines the resource efficiency of SMART++, which pro-
vides high performance using a single buffer of limited size
per port and is both area- and power-efficient, with the
zero-load latency reduction of its speculation mechanism,
reducing the effect of HPCMax in the latency.

Specifically, the main contributions of this paper are:

• It reviews SMART++, an efficient multi-hop bypass
mechanism that outperforms the original SMART
with much lower requirements on VCs, area and
power.

• S-SMART++, a speculative mechanism that acquires
the multi-hop bypass in advance to decrease base la-
tency and reduce the latency sensitivity to HPCMax.

• A performance evaluation by simulation, which
proves that S-SMART++ without VCs has simi-
lar performance than SMART with VCs for single-
packet buffers and the same buffer space, and that it
reduces the zero-load latency of SMART significantly
even halving HPCMax.

• Resource utilization and power evaluations using
HDL synthesis, showing the high cost of VCs, and
the extensive and feasible variety of buffer configu-
rations of S-SMART++.

Section 2 presents the required background. Section 3
describes S-SMART++. Section 4 evaluates the proposal.
Finally, Section 5 compares to related work and Section 6
concludes the paper.

2 BACKGROUND

2.1 NoC Router bypass
Router bypass [19], [20] is a mechanism that reduces latency
by skipping some pipeline stages of the router. This type
of NoC has additional communication signals denominated
LookAheads. LookAheads contain the routing information
of packets and are sent one cycle before the transmission of
packet flits. With the routing information, the next router
allocates the crossbar one cycle before the arrival of flits.
If the allocation succeeds, the flit takes a bypass path to
the crossbar, avoiding the allocation stages and buffer write,
saving time and energy. Multiple LookAheads from differ-
ent sources and local flits, may compete for the same output
port in a router, so a new unit called LookAhead Conflict
Check or LookAhead Arbiter is defined to arbitrate them in
case of conflict.

Switch allocation in traditional LookAhead router by-
pass is done flit by flit. Therefore, part of a packet might
bypass a router while the remaining is buffered. When
multiple packets are allowed to be written in the same
buffer, flits of different packets might interleave in the
buffer, corrupting data. Requiring empty buffers to forward
packets avoids this issue in a conservative way.

NEBB [28] is an alternative bypass policy that removes
the empty buffer limitation, as its name implies, maximizing

the utilization of the bypass. Different variants of NEBB
are defined for different flow controls, allowing to bypass
a buffer which is non-empty, but not advancing a packet to
an output port. In general, they allow the bypass of a non-
empty buffer for single-flit packets in any case, or when both
the bypass and destination buffers have room for the whole
packet and VCT is assumed.

Maximizing the bypass utilization reduces dynamic
power consumption and the amount of VCs required to
obtain the maximum throughput from the NoC.

2.2 SMART: multi-hop router bypass

SMART (Single-Cycle Multihop Asynchronous Repeated
Traversal) [17] is a NoC router bypass that allows flits
to cross multiple routers in a single cycle. In this design,
LookAheads are called SMART-hop Setup Request (SSR).
When flits are ready to be transmitted after winning Switch
Allocation Local (SA-L), SSRs are broadcast to the next
routers in the path. HPCMax defines the maximum number
of hops per cycle allowed, limited by the operation fre-
quency of the NoC. Two variants are defined: SMART 1D
only broadcasts SSRs in a row or column of the NoC mesh;
SMART 2D employs additional lines to broadcast SSRs in
both mesh dimensions, allowing for dimension change in a
single multi-hop at the cost of much higher complexity.

SSRs request access to the bypass in each of the down-
stream routers, managed by a Switch Allocator Global (SA-
G) function. In SA-G, SSRs from different sources and local
buffered flits may conflict. If a conflict occurs, flits may
suffer a premature stop and be buffered in an intermediate
router of the desired multi-hop path. A single priority policy
is enforced in all the network to guarantee correctness. In
this work, local flits always have priority over bypass flits
as it attains the best performance [17]. Figure 1 shows an
example of bypass setup and flit transmission. In the first
cycle, the green packet (first router) and the blue packet (last
router) broadcast the SSRs in their route direction. The SSR
of the green packet setups the bypass path of the second and
third routers because there are no conflicts with other flits
or SSRs. However, it loses against the local blue flit in the
last router. In the second cycle, the green packet crosses the
first router crossbar and the bypass paths of the second and
third routers to get to the last router.

Routers in SMART follow VCT requirements to send a
packet: the destination buffer needs to hold the complete
packet, and all the flits of the packet are sent consecutively.
However, the flits of the packet are not always received
consecutively at the destination of the multi-hop. Indeed,
global arbitration is performed per-flit, not per-packet, in
all routers in the multi-hop. Thus, a new packet to be
transmitted in one of the intermediate routers may receive
higher priority and cause a premature stop of part of the flits
of another packet. For this reason, flits from a packet may
be received with gaps, and flits from different packets may
be interleaved in the physical links between routers, similar
to a WH network.

There are two alternatives for the bypass path in SMART
NoCs: buffer bypass and router bypass. With buffer by-
pass [17], flits only bypass the input buffers in the input
unit, but they pass through the crossbar. Buffer bypass is
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Fig. 1: SMART bypass setup and flit traversal overview with priority to local flits.

appropriate for SMART 2D and for ejection router bypass.
Router bypass, depicted in Figure 1 and used in this paper,
was introduced in OpenSMART [22]. In this case, flits take a
dedicated path from the input port to the output port of
the router following the same dimension. Router bypass
is more suitable for SMART 1D because avoids conflicts
between SSRs and local flits that share the same input port
but request different output ports.

3 SPECULATIVE-SMART++
Speculative-SMART++ (S-SMART++) overcomes the main
limitations of SMART described in Section 1 using two
mechanisms. First, base latency is reduced by pre-allocating
the bypass mechanisms based on speculative SSRs. This
mechanism chains consecutive multi-hops requiring only a
single cycle per multi-hop. An overview of this speculation
mechanism is presented in Section 3.1, followed by the
router architecture in Section 3.2, and a detailed analysis
of its behavior in Section 3.3. Second, buffer management
is simplified to support long multihops even with few
buffers that may not be empty. This mechanism, originally
introduced as SMART++ in [29], allows for a simpler router
implementation and hence improves frequency, area and
power. An overview is presented in Section 3.4 and imple-
mentation details in Section 3.5.

3.1 S-SMART overview

Single-hop bypass networks [18], [19], [20] preallocate by-
pass paths to skip the buffering and allocation stages. The
idea of SMART of conforming multi-hop paths by preal-
locating bypass paths is very similar to them, but their
principles are slightly different. SMART seeks to minimize
latency by conforming the largest multi-hop paths, whereas
single-hop bypass chains multiple hops in consecutive cy-
cles. SMART is more effective in terms of latency, specially
in large networks. However, single-hop bypass optimizes
per-hop latency and allows to skip all the buffers in the
whole route, optimizing dynamic power. In SMART this is
not possible, as the packet is buffered after each multi-hop.

Speculative-SMART combines both approaches to sup-
port chaining several multi-hops in consecutive cycles,
skipping the first and second stages in subsequent multi-
hops. In S-SMART, SSRs are generated speculatively in the
last router of each multi-hop, where the packet would be
buffered. Therefore, while a packet is traversing the routers,
a speculative SSR (spec-SSR) is requesting the subsequent
bypass paths.

In SMART, global arbitration is speculative, since a
packet may not reach the maximum desired hop length be-
cause of a conflict. However, after sending an SSR, SMART
always sends data on the multi-hop. S-SMART exploits
speculation even further, since the SSR itself is also spec-
ulative (spec-SSR), given that it is generated before even
knowing if the associated packet will reach the router in
time for the multi-hop. Therefore, a spec-SSR may not be
followed by any data, when it conflicts in an intermediate
router in the previous multi-hop.

Figure 2a presents a comparative example of a flit cross-
ing the network when using single-hop bypass, SMART,
and S-SMART, the latter two with HPCMax = 2. Note
that the behaviour of S-SMART with HPCMax = 1 would
be equivalent to single-hop bypass. Figure 2b depicts the
pipeline stages of the router and their temporal behaviour.
They are reviewed next.

• Single-hop bypass: we follow the router architecture
in [18], similar to the SMART router architecture
but with some differences. First SA-L is divided
in two phases, Switch Allocation Input (SA-I) and
Switch Allocation Output (SA-O), to distribute the
delay in two pipeline stages. LA-CC (LookAhead
Conflic Check) is equivalent to SA-G and arbitrates in
case of conflict between LookAheads (equivalent to
SSRs) and/or local flits. And third, Switch and Link
Traversal (ST and LT) are separated into two pipeline
stages, while in SMART they are merged.
The packet in R0 (in red) wins SA-I, SA-O and VA
(VC Allocation) in the first 2 cycles. In the next two
cycles it traverses the crossbar and the link, while
the LookAhead travels through the link and acquires
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Fig. 2: Comparison of single-hop bypass routers, SMART and S-SMART (HPCMax = 2). The boxes placed together the
arrows indicate the cycle when the flit progress through the router paths.

access to the crossbar and the bypass in LA-CC
of R1. In cycle 4, the LA succeeds in LA-CC, and
originates the creation of another LA from R1 to
R2. In this mechanism, the arrival of the packet to
R1 is guaranteed in cycle 5 so the second LA is not
speculative. In the next two routers, the bypass and
crossbar acquisitions and the packet traversal follow
the same procedure. Overall, The packet spends 10
cycles to cross the four routers.

• SMART: In R0, the packet (in blue) performs SA-
L, VC Selection (VS, similar to VA), and LookAhead
Routing Computation (LA-RC) in the first cycle.
In the second cycle it propagates the SSR to R1

(HPCMax − 1 = 2 − 1 = 1) to acquire the bypass
through SA-G and in the third cycle it performs the
multi-hop to reach R2. The SSR does not reach R2,
since this final router does not setup any bypass. In
R2, the packet repeats the same process. Overall, the
packet spends 6 cycles to cross the routers.

• S-SMART: Like in SMART, the packet (in green)
spends 3 cycles in R0. However, in cycle 2 the SSR
broadcast is extended to reach R2. The extended
SSR does not request SA-G in R2, but produces the
broadcast of a speculative SSR (spec-SSR) in cycle 3,

which acquires the bypass of R2 and R3. Thus, in
cycle 4 the packet takes the bypass path (instead of
performing BW like in SMART). Overall, the packet
requires 4 cycles to traverse the four routers.

3.2 Router architecture

S-SMART introduces modifications in three elements of the
design of SMART: the generation of SSRs, the SSR priority
scheme and the bypass control. Figure 3 shows the router
architecture of S-SMART and the implementation of SA-G
in the input and output ports. The highlighted elements are
the changes from the SMART design.

In S-SMART the length of SSRs is extended by one unit,
so the SSR reaches the final router of the multi-hop. SSRs
carries the final destination of the packet to the determine
the next multi-hop direction and length. The ‘final’ router
of a multi-hop is determined using the multi-hop length
requested the SSR, information already carried in SMART.
The multi-hop length is compared with the distance to the
multi-hop requester, which is known from the ID of the
SSR input port. The ‘final’ router uses the final destination
of the packet to generate the spec-SSR in the next cycle,
instead of computing SA-G. This is depicted in Figure 3b,
with the other modules of SA-G: input arbitration (SSR
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    Bypdem←0; Bypmux←1
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(b) Implementation of SA-G. This allocator implements one SSR Priority Arbitration
module per input and one Output Arbitration module per output; only the ones
corresponding to Win and Eout are depicted here. XBselW−>E is the crossbar control
signal that enables the path from West input to East output.

Fig. 3: Router Architecture and Switch Allocator Global implementation, with S-SMART additional elements highlighted in
green. BypMux, BypDem, SpeMux and SpeDem are the control signals of BypassMux, BypassDem, SpecMux and SpecDem,
respectively.

Priority Arbitration), output arbitration, and bypass setup
logic. Additionally, the router that generates a spec-SSR also
propagates the request to its own SSR Priority arbitration
logic in the SA-G unit (Spec − SSRdist=0 in Figure 3b) to
activate its bypass.

SSR priority scheme: The SSR priority scheme is
modified to resolve conflicts between spec-SSRs and stan-
dard SA-G requests (SSRs or local flits). We give absolute
priority to standard requests over spec-SSRs, to minimize
unnecessary premature stops. The reason comes from the
local priority policy used in SMART, i.e. priority to the
SSR originated in the nearest router, which is the best
policy evaluated in [17]. With this shortest-distance policy,
packets may not complete their whole multi-hop. For this
reason a spec-SSR may win SA-G in a router but leave
the bypass path unused in the following cycle, because the
associated packet was stopped in an intermediate router of
the previous multi-hop. Giving low priority to spec-SSRs
prevents other packets from stopping prematurely due to a
speculative bypass acquisition that is not used.

Conflicts between spec-SSRs and standard requests can
occur in the input phase of SA-G or in the SSR output phase.
The first kind of conflict, in the input phase of SA-G, occurs
when standard SSRs and/or spec-SSRs share the same input
port. When the conflict is between a standard SSR and
a spec-SSR, the spec-SSR is ignored as mentioned before.
This requires one extra bit to identify spec-SSRs. When the
conflict is between two or more spec-SSRs the arbitration
follows the same policy used for standard SSRs, i.e. the
SSR with the shortest distance has priority. The second kind
of conflict, in the SSR output phase, can occur between a
standard SSR (generated by a local flit) and a spec-SSR,
or between two or more spec-SSRs. In the first case, the
conflict is solved with a multiplexer (SSRMux in Figure 3a)
at each SSR output port, which discards the spec-SSR. The
second conflict occurs because multiple spec-SSRs for the
same output port can be generated in a router from SSRs

from different input directions at the same cycle. In such
case, only one of them is chosen. We choose the one with the
longest multi-hop to maximize the utilization of the bypass
paths.

Bypass control: The standard bypass of SMART
is implemented by a pair of demultiplexer (BypassDem)
and multiplexer (BypassMux). S-SMART implements an ad-
ditional path to bypass the input buffer from the input
pipeline register (PipeIn) when spec-SSRs win SA-G. This
path is formed by a pair of demultiplexer (SpecDem) and
multiplexer (SpecMux), depicted in Figure 3a. These pairs of
muxes are controlled together. Overall, there are three paths.
The standard bypass path from BypassDem to BypassMux is
used when an SSR wins SA-G, except for speculative SSRs
generated in the local router (generated distance 0). The
second bypass path from PipeIn to BypassMux is used when
a spec-SSR with distance equal to 0 wins SA-G. Finally, the
traditional path from PipeIn to the buffer is used when an
SSR does not win SA-G.

3.3 Speculative bypass walk-through

This section describes the process of using the bypass specu-
latively through an example. Figure 4 shows the state of the
network during the four cycles that takes the highlighted
packet to make two multi-hops. The process is divided into
two phases. The first phase extends from cycles 1 to 3, when
the packet prepares and performs the multi-hop bypass like
in the original design of SMART. The second phase shows
the bypass via speculative arbitration, in cycles 3 and 4.

In cycle 1, the packet in R0 requests a local output port
in SA-L while the route for the next multi-hop is computed
in LA-RC. The packet wins SA-L (there are no competitors)
and moves to the next pipeline stage. In cycle 2, the SSR is
propagated to the next two routers (HPCMax = 2 in this
example) to prepare the multi-hop. The SSR received in R1

performs SA-G, while R2 uses the destination information
to compute LA-RC and generate the spec-SSR in the next
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Fig. 4: Example of speculative SA-G arbitration in S-SMART. HPCMax is 2.

cycle, because it is the ’final’ router (multi-hop length equal
to the distance between routers). The packet wins SA-G
in R0 and R1, advancing to the next stage and preparing
the control signals of the crossbars and paths for the next
cycle. In cycle 3, the packet traverses R0 and R1, reaching
R2, where it is saved in the input port latch (PipeIn in
Figure 3a). Simultaneously, R2 generates the spec-SSR from
the destination information saved in the previous cycle, and
sends it to its local SA-G and R3 (and R4 in case it exists).
Both spec-SSRs win SA-G because there are no competing
requests. Finally, in cycle 4, the packet in PipeIn of R2

travels through SpecDem and SpecMux towards the bypass
path of R2 and R3.

3.4 SMART++ overview
Speculative-SMART++ leverages the SMART++ buffer man-
agement initially introduced in [29]. This section presents an
overview of the mechanism.

The original SMART implementation requires empty
buffers to allow bypass, both in the bypassed routers and
the final router that holds the packet after the multi-hop.
Such implementation requires a significant number of in-
dependent buffers to be effective. This large amount of
buffers increases both the area and power of the router and
the complexity of the allocators, which eventually reduces
maximum frequency.

Instead of using many short buffers, SMART++ relies
on few deep buffers, ideally just one buffer holding mul-

tiple packets. Such organization is more efficient, reducing
both area and power consumption, even though the over-
all buffering remains the same. Additionally, it simplifies
allocation stages, increasing maximum frequency. However,
finding a completely empty buffer to allow bypass with this
organization will be more infrequent. Instead, SMART++
relies on Non-Empty Buffer Bypass (NEBB, [28]), which allows
to bypass routers when an input buffer has room for at
least one packet but it is not necessarily empty. Virtual Cut-
Through is required for this bypass when using multi-flit
packets, but this is not a limitation since the original SMART
implementation already requires several buffers holding a
complete packet.

Figure 5 compares the length of the multihop when
using a single buffer per router input. SMART requires
empty buffers and does not exploit multipacket buffers, so
it prematurely stops before the first router whose buffer is
empty. SMART++ does not restrict the multihop, as long as
all the router buffers in the path may hold one additional
packet. This limitation is mitigated in SMART by imple-
menting many buffers, and in such case SMART++ does not
reduce cycle count since long multihops will likely occur in
both implementations. However, SMART++ simplifies the
design and improves area, power and frequency by relying
on one or few buffers.
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R0 R1 R2 R3SMART R4

SMART++

Fig. 5: Stop router of each mechanism in SMART and SMART++. R4 is the destination of the blue packet in R0 and routers
only have one buffer.

3.5 SMART++ implementation details

This section summarizes the implementation details of the
main components of SMART++. Low-level implementation
details of SMART++ are presented in [29].

Multi-Packet Buffers (MPB): SMART requires
buffers sized for the largest packet in the network, since
it implements VCT flow control, but it only holds a single
packet due to its VC reallocation policy. SMART++ holds
multiple consecutive packets in router buffers and exploits
buffers larger than a single packet size. Previous proposals
for NoCs rely on similar approaches [7], [10], [24], [32], [33].

The use of multi-packet buffers allows to employ a
lower number of VCs with deeper buffers, leading to sim-
pler memory organizations that exchange width (#VCs) by
length (deeper FIFOs). Such VC reduction simplifies allo-
cation and reduces overall chip area even though the total
storage remains the same. Additionally, combining multiple
packets in the same buffer increases its efficiency, partic-
ularly with different-size packets (bimodal traffic), which
often occurs in NoCs.

Packet-by-packet arbitration (PPA): SMART++ im-
plements packet-by-packet arbitration using a grant-hold
circuit [9] coupled to the round-robin arbitration stages (SA-
G and SA-L). Grant-hold circuits hold the arbiter outcome
for a certain amount of time. When a multi-flit packet header
wins arbitration, SMART++ logic locks the arbiter to the
winning packet. However, winning SA-G does not guar-
antee that a flit will be transferred in the following cycle:
the flit could suffer a premature stop in an upstream router
in the multi-hop. To cover this case, SMART++ releases the
grant in two cases: when the packet tail is received, or when
a head flit is not received. Grant holding is not required for
single-flit packets.

Effectively, this makes SMART++ behave exactly as VCT,
receiving all packets without holes from upstream channel
or flit interleaving. Only packet headers generate SSRs or
spec-SSRs. When an SSR is received in an intermediate
router while a packet is being bypassed, it loses arbitration
and the data is stored in the router buffers regardless of its
priority. This behavior does not conflict with the single pri-
ority enforced in the network requirement of SMART because
it does not introduce false positives (flit received when it
is not expected), only premature stops. Additionally, these
premature stops do not reduce performance: they always
occur because other packet is actually being transferred on
the desired output1.

Non-Empty Buffer Bypass (NEBB): SMART requires
an empty buffer in all of the routers to be bypassed. Such
policy is forced by its conservative VC reallocation scheme

1. There are no cascading invalidations, as occurs with SSRs using
Prio=bypass [17].

TABLE 1: Network simulation parameters.

Parameter BookSim gem5 BSV

Mesh size 4x4, 8x8 &
16x16 4x4 & 8x8 4x4

Bypass
mechanism SMART and S-SMART++

Bypass type buffer bypass router
bypass

Router size 5 ports
Backpressure Credits
SMART VCs 8 12 1, 2, 4 & 8
S-SMART++ VCs 1 3 1, 2, 4 & 8
SMART buf. size 1 packet
S-SMART++ buf.
size (packets) 8 4 1, 2, 4, 8

Packet size (flits) 1 & 5 1
Routing DOR XY

VC selection pol-
icy

Shortest
queue

Shortest
queue

First
available

VC
SSR policy Priority to local flits

HPCMax
1, 2, 3, 4, 7

& 15 3

Flit size 128 bits 32 bits

(if no free buffer exists, packet is not sent to the bypass
router in the first place), but is also overly conservative, and
reduces performance, particularly with few VCss.

SMART++ employs NEBB [28] to bypass a buffer even
when it is not empty. This only requires an additional
buffer size check before putting the request in SA-G. NEBB
mitigates the Head-of-Line Blocking issues caused by the
use of few buffers, since it may bypass a buffer while the
packet in the header waits for a dimension turn.

4 EVALUATION

This section evaluates S-SMART++. Section 4.1 describes the
simulation infrastructure; Section 4.2 presents cycle-accurate
performance results with synthetic traffic and Full-System
(FS) simulations; Section 4.3 shows synthesis estimations of
power, resource utilization and maximum frequency.

4.1 Simulation Infrastructure
We employ the BST framework [30], which combines three
development platforms: BookSim [15], gem5 [6] and OpenS-
MART [22]. BookSim is an open-source functional simulator
written in C++. BST BookSim implements cycle-accurate
models of SMART and SMART++, and we have extended
it with a detailed model of S-SMART++. These implemen-
tations supports variable size packets. We use the same
models for the FS simulations by integrating BookSim in
gem5 using the API of BST.
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TABLE 2: gem5 configuration parameters

Parameter Value

CPU model 16/64x ARMv8 Out-of-Order
(DerivO3CPU) @2GHz

Memory model Ruby @2GHz

Coherence protocol MESI with two levels of cache
(MESI Two Levels)

Cache line size 64 Bytes
L1-I cache private, 32KB, associativity 2
L1-D cache private, 64KB, associativity 2

L2 cache
shared and distributed among
cores, 16/64x 256KB, associativ-
ity 8

Memory controllers 8/16x DDR3-1600 11-11-11 (Lo-
cation: first and last mesh rows)

We have implemented S-SMART++ in Bluespec System
Verilog (BSV) from OpenSMART. Like OpenSMART, this
model is limited to single-flit packets and works with cred-
its. The implementation uses router bypass instead of buffer
bypass, despite the fact that buffer bypass is preferable for
S-SMART++. The reason is that packets can change the
traveling dimension when taking the bypass speculatively.
Buffer bypass requires extra logic and paths to forward the
packets in any direction instead of allocating the crossbar
of the switch. This produces conservative power, area, and
frequency results for S-SMART++. The BSV implementation
is also used to validate the latency and throughput results of
the BookSim models, through BSV functional simulations.
The BSV compiler is used to generate Verilog code that
is synthesized with Quartus Prime 18.1 Lite Edition to
measure power, area and maximum frequency on an Arria
II EP2AGX45DF29I5 FPGA.

We employ three types of simulations: functional with
synthetic traffic, full-system simulations and validations
with the BSV simulator. Most of the performance simula-
tions in BookSim evaluate 8 × 8 meshes with SMART 1D
and HPCMax = 7. Some experiments also evaluate 8 × 8
SMART 2D meshes. Validation simulations are evaluated
in 4 × 4 meshes with HPCMax = 3 due to the large
requirements of the BSV compiler and the large number
of simulation points obtained. In all cases local flits have
priority over bypass.

Synthetic traffic simulations evaluate multiple traffic
patterns [9]: random uniform, bit-complement, bit-reversal,
transpose, tornado and different configurations for hotspot
traffic (with traffic distributed evenly among 4 hotspots at
the corners or at the center of the mesh; with or without
background uniform traffic). We evaluate single-flit and
5-flit packets, which are equivalent to control and data
packets. Full-system simulations evaluate SMART and S-
SMART++ under real workloads in gem5. We simulate the
execution of PARSEC [5] benchmarks2 under Linux 4.15.0 in
an ARMv8 processor with 16 or 64 cores operating at 2 GHz.
Simulations employ the detailed Out-of-Order processor
(O3) and interconnection (Ruby) models in gem5. The cache
coherence messages are distributed in 3 Virtual Networks

2. Raytrace is missing because of incompatibilities found with our
simulation toolset.

(VNs) to break cyclic protocol dependencies. The 16-core
model employs a a 4× 4 mesh with HPCMax = 3 and runs
the complete Region of Interest of each benchmark with the
simsmall input sets. The 64-core model employs an 8 × 8
meshes with HPCMax = 7 and runs the simlarge input
sets, but only for 500 million cycles because of its simulation
time. Tables 1 and 2 gather the most relevant network and
gem5 simulation parameters, respectively.

4.2 Cycle-level Performance Results

This section evaluates the performance of S-SMART++
based on the packet latency in terms of cycles, abstracting
differences in the maximum operation frequency of the
NoCs.

4.2.1 Bypass mechanisms comparison

This section compares single-hop bypass (based on
NEBB-Hybrid [28]), SMART 1D and SMART 2D with S-
SMART++. Figure 6 shows the packet latency of the mecha-
nisms in 4x4, 8x8 and 16x16 meshes with HPCMax equal to
3, 7 and 15, respectively. These values cover a dimension
of the meshes in one multi-hop. Injected traffic follows
a random-uniform distribution and packets have one flit.
NEBB-Hybrid and S-SMART++, which allow multi-packet
buffering, have a single buffer of 8 slots. SMART 1D and
SMART 2D have 8 VCs of 1 slot each.

The results show that single-hop bypass is competitive
in small networks because of its shorter per-hop latency.
However, its performance quickly degrades with the net-
work size because the average hop count grows. In con-
trast, the zero-load latency with multi-hop bypass is almost
constant with the network size, given that the effective
number of hops is practically constant. S-SMART++ out-
performs SMART 1D and almost reaches the performance
of SMART 2D. The gain over SMART 1D is practically
constant with the size of the meshes due to the values of
HPCMax. For example the base latency reduction in the 4x4
mesh is 29.2% while in the 16x16 mesh 32.1%. In all cases
the base latency remains almost constant since HPCMax

always covers a full dimension, whereas throughput halves
when the mesh size duplicates due to halving the ratio
between the bisection bandwidth and the number of nodes.

4.2.2 S-SMART++ with different traffic patterns

This section compares SMART and S-SMART++ for addi-
tional synthetic traffic patterns and packet size (ps) of 1
or 5 flits in an 8x8 mesh. Figure 7 depicts the results for
bit-complement, bit-reversal, transpose and tornado traffic
patterns in the upper row, and different hotspot configura-
tions in the lower row: with the four hotspots in the corners
or the center of the mesh, and with all the traffic to the
hotspots or 40% traffic to the hotpots and the remaining
60% background traffic following a uniform distribution.

The results for all these different patterns are similar
to the random-uniform traffic in Section 4.2.1. S-SMART++
has lower latency than SMART in every case, with similar
throughput in spite of not using VCs. Besides, using multi-
flit packets does not have any effect other than increasing
the latency due the flit serialization of packets.
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Fig. 6: Latency of single-hop bypass, SMART 1D, SMART 2D and S-SMART++ for different mesh sizes.
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Fig. 7: Latency for various traffic patterns in an 8x8 mesh with HPCMax = 7 and packet sizes of 1 (ps-1) and 5 flits (ps-5).

4.2.3 HPCMax and scalability analysis

This section studies the impact of HPCMax on the latency
of SMART and S-SMART++ for different network sizes. We
model 8x8, 16x16 and 32x32 meshes with different values of
HPCMax, from 2 to 15. Figure 8 shows the packet latency
for each configuration. We focus on single-flit packets to
simplify the analysis, given that the trend is similar with
other packet sizes. Note that in the largest configuration the
maximum multihop length does not reach the mesh side,
taking into account the impact that a large multihop length
would have on the delay of the multihop and the number
of inputs of the SA-G unit.

As expected, latency improves with larger HPCMax

in all cases. For a given HPCMax value, S-SMART++ al-
ways outperforms SMART. Additionally, S-SMART++ out-
performs SMART even with lower HPCMax thanks to its
speculation mechanism. For example, S-SMART++ with a
moderate value of HPCMax = 4 obtains lower zero-load
latency than SMART with HPCMax = 15 in all configu-
rations. Finally, the influence of the multihop length on the
packet latency is also reduced, specially at low offered loads.
In the 8x8 mesh, between HPCMax = 2 and HPCMax = 7
the reduction of zero-load latency is 4.14 cycles in SMART,

and only 1.38 in S-SMART++; in the 32x32 mesh, these
differences are 21.53 and 7.17 respectively.

Considering the scalability of the network, the evolution
of the latency is also improved with S-SMART++. When
upscaling the network from 8x8 to 32x32 with a fixed
HPCMax = 7, SMART base latency increases by 6.57 cycles
(a 58.5%), whereas S-SMART++ only increases by 2.24 cycles
(a 28.9%). This difference is even more exacerbated for lower
HPCMax values. Maximum throughput decreases with the
network size for all mechanisms, since it depends on the
network Bisection Bandwidth (BBW); applying S-SMART++
to alternative topologies with higher BBW such as torus,
while feasible, is out of the scope of this paper.

4.2.4 Evaluation with real traffic

This section explores performance using full-system simu-
lation running the PARSEC benchmarks.

Figure 9a presents speedup results of S-SMART++ over
SMART with a 16-core system. The average speedup of
S-SMART++ is 4.59%. Half of the applications present
similar performance in both models, considering that the
distribution of micro-architectural and operating system
events along time introduces some performance variabil-
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Fig. 8: Packet latency varying HPCMax and network size.
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Fig. 9: S-SMART++ performance on full-system simulations.

ity. The other applications present notable speedups for S-
SMART++, with a maximum of 15.4%.

Figure 9b presents average packet latency results for the
same executions. We measured an average network load of
only 4.7%, so average latency results are very close to the
base latency in most cases, with additional constant delays
that correspond to the injection and ejection from the NoC
in the memory sub-system. The speculative mechanism of S-
SMART++ systematically improves latency in all cases, with
an average reduction of 2.77 cycles over SMART, or a 17.4%.

Figure 9c presents latency with 64 cores in an 8x8 mesh,
but only for the initial 500M cycles of the ROI. In this case
the initialization is more relevant, and some applications (es-
pecially Blackscholes) present larger latency than when ob-
serving the full ROI. However, the systematic improvement
of S-SMART++ observed with 16 cores is preserved, with an
average reduction of 3.01 cycles. This graph also includes
results for two variants of SMART 2D, one of them with a
very costly but realistic HPCMax value (HPCMax = 7) and
an ideal implementation that reaches the destination in a
single multihop (HPCMax = 15). S-SMART++ is very close
to the realistic implementation of SMART 2D, and only 1.50
cycles higher than the ideal model on average.

4.3 Synthesis results
This section evaluates the S-SMART++ model implemented
in OpenSMART with the Bluespec System Verilog tools and
Quartus.

4.3.1 Model Validation
This section validates the models implemented in Booksim
and BSV by comparing their results. The network evaluated
is a 4 × 4 mesh with HPCMax = 3, single-flit packets and
random uniform traffic. Figure 10 shows the results of S-
SMART++ in both platforms. The base latency of both im-
plementations is the same until reaching saturation, where
most of the differences are negligible. The highest relative
error is 9.77% when using 2 VCs of 1 slot. From these
results we consider that the functional models implemented
in BookSim, cycle accurately simulate the router architecture
and the pipeline, according to the HDL implementation.

4.3.2 Resource Analysis
This section analyzes the resource requirements of a single
SMART or S-SMART++ router, for different values of buffer
count and depth (note SMART is limited to only 1 packet)
using packets of 1 flit. Note that S-SMART++ targets designs
with few deep buffers (1x8 instead of 8x1 in SMART) but
configurations with multiple buffers are also considered.
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Fig. 10: Comparison of packet latency and throughput of the
S-SMART++ models implemented in BSV and BookSim.

Figure 11 shows FPGA resources used by the synthesized
routers, represented by the number of Adaptive Look-Up
Tables (ALUTs), Adaptive Logic Modules (ALMs), dedi-
cated registers and internal block memory bits. First, the
results show the high impact of VCs on resource demands as
they are part of the input units, credit units (credit handling
logic) and VA. When duplicating the number of VCs, the
number of resources is almost doubled. For example, the
configuration of SMART with 2 VCs of 1 slot increases the
number of ALUTs by 74.3%, ALMs by 62.1% and registers
by 80,9% with respect to 1 VC of 1 slot. By contrast, when
increasing buffer depth, the resource utilization grows at a
much slower rate. For example, in S-SMART++ with 1 VC
of 8 slots the number of ALUTs increases by 5.1%, ALMS
by 4.6% and registers by 25.9% compared to 1 VC of 1 slot.
In some configurations of S-SMART++, like 1x8 slots, the
synthesis employs block memory (internal FPGA RAM) to
build the buffers of the input and/or credit unit because the
FPGA employed does not have enough dedicated registers.
This causes a significant power increment for this configu-
ration as shown in Section 4.3.3.

The overhead of S-SMART++ over SMART is similar
between common configurations. For example with 1 VC of
1 slot, S-SMART++ uses 31.0% more ALUTs, 24.9% ALMs
and 1.3% registers than SMART. With 4 VCs of 1 slot,
these values are 26.92%, 26.18% and 0.06%, respectively. The
logic increase is localized in the VA of OpenSMART, which
integrates a large part of SA-G.

However, since S-SMART++ targets few deep buffers,
effective configurations are more efficient than in SMART.
For example, S-SMART++ with 1 VC of 8 slots employs
80.88% less ALUTs, 82.06% less ALMs and 81.71% less
registers than SMART with 8 VCs of 1 slot. Finally, Figure 11
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Fig. 11: FPGA resources employed by SMART and S-
SMART++.

does not compare to single-cycle routers. SMART has been
reported [22] to increase area by only 15% with respect to
traditional single-cycle routers with an ordinary VC allo-
cation scheme and multiple VCs. According to the previous
comparison, as S-SMART++ does not require the use of VCs,
it is expected to entail about 78% less area than a traditional
single-cycle router.

4.3.3 Timing and Power Analysis
Figure 12 depicts the maximum operation frequency and
the dynamic power consumption for multiple SMART
and S-SMART++ router configurations. Again, note that S-
SMART++ targets deep buffer arrangements such as 1x8,
compared to 8x1 in SMART. To obtain dynamic power
results, we feed the power analysis tool with VCD (value
change dump) files generated from ModelSim functional
simulations with a clock frequency of 25 MHz, which is
under the minimum operation frequency of the configura-
tions depicted. The results reveal that the number of VCs
is a critical design factor. Focusing on SMART, doubling
the number of VCs reduces frequency by between 12.04
and 21.44 MHz in each step. The overhead of S-SMART++
reduces the maximum frequency of SMART by 23.98 to 29.76
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Fig. 12: FPGA frequency and dynamic power results of
SMART and S-SMART++.
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Fig. 13: Frequency-scaled latency of SMART and S-
SMART++ for different number of VCs (1 in S-SMART++).

MHz for equivalent configurations. However, increasing the
buffer depth has a negligible impact on frequency, and S-
SMART 1x8 obtains a frequency 46.1% faster than SMART
8x1.

Dynamic power, depicted in Figure 12b, almost doubles
when duplicating the number of VCs. For example, SMART
with 2 VCs of 1 slot multiplies by 1.73 the power of 1 VC of
1 slot. Moreover, increasing the buffer depth in S-SMART++
has a negligible impact on frequency and moderately in-
creases dynamic power. Section 4.3.2 mentions how the
abrupt increment in dynamic power for some configurations
(1x8, 2x8, 4x8, 8x2, 8x4 and 8x8) is caused by the use of
memory instead of dedicated registers to allocate part of
the buffers of the input unit. Despite this, S-SMART++ 1x8
reduced dynamic power by 44.1% with respect to SMART
8x1. Again, with respect to single-cycle routers, SMART has
been reported [22] to increase dynamic power by only 3%.
Thus, S-SMART++ should reduce dynamic power by more
than 40% in respect to the traditional solution as it does not
require VCs to exploit the network bandwidth.

4.3.4 Scaled performance results
Section 4.2 presents cycle-accurate performance results.
However, Figure 12a shows that frequency in S-SMART++

may be significantly higher when not using VCs, further
improving performance with respect to SMART, which re-
quires multiple VCs. Frequency is typically determined by
the allocation stages of the router. However, when a large
HPCMax value is considered, the total switch and link
traversal (ST+LT) delay increases, and it might lower the
router frequency. In such case, frequency in SMART and S-
SMART++ would be similar, and their performance would
be proportional to the figures in Section 4.2.

However, for moderate HPCMax and in FPGA evalua-
tions this may not occur because propagation delay is signif-
icantly lower than logic delay. In this case, performance will
be determined by the maximum frequency in Figure 12a.

Figure 13 presents frequency-scaled latency results of
SMART and S-SMART++ with single-flit packets and ran-
dom uniform traffic. The figure shows SMART for different
VC configurations (2, 4 and 8 VCs) given that more VCs
increase throughput but reduces the maximum frequency.
For S-SMART++ we only show a configuration with a
single VC of 8 slots, equivalent in space and throughput
than SMART with 8 VCs of 1 slot, because the frequency
variations with the buffer depth are negligible.

From the results, it is clear that S-SMART++ outperforms
SMART with lower costs. In terms of latency, S-SMART++
reduces the zero-load latency of SMART with 2 VCs by
45.3%. In terms of throughput, S-SMART++ increases the
maximum throughput of SMART with 4 VCs by 13.9%.

5 RELATED WORK

Sections 1 and 2 have already discussed several alterna-
tives to reduce latency on NoCs, including SMART details.
OpenSMART [22] is a NoC generator that provides verified
RTL of SMART. We have extended it to support SMART++
and S-SMART++.

An SSR network that replaces SSR broadcast wires and
complex allocators is proposed in [8] to reduce wire and
energy overheads. However, this solution adds an extra
pipeline stage to process SSRs, increasing the latency of each
multi-hop by one cycle. SHARP (Smart Hop Arbitration
Request Propagation) [2] is an alternative solution that does
not add an extra pipeline stage and eliminates the quadratic
SSR arbitration and false negative SA-G allocations by only
propagating winning SSRs from the previous hop routers.
However, like occurs with S-SMART++, SHARP increases
the critical path delay, reducing HPCMax. OpenSMART
already implements a similar mechanism based on prop-
agating only winning SSRs, however limited to one di-
mension. An adaptation of SHARP to S-SMART++ might
allow generating spec-SSRs at intermediate routers when
a premature stop occurs in a multi-hop, as it stops the
propagations of SSRs at the first SA-G that is not granted.

WiSMART (wireless-enabled SMART [12]) is a hybrid
of SMART and wireless NoC (WiNoC). This combination
allows to operate at high frequencies independently of
HPCMax, using wireless communication for long distances.
A comparison with S-SMART++ is left for future work, as
well as a possible adaptation.

Task mapping techniques to reduce conflicts between
packets in SMART are presented in [34]. They focus on
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communication contention, rather than communication dis-
tance, as contention degrades bypass utilization. An ana-
lytical model of SMART is presented in [4] to speed up
simulations, reducing simulation time in two orders of
magnitude with respect to cycle-accurate simulators. These
works can be adapted to S-SMART++.

An already mentioned alternative to the SMART ap-
proach is the use of low-diameter topologies based on
high-radix routers such as asymmetric high-radix topolo-
gies [1] or the Slim NoC (SN) [3]. Other high-radix de-
signs that result in higher scalability are the concentrated
mesh, flattened butterfly [16], express cube topologies [13]
or and meshes with ruche channels [26]. The latter refers
to channels that interconnect distant routers (at a distance
determined by the ruche factor) with a focus on a tiled
physical design methodology. These networks are not neces-
sarily globally synchronous and do not require broadcasting
global control signals, so their verification is simpler than
SMART. However, the increase of the router’s radix does
not only increase the number of ports with their respective
logic (buffers, VC registers, control logic, etc) but also the
complexity of the switch and allocators, which typically
impact router frequency and power. S-SMART++ is origi-
nally designed for mesh topologies, but combined designs
that apply multihop bypass to some of these low-diameter
topologies might be considered, particularly in meshes with
concentration or ruche channels.

Although the baseline of the paper is the SMART im-
plementation, there are alternative router architectures that
reduce the router delay to 1 cycle, even including Link
Traversal (LT). One example is the case of bufferless routers
like [14], [25]. Bufferless NoCs employ neither buffers nor
flow control, simplifying drastically the router microar-
chitecture and as a consequence the critical path. Never-
theless, they typically rely on deflection routing to avoid
packet loss, which quickly degrades performance when the
load grows. Traditional designs, such as one included in
OpenSMART [22], may also implement all the router logic
in a single stage. This significantly reduces the average
cycle count. However, comprising all the functionality of
a traditional router in one stage drastically increases its
critical path. In [22] it is shown that SMART can perform
multi-hops of 3 routers with the same cycle period as the
1-stage router, effectively neglecting any benefit of merg-
ing all the functions in a single stage. As observed in
Figure 12a, S-SMART++ supports higher frequency, which
may be translated to longer HPCMax, and reduces the
latency of consecutive multihops, resulting in clearly better
performance than single-cycle routers. Finally, according to
the comparison in Sections 4.3.2 and 4.3.3, S-SMART++ is
expected to improve area and dynamic power by more
than 78% and 40% respectively, thanks to its efficient buffer
organization.

6 CONCLUSIONS

Multiprocessor designers target cost-efficient low latency
NoCs as they have a direct effect on the memory hierar-
chy. Routers with single-hop bypass reduce router pipeline
length while multi-hop bypass networks like SMART reduce
the effective number of hops. SMART achieves very low

latency in meshes, but each multihop incurs a significant de-
lay requiring large values of HPCMax to reduce latency and
it requires multiple VCs to reach competitive bandwidth,
which results in overly complex designs.

This work introduces S-SMART++, which combines dif-
ferent mechanisms to mitigate the limitations of SMART.
The speculative bypass setup bypasses pipeline stages in
consecutive multi-hops and makes the design effective even
when short multi-hops are used. Thus, it reduces base
latency and mitigates the impact of HPCMax. Additionally,
S-SMART++ does not require VCs to exploit the bandwidth
of the network, avoiding the conservative buffer and bypass
allocation policies of SMART. This drastically reduces the
area, power and critical path delay.

The experimental evaluations show that, for similar fre-
quency and performance, S-SMART++ reduces the amount
of logic resources by more than 80% and power by 44.1%
with respect to SMART. S-SMART++ drastically reduces the
dependency of the base-latency with HPCMax and even
in the most conservative comparison, i.e. when using the
maximum HPCMax, base latency is reduced by at least
29.2% in terms of cycles or 45.3% in terms of time when
scaling the frequency. Overall, S-SMART++ constitutes a
highly efficient alternative for low-latency NOCs.
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