
Journal of Parallel and Distributed Computing 157 (2021) 30–42

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

Sigmoid: An auto-tuned load balancing algorithm for heterogeneous

systems

Borja Pérez, E. Stafford, J.L. Bosque ∗, R. Beivide

Department of Computer Science and Electronics, Universidad de Cantabria, Santander, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 October 2019
Received in revised form 28 January 2021
Accepted 10 June 2021
Available online 18 June 2021

Keywords:
Heterogeneous systems
Load balancing
Adaptability
OpenCL
Energy efficiency

A challenge that heterogeneous system programmers face is leveraging the performance of all the devices
that integrate the system. This paper presents Sigmoid, a new load balancing algorithm that efficiently co-
executes a single OpenCL data-parallel kernel on all the devices of heterogeneous systems. Sigmoid splits
the workload proportionally to the capabilities of the devices, drastically reducing response time and
energy consumption. It is designed around several features; it is dynamic, adaptive, guided and effortless,
as it does not require the user to give any parameter, adapting to the behaviour of each kernel at runtime.
To evaluate Sigmoid’s performance, it has been implemented in Maat, a system abstraction library.
Experimental results with different kernel types show that Sigmoid exhibits excellent performance,
reaching a utilization of 90%, together with energy savings up to 20%, always reducing programming
effort compared to OpenCL, and facilitating the portability to other heterogeneous machines.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the last few years, computer architecture has been con-
strained by the end of Dennard’s scaling. A major consequence of
this is the slower growth in processor frequency. In order to find
more efficient architectures, designers first resorted to increasing
the number of cores per processor. Recently, the focus is on the
specialization of the processing units. This tendency has fostered
the advent of hardware accelerators of different kinds.

Consequently computer systems of all scales and sizes are in-
corporating some sort of hardware accelerators, thus becoming
heterogeneous systems. From SoCs in mobile telephones to com-
pute nodes on a supercomputer, they are all taking advantage of
the high performance and outstanding energy efficiency of these
devices. Regardless of these being GPU, TPU or FPGA accelerators,
there are substantial architectural differences with the main CPU of
the heterogeneous system. Interestingly, the success of these sys-
tems comes despite the fact that efficiently programming them is
far from trivial.

Software development for heterogeneous systems currently re-
lies on the host-device model. It dictates that the applications start
running on the CPU, and purely numerical kernels are offloaded
to a single accelerator in the system. Meanwhile, the CPU and

* Corresponding author.
E-mail addresses: perezpavonb@unican.es (B. Pérez), stafforde@unican.es

(E. Stafford), bosquejl@unican.es (J.L. Bosque), beivider@unican.es (R. Beivide).
https://doi.org/10.1016/j.jpdc.2021.06.003
0743-7315/© 2021 The Author(s). Published by Elsevier Inc. This is an open access artic
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
other accelerators remain idle until the conclusion of the execu-
tion of the kernel. This obviously wastes the computing capability
of the CPU and the other idle devices, which, to make matters
worse, consume a considerable amount of energy even when idle.
In OpenCL terms, a kernel is a large set of threads, or work-items,
which are grouped in work-groups. These may be executed con-
currently and independently in different devices. Consequently, a
single kernel can be executed simultaneously on several devices,
combining their computing capabilities, thus reducing energy con-
sumption.

Several frameworks, like CUDA [29] and OpenCL [38], are avail-
able to program heterogeneous systems. They enable programmers
to access the accelerators of the system, but they fail at presenting
the heterogeneous system as a whole. Therefore, the programmer
is left alone to face one of the most complex tasks required for
an efficient use of heterogeneous systems: load balancing. Some
programmers, after investing significant effort, have tackled it, like
[7,19] and [32], but a generic solution to the problem is still to be
found.

A further complication to the distribution of work and data, is
that it must be performed in accordance to the computing capabil-
ities of the devices, which may vary largely from system to system.
A load balancing algorithm must be capable of assigning the right
amount of work-groups to each device, so they all finish comput-
ing simultaneously [6,17,43]. To do this, the algorithm needs to
be able to adapt both to the heterogeneity of the system and the
behaviour of the applications. However, adaptiveness sometimes
introduces overheads, as it increases the number of host-device in-
le under the CC BY-NC-ND license

https://doi.org/10.1016/j.jpdc.2021.06.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2021.06.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:perezpavonb@unican.es
mailto:stafforde@unican.es
mailto:bosquejl@unican.es
mailto:beivider@unican.es
https://doi.org/10.1016/j.jpdc.2021.06.003
http://creativecommons.org/licenses/by-nc-nd/4.0/

B. Pérez, E. Stafford, J.L. Bosque et al. Journal of Parallel and Distributed Computing 157 (2021) 30–42
teractions. Ideally, these should be minimized while achieving an
accurate load balancing, avoiding device oversubscription or under-
utilisation and minimizing response time and energy usage.

In order to design such a load balancing algorithm, it is also
necessary to consider the behaviour of the kernels, which can be
classified as regular or irregular. In the first kind, different work-
groups present the same amount of computing operations. Then,
for a given device, they have a constant execution time. On con-
trast, work-groups of irregular kernels may represent substantially
different computing loads and, therefore, have an unpredictable ex-
ecution time.

This article proposes Sigmoid, a new load balancing algorithm
that achieves near-optimal performance for both regular and ir-
regular kernels, requiring no parameters whatsoever. By utilising
all the available devices in the system, it reduces response time,
which can also bring a reduction in energy consumption. This is
possible because Sigmoid is dynamic, enabling it to adjust to the
heterogeneity of the devices. Also, since it is capable of automat-
ically adapting to the type of kernel, it extracts maximum perfor-
mance out of the system. Finally, it minimises the programming
effort, as it does not require any parameter to be provided. Inter-
nally, Sigmoid starts kernel launches with some initial values and
adjusts them in real time, based on measurements of the execu-
tion.

Sigmoid has been integrated in Maat [33,34], a system abstrac-
tion library that enables the transparent co-execution of a single
OpenCL kernel, exploiting all the capacity of a heterogeneous sys-
tem. An exhaustive experimental evaluation has been carried out
in two different scenarios. First, one in which the performance of
CPUs and GPUs is combined to evaluate the capability of Sigmoid
to account for different kinds of devices. Second, a system with a
greater number of GPUs, resembling current supercomputer nodes,
to evaluate scalability. Sigmoid is compared to a heterogeneous
Static [33] algorithm and two dynamics algorithms, HGuided [33]
and Adaptive [6]. Experimental results show that Sigmoid can al-
most perfectly balance the load of all the devices in the system,
regardless of the type of kernel and scenario. Performance-wise
the results are close to the maximum speedups achievable for each
application, and the utilisation of the system is close to 90%. Fur-
thermore, on average, the energy consumption is reduced by up
to 20%. Combining these two results, Sigmoid more than doubles
the energy efficiency of the test system. Finally, these results show
that Sigmoid presents good scalability in both regular and irregular
kernels.

This paper contains the following contributions:

• Presents Sigmoid, a new load balancing algorithm that reduces
programming effort. By combining dynamic, guided and adap-
tive techniques, it distributes the workload of a single kernel
among all the devices of a heterogeneous system, regardless of
the behaviour of the kernel.

• Explains how the Sigmoid function has been transformed to be
used as part of a load balancing algorithm and how it adapts
at runtime to the specific needs of the application to obtain
the best results.

The remainder of the paper is structured as follows. Section 2
introduces some basic concepts that are central to the article. It
is followed by a presentation of the Sigmoid algorithm in detail in
Section 3. Sections 4 and 5 describe the experimental methodology
and discuss the results of the experiments. Section 6 covers related
literature. And finally, Section 7 gives some conclusions and future
lines of work.
31
2. Background

Programming heterogeneous systems for efficiency is a complex
endeavour that touches several knowledge fields. This section sum-
marises some basic concepts that are used throughout the paper.

2.1. Programming heterogeneous systems

OpenCL [38] is a language and programming framework for het-
erogeneous systems. It favours a host-device approach to parallel
programming, in which a host manages the available resources and
offloads numerical kernels to different hardware accelerators.

The code that is destined for execution on the accelerators is
encapsulated in usually short, data-parallel, C-like functions, which
are commonly known as kernels. When one is offloaded to an ac-
celerator, OpenCL launches multiple instances of the kernel code in
a Single Instruction Multiple Thread (SIMT) fashion. Each instance
is called a work-item, and the global work size parameter dictates
how many of these items are launched.

Work-items are launched in teams so they can cooperate and
synchronise with each other. Their size can be defined through the
local work size parameter. OpenCL ensures that the work-items of
each team, or work-group, are launched simultaneously in the same
compute device. However, a device may not have enough resources
to execute all the work-groups of a kernel all at once. Therefore,
OpenCL states that it must be possible to execute work-groups in-
dependently. This makes them a good choice for a scheduling unit.

2.2. Load balancing

Maximum performance and energy efficiency can only be
achieved by adequately balancing the load of a given kernel among
the available computing resources. However, this is something that
current frameworks do not provide. This desirable, but missing
feature has been widely considered in the literature. Proposals
can be classified into task-parallel approaches [14,16,43,40] and
data-parallel approaches [34,17,6]. The first rely on assigning the
different kernels of an application to the devices, in a way that
minimises the idle time of the system. The second one, also known
as co-execution, splits the work of a single kernel to permit several
devices to cooperate in parallel. This approach is more suitable to
the tasks that are usually offloaded to GPUs, as they are usually
highly parallel, and therefore, it will be used in this paper.

Load balancing a single kernel on different devices rises the
question of deciding the amount of work to assign to each de-
vice. Work is distributed to the devices in batches of work-groups
named packages, the number and size of which greatly influence
performance. The answer might differ depending on the type of
kernel. A first approach is to divide the workload into as many
adequately-sized packages as computation devices are available.
This is the Static algorithm, which is optimal for regular kernels
and if the computing speed of the devices is known.

The unpredictable nature of irregular kernels can only be cor-
rectly balanced if the work division is done during execution, us-
ing dynamic algorithms. These divide the workload into far more
packages than devices, and have a centralised marshal that as-
sign packages to devices upon request. This allows for a runtime
adaptation to the irregularities of the kernel, thus achieving better
performance. However, they suffer from a significant performance
loss due to the host-device interaction required by each package.

To overcome this limitation, prior works have proposed algo-
rithms that try to reduce the number of packages while remaining
adaptive. Such is the case of the Adaptive algorithm [6], which
uses small initial probe packages to attempt to obtain the com-
puting speed of the devices and then calculate an ideal distribu-
tion of the workload. However, using small packages sometimes

B. Pérez, E. Stafford, J.L. Bosque et al. Journal of Parallel and Distributed Computing 157 (2021) 30–42
Fig. 1. Computing speed comparison for Binomial.

Fig. 2. Package size comparison for Binomial.

means wasting computing resources due to underutilization. The
same problem affects other approaches like [3,28]. Moreover, ex-
perimental results presented in Section 5, show that the Adaptive
algorithm produces too few packages, which ultimately compro-
mises load balance in some cases.

The HGuided algorithm [33] takes a contrary approach. It ini-
tially launches big packages, followed by subsequently smaller
ones. This reduces the amount of packages while allowing a fine
grained scheduling at the end of the execution. However, it also
has certain limitations.

For instance, HGuided does not fully leverage the capabilities
of the devices. The top graph of Fig. 1 shows the evolution of the
computing speed, expressed in work-groups per second, when a
system runs the Binomial kernel using the HGuided algorithm. No-
tice that, for a significant portion of the execution, the devices are
going slower than they could. This is because the packages it pro-
duces decrease linearly in size, as can be seen in the top graph of
Fig. 2. The result is a large number of small packages near the end
of the execution. This negatively impacts performance in two ways,
first there is an increase of host-device interactions, and second,
small packages cannot fully exploit the computational resources of
the devices. This may be particularly notorious on regular kernels,
which do not require adaptiveness to obtain the best performance.

The HGuided algorithm also requires certain parameters from
the programmer, which strongly condition the success of the load
balancing. To be accurately set, they require costly parameter
sweeps for each kernel and system. Moreover, some kernels are
very sensitive to these parameters, delivering highly degraded per-
formance when using slightly off-key values. This results in dozens
of tuning executions, which represent a waste of time, resources
and energy. Furthermore, this is unfeasible in dynamic environ-
ments, such as a datacenter or cloud, where different applications
may run on different systems, with an a priori unknown match-
ing. This paper presents Sigmoid, a load balancing algorithm that
solves the aforementioned issues.
32
3. The sigmoid load balancing algorithm

3.1. Overview

To solve the problems introduced in the previous section, the
Sigmoid load balancing algorithm was conceived chasing four main
objectives. First, it should successfully divide a single massively
data-parallel OpenCL kernel between a set of heterogeneous de-
vices. Second, it should evaluate the computational performance of
the devices while avoiding overheads. Third, it should give good
results with any type of kernel. And fourth, it should be able to be
used effortlessly by the programmer. These four goals are the key
to an efficient transparent use of the available resources, regardless
of the underlying hardware or executed kernel.

Considering, Sigmoid is a dynamic and heterogeneous algorithm
because it is able to distribute the workload among devices at run
time, proportionally to their computing power. By matching the
package size to the computing powers of the devices, excessively
large packages are not assigned to slower devices, and the use of
more powerful ones is maximised.

It is also an adaptive algorithm, since it is capable of modify-
ing its operation to suit the type of kernel. It will divide regular
kernels in larger packages to reduce overhead, and use smaller
ones for irregular kernels, as it is impossible to predict their ex-
ecution time. To do this, it continually measures the performance
of the devices and tunes a number of internal parameters accord-
ingly. Unlike other proposals, [3,6,27], this parameter tuning is per-
formed transparently to the programmer and without any loss of
performance. Thus, Sigmoid behaves equally well with both regular
and irregular applications.

And finally, it is a guided algorithm since the package size,
which is initially proportional to the computing power of each
device, decreases towards the end of the kernel execution. This
satisfies several goals. Using large packages at the beginning of the
execution reduces the overhead. And decreasing the size of the last
packages improves the accuracy of the load balancing. In addition,
this keeps the utilisation of the devices nearly constant throughout
the execution, which has a strong impact on performance.

3.2. Algorithm description

As Sigmoid takes a dynamic approach to load balancing, it first
launches an initial package to each of the available devices and
then waits until any of them completes their execution. The pack-
ages are sized in accordance to an initial computing speed, based
on the GFLOPs reported by the specs of the devices. When one
finishes the execution, if there is pending work, a new package
is generated and issued to the idle device. To improve the load
balance, the size and response time of completed packages are an-
alyzed to tune the internal parameters of the algorithm throughout
the execution of the kernel.

How the package size evolves throughout the execution of a
kernel is key to an efficient load balancing. This is because pack-
age size poses a dilemma: smaller packages garner greater adap-
tiveness, but also greater overhead. Moreover, computing speed is
sometimes correlated with the work quantity offloaded to a de-
vice, so small packages often lead to suboptimal performance, that
is not representative of the actual capabilities of the hardware. The
importance of this phenomenon has been already addressed in [3].
Thus, a good load balancing algorithm will attempt to keep com-
puting speeds and, consequently, package sizes as high as possible,
while not compromising adaptiveness.

To calculate successive package sizes, Sigmoid relies on a func-
tion that issues big packages for most of the execution and, grad-
ually, smaller ones at the end, which reduces overheads while
maintaining adaptiveness and keeping device utilisation high. This

B. Pérez, E. Stafford, J.L. Bosque et al. Journal of Parallel and Distributed Computing 157 (2021) 30–42
Fig. 3. Package size comparison for BM3D.

is depicted in Figs. 1 and 2, which compare the computing speed
and package size evolution when executing the Binomial bench-
mark with the HGuided and Sigmoid algorithms. Note how Sig-
moid generates fewer and bigger packages, maintaining computing
speed high for longer. The decrease rate of the package size is ad-
justable through an internal parameter, which varies depending on
the behaviour of the kernel.

Sigmoid uses the size and response time of executed pack-
ages to detect if the kernel is irregular, and adjust the decrease
rate to generate smaller packages, if more adaptiveness is required.
The algorithm also automatically identifies an adequate minimum
package size that strikes a balance between adaptiveness and per-
formance, and calculates the computing speed of the devices to
avoid imbalances. The result is an algorithm that adapts to the be-
haviour of kernels. This is shown in Fig. 3, which compares the
package sizes generated by HGuided and Sigmoid for an irregular
kernel. Again, HGuided generates linearly decreasing package sizes,
although a certain distortion can be appreciated due to irregularity.
Sigmoid, in turn, uses variable package sizes to adapt to the ker-
nel. This can be seen in the humps near the end of the execution
of GPU0 and GPU1, which account for computing speed variations
associated to package workload differences. An exhaustive package
size evolution analysis has been carried out for every evaluated
application, however it has been left out due to space limitations.
Figs. 2 and 3 have been found representative of the behaviour of
regular and irregular kernels respectively. A high level description
of the algorithm can be seen in Algorithm 1. The following sections
explain the different internal parameters and functions of the al-
gorithm and will refer to Algorithm 1.

Algorithm 1: Sigmoid algorithm.
Input: The number of work-groups W G , a set of N devices with S j default

computing speeds
1 x ← G (Number of remaining work-groups)
2 k ← kr (Slope internal parameter)
3 for j ← 1 to N do
4 oc j ←Occupancy lower bound for device j
5 c ← package_size(j, x)
6 Schedule c work-groups to device j
7 x ← x − c
8 end
9 while x > 0 do

10 (j, c, t) ← Wait for any device
11 S j ← Average of the last 3 computing speeds (c

t)
12 σS j ← Standard deviation of last 3 computing speeds

13 if
σS j
S j

> 0.25 then

14 k ← ki

15 end
16 c ← max(package_size(j, x), pt S j , oc j)

17 Schedule c work-groups to device j
18 x ← x − c
19 end
33
Fig. 4. Representation of the logistic function for L = 1, k = 1 and x0 = 0.

Fig. 5. Evolution of the package size for different k values.

3.3. The logistic function for load balancing

The logistic function is used to model processes that appear
in many fields, ranging from biology to medicine, and commonly
used as machine learning activation function [13,5]. This function,
conveniently transformed, is the foundation of the Sigmoid load
balancing algorithm. It is defined by the following equation and a
graphical representation is shown in Fig. 4.

logistic_ f unction(x) = L

1 + e−k(x−x0)
(1)

To apply the function to the load balancing problem, variable
x will represent the amount of remaining work-groups. Conse-
quently, it will be monotonically decreasing and take values be-
tween G , the total number of work-groups that have to be pro-
cessed, and 0. As x will always be positive, parameter x0 is elim-
inated. The maximum value of the function, L, will represent the
size of the largest package. It can be seen in Fig. 4 that for x = 6
the function yields a value close to the asymptotic maximum. To
obtain a Sigmoid curve that captures the desired behaviour for the
package size decrease rate, which is shown in Fig. 5, Sigmoid will
only use the function in the [0, 6] interval. This produces and even
decrease in the package size, allowing for adaptiveness and pre-
venting steep size changes. Variable k is the slope of the curve
that is internally calculated by Sigmoid to modify the rate at which
package size decreases. The following lines show in detail how the
internal Sigmoid function, represented in Fig. 5, is derived from the
logistic function.

Let Gr be the number of remaining work-groups. As the aim is
to obtain a function f that produces decreasing package sizes as
the execution of the kernel progresses, Gr will be used as the x
in the logistic function. However it will be normalised to the total
number of work-groups G and scaled to 6 to map it to the [0, 6]
interval.

f (Gr) = L

1 + e−k 6(Gr)
G

(2)

So far, since 0 ≤ Gr ≤ G , then f (Gr) returns values between
L
2 and L. It is necessary to transform this to appropriate package
size values. First, the range of the function is mapped to the [0, L]
interval by multiplying by 2 and subtracting L.

B. Pérez, E. Stafford, J.L. Bosque et al. Journal of Parallel and Distributed Computing 157 (2021) 30–42
f (Gr) = 2L

1 + e−k 6(Gr)
G

− L (3)

And second, it is necessary to find L, which is the maximum
value the function will take, and will be used as the size of the
first package scheduled by the algorithm. The chosen value is

G
2N , where N represents the number of available devices. This is
equivalent to the base chunk size commonly used by the OpenMP
Guided algorithm [9].

f (Gr) = 2 G
2N

1 + e−k 6(Gr)
G

− G

2N
(4)

To account for the heterogeneity of the system, a correction
based on the computing speed of each device is added. The speed
Si is defined as the number of work-groups that device i can com-
pute per second. Similarly, the aggregated computing speed of the
system is represented by ST . And given the number of scheduled
work-groups Gr , the size of the next package for device i is as fol-
lows.

Pack_size(i, Gr) = f (Gr)
Si

ST

=
(

2 G
2N

1 + e−k(6 Gr
G)

− G

2N

)
Si

ST

= 1 − e−k(6 Gr
G)

1 + e−k(6 Gr
G)

G

2N

Si

ST

(5)

This function is used to obtain the size of the packages, but to
avoid excessive overheads the size is not allowed to drop below
two lower bounds. How Sigmoid automatically obtains these two
values and the slope of the function is explained next.

3.4. Automatic parameter tuning

The above expression requires a series of parameters. Some of
them are known beforehand, like the number of devices N , the
total number of work-groups G or the number of remaining work-
groups Gr . Others must be computed and updated as the kernel
execution progresses. Such is the case of the computing speed of
each device Si or the slope of the Sigmoid curve. Moreover, a min-
imum package size has to be selected in order to avoid a large
number of small packages at the end of the execution, as they
would increase the host-device interaction overhead and reduce
the computing speed of the devices due to their small size. The
automatic update of these parameters is what allows Sigmoid to
autonomously adapt itself to different kernel behaviours. In this
section we will explain how these parameters are obtained.

The computing speed of the devices is used to tailor the
amount of work to be distributed according to the capabilities
of the receiving device. These values can be easily computed at
runtime by monitoring the kernel execution. However, computing
speeds are kernel dependent. Consequently, for the first packages
of a kernel, speed information will not be available, so an approx-
imation is necessary. As an estimation, the nominal GFLOP values
reported by the hardware vendors, are initially used to calculate
the relative speed of the devices. These values may not accurately
represent the capabilities of the devices for the current kernel, but
an approximate speed estimation at the beginning of the kernel
execution does not have a large impact on performance. It is at
the end of the execution when accurate speeds are required, and
by then the algorithm will have refined these throughout the dura-
tion of the whole kernel. This is done by measuring the time that
each package takes to execute and calculating its speed in work-
groups per second. To reduce the influence of work bursts, that
34
Fig. 6. Influence of k on regular and irregular kernels (lower is better).

may not be representative of the behaviour of the whole workload,
the average speed shown by the last packages launched to each de-
vice is used to update the values used by Sigmoid. This is shown
in line 11 of Algorithm 1. However, keeping track of a very long
package history might have a negative effect on adaptiveness. This
is because, the longer the history, the longer it will take Sigmoid to
converge to the new speed after a change in the behaviour of the
workload. It was experimentally found that three packages strike a
balance between adaptiveness and over-sensitivity. Consequently,
Sigmoid will converge to the speed shown by a device once three
packages have been executed. In the case of irregular applications,
the algorithm will adapt accordingly to speed changes.

The slope of the Sigmoid curve, represented by k, controls the
rate at which the package size decreases and, ultimately, the de-
gree of adaptiveness of the algorithm. As shown in Fig. 5 a greater
k gives a steeper curve, producing fewer and bigger packages that
limit adaptiveness at the end of the execution. This situation suits
regular kernels, which do not require adaptiveness, and benefit
from the reduced overhead. Irregular kernels, on the other hand,
will require a smaller k value that will increase adaptiveness, at
the cost of a higher overhead. To choose adequate values of k a set
of executions of all the kernels used in the evaluation (Section 5)
was done using different values. The results of these experiments
showed that it is sufficient to use two different k values to achieve
good results in both regular and irregular kernels. The values thus
selected have been, ki = 0.5 for irregular kernels and kr = 2 for
regular ones. The reason for this choice is that these values deliver
good overall performance and belong to stable intervals, in which
small k differences do not represent great performance variability.
Fig. 6 shows an example of this behaviour for two representative
kernels: Mandelbrot as regular, and Ray as irregular. The chosen
values for ki and kr are expected to provide good performance
for other kernels. Nevertheless, for strictly optimal performance,
a slight adjustment of these parameters might be necessary when
executing other kernels.

In order to apply the correct k value it is necessary to deter-
mine which type of kernel is being executed. When a kernel is
launched, it is regarded as regular until proven otherwise. This
avoids penalizing regular kernels and should not affect irregular
ones, as adaptiveness is most necessary near the end of the ex-
ecution. Consequently, packages are initially distributed using kr .
Irregularity is defined by a variability in the time taken to execute
two equally-sized chunks of work. Therefore, to switch between
kr and ki the variability of the computing speed for each device
is analysed. To do so, Sigmoid considers the standard deviation of
the speed of the last three packages (σSi) on the current device i. If
the ratio between this value and the average speed Si rises above
a given threshold d, the kernel is deemed irregular and ki is used.
Note that once a kernel is considered irregular, ki will be used for
the remainder of its execution. This is shown in lines 12-15 of Al-
gorithm 1. This is due to the fact that some irregular kernels may
have regions of regular behaviour, in which the standard deviation
ratio might drop below the threshold. However, there is no guar-
antee that irregularity will not be present again near the end of

B. Pérez, E. Stafford, J.L. Bosque et al. Journal of Parallel and Distributed Computing 157 (2021) 30–42
Fig. 7. Histogram of the number of packages for regular and irregular kernels with
respect to the speed variability percentage.

the execution, with few opportunities to react. Therefore using kr
again in an irregular kernel would greatly harm performance. Nev-
ertheless, to verify this hypothesis, tests were carried out using a
version of Sigmoid that falls back to kr if regularity is detected.
This version caused an average performance loss of close to 10%.

To adequately set the value for the threshold d, an analysis of
performance variability in regular and irregular kernels was nec-
essary, as even regular kernels present certain performance differ-
ences due to several factors, such as cache effects or contention. To
decide the threshold d, the value of σSi for each package executed
on all the evaluated kernels has been studied. Fig. 7 depicts his-
tograms of the standard deviation ratio σSi

Si
for regular and irreg-

ular kernels. As can be seen, packages obtained in regular kernels
present a maximum performance variability of around 20%, while
differences are much greater for irregular ones. Considering this, d
has been set to 0.25 to avoid misidentifying regular kernels.

The purpose of applying lower limits to the size of the pack-
ages generated by Sigmoid is twofold. First, it strives to contain the
excessive overhead that is inherent in small packages. Second, it
guarantees that package sizes do not decrease to a point in which
the resources of the devices are not fully used. However, these fac-
tors should not be at odds with adaptiveness or induce imbalance
in order to keep utilisation high.

Targeting the first mentioned purpose implies a risk, because
avoiding overheads by increasing package size might generate im-
balances, arising from the time difference among the terminations
of the last package scheduled to each device. In a worst case sce-
nario, this imbalance might represent the whole execution time
associated to the last package. Accounting for this, a maximum im-
balance coefficient p is defined. This represents the maximum im-
balance that will be generated by Sigmoid in the aforementioned
worst case scenario. Then, p is used in the following equation, to-
gether with the current execution time t and the average device
speed Si , to obtain a minimum package size that limits overheads
but does not generate significant imbalance.

Minimum_package_size = pt Si

Guided by the benchmarks used in this paper, p = 0.05 has
been chosen, which does not cause excessive overheads and avoids
imbalance. Conceptually, this means that, at the current speed, the
execution of a package launched to device i, with a size calculated
using the equation, will represent 5% of the current total execution
time. Equivalently, in a worst case scenario, at most 5% of the cur-
rent runtime will be spent in an imbalanced execution, with only
one device computing and the rest idling.

The second lower bound for the package size guarantees that
the devices are fully used. For GPUs, the algorithm implements the
equations of the CUDA Occupancy Calculator, which is part of the
CUDA Toolkit since version 4.1. These, take the number of registers
and the amount of shared memory required by a kernel, which are
values that can be obtained from the OpenCL compiler, and calcu-
late its maximum occupancy and the number of work-groups per
35
multiprocessor required to reach it. The latter value multiplied by
the number of stream multiprocessors in the GPU, which can also
be queried from OpenCL, is the minimum number of work-groups
to achieve maximum occupancy. CPUs usually show a much more
regular performance on the number of work-groups than GPUs, so
on CPUs this lower bound is set to one work-group per CPU core.

As a result, the package size that will be selected will be the
maximum of these two lower bounds and the value obtained using
the Sigmoid function. This is shown in line 16 of Algorithm 1.

4. Experimental methodology

This section describes some details of the experimental setup
used to evaluate Sigmoid. This includes a description of the load
balancing algorithms used for comparison, test hardware, the
choice of benchmark kernels and measurement tools.

4.1. Load balancing algorithms

In order to evaluate the improvements of Sigmoid, the follow-
ing well-known load balancing algorithms were considered in the
experiments.

Static algorithm [33]. This classic algorithm divides the kernel in
as many packages as devices are available in the system. The size
of each package is proportional to the relative computing speed
of the device that will execute it. This algorithm minimizes the
overhead, since only one package is sent to each device. Thus,
for regular kernels this is a priori the best choice. However, the
algorithm requires the computing speed of the devices as input
parameters and it performs badly with irregular kernels.

HGuided algorithm [33]. This algorithm aims to reduce the over-
heads associated with host-device interactions while retaining the
best adaptiveness. Like in the guided method from OpenMP [9] the
size of the packages starts being large and diminishes as the execu-
tion progresses. As parameters, it requires the different computing
speeds of the devices and a minimum package size. Two different
versions have been considered. The first one, labelled BestHG, uses
optimal parameter values for each kernel and system, obtained af-
ter an exhaustive parameter sweep. The second, DefHG represents
an effortless usage of HGuided. To be fair, the same parameters
initially used by Sigmoid have been selected: the nominal values
for the computing speeds, and the values reported by the CUDA
occupancy calculator for the minimum package size.

Adaptive algorithm [6]. This algorithm was proposed for a two
device scenario as a dynamic technique that requires no training
and responds automatically to performance variability. But, the im-
plementation used in this paper is an extension of the original
algorithm for an arbitrary number of devices introduced in [33].
It proceeds by first launching small probe packages to the devices
and then using their execution times to predict an ideal static
work partitioning for the remaining work. The amount of probe
packages per device, their size and growth rate are programmer
defined parameters. The authors suggest a set of parameters that
deliver good performance, which are used in this work. However, it
was experimentally found that the suggested size of the first probe
package was too big and the slowest device did not finish enough
packages for the adaptive distribution to begin before the other de-
vices completed the rest of the work. Consequently, a smaller first
package has been used. Similar algorithms in the bibliography are
[27,28,3].

From the aforementioned algorithms, Static and BestHG take
parameters, which have a strong impact on performance. Often,
these have different optimal values for each kernel and system

B. Pérez, E. Stafford, J.L. Bosque et al. Journal of Parallel and Distributed Computing 157 (2021) 30–42

Table 1
Parameters for each Benchmark.

Benchmark Type Problem size Local work size GPU computing speed Minimum size

Binomial Regular 2048000 256 7.28 380
Gaussian Regular 8000×8000 81×81 128 13.77 1000
Mandelbrot Regular 20480×20480 256 5.88 400
NBody Regular 51200 128 7.33 400
Taylor Regular 800×800 128 2.06 280
Aho Irregular 1536000 64 8.20 200
BM3D Irregular 800×800 64 2.28 150
Rap Irregular 1024×1024 64 4.26 400
Ray Irregular 12000×12000 64 7.70 380
configuration. As a consequence, it was necessary to individually
tune them to each benchmark, in order to obtain their best possi-
ble results. This process meant performing thousands of executions
of the benchmarks in time-consuming parameter sweeps, which
would be required for any new benchmark or hardware configura-
tion.

4.2. Test platform and benchmarks

Experimentation has been carried out using two different ma-
chines. The first one, labelled Batel, has two CPUs, two GPUs and
16 GBs of DDR3 memory. Both the CPUs and GPUs take part in
co-execution. The CPUs are Intel Xeon E5-2620, with six cores that
can run two threads each at 2.0 GHz. The CPUs are connected via
QPI, which allows OpenCL to detect them as a single device. There-
fore, throughout the remainder of this document, any reference to
the CPU includes both Xeon E5-2620 processors and all their cores.
A load balancing scheme that consider each individual core sepa-
rately, using device fission, was evaluated. However, it was found
to deliver worse performance than the work distribution obtained
when the OpenCL driver is in charge of distributing work-groups
to each of the CPU cores. This could be attributed to overheads or
cache affinity issues, as device fission provides no means to iden-
tify the placement of each of the returned cores in the memory
hierarchy.

The GPUs are NVIDIA Kepler K20m with 13 SIMD lanes (or SMs
in NVIDIA terminology) and 5 GBytes of VRAM each [30]. These
are connected to the system using independent PCI 2.0 slots. For
performance and energy experiments, the baseline system uses a
single GPU, but the static energy of the unused devices, which are
idle but still consuming, is considered. This accounts for the fact
that current HPC systems often incorporate several accelerators,
which, if unused, would represent a considerable energy waste.

The second machine, labelled Hydra, has been used to evaluate
the scalability of Sigmoid as compared to that of the other algo-
rithms. It has four NVIDIA GeForce GTX TITAN Black GPUs, each
one having 15 SIMDS lanes and 6 GB of VRAM. Note that the CPU
does not take part in co-execution in the tests that use this system.
This is to better analyze the scalability itself, by evaluating the be-
haviour of the algorithms when the number of identical devices
increases.

Nine kernels have been chosen for the experiments. Five of
which exhibit regular behaviour. Binomial (Bin) generates binomial
lattices, useful for option pricing in financial software. Mandelbrot
(Man) implements a blocked algorithm to compute a Mandelbrot
set. NBody (Nbo) simulates a dynamic system of particles, used in
many physics applications. Gaussian (Gau) calculates the Gaussian
blur of an image, commonly found in image and video processing
software. The last regular kernel is Taylor (Tay), which performs
a bi-dimensional Taylor approximation for a set of points. The
other four kernels are irregular. Aho is an implementation of the
Parallel Failureless Aho-Corasick (PFAC) string matching algorithm,
commonly used for protein sequencing [24]. BM3D (BM3) imple-
ments one of the filters of the BM3D image denoising algorithm
36
[10]. Rap is an implementation of the Resource Allocation Problem
[1]. There is a certain pattern in the irregularity of RAP, because
each successive package represents a bigger amount of work than
the previous. Finally, Ray Tracing which renders realistic images
by calculating the light that reaches each pixel by modelling light
rays. Two different scenes of similar complexity but with different
object distribution, (Ray1 and Ray2), have been defined. It will be
shown later (Section 5) that changing the input data, the behaviour
of the application varies wildly.

Table 1 shows some parameters for each kernel and load bal-
ancing algorithm. The “GPU computing speed” and “Minimum size”
columns indicate the values for the parameters required by the
Static and HGuided load balancing algorithms. The former repre-
sents the computing speed of the GPU relative to that of the CPU.
The latter is the minimum package size generated by the HGuided
algorithm, expressed in work-groups. The local work size has been
set to maximise the performance of the fastest device, namely the
GPU. The reason for this is that almost no performance difference
was detected when varying the local work size for the CPU.

4.3. Energy measurements

To measure the energy consumption of the system it is neces-
sary to take into account the power drawn by each device. Modern
computing devices allow applications to monitor their functional-
ity and performance. However, the power measured is associated
to the device and not the kernel or process in execution. Together
with the fact that it is impractical to add measurement code to all
the test applications, this led to the development of a power mon-
itoring tool named Sauna. It takes a program as its parameter, and
is able to periodically query all the devices for power measure-
ments throughout the execution of the program.

A significant amount of thought went into the conception of
Sauna; the fact that it had to monitor several devices meant that it
had to adapt to the particularities of each one while giving consis-
tent and homogeneous output data. This started with the different
APIs provided to perform these measurements. For the Intel CPUs,
recent versions of the Linux kernel provide access to the Running
Average Power Limit (RAPL) registers [35], which provide accumu-
lative energy readings. On contrast, NVIDIA provides the NVIDIA
Management Library (NVML) [31] that gives instant power measure-
ments. Naturally, Sauna had to be able to convert between the two
magnitudes. A particularly interesting aspect of the development
process of Sauna was studying the impact of the sampling fre-
quency. In order to keep the program simple, it was necessary to
use a single sampling period for all devices. Given that the power
variations would be similar across devices, the idea seemed feasi-
ble.

To find the best frequency, a series of experiments were made
for each device in Batel (Section 4.2). It was observed that each
device reacted differently to the sampling frequency. The RAPL
measurements grew with large frequencies. And more surprisingly,
the NVIDIA devices slowed down noticeably when the sampling
frequency was above a given threshold. This actually meant that

B. Pérez, E. Stafford, J.L. Bosque et al. Journal of Parallel and Distributed Computing 157 (2021) 30–42
Fig. 8. Impact of sampling period on power measurement and kernel execution time.

the kernel running in the device took longer to complete. Fig. 8
shows these effects as the magnitude of the variation of the mea-
sured CPU power depending on the sampling rate, together with
the execution time of a Binomial kernel on a NVIDIA GPU. These
graphs suggest adopting a low frequency, however, if the sampling
period is too long, fast power spikes that may appear under ir-
regular loads could be missed, leading to inexact results. It was
decided to use a sampling period of 45 ms since the increase in
the execution time and the power error is restricted to 6%.

5. Experimental evaluation

This section presents the experimental results obtained on the
test systems when running the different benchmarks, as described
in Section 4. These experiments aim to answer the following ques-
tions:

• How well does Sigmoid balance the workload across different
heterogeneous devices?

• What is the performance of Sigmoid for both regular and ir-
regular kernels?

• Is well-balanced co-execution capable of improving the energy
consumption of a heterogeneous system?

• How does Sigmoid scale when the number of devices in-
creases?

Each of the following sections answer one of the aforemen-
tioned questions, comparing the results achieved for Sigmoid with
other load balancing algorithms.

5.1. Load balance

The first metric considered in this analysis is the Load Balance
which is shown in Fig. 9, for the Batel system. For a given exe-
cution, it is defined as the ratio of the response time of the first
device to conclude its work and that of the last. The ideal value for
this metric is one, meaning that all devices finished simultaneously
and the maximum utilisation of the machine was reached.

Sigmoid reaches perfect load balance in six out of the ten
benchmarks. Compared to the other algorithms, it obtains the best
load balance, except in Rap and NBody where it is slightly worse
than BestHG and DefHG. Looking at the geometric mean, Sig-
moid boasts almost perfect load balance (0.97) closely followed
by BestHG (0.94). Recall that the parameters of BestHG are opti-
mal, obtained from a time-consuming sweep. Regarding the other
algorithms, Static performs well in regular benchmarks but, as is
expected, performs poorly in irregular ones. This is a consequence
of the nature of these kernels, that make it very difficult to de-
vise a fair load distribution before the actual execution. In the
same way, Adaptive shows good results for regular kernels (except
NBody) but no so satisfactory for irregular ones.
37
5.2. Performance

To give an idea of performance, Fig. 10 shows the speedups
reached by the different benchmarks in the Batel system, com-
pared to the baseline scenario that only uses one GPU. The test
system is composed of N = 3 devices, but since they do not have
the same computing power, the speedup is never going to reach
3. Table 2 summarises the maximum speedup Smax each bench-
mark can reach. These values were derived from the response time
Ti of each device, in relation to the time for the fastest device
in the system, as shown in Equation (6). This is, the maximum
speedup is the addition of the relative performance of each device
with respect to the fastest of them. The obtained values are also
represented in Fig. 10 as a horizontal line above the bars of each
benchmark.

Smax =
N∑

i=1

Tmin

Ti
(6)

Looking at the geometric mean of the speedups shown in
Fig. 10, it can be seen that Sigmoid gives the best performance. It
is 22% better than Static and 3% better than BestHG. Regarding the
mean for regular and irregular kernels separately (not depicted),
Sigmoid obtains the same performance (99%) as the Static for reg-
ular benchmarks and is even slightly better than BestHG for irreg-
ular. In short Sigmoid delivers the best overall performance and
also equals the performance of the best alternative for both reg-
ular and irregular workloads. When compared to the speedup of
the other effortless algorithms, Sigmoid also excels. It is 20% better
than Adaptive and 7% better than DefHG.

Regarding each benchmark individually, Sigmoid gives the best
performance in all except NBody, Taylor and Rap. Despite that
Sigmoid attains the best load balance results in NBody and Tay-
lor, using the optimal parameters with Static obtains a better
speedup. Since these benchmarks have a very low computation-
communication ratio, the overhead increases when the workload
is subdivided in more packages than devices. With Rap, Sigmoid
delivers the second best performance. This is because the mini-
mum package size that guarantees efficient device use, generates a
slight imbalance at the end of the execution. Regarding the effort-
less algorithms, Sigmoid delivers the best performance in all the
applications but Taylor, in which it is only marginally surpassed by
Adaptive.

The gap between the measured and the theoretical maximum
values is a consequence of the extra communication overhead that
comes from having more than one device. This is more notorious
in applications in which the data can not be divided and must
be replicated (NBody) or when the ratio between the computation
and communication times is small (Mandelbrot, RAP).

As discussed above, one of the advantages of Sigmoid is that
it tries to reduce the number of packages, as each implies interac-
tion between the host and a device, while maintaining adaptability.
This can be seen in Table 3, which depicts the number of packages
generated by each algorithm excluding Static, which would always
generate as many packages as devices. Adaptive produces almost
the same amount of packages for all benchmarks. This translates
into good results in very regular benchmarks, as overheads are
reduced. However, it fails in irregular ones, to which it cannot
adapt. As for the HGuided algorithms, both versions generate huge
amounts of packages, many more than the rest, although slightly
less in BestHG thanks to the tuning of the parameters. This oc-
curs even in regular benchmarks, like Binomial, which do not take
advantage of adaptability. This causes two damaging effects. On
the one hand, it notably increases overheads. On the other hand,
a large number of packages are excessively small and do not fully

B. Pérez, E. Stafford, J.L. Bosque et al. Journal of Parallel and Distributed Computing 157 (2021) 30–42

Fig. 9. Load balance of each device for all algorithms and benchmarks in the heterogeneous system.

Fig. 10. Speedups of the benchmarks with the different algorithms in the heterogeneous system.

Table 2
Maximum speedup for the different benchmarks.

Benchmark Binomial Gaussian Mandelbrot NBody Taylor Aho BM3 RAP RAY

Max. Speedup 2.14 2.07 2.17 2.13 2.48 2.12 2.44 2.23 2.13

Table 3
Number of Packages generated by each load balancing algorithm and benchmark.

Benchmark Binomial Gaussian Mandelbrot NBody Taylor Aho BM3 RAP Ray1 Ray2 Average

Adaptive 15 19 13 15 15 11 13 15 14 13 14.30

DefHG 445 105 25 175 51 828 92 79 389 291 248.00

BestHG 307 84 14 119 31 707 47 46 288 185 182.80

Sigmoid 28 31 17 27 20 13 28 20 40 32 25.60
take advantage of the capacity of GPUs. Finally, it should be noted
that Sigmoid generates a much smaller number of packages, thus
reducing the overhead with respect to HGuided. At the same time,
it maintains adaptability according to the needs of each bench-
mark, surpassing Adaptive in this regard.

5.3. Energy consumption

Nowadays, performance is not the only figure of merit used to
evaluate computing systems. Their energy consumption and effi-
ciency are also very important. Fig. 11 gives an idea of the energy
saving obtained by taking full advantage of all the compute devices
in the Batel heterogeneous system. Contrasting with the baseline
system that only uses one GPU, while the other devices are idle
but still consuming. Therefore, the figure shows, for each bench-
mark, the energy consumption of each algorithm normalised to
the baseline consumption. In this graph, less is better, and bars
over one indicate that the whole heterogeneous system consumes
more energy than the baseline.

The energy measurements are strongly correlated to the perfor-
mance of the algorithms. Observing the geometric mean, it can be
seen that Sigmoid gives the best results, followed by BestHG, pre-
senting energy savings of 9% and 7% respectively. Looking closely at
some benchmarks, the other algorithms can consume significantly
more energy than the baseline (Static and Adaptive in irregular
benchmarks). Even DefHG and BestHG do not reach any improve-
38
ment in Binomial and Gaussian. Interestingly, the only algorithm
that always improves the baseline consumption is Sigmoid. The use
of more devices logically increases the instantaneous power at any
time. But, since the total execution time is reduced, the total en-
ergy consumption is also less. This saving is further improved by
the fact that idle devices still consume energy, so making all the
devices contribute work is beneficial. Notice that, of the effortless
algorithms, Sigmoid attains the lowest energy consumption while
Adaptive presents and overall energy consumption greater than the
baseline.

Another interesting metric is the energy efficiency, which com-
bines performance with energy consumption. Fig. 12 shows the
Energy Delay Product (EDP) [8], of the algorithms normalised to
that of the baseline. Since this is a combination of the two above
metrics, the relative advantage of the different algorithms is main-
tained. The geometric mean shows that with this metric all algo-
rithms are advantageous, Sigmoid giving the best results with a
54% improvement. BestHG also gives good results (52%) since its
parameters have been optimised. These two algorithms give good
results in all the benchmarks, while the remaining algorithms ex-
hibit a strong variability, in some cases even with normalised EDP
values over one.

In summary, these results prove that co-execution improves the
energy consumption of heterogeneous systems, in addition to their
performance, as shown in the previous section.

B. Pérez, E. Stafford, J.L. Bosque et al. Journal of Parallel and Distributed Computing 157 (2021) 30–42

Fig. 11. Energy consumption of the benchmarks with the different algorithms normalised to the baseline in the heterogeneous system.

Fig. 12. EDP of the benchmarks with the different algorithms normalised to the baseline in the heterogeneous system.

Fig. 13. Efficiency of the different algorithms executing the benchmarks on a homogeneous system.
5.4. Scalability

The last set of experiments was developed in Hydra, a system
with four identical GPUs. It evaluates the strong scalability of the
load balancing algorithms. Therefore, the same problem size has
been used for all the experiments, while the number of devices
increases from 2 to 4. For a better comparison, the metric used
to evaluate scalability is the efficiency, defined as the ratio of the
achieved speedup to the number of devices that have been used.
Consequently, perfect scalability implies constant efficiency, mean-
ing that the same performance per device is obtained regardless of
their number. This is usually not the case and, as shown in Fig. 13,
efficiency drops in all cases. The smaller the drop, the better the
scalability of the algorithm.

These results show that Sigmoid is the only algorithm that
scales well for both regular and irregular benchmarks. Regarding
the rest of the algorithms, Static scales very well in regular al-
gorithms, but it has serious problems in irregular ones, such as
Aho and Ray1, where it scales well between 2 and 3 devices, but
drops strongly with 4 devices. Adaptive also scales well on regu-
lar benchmarks, excluding NBody with 4 devices, but behaves very
poorly on irregular ones. Finally, both BestHG and DefHG, have an
erratic behaviour in regular benchmarks, with good scalability for
NBody, Mandelbrot and Taylor, but scaling badly for Binomial and
Gaussian.
39
Both versions of the HGuided also show the same behaviour for
irregular benchmarks: good scalability for Aho, BM3D and RAP, but
very poor for Ray1 and Ray2. In sum, out of the evaluated algo-
rithms, only Sigmoid delivers uniform scalability results, regardless
of the behaviour of the workload: regular or irregular.

Currently, some servers for supercomputers have even more
than four GPUs, a tendency that is expected to grow in the near
future. For this reason, and based on the data obtained in these
experiments, an estimation of the weak scalability of Sigmoid has
been made with up to 16 devices using the Law of Gustafson [15].
Evaluating strong scaling for such a high number of devices would
require problem sizes that cannot be executed on just four devices
due to memory constraints. Fig. 14 shows how efficiency evolves
by increasing both the number of devices and the size of the
problem, so that the workload per device is always constant. As
depicted, weak scaling for Sigmoid is almost perfect, according to
Gustafson’s Law estimates.

In conclusion, Sigmoid achieves almost perfect load balancing,
delivering excellent energy and performance results of all the con-
sidered effortless load balancing algorithms. Moreover, it delivers
better overall performance than the load balancing algorithms that
require parameters, it also equals the results of the best algorithms
for regular and irregular kernels individually. Finally, it is the only
one with good scalability in both regular and irregular applications.

B. Pérez, E. Stafford, J.L. Bosque et al. Journal of Parallel and Distributed Computing 157 (2021) 30–42
Fig. 14. Estimation of the weak Scalability of Sigmoid algorithm using Gustafson
Law.

6. Related work

The development of heterogeneous systems and their advan-
tages in performance and energy consumption, has led to great
interest from industry and academia. However, despite all the ef-
forts, the problem of adequately using the enormous computing
capabilities of this kind of systems is to be solved. Many research
papers have addressed it from two angles: task and data paral-
lelism.

The idea behind task parallelism is distributing independent
tasks to each of the available devices, so ideally their resources
fully used. Such is the approach of [16], which proposes a
lightweight runtime based on QUARK, that distributes tasks us-
ing task superscalar scheduling and a greedy heuristic. The authors
of [41] apply fuzzy neural networks to the task distribution prob-
lem. MultiCL [2] is an OpenCL runtime for task-parallel workloads
based on storing execution information for each kernel-device pair
and using it for future kernel launches. VirtCL is an OpenCL system
abstraction framework [40] that implements a history-based task
scheduler that constructs regression models to predict turnaround
times. The authors of [12] propose SPARTA, a throughput-aware
runtime task allocator for Heterogeneous Many Core platforms
[12]. It analyzes tasks at runtime and uses the information to max-
imize energy-efficiency. Unicorn is a parallel programming model
for hybrid CPU-GPU clusters that implements a dynamic work-
stealing task scheduler [4]. Another example of the work-stealing
approach is that of Xkaapi [14].

All these works are remarkable efforts towards the efficient
use of the capabilities offered by heterogeneous systems. However,
these techniques are often not enough. Task-parallelism is of little
use when there are few kernels or they have dependencies. This
is the case of many current workloads that use very big data sets,
such as machine learning applications. In these cases, the only way
to extract parallelism is for all the devices to collaborate in the
execution of a single task, via data-parallelism. This is when co-
execution comes into play, which is the focus of Sigmoid.

Considering this, MKMD is an intermediate approach [22]. It
combines coarse grain scheduling of indivisible kernels, followed
by opportunistic fine grained work-group distribution if idle slots
are detected. To do so, it predicts the execution time of work-
groups and uses a heuristic. The work of Zhong et al. focuses on
splitting different tasks to maximise the usage of a single GPU. This
could be extended to several devices by adding an extra dispatcher
[43].

Several papers have tackled load balancing for data parallelism.
As substantiated throughout this paper, for a single load balanc-
ing technique to succeed, it has to be flexible and consider both
the heterogeneity of the devices and the irregularity of the appli-
cations. Additionally, it should not require excessive information
from the programmer.

Kim et al. [18] approach the problem by implementing an
OpenCL framework that provides a view of a single compute device
by transparently managing the memory of the devices. Their ap-
40
proach to data-parallelism is based on a static load balancing strat-
egy, so it cannot adapt to irregularity. Besides, they only consider
systems with several identical GPUs and ignore CPUs, so their pro-
posal is not suitable for truly heterogeneous systems. Lee et al.[21]
propose automatic modifications to OpenCL code that executes on
a single device, so the load is balanced among several ones. De
la Lama et al. [11] propose a library that implements static load
balancing by encapsulating standard OpenCL calls. The work pre-
sented in [20] uses machine learning techniques to build an offline
model that predicts an ideal static load partitioning. However, this
model does not consider irregularity. Similarly, Zhong et al. [44]
use performance models to identify an ideal static work distri-
bution. In [23] the focus is on the static distribution of a kernel
execution to the available devices via code modifications.

Other authors have proposed training-based load balancing
methods. Qilin [25] proposes the use of a execution-time database
for all the programs the system has executed and a linear regres-
sion model. Another such approach is that of Maestro [37]. These
techniques are only useful in systems that run the same applica-
tions frequently.

All the above works propose static approaches, so they fail to
address the importance of adaptiveness. Moreover, even when fac-
ing regular workloads, these methods cannot recover from an inac-
curate initial estimation of the capabilities of the available devices.
Dynamic methods, such as Sigmoid, try to prevent these issues by
dividing the workload in smaller chunks and taking load balancing
decisions at runtime.

FluidicCL [32] implements an adaptive dynamic scheduler, but
only focuses on systems with one CPU and one GPU. SnuCL [19] is
an OpenCL framework for heterogeneous CPU/GPU clusters. How-
ever, regarding load balancing, it is capable of either dynamically
distributing a kernel among the CPU cores or using a GPU, but does
not support the co-execution of a kernel.

Kaleem et al. in [17] and Boyer et al. in [6] propose adap-
tive methods that use the execution time of the first packages to
distribute the load. However, they focus on a CPU/GPU scenario
and, unlike Sigmoid, do not scale well to configurations with more
devices. Similarly, HDSS [3] is a load balancing algorithm that dy-
namically learns the computational speed of each processor and
then schedules the remainder of the workload using a weighted
self-scheduling scheme. However, this algorithm assumes that the
packages launched in the initial phase are representative of the
whole load, which might not be true for irregular kernels. Besides,
package size decreases linearly during the completion phase, which
may produce unnecessary overheads as substantiated in this pa-
per. Navarro et al. [27] propose a dynamic, adaptive algorithm for
Threading Building Blocks (TBB) that uses a fixed package size for
the GPU and a variable one for the CPU. This work was extended
in [28], proposing an adaptive package size for the GPU too. This
is also based on using small initial packages to identify a package
size that obtains near optimal performance.

Scogland et al. [36] propose several distribution schemes that
fit accelerated OpenMP computing patterns. However, they do not
propose a single solution to the load balancing problem. The li-
brary presented in [33] also implements several load balancing
algorithms and proposes the HGuided, which adapts to irregular-
ity and heterogeneity. However, it requires certain parameters from
the programmer and uses linearly decreasing packages that might
impose overheads.

Finepar [42] is a software that analyzes an irregular application,
its input data and the available (integrated) hardware and builds a
performance model to obtain an ideal work partition. The model
calculation has to be performed every time the input data changes,
which is costly. This software only supports applications based on
sparse matrices.

B. Pérez, E. Stafford, J.L. Bosque et al. Journal of Parallel and Distributed Computing 157 (2021) 30–42
Finally, some papers propose algorithms to distribute the work-
load accounting for performance and power. GreenGPU dynami-
cally distributes work to GPU and CPU, minimizing the energy
wasted on idling and waiting for the slowest device [26]. To max-
imise energy savings while avoiding performance degradation, it
throttles the frequencies of CPU, GPU and memory, based on their
utilisation. Wang and Ren [39] propose several analytical models
and guidelines to produce partitions balance performance and en-
ergy consumption.

7. Conclusion

This paper presents Sigmoid, a new load balancing algorithm.
It allows executing a single data-parallel OpenCL kernel taking full
advantage of all the compute devices in a heterogeneous system.
This algorithm is dynamic, as it distributes the workload among
the devices at run time. It is also adaptive, since it can change
its behaviour during the execution to adapt to regular and irreg-
ular kernels. Additionally it starts with large packages to reduce
the synchronisation points at the beginning, reducing overheads.
As execution advances, it shortens the package size to increase the
granularity toward the end, allowing perfect load balance. Finally,
using all these features requires very limited effort, since Sigmoid
is controlled by a small amount of settings, which can be easily
established at installation time.

The Sigmoid algorithm has been implemented in Maat, an
OpenCL library that simplifies the management of heterogeneous
systems when co-executing data-parallel kernels. An exhaustive
experimental evaluation has confirmed that the use of the whole
heterogeneous system improves performance and energy con-
sumption when compared to using the devices individually. The
experimental results show that Sigmoid reaches an almost perfect
load balance, with kernels of diverse behaviours. As a consequence
it gives the best performance and energy consumption results
compared to the other evaluated alternatives for most of the
benchmarks considered in this work. Additionally, it has proven
excellent scalability properties. Sigmoid delivers these good re-
sults through adaptation, using few parameters set at installation
time, without the need of any further time-consuming parameter
search. When compared to other effortless load balancing algo-
rithms, Sigmoid delivers better results, both regarding performance
and energy consumption.

In the future, Sigmoid will be tested with real parallel applica-
tions as well as in other kinds of heterogeneous systems composed
of FPGAs and tensor processing units.

CRediT authorship contribution statement

Borja Pérez: Conceptualization, Investigation, Software, Valida-
tion, Writing – original draft. E. Stafford: Investigation, Software,
Visualization, Writing – original draft. J.L. Bosque: Conceptualiza-
tion, Investigation, Methodology, Writing – original draft. R. Bei-
vide: Conceptualization, Funding acquisition, Supervision.

Declaration of competing interest

The authors have no known conflicts of interest beyond the
ones related to organisations they belong to, which are Universi-
dad de Cantabria and Barcelona Supercomputing Center.

Acknowledgment

This work has been supported by the Spanish Science and Tech-
nology Commission under contract PID2019-105660RB-C22 and
the European HiPEAC Network of Excellence.
41
References

[1] A. Acosta, R. Corujo, V. Blanco, F. Almeida, Dynamic load balancing on hetero-
geneous multicore/multiGPU systems, in: W.W. Smari, J.P. McIntire (Eds.), HPCS,
2010, pp. 467–476.

[2] A.M. Aji, A.J. Peña, P. Balaji, W.-c. Feng Multicl, Parallel Comput. 58 (C) (2016)
37–55.

[3] M.E. Belviranli, L.N. Bhuyan, R. Gupta, A dynamic self-scheduling scheme for
heterogeneous multiprocessor architectures, ACM Trans. Archit. Code Optim.
9 (4) (2013) 1–20.

[4] T. Beri, S. Bansal, S. Kumar, The unicorn runtime: efficient distributed shared
memory programming for hybrid cpu-gpu clusters, IEEE Trans. Parallel Distrib.
Syst. 28 (5) (2017) 1518–1534.

[5] C.M. Bishop, Pattern Recognition and Machine Learning, Information Science
and Statistics, Springer-Verlag, Secaucus, 2006.

[6] M. Boyer, K. Skadron, S. Che, N. Jayasena, Load balancing in a changing world:
dealing with heterogeneity and performance variability, in: ACM Int. Comput-
ing Frontiers, 2013, pp. 1–10.

[7] J. Cabezas, I. Gelado, J.E. Stone, N. Navarro, D.B. Kirk, W.m. Hwu, Runtime and
architecture support for efficient data exchange in multi-accelerator applica-
tions, IEEE Trans. Parallel Distrib. Syst. 26 (5) (2015) 1405–1418.

[8] E. Castillo, C. Camarero, A. Borrego, J.L. Bosque, Financial applications on multi-
cpu and multi-gpu architectures, J. Supercomput. 71 (2) (2015) 729–739.

[9] B. Chapman, G. Jost, R.v.d. Pas, Using OpenMP: Portable Shared Memory Paral-
lel Programming, The MIT Press, 2007.

[10] K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image denoising by sparse 3-
d transform-domain collaborative filtering, IEEE Trans. Image Process. 16 (8)
(2007) 2080–2095.

[11] C.S. de la Lama, P. Toharia, J.L. Bosque, O.D. Robles, Static multi-device load bal-
ancing for opencl, in: Proc. of ISPA, IEEE Computer Society, 2012, pp. 675–682.

[12] B. Donyanavard, T. Mück, S. Sarma, N. Dutt Sparta, Runtime task allocation for
energy efficient heterogeneous many-cores, in: Proc. of the 11th IEEE/ACM/IFIP
Int. Conf. on Hardware/Software Codesign and System Synthesis, CODES ’16,
2016, pp. 1–10.

[13] S. Dreiseitl, L. Ohno-Machado, Logistic regression and artificial neural network
classification models: a methodology review, J. Biomed. Inform. 35 (5) (2002)
352–359.

[14] T. Gautier, J. Lima, N. Maillard, B. Raffin, Xkaapi: a runtime system for data-flow
task programming on heterogeneous architectures, in: Proc. of IPDPS, 2013,
pp. 1299–1308.

[15] J.L. Gustafson, Reevaluating Amdahl’s law, Commun. ACM 31 (5) (1988)
532–533.

[16] A. Haidar, C. Cao, A. Yarkhan, P. Luszczek, S. Tomov, K. Kabir, J. Dongarra,
Unified development for mixed multi-GPU and multi-coprocessor environ-
ments using a lightweight runtime environment, in: Proc. of IPDPS, 2014,
pp. 491–500.

[17] R. Kaleem, R. Barik, T. Shpeisman, B.T. Lewis, C. Hu, K. Pingali, Adaptive hetero-
geneous scheduling for integrated GPUs, in: Proc. of PACT, 2014, pp. 151–162.

[18] J. Kim, H. Kim, J. Lee, J. Lee, Achieving a single compute device image
in OpenCL for multiple GPUs, in: Proc. of the ACM PPoPP, ACM, 2011,
pp. 277–287.

[19] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, J. Lee, SnuCL: an opencl framework for hetero-
geneous CPU/GPU clusters, in: Proceedings of the ACM ICS, 2012, pp. 341–352.

[20] K. Kofler, I. Grasso, B. Cosenza, T. Fahringer, An automatic input-sensitive ap-
proach for heterogeneous task partitioning, in: Proc. of the 27th Int. ACM Conf.
on Supercomputing, ICS, 2013.

[21] J. Lee, M. Samadi, Y. Park, S. Mahlke, Transparent CPU-GPU collaboration
for data-parallel kernels on heterogeneous systems, in: Proc. of PACT, 2013,
pp. 245–256.

[22] J. Lee, M. Samadi, S. Mahlke, Orchestrating multiple data-parallel kernels on
multiple devices, in: Int. Conf. on Parallel Architecture and Compilation (PACT),
2015, pp. 355–366.

[23] J. Lee, M. Samadi, Y. Park, S. Mahlke, Skmd: single kernel on multiple devices
for transparent cpu-gpu collaboration, ACM Trans. Comput. Syst. 33 (3) (2015)
9.

[24] C. Lin, C. Liu, L. Chien, S. Chang, Accelerating pattern matching using a novel
parallel algorithm on gpus, IEEE Trans. Comput. 62 (10) (2013) 1906–1916.

[25] C.-K. Luk, S. Hong, H. Kim Qilin, Exploiting parallelism on heterogeneous mul-
tiprocessors with adaptive mapping, in: Proc. of the 42Nd Annual IEEE/ACM
International Symposium on Microarchitecture, in: MICRO, vol. 42, 2009,
pp. 45–55.

[26] K. Ma, Y. Bai, X. Wang, W. Chen, X. Li, Energy conservation for GPU–CPU ar-
chitectures with dynamic workload division and frequency scaling, Sustain.
Comput. Inform. Syst. 12 (2016) 21–33.

[27] A. Navarro, A. Vilches, F. Corbera, R. Asenjo, Strategies for maximizing utiliza-
tion on multi-CPU and multi-GPU heterogeneous architectures, J. Supercomput.
70 (2) (2014) 756–771.

[28] A. Navarro, F. Corbera, A. Rodríguez, A. Vilches, R. Asenjo, Heterogeneous
parallel_for template for CPU-GPU chips, Int. J. Parallel Program. 47 (2019)
213–233.

http://refhub.elsevier.com/S0743-7315(21)00132-5/bib2E2D7FE5D75B602595DF021C7841243Bs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib2E2D7FE5D75B602595DF021C7841243Bs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib2E2D7FE5D75B602595DF021C7841243Bs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib27E110C11BCE41980C004533253CDC78s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib27E110C11BCE41980C004533253CDC78s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibA87CA7D3A138F8672B301A73F16655CAs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibA87CA7D3A138F8672B301A73F16655CAs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibA87CA7D3A138F8672B301A73F16655CAs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib1ABCB33BEEB811DCA15F0AC3E47B88D9s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib1ABCB33BEEB811DCA15F0AC3E47B88D9s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib1ABCB33BEEB811DCA15F0AC3E47B88D9s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib857C7980654256EE05A2928412E7A447s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib857C7980654256EE05A2928412E7A447s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib3E79791E5E783A9517E2F24669003B4As1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib3E79791E5E783A9517E2F24669003B4As1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib3E79791E5E783A9517E2F24669003B4As1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibA1B9D8C2FF7593E60168BC497A061AE5s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibA1B9D8C2FF7593E60168BC497A061AE5s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibA1B9D8C2FF7593E60168BC497A061AE5s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib902E71D721FA16DB6254AE655D06FACDs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib902E71D721FA16DB6254AE655D06FACDs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibCA1B260FE0BE1A78BDDCDE7E151C70B6s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibCA1B260FE0BE1A78BDDCDE7E151C70B6s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib597CE3230FCBEBCC1140838D9E7A9EC1s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib597CE3230FCBEBCC1140838D9E7A9EC1s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib597CE3230FCBEBCC1140838D9E7A9EC1s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib8266A073CE09289F94A6A364A128FE22s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib8266A073CE09289F94A6A364A128FE22s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib6FA390C213C60D3166C47375D6B73A79s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib6FA390C213C60D3166C47375D6B73A79s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib6FA390C213C60D3166C47375D6B73A79s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib6FA390C213C60D3166C47375D6B73A79s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibB2F7AB0AC61DD0C305E0F896EF1FB12Es1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibB2F7AB0AC61DD0C305E0F896EF1FB12Es1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibB2F7AB0AC61DD0C305E0F896EF1FB12Es1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib241CA41DD02669612792AEF1D56788EFs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib241CA41DD02669612792AEF1D56788EFs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib241CA41DD02669612792AEF1D56788EFs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib5DB45412405CC64CE22A3281A6CD1B38s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib5DB45412405CC64CE22A3281A6CD1B38s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib5AB2D1CC00187EE7E08DF7ECE4931733s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib5AB2D1CC00187EE7E08DF7ECE4931733s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib5AB2D1CC00187EE7E08DF7ECE4931733s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib5AB2D1CC00187EE7E08DF7ECE4931733s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib0B859ACDC7747EE0509FFC1024158987s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib0B859ACDC7747EE0509FFC1024158987s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib7959B935AFDEF74B73FC9CE484019F03s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib7959B935AFDEF74B73FC9CE484019F03s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib7959B935AFDEF74B73FC9CE484019F03s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibFF6C3937927FC2E788962F1A82FCF84Es1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibFF6C3937927FC2E788962F1A82FCF84Es1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib7AA2D7AEBA3AE4FC7C078D9595E42017s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib7AA2D7AEBA3AE4FC7C078D9595E42017s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib7AA2D7AEBA3AE4FC7C078D9595E42017s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibB0F8B49F22C718E9924F5B1165111A67s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibB0F8B49F22C718E9924F5B1165111A67s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibB0F8B49F22C718E9924F5B1165111A67s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibA1C9382D4D9F0165D722F8230F4D5D84s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibA1C9382D4D9F0165D722F8230F4D5D84s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibA1C9382D4D9F0165D722F8230F4D5D84s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibC247BD5029E9F854DD35C1853005BD6Ds1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibC247BD5029E9F854DD35C1853005BD6Ds1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibC247BD5029E9F854DD35C1853005BD6Ds1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib0DCE151D89DEA3A63786AA76CF22305Ds1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib0DCE151D89DEA3A63786AA76CF22305Ds1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib7B81B73D7B1076E27CFC9E095DE84B69s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib7B81B73D7B1076E27CFC9E095DE84B69s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib7B81B73D7B1076E27CFC9E095DE84B69s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib7B81B73D7B1076E27CFC9E095DE84B69s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibF4BEDE10BE711CCFF78B1C9B30822546s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibF4BEDE10BE711CCFF78B1C9B30822546s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibF4BEDE10BE711CCFF78B1C9B30822546s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib2D70D91259FCB9B300EFBE6A8DE16E47s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib2D70D91259FCB9B300EFBE6A8DE16E47s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib2D70D91259FCB9B300EFBE6A8DE16E47s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibE0225086F88E758D9C69ECDCE452385Cs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibE0225086F88E758D9C69ECDCE452385Cs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibE0225086F88E758D9C69ECDCE452385Cs1

B. Pérez, E. Stafford, J.L. Bosque et al. Journal of Parallel and Distributed Computing 157 (2021) 30–42
[29] J. Nickolls, I. Buck, M. Garland, K. Skadron, Scalable parallel programming with
cuda, Queue 6 (2) (2008) 40–53.

[30] NVIDIA, Kepler GK110 whitepaper, http://www.nvidia .com /content /PDF /kepler /
NVIDIA-Kepler-GK110 -Architecture -Whitepaper.pdf, 2012.

[31] NVIDIA, NVIDIA management library (NVML), https://developer.nvidia .com /
nvidia -management -library-nvml, 2018. (Accessed May 2018).

[32] P. Pandit, R. Govindarajan, Fluidic kernels: cooperative execution of opencl pro-
grams on multiple heterogeneous devices, in: Proceedings of Annual IEEE/ACM
CGO, 2014, pp. 273–283.

[33] B. Pérez, J.L. Bosque, R. Beivide, Simplifying programming and load balancing of
data parallel applications on heterogeneous systems, in: Proc. of the 9th ACM
Work. on General Purpose Processing Using Graphics Processing Unit, GPGPU
’16, 2016, pp. 42–51.

[34] B. Pérez, E. Stafford, J.L. Bosque, R. Beivide, Energy efficiency of load balanc-
ing for data-parallel applications in heterogeneous systems, J. Supercomput. 73
(2017) 330–342.

[35] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, E. Weissmann, Power man-
agement architecture of the 2nd generation Intel Core microarchitecture, for-
merly codenamed Sandy Bridge, in: IEEE Int. HotChips Symp. on High-Perf.
Chips, 2011.

[36] T. Scogland, B. Rountree, W. chun Feng, B. de Supinski, Heterogeneous task
scheduling for accelerated openmp, in: Proc. IPDPS, 2012, pp. 144–155.

[37] K. Spafford, J. Meredith, J. Vetter Maestro, Data orchestration and tuning for
opencl devices, in: Proc. of the 16th Int. Euro-Par Conf. on Parallel Processing,
Euro-Par’10, 2010, pp. 275–286.

[38] J.E. Stone, D. Gohara, G. Shi, OpenCL: a parallel programming standard for het-
erogeneous computing systems, IEEE Des. Test Comput. 12 (3) (2010) 66–73.

[39] L. Tang, R.F. Barrett, J. Cook, X.S. Hu, Peapaw: performance and energy-aware
partitioning of workload on heterogeneous platforms, ACM Trans. Des. Autom.
Electron. Syst. 22 (3) (2017) 41.

[40] Y.-P. You, H.-J. Wu, Y.-N. Tsai, Y.-T. Chao Virtcl, A framework for OpenCL device
abstraction and management, in: Principles and Practice of Parallel Program-
ming, PPoPP 2015, ACM, 2015.

[41] C. Zhang, Y. Xu, J. Zhou, Z. Xu, L. Lu, J. Lu, Dynamic load balancing on multi-
gpus system for big data processing, in: 23rd Int. Conf. on Automation and
Computing (ICAC), 2017, pp. 1–6.

[42] F. Zhang, B. Wu, J. Zhai, B. He, W. Chen, Finepar: irregularity-aware fine-
grained workload partitioning on integrated architectures, in: 2017 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), 2017,
pp. 27–38.

[43] J. Zhong, B. He, Kernelet: high-throughput GPU kernel executions with dynamic
slicing and scheduling, CoRR, arXiv:1303 .5164 [abs], 2013, pp. 1522–1532.

[44] Z. Zhong, V. Rychkov, A. Lastovetsky, Data partitioning on multicore and multi-
gpu platforms using functional performance models, IEEE Trans. Comput. 64 (9)
(2015) 2506–2518.
42
Borja Pérez graduated in Computer Science from
University of Cantabria in 2014 and is currently pur-
suing a PhD degree on Technology and Science. He is
a Pre-PhD researcher in the Dept. of Computer Engi-
neering and Electronics of the University of Cantabria.
His research interests include heterogeneous sytems
both from the architecture and the programming view
point and high performance computing.

Esteban Stafford received the M. Sc. degree in
Telecommunication Engineering from the University
of Cantabria in 2001 and he obtained the PhD de-
gree in Computer Science in 2015. He is currently a
part-time professor in the Dept. of Computer Engi-
neering and Electronics of the University of Cantabria.
His research interests include computer architecture,
parallel computers and interconnection networks.

Jose Luis Bosque graduated in Computer Science
from Universidad PolitÃǏcnica de Madrid in 1994. He
received the PhD degree in Computer Science and En-
gineering in 2003 and the Extraordinary Ph.D Award
from the same University. He joined the Universidad
de Cantabria in 2006, where he is currently Asso-
ciate Professor in the Department of Computer and
Electronics. His research interests include high perfor-
mance computing, heterogeneous systems and inter-
connection networks.

Ramón Beivide received the B.Sc. and M.Sc. de-
grees in Computer Science from the Universidad
Autónoma de Barcelona (UAB) in 1981 and 1982. The
Ph.D. degree, also in Computer Science, from the Uni-
versidad Politécnica de Catalunya (UPC) in 1985. He
joined the Universidad de Cantabria in 1991, where he
is currently a Professor in the Dept. of Computer Engi-
neering and Electronics. His research interests include
computer architecture, interconnection networks, co-
ding theory and graph theory.

http://refhub.elsevier.com/S0743-7315(21)00132-5/bibA878F01783A243A25F34AACAB23DE4C1s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibA878F01783A243A25F34AACAB23DE4C1s1
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibD8264044D3693E3E6759320C8174BC5Fs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibD8264044D3693E3E6759320C8174BC5Fs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibD8264044D3693E3E6759320C8174BC5Fs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibD9375C36C11A3FEBDDF50C8C0471A2B5s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibD9375C36C11A3FEBDDF50C8C0471A2B5s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibD9375C36C11A3FEBDDF50C8C0471A2B5s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibD9375C36C11A3FEBDDF50C8C0471A2B5s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib955E28E4540C190A388161AF46B3C2A0s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib955E28E4540C190A388161AF46B3C2A0s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib955E28E4540C190A388161AF46B3C2A0s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibBE450907F848D36651BA827939F40BAFs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibBE450907F848D36651BA827939F40BAFs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibBE450907F848D36651BA827939F40BAFs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibBE450907F848D36651BA827939F40BAFs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib83B941A33B53C257033B8DCD821A1353s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib83B941A33B53C257033B8DCD821A1353s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib7A7EA6908E33896DDCC8B82F264F4F7As1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib7A7EA6908E33896DDCC8B82F264F4F7As1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib7A7EA6908E33896DDCC8B82F264F4F7As1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib7368F6D4E1E63928B76481C0D22DAA5Bs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib7368F6D4E1E63928B76481C0D22DAA5Bs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibE5827273685FBD5137684C833217D948s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibE5827273685FBD5137684C833217D948s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibE5827273685FBD5137684C833217D948s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibCAE8D14EDD025E72C59DBAB6F378C95As1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibCAE8D14EDD025E72C59DBAB6F378C95As1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibCAE8D14EDD025E72C59DBAB6F378C95As1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib96641E4A5A09E69B32236ADBDFD55407s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib96641E4A5A09E69B32236ADBDFD55407s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib96641E4A5A09E69B32236ADBDFD55407s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib3C00AB12E702568AF82CB2FDFFBFFDEEs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib3C00AB12E702568AF82CB2FDFFBFFDEEs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib3C00AB12E702568AF82CB2FDFFBFFDEEs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib3C00AB12E702568AF82CB2FDFFBFFDEEs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibC3BB34C4F34B369D5BADD872E9DE6FBEs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bibC3BB34C4F34B369D5BADD872E9DE6FBEs1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib5EAC871E22FADDE61DAABC6A83CA8C31s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib5EAC871E22FADDE61DAABC6A83CA8C31s1
http://refhub.elsevier.com/S0743-7315(21)00132-5/bib5EAC871E22FADDE61DAABC6A83CA8C31s1

	Sigmoid: An auto-tuned load balancing algorithm for heterogeneous systems
	1 Introduction
	2 Background
	2.1 Programming heterogeneous systems
	2.2 Load balancing

	3 The sigmoid load balancing algorithm
	3.1 Overview
	3.2 Algorithm description
	3.3 The logistic function for load balancing
	3.4 Automatic parameter tuning

	4 Experimental methodology
	4.1 Load balancing algorithms
	4.2 Test platform and benchmarks
	4.3 Energy measurements

	5 Experimental evaluation
	5.1 Load balance
	5.2 Performance
	5.3 Energy consumption
	5.4 Scalability

	6 Related work
	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References

