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ABSTRACT

The monitoring of threatened habitats is a key objective of
European environmental policy. Due to the high cost of cur-
rent field-based habitat mapping techniques there is a strong
research interest in proposing solutions that reduce the cost
of habitat monitoring through increasing their level of au-
tomation. Our work is motivated by the opportunities that
recent advances in machine learning and Unmanned Aerial
Vehicles (UAVs) offer to the habitat monitoring problem. In
this paper, a deep learning based solution is proposed to clas-
sify four priority Irish habitats types present in the Maharees
(Ireland) using UAV aerial imagery. The proposed method
employs Convolutional Neural Networks (CNNs) to classify
multi-temporal multi-spectral images of the study area corre-
sponding to three different dates in 2020, obtaining an overall
classification accuracy of 93%. A comparison of the proposed
method with a multi-spectral 2D-CNN model demonstrates
the advantage of including temporal information enabled by
the proposed multi-temporal multi-spectral CNN model.

Index Terms— Habitat mapping, Convolutional neural
networks, Multi-temporal imagery, Aerial imagery

1. INTRODUCTION

The EU Habitat Directive [4], which addresses the conserva-
tion of natural habitats and of wild fauna and flora, directs
EU member states to take measures in order to maintain
the favourable conservation status of threatened habitats.
Namely, the EU requires member states to periodically pro-
duce maps for change detection and conservation status as-
sessments of priority habitat types listed in Annex I of the
EU Habitats Directive [4]. Currently, Ireland reports the
conservation status of its threatened habitats based on eco-
logical field data. The current field-based mapping and as-
sessment methodology requires significant time and financial
resources. This work is motivated by the potential offered
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through the rapid advances in Unmanned Aerial Vehicles
(UAVs) along with machine learning techniques.

Several remote sensing techniques have been recently
proposed to deal with the need for cost-effective habitat map-
ping tools. Among them, UAV-based methods are emerging
as a powerful tool for habitat mapping thanks to their low
flight altitude relative to other remote sensing techniques like
aircraft or satellites, as well as their possibility of flying over
areas that are difficult to access. Additionally, the flexible
scheduling of flights and their ability to provide visual im-
agery at a high resolution and biologically distinguishable
level are also an advantage [5]. There is also an active re-
search field in the application of machine learning techniques
for processing the large amounts of data provided by aerial
or satellite imagery. For instance, [5] proposes the use of
the random forest algorithm for the classification of several
Annex I habitats located in Northern Portugal using aerial
imagery. In contrast, our work aims to benefit from advances
that deep learning techniques have shown in image classi-
fication problems to classify aerial imagery from Annex I
habitats in the Maharees, Ireland. Example images of the
considered Annex I habitats are shown in Fig.1. Their spec-
tral similarity makes their classification a highly challenging
problem.

Over the last decade, deep learning has achieved break-
through results across many varied applications, in partic-
ular in dealing with unstructured data such as images, au-
dio or text. In computer vision tasks, Convolutional Neu-
ral Networks (CNNs) stand out due to their impressive re-
sults. Contrary to traditional machine models which are de-
pendent on engineered features, CNNs have the advantage
of being data-driven, which empowers their ability to auto-
matically learn contextual features from raw input images,
making them highly effective for large-scale image recog-
nition and semantic segmentation tasks [6]. The outstand-
ing results that CNNs have achieved in other domains have
motivated the remote sensing community to apply them in
image classification problems dealing with satellite or aerial
imagery. However, the application of deep learning to re-
motely sensed data involves several challenges such as the
high cost and expert knowledge required for obtaining la-



Fig. 1. Sample images of the four Annex I habitats.

belled training data. Also, as most of the deep learning mod-
els are only designed to work with three channel RGB im-
ages, there is a need of adapting and proposing deep learning-
based models that can utilize multispectral bands. Remote
sensing images are georeferenced and may have high spec-
tral dimensionality (multi-spectral or hyperspectral images)
or multi-temporal information (which is especially relevant in
remote sensing tasks dealing with crops or vegetation). Fur-
thermore, while RGB images tend to have well-defined scene
context, in several remote sensing problems including this
work, the images present a potentially unlimited continuous
space, where boundaries between classes are transitional as
can be observed from the sample images presented in Fig. 1,
making it a challenging image classification problem. Despite
all these challenges, in recent years deep learning approaches
applied to remotely sensed image classification have achieved
significant breakthroughs, offering exciting opportunities for
research [6].

In the literature we can find some recent deep learning
classifiers that exploit the spatial, spectral and temporal infor-
mation associated with remotely sensed imagery. In [7] a 3D-
CNN model is proposed for learning three dimensional filters
along the temporal and two spatial dimensions of a time se-
ries of satellite images in order to classify four types of crops.
And [1] propose a model with two parallel branches in order
to classify several land uses and crop types; where a recurrent
neural network is used for learning the temporal features from
a pixel-wise time series and a set of 2D convolutional layers
for learning the spatial features of satellite imagery. In this
work we propose a novel CNN-based architecture for lever-
aging the spatial and temporal information of aerial imagery
of Annex I habitats in the Maharees, Ireland.

This work is organized as follows. Section 2 describes
the data collected from the Maharees study site. Section 3
presents the proposed deep learning-based model to classify
four habitats present in the Maharees. Section 4 evaluates the
performance of the proposed method and compares it with a
multi-spectral 2D-CNN model. Lastly, Section 5 summarises
the main conclusions and describes the future research direc-
tion.

Fig. 2. A true color composite of the Maharees mosaic col-
lected in July 2020 with habitat labels based on field data.

2. MAHAREES HABITAT DATA

The study area in the Maharees is a tombolo located in the
Dingle Peninsula at south-west of Ireland. The sand dunes
create a unique ecosystem with several threatened habitats
listed in Annex I of the EU Habitats Directive [4]. The four
habitats considered for the classification and their respective
Annex I codes are: white dunes (2120), grey dunes (2130),
embryonic shifting dunes (2170) and dune slacks (2190).
Sample images of the habitats are displayed in Fig. 1.

This study considers three multi-spectral mosaics of the
Maharees study site built from the aerial imagery collected
by the multi-spectral sensor on the 26th of May, 28th of
July and 8th of October 2020. The multi-spectral images in
UTM/WGS84 projection cover a 0.7 km2 area with a spatial
resolution of 0.05 m per pixel and contain the reflectance
values of five spectral bands: blue, green, red, red-edge and
Near Infra Red (NIR). The multi-spectral mosaics were ob-
tained by the combination of the image tiles collected by the
multi-spectral sensor using ProvEye proprietary software [8].
In summary, this software uses back and forward projec-
tion in combination with automated algorithms for feature
detection of control points during the mosaicking (fusion)
process. The software uses upward-facing irradiance values
to normalise for inflight illumination by creating a correction
coefficient. Surface reflectance is derived using calibration
panels of known albedo taken before and after each flight.
This ensures that radiometric variation between mosaics is
minimised while still maintaining the spectral integrity of the
data. A true color representation of the multi-spectral mosaic
corresponding to July 2020 is displayed in Fig. 2. This work
also considers a a vector database in shapefile format with the
information about the types of habitats provided by a team
of ecologists that labelled multiple sample points across the
study site with in-situ measurements [3]. Each on-the-spot
habitat label has associated a square polygon that delimits
the extent of the habitat label provided by the expert. Fig. 2
represents a true color representation of the multi-spectral



Fig. 3. The CNN architecture proposed for habitat classifica-
tion from multi-temporal multi-spectral images.

mosaic in July 2020 with the labels represented in different
colors according to the four habitat types. The heterogeneous
distribution of the habitat types can be seen in Fig. 2, where
habitats 2130 and 2190 cover 67% and 23% of the total la-
belled area, whereas the minority habitats of 2120 and 2170
only correspond to 2% and 8%, respectively.

In short, the Maharees dataset consists of three multi-
spectral mosaics corresponding to the same area in Maharees
(Ireland) obtained at three different dates during May, July
and October of 2020, and a shapefile with information about
the on-the-spot habitat information. The Maharees dataset
was provided by the iHabiMap project [3].

3. DEEP LEARNING APPROACH FOR HABITAT
CLASSIFICATION

This section describes the proposed habitat mapping model
that classifies multi-temporal multi-spectral images by means
of a novel convolutional neural network architecture.

First, in order to extract the multi-temporal multi-spectral
images to train the deep learning model from the Maharees
mosaics a patch-based extraction method was followed.
Patches are sampled at random locations within the labelled
polygons with the intention of generating more samples for
training the model. From each polygon p, np patches of
dimensions w × h are extracted by randomly sampling the
same area from the three multi-spectral mosaics of the Ma-
harees corresponding to May, July and October 2020. The
number of patches extracted from each polygon p is equal to
cj · (wp · hp)/(w · h), where wp and hp are the width and
height of the polygon, and cj a constant value associated to
habitat j. Extracting in this way, a higher number of patches
np from larger polygons. The resulting sampled patches from
the three multi-spectral mosaics are concatenated along a
temporal axis, resulting in a multi-temporal multi-spectral
image of size w × h× 3× 5.

The proposed CNN classifier takes as input the multi-
temporal multi-spectral image and predicts the most proba-
ble habitat label ŷi among the four considered habitat types.
The proposed architecture, which is sketched in Fig. 3, is
composed of one 3D convolutional layer, two 2D convolu-
tional layers, three pooling layers and three fully connected
layers. First, the multi-temporal multi-spectral image of size

Table 1. Confusion matrix of the results obtained over the
Maharees test dataset.

Predicted habitats
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ts Habitat 2120 2130 2170 2190 Total Recall
2120 146 5 0 0 151 0.97
2130 12 3723 38 115 3918 0.95
2170 0 44 394 68 506 0.78
2190 0 37 77 1071 1185 0.90

Precision 0.92 0.98 0.73 0.85

w × h × 3 × 5 is fed to a 3D convolutional layer that ap-
plies 3× 3× 3 kernels with stride of 1 and no padding, where
the two first dimensions of the 3D kernel correspond to the
two spatial dimensions and the third one to the temporal di-
mension. The output of the 3D layer is then fed to a pooling
layer that reduces by half the spatial dimensions by applying
a 2 × 2 average pooling strategy. Next, a pair of 2D convo-
lutional layers with kernels of size 3 × 3 and pooling layers
with 2×2 average pooling are applied, followed by three Fully
Connected (FC) layers with 1024, 512 and 4 neurons respec-
tively. All the convolutional layers consider no padding and a
stride of 1. And all the layers have associated a rectified lin-
ear unit (ReLU) with the exception of the last fully connected
layer which considers the softmax activation function that re-
turns a probability distribution of the four habitat types. The
categorical cross entropy loss function is optimized using the
Adagrad optimizer and considering a weighting of the loss
function based on the number of samples of each class [2].

4. EXPERIMENTAL RESULTS AND DISCUSSION

For evaluation purposes, the Maharees dataset has been split
at polygon level in training and test sets following a strati-
fied random sampling, where 25% of the polygons are used
testing and the remaining 75% for training and validation.
From the training and test sets of polygons the multi-temporal
multi-spectral images are extracted following the batch ex-
traction strategy defined in Sec. 3, where the patch width w
and height h are both set to 25. With the purpose of mitigat-
ing the imbalance of the training dataset, the constant cj that
controls the number of images extracted from a polygon p la-
belled as class j is set to c1:4 = {4, 1, 3, 2}, extracting higher
number of images from the least frequent habitats. No over-
sampling/undersampling is applied to the test dataset, where
cj = 2 for the four classes.

The following metrics summarize the performance of the
proposed CNN classifier over the test dataset; overall accu-
racy: 0.93 and macro-averaged F1-score: 0.89. Hence, 93%
of the images from the test dataset were correctly identified
by the proposed model. The confusion matrix obtained by
the comparison of the reference ground truth labels and pre-
dicted labels for the test dataset is shown in Table 1. Each
element er,c of the confusion matrix corresponds to the num-
ber of images predicted as habitat type r known to be habitat



Table 2. Comparison of the CNNs models.
Model Convolution MT MS Samples Accuracy

This work 3D & 2D 3 3 May-July-Oct. 0.93

2D-CNN 2D 3
May 0.87
July 0.86

October 0.84

type c. Moreover, the recall (user’s accuracy) and precision
(producer’s accuracy) values per class are placed respectively
at the last column and row of Table 1. All the habitats were
correctly classified with percentage equal or higher than 78%.

Furthermore, with the purpose of analysing the benefits
of including temporal information for the habitat classifica-
tion problem, the proposed CNN model is compared with a
2D-CNN model that considers the multi-spectral reflectance
values but without any temporal information. Table 2 sum-
maries the main characteristics of the two models: the model
names, the type of convolutions considered by the mod-
els (Convolution), whether the models consider multi-
temporal (MT ) and multi-spectral (MS) information, the
multi-spectral mosaics used for the training and testing sam-
ples (Samples) and the overall accuracy obtained over the
test dataset (Accuracy). In order to implement the 2D-CNN
model the following changes are applied to the architecture of
the proposed CNN model (sketched in Fig. 3): the first layer
of the model is fed with multi-spectral images and applies
2D kernels of size 3 × 3 (instead of the 3D filters used by
the proposed model). For training the 2D-CNN model the
multi-temporal multi-spectral images are adapted from 4D
tensor of size w × h× t× s to 3D tensors of size w × h× s.
This is done by splitting each MT MS image into three MS
images that correspond to the spectral values of the same area
and habitat type at different dates of 2020. Hence, both mod-
els are trained considering images corresponding to the same
areas and habitat types, but while the images used by the pro-
posed model correspond to the spectral values of the terrain at
three different dates, the images used by the 2D-CNN model
correspond to the spectral values at a certain date (either
May, July or October). Table 2 shows the overall accuracy
values obtained by the proposed CNN model (acc.=0.93)
and the 2D-CNN model when considering the MS images
obtained from the May mosaic (acc.=0.87), the July mosaic
(acc. = 0.86) and the October mosaic (acc. = 0.84). The
better results obtained by the proposed CNN model in com-
parison with the ones obtained by the 2D-CNN model show
the benefits of incorporating temporal information through
the proposed CNN-based model.

5. CONCLUSIONS AND FUTURE WORK

This work proposes a deep learning approach using convolu-
tional neural networks to classify Annex I habitat types from
multi-temporal multi-spectral aerial imagery. The proposed

model achieves an accuracy of 93%, obtaining better predic-
tions than a multi-spectral 2D-CNN model that shows the ad-
vantage of including multi-temporal information.

As future work, we plan to incorporate digital elevation
information and expect to increase the classification perfor-
mance of the models leveraging the dependence of the Maha-
rees’ habitats on the terrain information. Moreover, using the
new aerial imagery from Maharees and different Irish habi-
tats data that is currently being gathered by the EPA-funded
iHabiMap project [3], we plan to i) test the proposed model
with imagery from Maharees in 2021 to assess the model’s
performance not only over unseen areas but also with data
corresponding to a different year than the one used for train-
ing and ii) test similar deep learning models on more types of
Annex I habitats located in different regions of Ireland.
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