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Abstract. The monitoring of threatened habitats is a key objective of European environmental
policies. Due to the high cost of current field-based habitat mapping techniques, there is keen
interest in proposing solutions that can reduce cost through increased levels of automation. Our
study aims to propose a habitat mapping solution that benefits both from the merits of convolu-
tional neural networks (CNNs) for image classification tasks, as well as from the high spatial,
spectral, and multitemporal unmanned aerial vehicle image data, which shows great potential for
accurate vegetation classification. The proposed CNN-based method uses multitemporal multi-
spectral aerial imagery for the classification of threatened coastal habitats in the Maharees
(Ireland) and shows a high level of classification accuracy. © 2021 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.15.042406]
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1 Introduction

The European Union Habitat Directive,1 which addresses the conservation of natural habitats and
wild fauna and flora, directs EU member states to take measures in order to maintain the favor-
able conservation status of threatened habitats. Namely, the EU requires member states to peri-
odically produce maps for change detection and conservation status assessments of priority
habitat types specified in the EU Habitats Directive.1 The Habitats Directive ensures the con-
servation of a wide range of rare, threatened, or endemic animal and plant species listed in the
directive’s annexes (Annex I covers habitats; Annexes II to V, species). The coastal habitat under
study is one of the threatened and protected habitats listed in Annex I of the Habitats Directive,
which are often simply referred as Annex I habitats. At present, Ireland reports the conservation
status of its threatened habitats based on ecological field data. The current field-based mapping
and assessment methodology requires significant time and financial resources. The development
of automatic habitat mapping tools would allow one to considerably reduce the financial and
man-power cost, offering a great benefit that has motivated this work. This work looks to
leverage the potential offered through the rapid advances in unmanned aerial vehicle (UAV)
platforms along with deep learning techniques to address the classification of threatened coastal
habitats in Ireland.

The outstanding results that convolutional neural networks (CNNs) have achieved in other
domains have motivated the remote sensing community to apply them in image classification
problems dealing with satellite or aerial imagery. Despite the challenges involved in the appli-
cation of CNNs to remote sensing, in recent years deep learning approaches have achieved sig-
nificant breakthroughs in remotely sensed image classification, offering exciting opportunities
for research.2 For instance, CNN-based solutions have been successfully applied for the detec-
tion of plant species,3 crop classification,4 or vegetation mapping,5 showing in many instances
better performance than object-based image analysis (OBIA) methods3 or traditionally machine
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learning methods.4,5 Contrary to traditional machine learning models or OBIA methods that are
dependent on engineered features, CNNs have the ability to automatically extract the features.
This end-to-end learning approach empowers CNNs ability to automatically learn contextual
features from raw input images, making them highly effective for large-scale image recognition
and semantic segmentation tasks.2 Remote sensing images are georeferenced and may have high
spectral dimensionality [multispectral (MS) or hyperspectral images] or multitemporal informa-
tion (which is especially relevant in remote sensing tasks dealing with crops or vegetation).
Therefore, as most of the deep learning models for image data related tasks are designed to
work with multimedia [red–green–blue (RGB)] images commonly encountered in the computer
vision literature, there is a need to adapt deep learning-based models to utilize MS and multi-
temporal information. Another common challenge in the application of deep learning to land
mapping is the high cost and expert knowledge frequently required for obtaining labeled training
data. Furthermore, while urban environments tend to have well-defined scene context, in several
remote sensing problems including the coastal dune habitat of study in this work, the images
present a potentially unlimited continuous space, where boundaries between classes are transi-
tional, increasing the complexity of the image classification problems. For instance, the spatial
borders of different coral reef classes are hard to separate due to their tendency to appear in
groups, which makes its classification a challenging task that requires aid from marine
biologists.6

Currently, there is a huge need for precise land cover information in various fields such as
crop monitoring or conservation. Images from optical sensors mounted on UAVs can provide
very detailed information in comparison to satellite acquired imagery thanks to their higher spa-
tial resolution. In fact, UAVs are increasingly used as an efficient tool for rapid monitoring of
land resources.7 Multitemporal UAV imagery has the advantage of providing high spatial res-
olution as well as phenological information that has greater potential for accurate vegetation
classification problems, such as crop classification.5 The benefits that multitemporal information
has shown in other remote sensing problems that involve vegetation such as crop classification,8

in addition to the coastal dunes characteristics, which are a very dynamic environment changed
constantly as a result of waves and wind, has motivated this work to propose a CNN-based model
for habitat mapping that incorporates temporal information.

In summary, this work proposes a multitemporal MS CNN-based model that classifies with
high accuracies several priority coastal habitats located in the Maharees, Ireland. The experi-
mental analysis over the study site shows the benefits of including multitemporal aerial imagery
for the habitat classification problem.

The remainder of this paper proceeds as follows. Section 2 provides a review of machine-
learning solutions for related remote sensing problems. Section 3 begins with a description of the
study site, the data collection process and finishes with an overview of CNNs. Section 4 presents
the proposed deep learning-based model to classify four habitat types present in the Maharees
coastal area. Section 5 evaluates the performance of the proposed multitemporal MS approach
and compares it to an MS CNN-based model. Section 6 discusses about the results obtained by
the proposed approach, its benefits, and possible improvements. Finally, Sec. 7 summarizes the
main conclusions of this work and describes possible future research directions.

2 Related Work

In the habitat mapping state-of-the-art, we can find several recently solutions that propose the use
of machine learning to deal with the need for cost-effective habitat mapping tools. These related
works are listed in Table 1 along with their main characteristics: type of habitat mapping prob-
lem, type of remotely sensed imagery, type of data, the machine learning technique used, and
whether the works exploit MS and temporal information.

Habitat mapping problems can be divided into the works that classify terrestrial3,7,9–11 or
marine habitats.6,12–14 Among the first group, Kobler et al.9 dealt with a forest habitat mapping
problem where ten different habitats included in the Habitat Directive1 are considered. Rezaee
et al.11 tackled a wetland classification problem where eight different wetland classes specified
by the Canadian wetland classification system are mapped. Timm andMcGarigal10 addressed the
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classification of coastal dune and salt marsh ecosystems. Guirado et al.3 proposed a deep
learning-based solution for detection of Ziziphus lotus shrubs, a priority habitat under the
Habitat Directive.1 And Kattenborn et al.7 addressed a binary canopy classification problem
where herbaceous vegetation communities are mapped from aerial imagery. Among the marine
habitat mapping problems, both Berthold et al.13 and Diesing et al.12 mapped seabed sediment
habitats, considering four different sediment types. Finally, Yasir et al.6 dealt with coral reef
marine habitats, distinguishing among four coral types and four non-coral habitat types.

These habitat mapping models make use of a variety of imagery data types captured from
satellites,3,10,11,14 aerial vehicles,7 or underwater sensors6,7,13 by means of different sensor tech-
nologies such as RGB cameras,3,6,7 high-resolution MS sensors,10,11,14 or sound navigation and
ranging (sonar).13 For instance, Kattenborn et al.7 and this work employed UAV aerial imagery,
taking advantage of the big development that UAVs have experienced during the last decade,
whose increased level of autonomy and decreased cost have facilitated their use in a wide range
of applications. In addition, the models proposed by Refs. 10, 11, and 14 as well as this work
employ MS imagery, which involves the acquisition of visible, near-infrared, and short-wave
infrared images in several broad wavelength bands. The consideration of near-infrared
(NIR) spectral bands in combination with the visible bands allows to increase the interclass
variability among different types of vegetation types or crops. Therefore, MS imagery is used
by many of the reviewed habitat mapping works9–11,14 as well as in related crop classification
problems.4,8,15,16 In the case of the habitat mapping model proposed by Timm and McGarigal10

for salt marsh and coastal dunes habitats, it combines the MS imagery with the information
provided by a digital elevation model (DEM) to deal with the complex classification of this
type of habitats.

The machine learning-based techniques employed for habitat mapping can be divided among
those that use traditional machine-learning-based algorithms9,10,12 and the ones based on deep
learning models.3,6,7,11,13,14 Among the first group, Diesing et al.12 proposed the use of the ran-
dom forest (RF) algorithm for marine habitat mapping using features extracted from sonar
images. Timm and McGarigal10 made use of an RF model to classify the features extracted from
MS satellite imagery in combination with DEM data. Kobler et al.9 proposed a decision tree
(DT)-based method that assigns a label to each pixel of a satellite image considering the spectral
values of a kernel (window of adjacent pixels) and its adjacency-event matrix. The above-
mentioned studies are mainly based on low-level, manually designed features (e.g., textures and

Table 1 Machine-learning solutions for habitat mapping.

Work Problem Imagery Data type Model
Multi-

spectral
Temporal

info.

9 Habitat classification Satellite (IKONOS 2) MS DT ✓

10 Habitat classification Satellite (QuickBird) MS, DEM RF ✓

11 Habitat classification Satellite (RadpidEye) MS 2D-CNN
(Alexnet)

3 Habitat classification Satellite (Worldview-2) RGB 2D-CNN
(ResNet)

7 Habitat classification Aerial RGB FCN (UNet)

12 Marine habitat classification Underwater Sonar RF

13 Marine habitat classification Underwater Sonar 2D-CNN

14 Marine habitat classification Satellite (WorldView-2) MS FCN ✓

6 Marine habitat classification Underwater RGB 2D-CNN
(DenseNet)

This
work

Habitat mapping Aerial MS 2D-CNN ✓ ✓
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roughness) as input to machine-learning classifiers, which require significant domain expertise
and can be prone to demonstrate poor performance in obtaining high-level representative
features.5 On the contrary, deep learning provides end-to-end learning and has shown on multiple
occasions better performance than traditional-machine learning methods (e.g., RF) on related
problems such as crop monitoring.14,17 Among the deep learning-based solutions for habitat
mapping, we can distinguish two approaches: the use of CNNs architectures for image classi-
fication or the use of fully connected networks (FCN) for pixel-wise segmentation. Both
approaches typically use patch-based methods where the patches extracted from the georefer-
enced mosaics are used for training the deep learning models. In CNN-based models for remote
sensing, each patch (typically of smaller size) has assigned a unique label, and the deep learning
models are trained to predict a class, or a probability distribution over all classes, for each input
image patch. However, in FCN-based approaches, each pixel in the patch can have a different
label and thus the FCN-based models return the predicted labels for all pixels in the patch. FCN-
based approaches are proposed by Kattenborn et al.7 for terrestrial habitat mapping and by Li
et al.14 for marine habitat mapping. CNNs-based approaches are proposed in Refs. 3, 6, 11, and
13 for terrestrial or marine habitat mapping, where Refs. 3, 6, and 11 employ transfer learning
through the use of a pretrained network indicated between brackets in the model column of
Table 1. This work proposes a 2D-CNN-based model that classifies multitemporal MS aerial
imagery. To the authors’ knowledge, this work presents the first deep learning solution for habitat
mapping that leverages the spatial, MS, and temporal information of aerial imagery. However,
in the state-of-the-art of related vegetation classification problems such as crop classification,
we can find several recent works that exploit the temporal information of remotely sensed
imagery.4,5,8,15,17 When compared with monotemporal classification, the incorporation of tem-
poral information may boost the model accuracy, enhancing the interclass variability thanks to
the characteristic growth patterns of the target vegetation.5,17 This has motivated us to propose a
CNN-based model for habitat mapping that incorporates temporal information. For instance,
among the deep learning solutions for crop classification that take into account temporal infor-
mation, Rußwurm and Korner15 and Ndikumana et al.17 made use of recurrent neural networks
for learning the temporal and spectral features of pixel-wise time series, achieving high clas-
sification accuracies without exploiting the spatial information of the imagery. Another example
is the 3D-CNN-based model proposed by Ji et al.8 to extract the spatiotemporal features from
multitemporal MS satellite images. Finally, both Benedetti et al.4 and Feng et al.5 proposed
hybrid approaches that combine RNN architectures for learning temporal features with CNN
architectures for learning spatial features. This work proposes a 2D-CNN architecture that makes
use of grouped convolutions with the intention of extracting spatial features by independent
temporal groups, reducing the computational complexity of the network, and making the net-
work less likely to overfit with limited training data.

3 Materials and Methods

This section starts by the introduction of the study area and habitats and follows with a descrip-
tion of the habitat data collection and characteristics and ends with an introduction to CNNs.

3.1 Study Area

The study area is located in the Maharees, a 5-km long tombolo located in the Dingle Peninsula
in south-west of Ireland. Figure 1 represents the study area delimited with a red polygon over a
map at different scales. The study area consists of a sand dune ecosystem that contains several
annexed habitats of the EU Habitats Directive,1 which lists the habitats that are considered to be
of most nature conservation importance at a European level. The four habitats considered for
the classification and their respective Habitat Directive1 Annex I habitat codes are: white dunes
(2120), gray dunes (2130), embryonic shifting dunes (2170), and dune slacks (2190). Sample
images of the four habitat types are displayed in Fig. 2. The white dunes (also known as marran
dunes) are partially stabilized hills or ridges of sand that occur along the seaward edge of the
main sand dune system. The gray dunes are a type of fixed dunes, stabilized ridges, or hills of
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sand with a more or less complete cover of vegetation and a variable species composition usually
characterized by grassland or heath communities. The embryonic or shifting dunes are unstable
low hills or mounds of sand that occur on the upper extreme of the littoral zone or seashore. And
finally, dune slacks are nutrient-enriched wet areas that occur in hollows or depressions either
behind or between dune ridges or in blowouts in the sand dunes.19

3.2 Habitat Imagery and Reference Data

This study considers three MS mosaics of the Maharees study site built from the UAV aerial
imagery collected by an MS sensor on the May 26, July 28, and October 8, 2020. The MS
images in UTM/WGS84 projection cover a 1 × 0.7 km2 area with a spatial resolution of
5 cm and contain the reflectance values of five spectral bands: blue, green, red, red-edge, and
NIR. The MS mosaics were obtained by the combination of the image tiles collected by the MS
sensor20 using ProvEye proprietary software.21 In summary, this software uses back and forward
projection in combination with automated algorithms for feature detection of control points that
are employed for a correct mosaicking (fusion) process. The software uses upward facing irra-
diance values to normalize for inflight illumination variation by creating a correction coefficient.
Surface reflectance is derived using calibration panels of known albedo taken before and after
each flight. This ensures that radiometric variation between mosaics is minimized while still
maintaining the spectral integrity of the data. As reference data, this work considers a shapefile
with the information about the types of habitats provided by a team of ecologists that labeled
multiple sample points across the study site with in situ measurements.22,23 Each on-the-spot
habitat label has associated a square polygon that delimits the extent of the habitat label provided
by the expert. The reason why the labeling process was done on the field is the difficulty of the
classification of the habitats from the remotely sensed images (such as the ones shown in Fig. 2)

Fig. 1 Study area located in the Maharees, Co. Kerry Ireland. Images obtained thanks to Google
Earth Engine.18

Fig. 2 Sample images of the four Annex I habitats present in the Maharees.
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caused by the similarity of the habitats characteristics. Figure 3 represents a true color
representation of the MS mosaic in July 2020 with the on-the-spot habitat labels represented
in different colors according to the four habitat types. The heterogeneous distribution of the
habitat types can be seen in Fig. 3, where habitats 2130 and 2190 cover 67% and 23% of the
total study area, whereas the minority habitats of 2120 and 2170 only correspond to 2% and 8%,
respectively.

In short, the Maharees dataset consists of three MS mosaics corresponding to the same area in
the Maharees (Ireland) obtained at three different dates during May, July, and October of 2020. A
shapefile with training information on point-based habitat labels was also available information.
Both the Maharees MS mosaics and habitat information was provided through the iHabiMap
project.22,23

3.3 Convolutional Neural Networks

CNNs are variants of artificial neural networks that exploit the structural features of the data
(e.g., spatial, temporal, or spectral) through the use of convolutional layers.24 CNNs have shown
outstanding performance across a wide range of image classification problems, both at an image
level (image classification problems) and at a pixel level (semantic segmentation problems). This
is done by successively convolving 1D, 2D, or 3D filters, respectively, along one, two, or three
dimensions of the input information. As most of the image classification applications in com-
puter vision deal with monotemporal multimedia images, the majority of the research employs
2D-CNNs.24 In this case, 2D convolutions are applied along the two spatial dimensions of the
images (without considering any type of temporal information) with the objective of learning the
spatial patterns that characterize the different classes.

CNN architectures for image classification problems are typically formed by several con-
volutional layers that learn the patterns (working as a feature extraction function) and followed
by one or several fully connected (FC) layers that learn to discriminate the different classes of the
problem.24 CNN architectures can include other types of layers with the intention of improving
the performance and convergence of the network, such as max-pooling layers, which down-
sample the input representation.24 For a comprehensive description of CNNs and the different
types of layers, the reader is referred to Ref. 24.

Fig. 3 A true color composite of the Maharees mosaic collected in July 2020 and habitat labels
based on field data. These data were kindly provided by the EPA-funded iHabiMap project.22,23
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In this work, we make use of grouped convolutions that refer to convolutional layers whose
convolutional filters are divided into g groups and each of them are applied to a portion of the
layer input. The concept of grouped convolution was first introduced in AlexNet25 for distrib-
uting the model over two graphics processing units. Namely, the input feature map is divided into
g groups and n∕g filters convolve separately the input groups (being n the number of filters of the
convolutional layer). In this way, the numbers of filters n of the grouped convolutional layer
stays the same, but the depth of the filters and the number of parameters of the convolutional
layer is reduced by g in comparison with the convolutional layers that do not consider grouped
convolutions (which is equivalent to consider a unique group g ¼ 1).

For a better illustration of typical 2D-CNN architectures for image classification, Fig. 4
shows an example of two analogous CNN architectures (a) without grouped convolutions
(g ¼ 1) and (b) with grouped convolutions (g ¼ 2), for the classification of eight-channel
input image in four different classes. Both CNNs consist of two convolutional layers
(whose filters are represented by gray cuboids with red borders), two pooling layers and two
FC layers. In the example architecture shown in Fig. 4(b), the 32 filters of the first convolu-
tional layer are split into two 4-depth filter groups, where each group convolves four of the
eight channels of the input image. Analogously, the 64 filters of the second convolutional layer
are split into two 16-depth filter groups that are applied to each of the two groups of the input
feature maps.

4 Multitemporal Multispectral Deep Learning-Based Model for Habitat
Classification

This section describes the proposed habitat mapping methodology to classify multitemporal MS
images by means of a novel CNN architecture.

4.1 Processing of the Remotely Sensed Imagery

In order to extract the multitemporal MS images to train the deep learning model from the
Maharees mosaics, the patch-based extraction method described below was followed with the
intention of generating more samples for training the model and of mitigating the imbalance of
the training dataset. From each polygon p, np patches of dimensions w × h are extracted by
randomly sampling the same area from the three MS mosaics of the Maharees corresponding
to May, July, and October 2020. The number of patches extracted from each polygon p is equal
to cj · areap∕ðw · hÞ, where areap is the area of polygon p, and cj a constant value associated to
habitat j. Namely, the patch width w and height h are both set to 25. And with the purpose of
mitigating the imbalance of the training dataset, the constant cj that controls the number of
images extracted from a polygon p labeled as class j is set to c1∶4 ¼ f6;1; 4;2g, extracting higher
number of images from the least frequent habitats (white dunes and embryonic shifting dunes).
No oversampling/undersampling is applied to the test dataset, where cj ¼ 2 for the four classes.
Next, the resulting five-band sampled patches from the three MS mosaics are concatenated
resulting in image of size w × h × 15 (with the fifteen-depth dimension corresponding to the
five spectral bands at three different dates) that can be fed into the proposed 2D-CNN model
described in Sec. 4.2.

Fig. 4 (a) CNN architecture and (b) CNN architecture with grouped convolutions (g ¼ 2).
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4.2 Multitemporal Multispectral CNN-Based Architecture

The proposed 2D-CNN classifier takes as input a multitemporal MS image and predicts the most
probable habitat label ŷi among the four considered habitat types. The proposed CNN archi-
tecture, which is sketched in Fig. 5, is composed of three convolutional layers (with 765 and
1539 filters), two pooling layers and three FC layers (with 1023, 513, and 4 units). The grouped
convolutional layers apply three groups (g ¼ 3) of 3 × 3 kernels with no padding and a stride of
1. Note that the grouped convolutions are applied considering three temporally independent
groups, where each group of filters is applied to feature maps that belong to the same time (either
May, July or October). The two pooling layers consider 2 × 2 average pooling strategy that
reduces by half the spatial dimensions of input feature maps.24 In addition, all the layers have
associated with a rectified linear unit with the exception of the last FC layer, which considers the
softmax activation function that normalizes the output of the network to a probability distribution
over the four predicted output classes.24

The categorical cross entropy loss function is optimized using the Adagrad optimizer and
considering a weighting of the loss function based on the number of samples of each class,26

which is suitable for unbalanced datasets. Moreover, during the training process, 10% of the
training data is reserved for validation, and the model is trained following a validation-based
early stopping strategy during at most 700 epochs considering a batch size of 32. The model
was implemented by utilizing Python and Tensorflow Keras libraries.27

5 Results

This section analyzes the performance of the proposed approach for habitat classification with
multitemporal MS imagery. Moreover, the proposed approach is compared with an MS CNN-
based model in order to analyze the effect of including temporal information on the classification
performance.

5.1 Evaluation Strategy

To reduce variability and ensure consistent evaluation of the model performance, we apply k-fold
cross validation with k equal to two. In this way, the labeled polygons (described in Sec. 4.1) are
divided in a randomized stratified fashion into two complementary subsets and during each cross
validation round a deep learning model is trained on one subset leaving out the other subset for
testing the model performance. This approach ensures there is no overlap between the images
used for training and testing the deep learning models, testing in this way the performance of the
models over unseen images extracted from labeled polygons unused for training the models.

Furthermore, in order to prove the statistical improvement in the performance of the proposed
model with state-of-the-art techniques, a 5 × 2 cross validation paired t test proposed by
Dietterich et al.28 is considered. In the 5 × 2 cross validation paired t hypothesis test, five rep-
lications of twofold cross validation are carried out and their classification errors are used to
calculate the t̃ estimate, which under the null hypothesis of no statistical difference between
the models follows a t distribution with 5 degrees of freedom. The results of this analysis can
be found in Sec. 5.3.

Fig. 5 The CNN architecture proposed for habitat classification from multitemporal MS images.

Perez-Carabaza, Boydell, and O’Connell: Habitat classification using convolutional neural networks. . .

Journal of Applied Remote Sensing 042406-8 Oct–Dec 2021 • Vol. 15(4)



The parametrization and training options described in Sec. 4.2 are considered for all the
experiments presented in this work.

5.2 Analysis of the Model Performance

The multitemporal MS images that compose the training and test sets are extracted from the
labeled polygons following the batch extraction strategy defined in Sec. 4.1.

The following metrics, which are obtained by averaging the individual metrics obtained over
the five replications over the two-fold cross validation test sets, summarize the performance of
the proposed CNN-based classifier; overall accuracy: 0.88 and macroaveraged F1-score: 0.78.
Hence, on average, 88% of the images from the test datasets were correctly identified by the
proposed model. These metrics show a high-prediction performance for a complex habitat clas-
sification problem. Table 2 shows the average confusion matrix obtained over the test sets
through five replications of twofolds cross validations by the comparison of the reference ground
truth labels and predicted labels. The four types of dunes are classified with high accuracies,
including the least frequent habitat white dunes (corresponding to Annex I code 2120), which
obtained 95% of the image patches correctly classified. The class embryonic shifting dunes is
the one with lower accuracies due to its similarity to humid dune slacks.

5.3 Analysis of the Influence of Temporal Information

This section analyzes the benefits of including temporal information into the habitat classifica-
tion problem. To this end, the performance of the proposed multitemporal MS 2D-CNN-based
model is compared with an MS 2D-CNN-based model represented in Fig. 6. 2D-CNNMS-based
models have been previously used by several habitat mapping state-of-the-art works.3,6,11

In addition, a 2D-CNN monospectral (grayscale) model was employed by Berthold et al.13 for
habitat classification from sonar imagery. The MS model used for the comparison classifies MS
image patches that contain the B, G, R, red-edge, and NIR spectral values corresponding to
the same area and time. Hence, the depth of the input image patch is reduced by a third in

Table 2 Average confusion matrix obtained through twofold cross validation by the proposed
model over the Maharees test images.

Predicted habitats

Reference
habitats Habitat

White
dunes

Gray
dunes

Embryonic
shifting dunes

Humid dune
slacks

White dunes 0.96 0.04 0.00 0.00

Gray dunes 0.02 0.92 0.03 0.03

Embryonic shifting dunes 0.00 0.14 0.69 0.18

Humid dune slacks 0.00 0.04 0.16 0.79

Fig. 6 CNN architecture for habitat classification from MS images.
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comparison with the multitemporal MS image patch used by the proposed model (represented in
Fig. 5). In order to keep the number of parameters of the MS model equal to the number of
parameters of the proposed model (17,501,815 parameters), the number of groups of filters
g of the first convolutional layer is set to one. The second and third convolutional layers consider
g ¼ 3, although contrary to the proposed architecture the groups do not attend to a temporal
dimension but instead all the feature maps correspond to the same time (either May, July, or
October). Keeping the same number of parameters in the proposed and comparative models
allows us to analyze what is the advantage of including temporal information for the habitat
mapping classification problem avoiding undesired effects in the performance of the model
caused by a change of the number of parameters of the model.

The results of the comparison are shown in Table 3, whose columns inform about: the model
being used, the temporal information of the image patches used, the average overall accuracy
obtained over the five replications of the twofold cross validations, and the p value of 5 × 2 the
hypothesis test28 that compares each model with the proposed multitemporal MS model. As
shown by the p values in the last column of Table 3, the hypothesis tests allow rejection with
a significance level of 0.05 of the null hypotheses of equal performance of the proposed multi-
temporal model and the monotemporal models that employ the spectral information obtained in
May (p value ¼ 0.03), in July (p value ¼ 0.03), and in October (p value = 0.04). The better
results obtained by the proposed multitemporal MS model in comparison with the ones obtained
by the MS model show the benefits of incorporating temporal information through the proposed
CNN-based architecture.

6 Discussion

The mapping of coastal dune habitats is necessary for monitoring ongoing changes on coastal
dunes habitats in order to develop/update the best management practices to mitigate possible
climatic or anthropogenic negative impacts on this high-environmental value habitats. Machine
learning-based methods for habitat mapping like the one proposed in this work provide a great
advantage over the current field-based mapping methodology by the reduction of the financial
and man-power cost.

The results of this analysis show the power of deep learning and UAV imagery to classify the
Annex I coastal dune habitats in the Maharees, Ireland. The proposed multitemporal MS CNN-
based model achieves an overall accuracy of 88% over the Maharees test dataset. This is a high
classification accuracy for a complex classification problem, whose low interclass variability
requires on the field classification made by environmental experts, and a good result in com-
parison with the accuracies achieved by other habitat mapping models,11,13 including the model
proposed by Timm and McGarigal10 for the mapping of a coastal dune habitat in Massachusetts,
United States. Furthermore, the experimental analysis indicates the advantage of including tem-
poral information, allowing to improve around 5% the overall classification accuracy over MS
2D-CNN-based models, a technique used by several state-of-the-art habitat mapping works.3,6,11

In order to improve the classification performance of the proposed method, we consider two
possible directions. On the one hand, the gathering of a higher number of sample points from
the embryonic shifting dunes habitat could help to reduce the number of misclassifications with

Table 3 Comparison of the 2D-CNN multitemporal model with 2D-CNN monotemporal models.

Model Samples

Overall accuracy

p value1 2

Multitemporal MS model (Fig. 5) May–July–October 0.88 ± 0.02 0.88 ± 0.01 —

MS model (Fig. 6) May 0.82 ± 0.03 0.83 ± 0.01 0.03

July 0.82 ± 0.02 0.82 ± 0.01 0.03

October 0.77 ± 0.02 0.79 ± 0.03 0.04
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the similar habitat humid dune slacks. On the other hand, the inclusion of topographical informa-
tion by the deep learning model could help to improve the results, as was the case in the RF model
proposed by Timm and McGarigal10 for a coastal dune habitat in Massachusetts, United States.

7 Conclusions and Future Research Lines

This work proposes a deep learning approach using CNNs to classify four coastal habitat types
from multitemporal MS aerial imagery of the Maharees (Ireland) corresponding to three different
dates in 2020. The proposed approach is tested over unseen multitemporal MS aerial imagery
following a cross-validation approach, obtaining an overall classification accuracy of 88%.
Moreover, the experimental results show that the proposed approach benefits the inclusion of
multitemporal imagery.

As future work, we intend to make use of the new aerial imagery fromMaharees and different
Irish habitats data that is planned to be gathered by the EPA-funded iHabiMap project.23 This
new imagery will allow us to assess the model’s performance not only over unseen areas but also
with data corresponding to a different year than the one used for training. In addition, the new
data from other habitats would allow us to test similar deep learning models on additional types
of Annex I habitats located in different regions of Ireland.
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