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A challenge that heterogeneous system programmers face is leveraging the performance of all the devices 
that integrate the system. This paper presents Sigmoid, a new load balancing algorithm that efficiently co-
executes a single OpenCL data-parallel kernel on all the devices of heterogeneous systems. Sigmoid splits 
the workload proportionally to the capabilities of the devices, drastically reducing response time and 
energy consumption. It is designed around several features; it is dynamic, adaptive, guided and effortless, 
as it does not require the user to give any parameter, adapting to the behaviour of each kernel at runtime. 
To evaluate Sigmoid’s performance, it has been implemented in Maat, a system abstraction library. 
Experimental results with different kernel types show that Sigmoid exhibits excellent performance, 
reaching a utilization of 90%, together with energy savings up to 20%, always reducing programming 
effort compared to OpenCL, and facilitating the portability to other heterogeneous machines.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the last few years, computer architecture has been con-
strained by the end of Dennard’s scaling. A major consequence of 
this is the slower growth in processor frequency. In order to find 
more efficient architectures, designers first resorted to increasing 
the number of cores per processor. Recently, the focus is on the 
specialization of the processing units. This tendency has fostered 
the advent of hardware accelerators of different kinds.

Consequently computer systems of all scales and sizes are in-
corporating some sort of hardware accelerators, thus becoming 
heterogeneous systems. From SoCs in mobile telephones to com-
pute nodes on a supercomputer, they are all taking advantage of 
the high performance and outstanding energy efficiency of these 
devices. Regardless of these being GPU, TPU or FPGA accelerators, 
there are substantial architectural differences with the main CPU of 
the heterogeneous system. Interestingly, the success of these sys-
tems comes despite the fact that efficiently programming them is 
far from trivial.

Software development for heterogeneous systems currently re-
lies on the host-device model. It dictates that the applications start 
running on the CPU, and purely numerical kernels are offloaded 
to a single accelerator in the system. Meanwhile, the CPU and 
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other accelerators remain idle until the conclusion of the execu-
tion of the kernel. This obviously wastes the computing capability 
of the CPU and the other idle devices, which, to make matters 
worse, consume a considerable amount of energy even when idle. 
In OpenCL terms, a kernel is a large set of threads, or work-items, 
which are grouped in work-groups. These may be executed con-
currently and independently in different devices. Consequently, a 
single kernel can be executed simultaneously on several devices, 
combining their computing capabilities, thus reducing energy con-
sumption.

Several frameworks, like CUDA [29] and OpenCL [38], are avail-
able to program heterogeneous systems. They enable programmers 
to access the accelerators of the system, but they fail at presenting 
the heterogeneous system as a whole. Therefore, the programmer 
is left alone to face one of the most complex tasks required for 
an efficient use of heterogeneous systems: load balancing. Some 
programmers, after investing significant effort, have tackled it, like 
[7,19] and [32], but a generic solution to the problem is still to be 
found.

A further complication to the distribution of work and data, is 
that it must be performed in accordance to the computing capabil-
ities of the devices, which may vary largely from system to system. 
A load balancing algorithm must be capable of assigning the right 
amount of work-groups to each device, so they all finish comput-
ing simultaneously [6,17,43]. To do this, the algorithm needs to 
be able to adapt both to the heterogeneity of the system and the 
behaviour of the applications. However, adaptiveness sometimes 
introduces overheads, as it increases the number of host-device in-
le under the CC BY-NC-ND license 
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teractions. Ideally, these should be minimized while achieving an 
accurate load balancing, avoiding device oversubscription or under-
utilisation and minimizing response time and energy usage.

In order to design such a load balancing algorithm, it is also 
necessary to consider the behaviour of the kernels, which can be 
classified as regular or irregular. In the first kind, different work-
groups present the same amount of computing operations. Then, 
for a given device, they have a constant execution time. On con-
trast, work-groups of irregular kernels may represent substantially 
different computing loads and, therefore, have an unpredictable ex-
ecution time.

This article proposes Sigmoid, a new load balancing algorithm 
that achieves near-optimal performance for both regular and ir-
regular kernels, requiring no parameters whatsoever. By utilising 
all the available devices in the system, it reduces response time, 
which can also bring a reduction in energy consumption. This is 
possible because Sigmoid is dynamic, enabling it to adjust to the 
heterogeneity of the devices. Also, since it is capable of automat-
ically adapting to the type of kernel, it extracts maximum perfor-
mance out of the system. Finally, it minimises the programming 
effort, as it does not require any parameter to be provided. Inter-
nally, Sigmoid starts kernel launches with some initial values and 
adjusts them in real time, based on measurements of the execu-
tion.

Sigmoid has been integrated in Maat [33,34], a system abstrac-
tion library that enables the transparent co-execution of a single 
OpenCL kernel, exploiting all the capacity of a heterogeneous sys-
tem. An exhaustive experimental evaluation has been carried out 
in two different scenarios. First, one in which the performance of 
CPUs and GPUs is combined to evaluate the capability of Sigmoid 
to account for different kinds of devices. Second, a system with a 
greater number of GPUs, resembling current supercomputer nodes, 
to evaluate scalability. Sigmoid is compared to a heterogeneous 
Static [33] algorithm and two dynamics algorithms, HGuided [33]
and Adaptive [6]. Experimental results show that Sigmoid can al-
most perfectly balance the load of all the devices in the system, 
regardless of the type of kernel and scenario. Performance-wise 
the results are close to the maximum speedups achievable for each 
application, and the utilisation of the system is close to 90%. Fur-
thermore, on average, the energy consumption is reduced by up 
to 20%. Combining these two results, Sigmoid more than doubles 
the energy efficiency of the test system. Finally, these results show 
that Sigmoid presents good scalability in both regular and irregular 
kernels.

This paper contains the following contributions:

• Presents Sigmoid, a new load balancing algorithm that reduces 
programming effort. By combining dynamic, guided and adap-
tive techniques, it distributes the workload of a single kernel 
among all the devices of a heterogeneous system, regardless of 
the behaviour of the kernel.

• Explains how the Sigmoid function has been transformed to be 
used as part of a load balancing algorithm and how it adapts 
at runtime to the specific needs of the application to obtain 
the best results.

The remainder of the paper is structured as follows. Section 2
introduces some basic concepts that are central to the article. It 
is followed by a presentation of the Sigmoid algorithm in detail in 
Section 3. Sections 4 and 5 describe the experimental methodology 
and discuss the results of the experiments. Section 6 covers related 
literature. And finally, Section 7 gives some conclusions and future 
lines of work.
31
2. Background

Programming heterogeneous systems for efficiency is a complex 
endeavour that touches several knowledge fields. This section sum-
marises some basic concepts that are used throughout the paper.

2.1. Programming heterogeneous systems

OpenCL [38] is a language and programming framework for het-
erogeneous systems. It favours a host-device approach to parallel 
programming, in which a host manages the available resources and 
offloads numerical kernels to different hardware accelerators.

The code that is destined for execution on the accelerators is 
encapsulated in usually short, data-parallel, C-like functions, which 
are commonly known as kernels. When one is offloaded to an ac-
celerator, OpenCL launches multiple instances of the kernel code in 
a Single Instruction Multiple Thread (SIMT) fashion. Each instance 
is called a work-item, and the global work size parameter dictates 
how many of these items are launched.

Work-items are launched in teams so they can cooperate and 
synchronise with each other. Their size can be defined through the 
local work size parameter. OpenCL ensures that the work-items of 
each team, or work-group, are launched simultaneously in the same 
compute device. However, a device may not have enough resources 
to execute all the work-groups of a kernel all at once. Therefore, 
OpenCL states that it must be possible to execute work-groups in-
dependently. This makes them a good choice for a scheduling unit.

2.2. Load balancing

Maximum performance and energy efficiency can only be 
achieved by adequately balancing the load of a given kernel among 
the available computing resources. However, this is something that 
current frameworks do not provide. This desirable, but missing 
feature has been widely considered in the literature. Proposals 
can be classified into task-parallel approaches [14,16,43,40] and 
data-parallel approaches [34,17,6]. The first rely on assigning the 
different kernels of an application to the devices, in a way that 
minimises the idle time of the system. The second one, also known 
as co-execution, splits the work of a single kernel to permit several 
devices to cooperate in parallel. This approach is more suitable to 
the tasks that are usually offloaded to GPUs, as they are usually 
highly parallel, and therefore, it will be used in this paper.

Load balancing a single kernel on different devices rises the 
question of deciding the amount of work to assign to each de-
vice. Work is distributed to the devices in batches of work-groups 
named packages, the number and size of which greatly influence 
performance. The answer might differ depending on the type of 
kernel. A first approach is to divide the workload into as many 
adequately-sized packages as computation devices are available. 
This is the Static algorithm, which is optimal for regular kernels 
and if the computing speed of the devices is known.

The unpredictable nature of irregular kernels can only be cor-
rectly balanced if the work division is done during execution, us-
ing dynamic algorithms. These divide the workload into far more 
packages than devices, and have a centralised marshal that as-
sign packages to devices upon request. This allows for a runtime 
adaptation to the irregularities of the kernel, thus achieving better 
performance. However, they suffer from a significant performance 
loss due to the host-device interaction required by each package.

To overcome this limitation, prior works have proposed algo-
rithms that try to reduce the number of packages while remaining 
adaptive. Such is the case of the Adaptive algorithm [6], which 
uses small initial probe packages to attempt to obtain the com-
puting speed of the devices and then calculate an ideal distribu-
tion of the workload. However, using small packages sometimes 
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Fig. 1. Computing speed comparison for Binomial.

Fig. 2. Package size comparison for Binomial.

means wasting computing resources due to underutilization. The 
same problem affects other approaches like [3,28]. Moreover, ex-
perimental results presented in Section 5, show that the Adaptive 
algorithm produces too few packages, which ultimately compro-
mises load balance in some cases.

The HGuided algorithm [33] takes a contrary approach. It ini-
tially launches big packages, followed by subsequently smaller 
ones. This reduces the amount of packages while allowing a fine 
grained scheduling at the end of the execution. However, it also 
has certain limitations.

For instance, HGuided does not fully leverage the capabilities 
of the devices. The top graph of Fig. 1 shows the evolution of the 
computing speed, expressed in work-groups per second, when a 
system runs the Binomial kernel using the HGuided algorithm. No-
tice that, for a significant portion of the execution, the devices are 
going slower than they could. This is because the packages it pro-
duces decrease linearly in size, as can be seen in the top graph of 
Fig. 2. The result is a large number of small packages near the end 
of the execution. This negatively impacts performance in two ways, 
first there is an increase of host-device interactions, and second, 
small packages cannot fully exploit the computational resources of 
the devices. This may be particularly notorious on regular kernels, 
which do not require adaptiveness to obtain the best performance.

The HGuided algorithm also requires certain parameters from 
the programmer, which strongly condition the success of the load 
balancing. To be accurately set, they require costly parameter 
sweeps for each kernel and system. Moreover, some kernels are 
very sensitive to these parameters, delivering highly degraded per-
formance when using slightly off-key values. This results in dozens 
of tuning executions, which represent a waste of time, resources 
and energy. Furthermore, this is unfeasible in dynamic environ-
ments, such as a datacenter or cloud, where different applications 
may run on different systems, with an a priori unknown match-
ing. This paper presents Sigmoid, a load balancing algorithm that 
solves the aforementioned issues.
32
3. The sigmoid load balancing algorithm

3.1. Overview

To solve the problems introduced in the previous section, the 
Sigmoid load balancing algorithm was conceived chasing four main 
objectives. First, it should successfully divide a single massively 
data-parallel OpenCL kernel between a set of heterogeneous de-
vices. Second, it should evaluate the computational performance of 
the devices while avoiding overheads. Third, it should give good 
results with any type of kernel. And fourth, it should be able to be 
used effortlessly by the programmer. These four goals are the key 
to an efficient transparent use of the available resources, regardless 
of the underlying hardware or executed kernel.

Considering, Sigmoid is a dynamic and heterogeneous algorithm 
because it is able to distribute the workload among devices at run 
time, proportionally to their computing power. By matching the 
package size to the computing powers of the devices, excessively 
large packages are not assigned to slower devices, and the use of 
more powerful ones is maximised.

It is also an adaptive algorithm, since it is capable of modify-
ing its operation to suit the type of kernel. It will divide regular 
kernels in larger packages to reduce overhead, and use smaller 
ones for irregular kernels, as it is impossible to predict their ex-
ecution time. To do this, it continually measures the performance 
of the devices and tunes a number of internal parameters accord-
ingly. Unlike other proposals, [3,6,27], this parameter tuning is per-
formed transparently to the programmer and without any loss of 
performance. Thus, Sigmoid behaves equally well with both regular 
and irregular applications.

And finally, it is a guided algorithm since the package size, 
which is initially proportional to the computing power of each 
device, decreases towards the end of the kernel execution. This 
satisfies several goals. Using large packages at the beginning of the 
execution reduces the overhead. And decreasing the size of the last 
packages improves the accuracy of the load balancing. In addition, 
this keeps the utilisation of the devices nearly constant throughout 
the execution, which has a strong impact on performance.

3.2. Algorithm description

As Sigmoid takes a dynamic approach to load balancing, it first 
launches an initial package to each of the available devices and 
then waits until any of them completes their execution. The pack-
ages are sized in accordance to an initial computing speed, based 
on the GFLOPs reported by the specs of the devices. When one 
finishes the execution, if there is pending work, a new package 
is generated and issued to the idle device. To improve the load 
balance, the size and response time of completed packages are an-
alyzed to tune the internal parameters of the algorithm throughout 
the execution of the kernel.

How the package size evolves throughout the execution of a 
kernel is key to an efficient load balancing. This is because pack-
age size poses a dilemma: smaller packages garner greater adap-
tiveness, but also greater overhead. Moreover, computing speed is 
sometimes correlated with the work quantity offloaded to a de-
vice, so small packages often lead to suboptimal performance, that 
is not representative of the actual capabilities of the hardware. The 
importance of this phenomenon has been already addressed in [3]. 
Thus, a good load balancing algorithm will attempt to keep com-
puting speeds and, consequently, package sizes as high as possible, 
while not compromising adaptiveness.

To calculate successive package sizes, Sigmoid relies on a func-
tion that issues big packages for most of the execution and, grad-
ually, smaller ones at the end, which reduces overheads while 
maintaining adaptiveness and keeping device utilisation high. This 
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Fig. 3. Package size comparison for BM3D.

is depicted in Figs. 1 and 2, which compare the computing speed 
and package size evolution when executing the Binomial bench-
mark with the HGuided and Sigmoid algorithms. Note how Sig-
moid generates fewer and bigger packages, maintaining computing 
speed high for longer. The decrease rate of the package size is ad-
justable through an internal parameter, which varies depending on 
the behaviour of the kernel.

Sigmoid uses the size and response time of executed pack-
ages to detect if the kernel is irregular, and adjust the decrease 
rate to generate smaller packages, if more adaptiveness is required. 
The algorithm also automatically identifies an adequate minimum 
package size that strikes a balance between adaptiveness and per-
formance, and calculates the computing speed of the devices to 
avoid imbalances. The result is an algorithm that adapts to the be-
haviour of kernels. This is shown in Fig. 3, which compares the 
package sizes generated by HGuided and Sigmoid for an irregular 
kernel. Again, HGuided generates linearly decreasing package sizes, 
although a certain distortion can be appreciated due to irregularity. 
Sigmoid, in turn, uses variable package sizes to adapt to the ker-
nel. This can be seen in the humps near the end of the execution 
of GPU0 and GPU1, which account for computing speed variations 
associated to package workload differences. An exhaustive package 
size evolution analysis has been carried out for every evaluated 
application, however it has been left out due to space limitations. 
Figs. 2 and 3 have been found representative of the behaviour of 
regular and irregular kernels respectively. A high level description 
of the algorithm can be seen in Algorithm 1. The following sections 
explain the different internal parameters and functions of the al-
gorithm and will refer to Algorithm 1.

Algorithm 1: Sigmoid algorithm.
Input: The number of work-groups W G , a set of N devices with S j default 

computing speeds
1 x ← G (Number of remaining work-groups)
2 k ← kr (Slope internal parameter)
3 for j ← 1 to N do
4 oc j ←Occupancy lower bound for device j
5 c ← package_size( j, x)
6 Schedule c work-groups to device j
7 x ← x − c
8 end
9 while x > 0 do

10 ( j, c, t) ← Wait for any device
11 S j ← Average of the last 3 computing speeds ( c

t )
12 σS j ← Standard deviation of last 3 computing speeds

13 if
σS j
S j

> 0.25 then

14 k ← ki

15 end
16 c ← max(package_size( j, x), pt S j , oc j)

17 Schedule c work-groups to device j
18 x ← x − c
19 end
33
Fig. 4. Representation of the logistic function for L = 1, k = 1 and x0 = 0.

Fig. 5. Evolution of the package size for different k values.

3.3. The logistic function for load balancing

The logistic function is used to model processes that appear 
in many fields, ranging from biology to medicine, and commonly 
used as machine learning activation function [13,5]. This function, 
conveniently transformed, is the foundation of the Sigmoid load 
balancing algorithm. It is defined by the following equation and a 
graphical representation is shown in Fig. 4.

logistic_ f unction(x) = L

1 + e−k(x−x0)
(1)

To apply the function to the load balancing problem, variable 
x will represent the amount of remaining work-groups. Conse-
quently, it will be monotonically decreasing and take values be-
tween G , the total number of work-groups that have to be pro-
cessed, and 0. As x will always be positive, parameter x0 is elim-
inated. The maximum value of the function, L, will represent the 
size of the largest package. It can be seen in Fig. 4 that for x = 6
the function yields a value close to the asymptotic maximum. To 
obtain a Sigmoid curve that captures the desired behaviour for the 
package size decrease rate, which is shown in Fig. 5, Sigmoid will 
only use the function in the [0, 6] interval. This produces and even 
decrease in the package size, allowing for adaptiveness and pre-
venting steep size changes. Variable k is the slope of the curve 
that is internally calculated by Sigmoid to modify the rate at which 
package size decreases. The following lines show in detail how the 
internal Sigmoid function, represented in Fig. 5, is derived from the 
logistic function.

Let Gr be the number of remaining work-groups. As the aim is 
to obtain a function f that produces decreasing package sizes as 
the execution of the kernel progresses, Gr will be used as the x
in the logistic function. However it will be normalised to the total 
number of work-groups G and scaled to 6 to map it to the [0, 6]
interval.

f (Gr) = L

1 + e−k 6(Gr )
G

(2)

So far, since 0 ≤ Gr ≤ G , then f (Gr) returns values between 
L
2 and L. It is necessary to transform this to appropriate package 
size values. First, the range of the function is mapped to the [0, L]
interval by multiplying by 2 and subtracting L.
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f (Gr) = 2L

1 + e−k 6(Gr )
G

− L (3)

And second, it is necessary to find L, which is the maximum 
value the function will take, and will be used as the size of the 
first package scheduled by the algorithm. The chosen value is 

G
2N , where N represents the number of available devices. This is 
equivalent to the base chunk size commonly used by the OpenMP 
Guided algorithm [9].

f (Gr) = 2 G
2N

1 + e−k 6(Gr )
G

− G

2N
(4)

To account for the heterogeneity of the system, a correction 
based on the computing speed of each device is added. The speed 
Si is defined as the number of work-groups that device i can com-
pute per second. Similarly, the aggregated computing speed of the 
system is represented by ST . And given the number of scheduled 
work-groups Gr , the size of the next package for device i is as fol-
lows.

Pack_size(i, Gr) = f (Gr)
Si

ST

=
(

2 G
2N

1 + e−k(6 Gr
G )

− G

2N

)
Si

ST

= 1 − e−k(6 Gr
G )

1 + e−k(6 Gr
G )

G

2N

Si

ST

(5)

This function is used to obtain the size of the packages, but to 
avoid excessive overheads the size is not allowed to drop below 
two lower bounds. How Sigmoid automatically obtains these two 
values and the slope of the function is explained next.

3.4. Automatic parameter tuning

The above expression requires a series of parameters. Some of 
them are known beforehand, like the number of devices N , the 
total number of work-groups G or the number of remaining work-
groups Gr . Others must be computed and updated as the kernel 
execution progresses. Such is the case of the computing speed of 
each device Si or the slope of the Sigmoid curve. Moreover, a min-
imum package size has to be selected in order to avoid a large 
number of small packages at the end of the execution, as they 
would increase the host-device interaction overhead and reduce 
the computing speed of the devices due to their small size. The 
automatic update of these parameters is what allows Sigmoid to 
autonomously adapt itself to different kernel behaviours. In this 
section we will explain how these parameters are obtained.

The computing speed of the devices is used to tailor the 
amount of work to be distributed according to the capabilities 
of the receiving device. These values can be easily computed at 
runtime by monitoring the kernel execution. However, computing 
speeds are kernel dependent. Consequently, for the first packages 
of a kernel, speed information will not be available, so an approx-
imation is necessary. As an estimation, the nominal GFLOP values 
reported by the hardware vendors, are initially used to calculate 
the relative speed of the devices. These values may not accurately 
represent the capabilities of the devices for the current kernel, but 
an approximate speed estimation at the beginning of the kernel 
execution does not have a large impact on performance. It is at 
the end of the execution when accurate speeds are required, and 
by then the algorithm will have refined these throughout the dura-
tion of the whole kernel. This is done by measuring the time that 
each package takes to execute and calculating its speed in work-
groups per second. To reduce the influence of work bursts, that 
34
Fig. 6. Influence of k on regular and irregular kernels (lower is better).

may not be representative of the behaviour of the whole workload, 
the average speed shown by the last packages launched to each de-
vice is used to update the values used by Sigmoid. This is shown 
in line 11 of Algorithm 1. However, keeping track of a very long 
package history might have a negative effect on adaptiveness. This 
is because, the longer the history, the longer it will take Sigmoid to 
converge to the new speed after a change in the behaviour of the 
workload. It was experimentally found that three packages strike a 
balance between adaptiveness and over-sensitivity. Consequently, 
Sigmoid will converge to the speed shown by a device once three 
packages have been executed. In the case of irregular applications, 
the algorithm will adapt accordingly to speed changes.

The slope of the Sigmoid curve, represented by k, controls the 
rate at which the package size decreases and, ultimately, the de-
gree of adaptiveness of the algorithm. As shown in Fig. 5 a greater 
k gives a steeper curve, producing fewer and bigger packages that 
limit adaptiveness at the end of the execution. This situation suits 
regular kernels, which do not require adaptiveness, and benefit 
from the reduced overhead. Irregular kernels, on the other hand, 
will require a smaller k value that will increase adaptiveness, at 
the cost of a higher overhead. To choose adequate values of k a set 
of executions of all the kernels used in the evaluation (Section 5) 
was done using different values. The results of these experiments 
showed that it is sufficient to use two different k values to achieve 
good results in both regular and irregular kernels. The values thus 
selected have been, ki = 0.5 for irregular kernels and kr = 2 for 
regular ones. The reason for this choice is that these values deliver 
good overall performance and belong to stable intervals, in which 
small k differences do not represent great performance variability. 
Fig. 6 shows an example of this behaviour for two representative 
kernels: Mandelbrot as regular, and Ray as irregular. The chosen 
values for ki and kr are expected to provide good performance 
for other kernels. Nevertheless, for strictly optimal performance, 
a slight adjustment of these parameters might be necessary when 
executing other kernels.

In order to apply the correct k value it is necessary to deter-
mine which type of kernel is being executed. When a kernel is 
launched, it is regarded as regular until proven otherwise. This 
avoids penalizing regular kernels and should not affect irregular 
ones, as adaptiveness is most necessary near the end of the ex-
ecution. Consequently, packages are initially distributed using kr . 
Irregularity is defined by a variability in the time taken to execute 
two equally-sized chunks of work. Therefore, to switch between 
kr and ki the variability of the computing speed for each device 
is analysed. To do so, Sigmoid considers the standard deviation of 
the speed of the last three packages (σSi ) on the current device i. If 
the ratio between this value and the average speed Si rises above 
a given threshold d, the kernel is deemed irregular and ki is used. 
Note that once a kernel is considered irregular, ki will be used for 
the remainder of its execution. This is shown in lines 12-15 of Al-
gorithm 1. This is due to the fact that some irregular kernels may 
have regions of regular behaviour, in which the standard deviation 
ratio might drop below the threshold. However, there is no guar-
antee that irregularity will not be present again near the end of 
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Fig. 7. Histogram of the number of packages for regular and irregular kernels with 
respect to the speed variability percentage.

the execution, with few opportunities to react. Therefore using kr
again in an irregular kernel would greatly harm performance. Nev-
ertheless, to verify this hypothesis, tests were carried out using a 
version of Sigmoid that falls back to kr if regularity is detected. 
This version caused an average performance loss of close to 10%.

To adequately set the value for the threshold d, an analysis of 
performance variability in regular and irregular kernels was nec-
essary, as even regular kernels present certain performance differ-
ences due to several factors, such as cache effects or contention. To 
decide the threshold d, the value of σSi for each package executed 
on all the evaluated kernels has been studied. Fig. 7 depicts his-
tograms of the standard deviation ratio σSi

Si
for regular and irreg-

ular kernels. As can be seen, packages obtained in regular kernels 
present a maximum performance variability of around 20%, while 
differences are much greater for irregular ones. Considering this, d
has been set to 0.25 to avoid misidentifying regular kernels.

The purpose of applying lower limits to the size of the pack-
ages generated by Sigmoid is twofold. First, it strives to contain the 
excessive overhead that is inherent in small packages. Second, it 
guarantees that package sizes do not decrease to a point in which 
the resources of the devices are not fully used. However, these fac-
tors should not be at odds with adaptiveness or induce imbalance 
in order to keep utilisation high.

Targeting the first mentioned purpose implies a risk, because 
avoiding overheads by increasing package size might generate im-
balances, arising from the time difference among the terminations 
of the last package scheduled to each device. In a worst case sce-
nario, this imbalance might represent the whole execution time 
associated to the last package. Accounting for this, a maximum im-
balance coefficient p is defined. This represents the maximum im-
balance that will be generated by Sigmoid in the aforementioned 
worst case scenario. Then, p is used in the following equation, to-
gether with the current execution time t and the average device 
speed Si , to obtain a minimum package size that limits overheads 
but does not generate significant imbalance.

Minimum_package_size = pt Si

Guided by the benchmarks used in this paper, p = 0.05 has 
been chosen, which does not cause excessive overheads and avoids 
imbalance. Conceptually, this means that, at the current speed, the 
execution of a package launched to device i, with a size calculated 
using the equation, will represent 5% of the current total execution 
time. Equivalently, in a worst case scenario, at most 5% of the cur-
rent runtime will be spent in an imbalanced execution, with only 
one device computing and the rest idling.

The second lower bound for the package size guarantees that 
the devices are fully used. For GPUs, the algorithm implements the 
equations of the CUDA Occupancy Calculator, which is part of the 
CUDA Toolkit since version 4.1. These, take the number of registers 
and the amount of shared memory required by a kernel, which are 
values that can be obtained from the OpenCL compiler, and calcu-
late its maximum occupancy and the number of work-groups per 
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multiprocessor required to reach it. The latter value multiplied by 
the number of stream multiprocessors in the GPU, which can also 
be queried from OpenCL, is the minimum number of work-groups 
to achieve maximum occupancy. CPUs usually show a much more 
regular performance on the number of work-groups than GPUs, so 
on CPUs this lower bound is set to one work-group per CPU core.

As a result, the package size that will be selected will be the 
maximum of these two lower bounds and the value obtained using 
the Sigmoid function. This is shown in line 16 of Algorithm 1.

4. Experimental methodology

This section describes some details of the experimental setup 
used to evaluate Sigmoid. This includes a description of the load 
balancing algorithms used for comparison, test hardware, the 
choice of benchmark kernels and measurement tools.

4.1. Load balancing algorithms

In order to evaluate the improvements of Sigmoid, the follow-
ing well-known load balancing algorithms were considered in the 
experiments.

Static algorithm [33]. This classic algorithm divides the kernel in 
as many packages as devices are available in the system. The size 
of each package is proportional to the relative computing speed 
of the device that will execute it. This algorithm minimizes the 
overhead, since only one package is sent to each device. Thus, 
for regular kernels this is a priori the best choice. However, the 
algorithm requires the computing speed of the devices as input 
parameters and it performs badly with irregular kernels.

HGuided algorithm [33]. This algorithm aims to reduce the over-
heads associated with host-device interactions while retaining the 
best adaptiveness. Like in the guided method from OpenMP [9] the 
size of the packages starts being large and diminishes as the execu-
tion progresses. As parameters, it requires the different computing 
speeds of the devices and a minimum package size. Two different 
versions have been considered. The first one, labelled BestHG, uses 
optimal parameter values for each kernel and system, obtained af-
ter an exhaustive parameter sweep. The second, DefHG represents 
an effortless usage of HGuided. To be fair, the same parameters 
initially used by Sigmoid have been selected: the nominal values 
for the computing speeds, and the values reported by the CUDA 
occupancy calculator for the minimum package size.

Adaptive algorithm [6]. This algorithm was proposed for a two 
device scenario as a dynamic technique that requires no training 
and responds automatically to performance variability. But, the im-
plementation used in this paper is an extension of the original 
algorithm for an arbitrary number of devices introduced in [33]. 
It proceeds by first launching small probe packages to the devices 
and then using their execution times to predict an ideal static 
work partitioning for the remaining work. The amount of probe 
packages per device, their size and growth rate are programmer 
defined parameters. The authors suggest a set of parameters that 
deliver good performance, which are used in this work. However, it 
was experimentally found that the suggested size of the first probe 
package was too big and the slowest device did not finish enough 
packages for the adaptive distribution to begin before the other de-
vices completed the rest of the work. Consequently, a smaller first 
package has been used. Similar algorithms in the bibliography are 
[27,28,3].

From the aforementioned algorithms, Static and BestHG take 
parameters, which have a strong impact on performance. Often, 
these have different optimal values for each kernel and system 
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Table 1
Parameters for each Benchmark.

Benchmark Type Problem size Local work size GPU computing speed Minimum size

Binomial Regular 2048000 256 7.28 380
Gaussian Regular 8000×8000 81×81 128 13.77 1000
Mandelbrot Regular 20480×20480 256 5.88 400
NBody Regular 51200 128 7.33 400
Taylor Regular 800×800 128 2.06 280
Aho Irregular 1536000 64 8.20 200
BM3D Irregular 800×800 64 2.28 150
Rap Irregular 1024×1024 64 4.26 400
Ray Irregular 12000×12000 64 7.70 380
configuration. As a consequence, it was necessary to individually 
tune them to each benchmark, in order to obtain their best possi-
ble results. This process meant performing thousands of executions 
of the benchmarks in time-consuming parameter sweeps, which 
would be required for any new benchmark or hardware configura-
tion.

4.2. Test platform and benchmarks

Experimentation has been carried out using two different ma-
chines. The first one, labelled Batel, has two CPUs, two GPUs and 
16 GBs of DDR3 memory. Both the CPUs and GPUs take part in 
co-execution. The CPUs are Intel Xeon E5-2620, with six cores that 
can run two threads each at 2.0 GHz. The CPUs are connected via 
QPI, which allows OpenCL to detect them as a single device. There-
fore, throughout the remainder of this document, any reference to 
the CPU includes both Xeon E5-2620 processors and all their cores. 
A load balancing scheme that consider each individual core sepa-
rately, using device fission, was evaluated. However, it was found 
to deliver worse performance than the work distribution obtained 
when the OpenCL driver is in charge of distributing work-groups 
to each of the CPU cores. This could be attributed to overheads or 
cache affinity issues, as device fission provides no means to iden-
tify the placement of each of the returned cores in the memory 
hierarchy.

The GPUs are NVIDIA Kepler K20m with 13 SIMD lanes (or SMs 
in NVIDIA terminology) and 5 GBytes of VRAM each [30]. These 
are connected to the system using independent PCI 2.0 slots. For 
performance and energy experiments, the baseline system uses a 
single GPU, but the static energy of the unused devices, which are 
idle but still consuming, is considered. This accounts for the fact 
that current HPC systems often incorporate several accelerators, 
which, if unused, would represent a considerable energy waste.

The second machine, labelled Hydra, has been used to evaluate 
the scalability of Sigmoid as compared to that of the other algo-
rithms. It has four NVIDIA GeForce GTX TITAN Black GPUs, each 
one having 15 SIMDS lanes and 6 GB of VRAM. Note that the CPU 
does not take part in co-execution in the tests that use this system. 
This is to better analyze the scalability itself, by evaluating the be-
haviour of the algorithms when the number of identical devices 
increases.

Nine kernels have been chosen for the experiments. Five of 
which exhibit regular behaviour. Binomial (Bin) generates binomial 
lattices, useful for option pricing in financial software. Mandelbrot 
(Man) implements a blocked algorithm to compute a Mandelbrot 
set. NBody (Nbo) simulates a dynamic system of particles, used in 
many physics applications. Gaussian (Gau) calculates the Gaussian 
blur of an image, commonly found in image and video processing 
software. The last regular kernel is Taylor (Tay), which performs 
a bi-dimensional Taylor approximation for a set of points. The 
other four kernels are irregular. Aho is an implementation of the 
Parallel Failureless Aho-Corasick (PFAC) string matching algorithm, 
commonly used for protein sequencing [24]. BM3D (BM3) imple-
ments one of the filters of the BM3D image denoising algorithm 
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[10]. Rap is an implementation of the Resource Allocation Problem 
[1]. There is a certain pattern in the irregularity of RAP, because 
each successive package represents a bigger amount of work than 
the previous. Finally, Ray Tracing which renders realistic images 
by calculating the light that reaches each pixel by modelling light 
rays. Two different scenes of similar complexity but with different 
object distribution, (Ray1 and Ray2), have been defined. It will be 
shown later (Section 5) that changing the input data, the behaviour 
of the application varies wildly.

Table 1 shows some parameters for each kernel and load bal-
ancing algorithm. The “GPU computing speed” and “Minimum size” 
columns indicate the values for the parameters required by the 
Static and HGuided load balancing algorithms. The former repre-
sents the computing speed of the GPU relative to that of the CPU. 
The latter is the minimum package size generated by the HGuided 
algorithm, expressed in work-groups. The local work size has been 
set to maximise the performance of the fastest device, namely the 
GPU. The reason for this is that almost no performance difference 
was detected when varying the local work size for the CPU.

4.3. Energy measurements

To measure the energy consumption of the system it is neces-
sary to take into account the power drawn by each device. Modern 
computing devices allow applications to monitor their functional-
ity and performance. However, the power measured is associated 
to the device and not the kernel or process in execution. Together 
with the fact that it is impractical to add measurement code to all 
the test applications, this led to the development of a power mon-
itoring tool named Sauna. It takes a program as its parameter, and 
is able to periodically query all the devices for power measure-
ments throughout the execution of the program.

A significant amount of thought went into the conception of 
Sauna; the fact that it had to monitor several devices meant that it 
had to adapt to the particularities of each one while giving consis-
tent and homogeneous output data. This started with the different 
APIs provided to perform these measurements. For the Intel CPUs, 
recent versions of the Linux kernel provide access to the Running 
Average Power Limit (RAPL) registers [35], which provide accumu-
lative energy readings. On contrast, NVIDIA provides the NVIDIA 
Management Library (NVML) [31] that gives instant power measure-
ments. Naturally, Sauna had to be able to convert between the two 
magnitudes. A particularly interesting aspect of the development 
process of Sauna was studying the impact of the sampling fre-
quency. In order to keep the program simple, it was necessary to 
use a single sampling period for all devices. Given that the power 
variations would be similar across devices, the idea seemed feasi-
ble.

To find the best frequency, a series of experiments were made 
for each device in Batel (Section 4.2). It was observed that each 
device reacted differently to the sampling frequency. The RAPL 
measurements grew with large frequencies. And more surprisingly, 
the NVIDIA devices slowed down noticeably when the sampling 
frequency was above a given threshold. This actually meant that 
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Fig. 8. Impact of sampling period on power measurement and kernel execution time.

the kernel running in the device took longer to complete. Fig. 8
shows these effects as the magnitude of the variation of the mea-
sured CPU power depending on the sampling rate, together with 
the execution time of a Binomial kernel on a NVIDIA GPU. These 
graphs suggest adopting a low frequency, however, if the sampling 
period is too long, fast power spikes that may appear under ir-
regular loads could be missed, leading to inexact results. It was 
decided to use a sampling period of 45 ms since the increase in 
the execution time and the power error is restricted to 6%.

5. Experimental evaluation

This section presents the experimental results obtained on the 
test systems when running the different benchmarks, as described 
in Section 4. These experiments aim to answer the following ques-
tions:

• How well does Sigmoid balance the workload across different 
heterogeneous devices?

• What is the performance of Sigmoid for both regular and ir-
regular kernels?

• Is well-balanced co-execution capable of improving the energy 
consumption of a heterogeneous system?

• How does Sigmoid scale when the number of devices in-
creases?

Each of the following sections answer one of the aforemen-
tioned questions, comparing the results achieved for Sigmoid with 
other load balancing algorithms.

5.1. Load balance

The first metric considered in this analysis is the Load Balance
which is shown in Fig. 9, for the Batel system. For a given exe-
cution, it is defined as the ratio of the response time of the first 
device to conclude its work and that of the last. The ideal value for 
this metric is one, meaning that all devices finished simultaneously 
and the maximum utilisation of the machine was reached.

Sigmoid reaches perfect load balance in six out of the ten 
benchmarks. Compared to the other algorithms, it obtains the best 
load balance, except in Rap and NBody where it is slightly worse 
than BestHG and DefHG. Looking at the geometric mean, Sig-
moid boasts almost perfect load balance (0.97) closely followed 
by BestHG (0.94). Recall that the parameters of BestHG are opti-
mal, obtained from a time-consuming sweep. Regarding the other 
algorithms, Static performs well in regular benchmarks but, as is 
expected, performs poorly in irregular ones. This is a consequence 
of the nature of these kernels, that make it very difficult to de-
vise a fair load distribution before the actual execution. In the 
same way, Adaptive shows good results for regular kernels (except 
NBody) but no so satisfactory for irregular ones.
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5.2. Performance

To give an idea of performance, Fig. 10 shows the speedups 
reached by the different benchmarks in the Batel system, com-
pared to the baseline scenario that only uses one GPU. The test 
system is composed of N = 3 devices, but since they do not have 
the same computing power, the speedup is never going to reach 
3. Table 2 summarises the maximum speedup Smax each bench-
mark can reach. These values were derived from the response time 
Ti of each device, in relation to the time for the fastest device 
in the system, as shown in Equation (6). This is, the maximum 
speedup is the addition of the relative performance of each device 
with respect to the fastest of them. The obtained values are also 
represented in Fig. 10 as a horizontal line above the bars of each 
benchmark.

Smax =
N∑

i=1

Tmin

Ti
(6)

Looking at the geometric mean of the speedups shown in 
Fig. 10, it can be seen that Sigmoid gives the best performance. It 
is 22% better than Static and 3% better than BestHG. Regarding the 
mean for regular and irregular kernels separately (not depicted), 
Sigmoid obtains the same performance (99%) as the Static for reg-
ular benchmarks and is even slightly better than BestHG for irreg-
ular. In short Sigmoid delivers the best overall performance and 
also equals the performance of the best alternative for both reg-
ular and irregular workloads. When compared to the speedup of 
the other effortless algorithms, Sigmoid also excels. It is 20% better 
than Adaptive and 7% better than DefHG.

Regarding each benchmark individually, Sigmoid gives the best 
performance in all except NBody, Taylor and Rap. Despite that 
Sigmoid attains the best load balance results in NBody and Tay-
lor, using the optimal parameters with Static obtains a better 
speedup. Since these benchmarks have a very low computation-
communication ratio, the overhead increases when the workload 
is subdivided in more packages than devices. With Rap, Sigmoid 
delivers the second best performance. This is because the mini-
mum package size that guarantees efficient device use, generates a 
slight imbalance at the end of the execution. Regarding the effort-
less algorithms, Sigmoid delivers the best performance in all the 
applications but Taylor, in which it is only marginally surpassed by 
Adaptive.

The gap between the measured and the theoretical maximum 
values is a consequence of the extra communication overhead that 
comes from having more than one device. This is more notorious 
in applications in which the data can not be divided and must 
be replicated (NBody) or when the ratio between the computation 
and communication times is small (Mandelbrot, RAP).

As discussed above, one of the advantages of Sigmoid is that 
it tries to reduce the number of packages, as each implies interac-
tion between the host and a device, while maintaining adaptability. 
This can be seen in Table 3, which depicts the number of packages 
generated by each algorithm excluding Static, which would always 
generate as many packages as devices. Adaptive produces almost 
the same amount of packages for all benchmarks. This translates 
into good results in very regular benchmarks, as overheads are 
reduced. However, it fails in irregular ones, to which it cannot 
adapt. As for the HGuided algorithms, both versions generate huge 
amounts of packages, many more than the rest, although slightly 
less in BestHG thanks to the tuning of the parameters. This oc-
curs even in regular benchmarks, like Binomial, which do not take 
advantage of adaptability. This causes two damaging effects. On 
the one hand, it notably increases overheads. On the other hand, 
a large number of packages are excessively small and do not fully 
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Fig. 9. Load balance of each device for all algorithms and benchmarks in the heterogeneous system.

Fig. 10. Speedups of the benchmarks with the different algorithms in the heterogeneous system.

Table 2
Maximum speedup for the different benchmarks.

Benchmark Binomial Gaussian Mandelbrot NBody Taylor Aho BM3 RAP RAY

Max. Speedup 2.14 2.07 2.17 2.13 2.48 2.12 2.44 2.23 2.13

Table 3
Number of Packages generated by each load balancing algorithm and benchmark.

Benchmark Binomial Gaussian Mandelbrot NBody Taylor Aho BM3 RAP Ray1 Ray2 Average

Adaptive 15 19 13 15 15 11 13 15 14 13 14.30

DefHG 445 105 25 175 51 828 92 79 389 291 248.00

BestHG 307 84 14 119 31 707 47 46 288 185 182.80

Sigmoid 28 31 17 27 20 13 28 20 40 32 25.60
take advantage of the capacity of GPUs. Finally, it should be noted 
that Sigmoid generates a much smaller number of packages, thus 
reducing the overhead with respect to HGuided. At the same time, 
it maintains adaptability according to the needs of each bench-
mark, surpassing Adaptive in this regard.

5.3. Energy consumption

Nowadays, performance is not the only figure of merit used to 
evaluate computing systems. Their energy consumption and effi-
ciency are also very important. Fig. 11 gives an idea of the energy 
saving obtained by taking full advantage of all the compute devices 
in the Batel heterogeneous system. Contrasting with the baseline 
system that only uses one GPU, while the other devices are idle 
but still consuming. Therefore, the figure shows, for each bench-
mark, the energy consumption of each algorithm normalised to 
the baseline consumption. In this graph, less is better, and bars 
over one indicate that the whole heterogeneous system consumes 
more energy than the baseline.

The energy measurements are strongly correlated to the perfor-
mance of the algorithms. Observing the geometric mean, it can be 
seen that Sigmoid gives the best results, followed by BestHG, pre-
senting energy savings of 9% and 7% respectively. Looking closely at 
some benchmarks, the other algorithms can consume significantly 
more energy than the baseline (Static and Adaptive in irregular 
benchmarks). Even DefHG and BestHG do not reach any improve-
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ment in Binomial and Gaussian. Interestingly, the only algorithm 
that always improves the baseline consumption is Sigmoid. The use 
of more devices logically increases the instantaneous power at any 
time. But, since the total execution time is reduced, the total en-
ergy consumption is also less. This saving is further improved by 
the fact that idle devices still consume energy, so making all the 
devices contribute work is beneficial. Notice that, of the effortless 
algorithms, Sigmoid attains the lowest energy consumption while 
Adaptive presents and overall energy consumption greater than the 
baseline.

Another interesting metric is the energy efficiency, which com-
bines performance with energy consumption. Fig. 12 shows the 
Energy Delay Product (EDP) [8], of the algorithms normalised to 
that of the baseline. Since this is a combination of the two above 
metrics, the relative advantage of the different algorithms is main-
tained. The geometric mean shows that with this metric all algo-
rithms are advantageous, Sigmoid giving the best results with a 
54% improvement. BestHG also gives good results (52%) since its 
parameters have been optimised. These two algorithms give good 
results in all the benchmarks, while the remaining algorithms ex-
hibit a strong variability, in some cases even with normalised EDP 
values over one.

In summary, these results prove that co-execution improves the 
energy consumption of heterogeneous systems, in addition to their 
performance, as shown in the previous section.
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Fig. 11. Energy consumption of the benchmarks with the different algorithms normalised to the baseline in the heterogeneous system.

Fig. 12. EDP of the benchmarks with the different algorithms normalised to the baseline in the heterogeneous system.

Fig. 13. Efficiency of the different algorithms executing the benchmarks on a homogeneous system.
5.4. Scalability

The last set of experiments was developed in Hydra, a system 
with four identical GPUs. It evaluates the strong scalability of the 
load balancing algorithms. Therefore, the same problem size has 
been used for all the experiments, while the number of devices 
increases from 2 to 4. For a better comparison, the metric used 
to evaluate scalability is the efficiency, defined as the ratio of the 
achieved speedup to the number of devices that have been used. 
Consequently, perfect scalability implies constant efficiency, mean-
ing that the same performance per device is obtained regardless of 
their number. This is usually not the case and, as shown in Fig. 13, 
efficiency drops in all cases. The smaller the drop, the better the 
scalability of the algorithm.

These results show that Sigmoid is the only algorithm that 
scales well for both regular and irregular benchmarks. Regarding 
the rest of the algorithms, Static scales very well in regular al-
gorithms, but it has serious problems in irregular ones, such as 
Aho and Ray1, where it scales well between 2 and 3 devices, but 
drops strongly with 4 devices. Adaptive also scales well on regu-
lar benchmarks, excluding NBody with 4 devices, but behaves very 
poorly on irregular ones. Finally, both BestHG and DefHG, have an 
erratic behaviour in regular benchmarks, with good scalability for 
NBody, Mandelbrot and Taylor, but scaling badly for Binomial and 
Gaussian.
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Both versions of the HGuided also show the same behaviour for 
irregular benchmarks: good scalability for Aho, BM3D and RAP, but 
very poor for Ray1 and Ray2. In sum, out of the evaluated algo-
rithms, only Sigmoid delivers uniform scalability results, regardless 
of the behaviour of the workload: regular or irregular.

Currently, some servers for supercomputers have even more 
than four GPUs, a tendency that is expected to grow in the near 
future. For this reason, and based on the data obtained in these 
experiments, an estimation of the weak scalability of Sigmoid has 
been made with up to 16 devices using the Law of Gustafson [15]. 
Evaluating strong scaling for such a high number of devices would 
require problem sizes that cannot be executed on just four devices 
due to memory constraints. Fig. 14 shows how efficiency evolves 
by increasing both the number of devices and the size of the 
problem, so that the workload per device is always constant. As 
depicted, weak scaling for Sigmoid is almost perfect, according to 
Gustafson’s Law estimates.

In conclusion, Sigmoid achieves almost perfect load balancing, 
delivering excellent energy and performance results of all the con-
sidered effortless load balancing algorithms. Moreover, it delivers 
better overall performance than the load balancing algorithms that 
require parameters, it also equals the results of the best algorithms 
for regular and irregular kernels individually. Finally, it is the only 
one with good scalability in both regular and irregular applications.
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Fig. 14. Estimation of the weak Scalability of Sigmoid algorithm using Gustafson 
Law.

6. Related work

The development of heterogeneous systems and their advan-
tages in performance and energy consumption, has led to great 
interest from industry and academia. However, despite all the ef-
forts, the problem of adequately using the enormous computing 
capabilities of this kind of systems is to be solved. Many research 
papers have addressed it from two angles: task and data paral-
lelism.

The idea behind task parallelism is distributing independent 
tasks to each of the available devices, so ideally their resources 
fully used. Such is the approach of [16], which proposes a 
lightweight runtime based on QUARK, that distributes tasks us-
ing task superscalar scheduling and a greedy heuristic. The authors 
of [41] apply fuzzy neural networks to the task distribution prob-
lem. MultiCL [2] is an OpenCL runtime for task-parallel workloads 
based on storing execution information for each kernel-device pair 
and using it for future kernel launches. VirtCL is an OpenCL system 
abstraction framework [40] that implements a history-based task 
scheduler that constructs regression models to predict turnaround 
times. The authors of [12] propose SPARTA, a throughput-aware 
runtime task allocator for Heterogeneous Many Core platforms 
[12]. It analyzes tasks at runtime and uses the information to max-
imize energy-efficiency. Unicorn is a parallel programming model 
for hybrid CPU-GPU clusters that implements a dynamic work-
stealing task scheduler [4]. Another example of the work-stealing 
approach is that of Xkaapi [14].

All these works are remarkable efforts towards the efficient 
use of the capabilities offered by heterogeneous systems. However, 
these techniques are often not enough. Task-parallelism is of little 
use when there are few kernels or they have dependencies. This 
is the case of many current workloads that use very big data sets, 
such as machine learning applications. In these cases, the only way 
to extract parallelism is for all the devices to collaborate in the 
execution of a single task, via data-parallelism. This is when co-
execution comes into play, which is the focus of Sigmoid.

Considering this, MKMD is an intermediate approach [22]. It 
combines coarse grain scheduling of indivisible kernels, followed 
by opportunistic fine grained work-group distribution if idle slots 
are detected. To do so, it predicts the execution time of work-
groups and uses a heuristic. The work of Zhong et al. focuses on 
splitting different tasks to maximise the usage of a single GPU. This 
could be extended to several devices by adding an extra dispatcher 
[43].

Several papers have tackled load balancing for data parallelism. 
As substantiated throughout this paper, for a single load balanc-
ing technique to succeed, it has to be flexible and consider both 
the heterogeneity of the devices and the irregularity of the appli-
cations. Additionally, it should not require excessive information 
from the programmer.

Kim et al. [18] approach the problem by implementing an 
OpenCL framework that provides a view of a single compute device 
by transparently managing the memory of the devices. Their ap-
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proach to data-parallelism is based on a static load balancing strat-
egy, so it cannot adapt to irregularity. Besides, they only consider 
systems with several identical GPUs and ignore CPUs, so their pro-
posal is not suitable for truly heterogeneous systems. Lee et al.[21]
propose automatic modifications to OpenCL code that executes on 
a single device, so the load is balanced among several ones. De 
la Lama et al. [11] propose a library that implements static load 
balancing by encapsulating standard OpenCL calls. The work pre-
sented in [20] uses machine learning techniques to build an offline 
model that predicts an ideal static load partitioning. However, this 
model does not consider irregularity. Similarly, Zhong et al. [44]
use performance models to identify an ideal static work distri-
bution. In [23] the focus is on the static distribution of a kernel 
execution to the available devices via code modifications.

Other authors have proposed training-based load balancing 
methods. Qilin [25] proposes the use of a execution-time database 
for all the programs the system has executed and a linear regres-
sion model. Another such approach is that of Maestro [37]. These 
techniques are only useful in systems that run the same applica-
tions frequently.

All the above works propose static approaches, so they fail to 
address the importance of adaptiveness. Moreover, even when fac-
ing regular workloads, these methods cannot recover from an inac-
curate initial estimation of the capabilities of the available devices. 
Dynamic methods, such as Sigmoid, try to prevent these issues by 
dividing the workload in smaller chunks and taking load balancing 
decisions at runtime.

FluidicCL [32] implements an adaptive dynamic scheduler, but 
only focuses on systems with one CPU and one GPU. SnuCL [19] is 
an OpenCL framework for heterogeneous CPU/GPU clusters. How-
ever, regarding load balancing, it is capable of either dynamically 
distributing a kernel among the CPU cores or using a GPU, but does 
not support the co-execution of a kernel.

Kaleem et al. in [17] and Boyer et al. in [6] propose adap-
tive methods that use the execution time of the first packages to 
distribute the load. However, they focus on a CPU/GPU scenario 
and, unlike Sigmoid, do not scale well to configurations with more 
devices. Similarly, HDSS [3] is a load balancing algorithm that dy-
namically learns the computational speed of each processor and 
then schedules the remainder of the workload using a weighted 
self-scheduling scheme. However, this algorithm assumes that the 
packages launched in the initial phase are representative of the 
whole load, which might not be true for irregular kernels. Besides, 
package size decreases linearly during the completion phase, which 
may produce unnecessary overheads as substantiated in this pa-
per. Navarro et al. [27] propose a dynamic, adaptive algorithm for 
Threading Building Blocks (TBB) that uses a fixed package size for 
the GPU and a variable one for the CPU. This work was extended 
in [28], proposing an adaptive package size for the GPU too. This 
is also based on using small initial packages to identify a package 
size that obtains near optimal performance.

Scogland et al. [36] propose several distribution schemes that 
fit accelerated OpenMP computing patterns. However, they do not 
propose a single solution to the load balancing problem. The li-
brary presented in [33] also implements several load balancing 
algorithms and proposes the HGuided, which adapts to irregular-
ity and heterogeneity. However, it requires certain parameters from 
the programmer and uses linearly decreasing packages that might 
impose overheads.

Finepar [42] is a software that analyzes an irregular application, 
its input data and the available (integrated) hardware and builds a 
performance model to obtain an ideal work partition. The model 
calculation has to be performed every time the input data changes, 
which is costly. This software only supports applications based on 
sparse matrices.
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Finally, some papers propose algorithms to distribute the work-
load accounting for performance and power. GreenGPU dynami-
cally distributes work to GPU and CPU, minimizing the energy 
wasted on idling and waiting for the slowest device [26]. To max-
imise energy savings while avoiding performance degradation, it 
throttles the frequencies of CPU, GPU and memory, based on their 
utilisation. Wang and Ren [39] propose several analytical models 
and guidelines to produce partitions balance performance and en-
ergy consumption.

7. Conclusion

This paper presents Sigmoid, a new load balancing algorithm. 
It allows executing a single data-parallel OpenCL kernel taking full 
advantage of all the compute devices in a heterogeneous system. 
This algorithm is dynamic, as it distributes the workload among 
the devices at run time. It is also adaptive, since it can change 
its behaviour during the execution to adapt to regular and irreg-
ular kernels. Additionally it starts with large packages to reduce 
the synchronisation points at the beginning, reducing overheads. 
As execution advances, it shortens the package size to increase the 
granularity toward the end, allowing perfect load balance. Finally, 
using all these features requires very limited effort, since Sigmoid 
is controlled by a small amount of settings, which can be easily 
established at installation time.

The Sigmoid algorithm has been implemented in Maat, an 
OpenCL library that simplifies the management of heterogeneous 
systems when co-executing data-parallel kernels. An exhaustive 
experimental evaluation has confirmed that the use of the whole 
heterogeneous system improves performance and energy con-
sumption when compared to using the devices individually. The 
experimental results show that Sigmoid reaches an almost perfect 
load balance, with kernels of diverse behaviours. As a consequence 
it gives the best performance and energy consumption results 
compared to the other evaluated alternatives for most of the 
benchmarks considered in this work. Additionally, it has proven 
excellent scalability properties. Sigmoid delivers these good re-
sults through adaptation, using few parameters set at installation 
time, without the need of any further time-consuming parameter 
search. When compared to other effortless load balancing algo-
rithms, Sigmoid delivers better results, both regarding performance 
and energy consumption.

In the future, Sigmoid will be tested with real parallel applica-
tions as well as in other kinds of heterogeneous systems composed 
of FPGAs and tensor processing units.
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