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Sara Pérez-Carabaza

Ireland’s Centre for Applied AI
University College Dublin, Dublin, Ireland

Vasileios Syrris, Pieter Kempeneers and Pierre Soille

European Commission,
Joint Research Centre (JRC), Ispra, Italy

ABSTRACT

Automated crop identification tools are of interest to a wide
range of applications related to the environment and agri-
culture including the monitoring of related policies such as
the European Common Agriculture Policy. In this context,
this work presents a parcel-based crop classification system
which leverages on 1D convolutional neural network super-
vised learning capacity. For the training and evaluation of
the model, we employ open and free data: (i) time series of
Sentinel-2 optical data selected to cover the crop season of
one year, and (ii) a cadastre-derived database providing de-
tailed delineation of parcels. By considering the most domi-
nant crop types and the temporal features of the optical data,
the proposed lightweight approach discriminates a consider-
able number of crops with high accuracy.

Index Terms— Crop classification, Multi-temporal re-
mote sensing images, Convolutional Neural Networks.

1. INTRODUCTION

This work deals with the Census Parcel-based Crop Classi-
fication (CPCC) problem, a sub-category of the land cover
classification that addresses the systematic identification and
mapping of regions on the Earth surface. The CPCC problem
regards the detailed classification of agricultural areas, which
are frequently organized by parcels. An agricultural parcel is
defined as “a continuous area of land on which a single crop
group is cultivated by a single farmer” [5]. CPCC is indeed
a class of Parcel Crop Classification (PCC) problem where
the parcel locations have been mapped thanks to the cadas-
tral registration of state authorities and cartographic services.
The CPCC problem has an important application related to
the Common Agricultural Policy (CAP) which provides di-
rect payments to farmers via the European Agricultural Guar-
antee Fund, and organizes actions to respond to market insta-
bilities or environmental challenges. The CAP relies on a set
of comprehensive administrative registers, ortho-photos and
on-the-spot checks on subsidy applications managed by the
Member States [5]. Although the majority of the declared in-
formation is valid, regular and costly on-the-spot checks of

some of the registered parcels are necessary in order to en-
sure that financial aids are only paid for eligible agricultural
areas [5]. The introduction of automated methods would be
of great benefit due to: i) the reduction of the number of the
costly on-the-spot checks, and ii) the better targeting of the
field surveys on areas with a higher probability of incorrect
assessment. These considerations have motivated the present
work that proposes an effective CPCC method which builds
upon the power of deep learning models and the availabil-
ity of high spatial and temporal resolution satellite imagery
provided by the Copernicus Programme. This novel CPCC
schema exploits the temporal and spectral information from
Sentinel-2 optical satellite imagery through a temporal convo-
lutional neural network (TempCNN) in order to discriminate
numerous different crop types.

The paper is organized as follows. Section 2 reviews re-
lated state-of-the-art methods. Section 3 describes the pro-
posed CPCC model. Section 4 analyses its performance and
Section 5 summarizes the main conclusions of the work.

2. RELATED WORK

In parcel crop classification problems, Satellite Image Time
Series (SITS) have taken an outstanding role [8, 3]. Contrary
to the classification of other land covers such as urban areas
where temporal information have less discriminative power,
the temporal information is very informative for crop clas-
sification and allows the models to learn in a relatively effi-
cient way the different crop growing patterns [8]. Many of
the state-of-the-art approaches to CPCC employ traditional
machine learning methods, which are applied to the spectral
bands values directly and to temporal phenological features
extracted from the SITS as a combination of the information
in the spectral bands (e.g. vegetation indices such as NDVI
or EVI). For instance, [2] proposes a method based on a De-
cision Tree (DT) that considers as features the mean value of
the pixels within each parcel for several spectral bands (Red,
Green, Blue and NIR) and three vegetation indices. Besides,
a Random Forest (RF) method has been proposed in [1] to
classify 9 crop types in Khorezm (Uzbekistan) considering as
features the NDVI and EVI mean and standard deviation val-



Table 1: Related machine learning approaches to CPCC.

Work Satellite Imagery Model Classes
[1] RapidEye RF 9 crops
[2] GeoEye-1 DT 12 crops
[3] Landsat, S1 1D CNN, 2D CNN 11 crops
[4] S1 RNN 11 crops

This work S2 TempCNN 20 crops

ues of five RapidEye bands for each parcel. Recently, deep
learning models such as Recurrent Neural Networks (RNN)
are showing better performance to SITS classification than
traditional machine learning methods [4, 3]. Following this
approach, [4] proposes an RNN architecture for classifying 11
crop types in Camargue region (France) using Sentinel-1 (S1)
images. In [3] the optical (Landsat) and S1 image time series
are considered to classify 11 crop types through two CNN
models: a 1D CNN that exploits the spectral patterns and a
2D CNN with convolutions acting on the spatial domain.

Table 1 summarizes basic features of the considered ma-
chine learning approaches for CPCC: type of satellite imagery
used, type of model and number of crops classified. In this
work we propose a CPCC model based on temporal convo-
lutional neural networks that exploits the SITS spectral and
temporal information of the parcels in order to classify 20
types of crops. This high number of crop types is a chal-
lenging task as the probability of having crops with similar
spectral and temporal profiles that lead to misclassification
errors is higher. The main reason we selected TempCNN for
the proposed CPCC model was its ability to learn the tempo-
ral patterns in lower training times in comparison with other
deep learning models that exploit the temporal dimension like
RNN [8]. Temporal information is very substantial in crop
classification as it allows to learn the characteristic growth
patterns of the crops [4]. For instance, authors in [8] found
that for crop seasonality the temporal features of SITS were
more important than spatial patterns derived from medium
resolution images learned by 2D CNN networks for a related
PCC problem. This work aims to test the capacity of Tem-
pCNN in the challenging CPCC problem, and to the authors’
knowledge this is the first work that tests the performance of
TempCNN for crop classification with Sentinel-2 imagery.

3. MULTI-SPECTRAL TIME SERIES CLASSIFIER

This section describes the data processing methodology and
the proposed CPCC system based on TempCNNs.

3.1. Data Processing Methods

In this work, we employ S2 products derived from the twin
satellites S2A and S2B that provide high-resolution multi-
spectral and multi-temporal imagery, accessible via the
Copernicus Open Access Hub1. S2 products consist of 13

1https://scihub.copernicus.eu/

Fig. 1: (a) A true color S2 composite (b) Crop types over S2
grayscale composite.

spectral bands with a spatial resolution which differentiates
among 10m, 20m and 60m, depending on the particular
band. Due to the small size of some of the parcels under
classification this work employs the four spectral bands at
the highest (10 m) spatial resolution: blue B02 (490 nm),
green B03 (560 nm), red B04 (665 nm) and near infrared
(NIR) B08 (842 nm). The S2 products are 100×100 km2

ortho-images in UTM/WGS84 projection, delivered in sep-
arate tiles according to the Military Grid Reference System
(MGRS) in GML-JPEG 2000 format. In this work, we se-
lected Level-2A S2 tiles that completely cover the land extent
of the DUN-SINGPAG georeferenced database described af-
terwards and correspond to the crop season from 1 October
2017 to 30 September 2018. In order to mitigate the effect
of cloud coverage a bi-monthly median composite is built,
considering a selection of cloud-free pixel values of the S2
images that refer to a period of two weeks. The following
categories from Scene Classification Layer (SCL) provided
by Level-2A products were considered as cloudy or unfit for
selection: no data, saturated or defective, dark area pixels,
clouds and snow. In addition, missing values (for which no
cloud-free pixel was available in the two weeks period) were
interpolated using the nearest cloud-free pixels in time and
a Savitzky-Golay filter was applied to the whole time series.
Accordingly, a 24-length multi-variable time series where
each time step corresponds to one S2 composite associated to
a period of two weeks is built. Fig.1 (a) displays a true color
representation of the resulting SITS corresponding to the first
fortnight of July 2018 (where a yellow line delimits the study
area).

The DUN-SIGPAC database2 contains information about
the crop type of the parcels in Catalonia, reported by farmers
(as mandated by the European crop subsidy program) follow-
ing the single agrarian declaration (Declaració Única Agrària,
DUN) and made accessible by the Spanish Agricultural Land
Geographic Information System (SIGPAC) public adminis-
trative database. The DUN-SIGPAC database is provided an-
nually and contains several attributes for each parcel such as

2https://dadesobertessituam.opendata.arcgis.com/datasets



Fig. 2: Parcel crop identification model.

the crop type, location and parcel identifier. This work con-
siders the 20 most frequent crops for classification and analy-
sis, corresponding approximately to 80% of the total number
of parcels as reported in the 2018 DUN-SIGPAC shapefile.
The dataset under study corresponds to a total of 568,853
parcels, with a mean parcel extent of 0.18 Ha and among
which olive trees is the most frequent crop. For the needs of
the present study, we translated the parcel information (par-
cel identifier and crop type) of the shapefile into raster data
projected to the Universal Transverse Mercator (UTM) co-
ordinate system by considering a spatial resolution of 10 m
that matches the spatial resolution of the selected S2 imagery.
Fig. 1 (b) displays the discrete-valued map (over the S2 im-
agery visualized in greyscale) that represents the classes with
a color map that associates different colors for each of the 20
crops. The remaining pixels that do not correspond to any of
the classes under study (i.e. non-crop areas and other less fre-
quent crop types) appear in black in the zoom-in region. The
images with the parcel identifiers are used to compute the av-
erage values of the S2 SITS over all the pixels within each
parcel (parcel region pooling).

3.2. CPCC Deep learning based Classifier

The proposed deep learning model is based on temporal con-
volutional neural networks, that is, deep neural network ar-
chitectures composed of one or several 1D convolutional lay-
ers where 1D kernels convolve along the temporal dimension.
Therefore, this type of CNN is suitable for time series classi-
fication problems like CPCC. When applying TempCNN to
SITS, lower 1D convolutional layers aim at capturing small
scale temporal variations, while deeper layers focus on over-
all seasonal patterns [8].

The proposed CPCC classifier predicts the most proba-
ble crop type among the 20 selected crops given the multi-
spectral time series for each parcel. The classification pro-
cess is sketched in Fig. 2. The CPCC model takes as input a
vector with 4 × 24 values: the mean value of the pixels that
constitute one parcel for every of the S2 Red, Green, Blue
and NIR spectral bands and for the 24 15-day composites that
cover an entire year. The input SITS feeds the TempCNN
which assigns to each parcel a unique label ŷi among the 20
considered types of crops. Then, the predicted crop label is
assigned to all the pixels within parcel i. Fig. 2 also shows
the TempCNN architecture used by the CPCC model, which

is composed of three 1D convolutional layers and three dense
layers with 512, 256 and 20 neurons respectively. The kernel
size of the three 1D convolutional layers is set to 3 and the
number of filters is equal to 64, 128 and 256 respectively.
The activation function set to all the layers is the rectified
linear unit (ReLU) with the exception of the last one which
considers the softmax activation function. Besides, in order
to avoid overfitting, the following regularization mechanisms
were considered: dropout layers with a dropout rate 0.2 are
added after the first two Fully Connected (FC) layers, batch
normalization layers are considered after convolutional lay-
ers and early stopping mechanism is used during training; a
stratified 5% of the training data have been used during the
training for validation purposes. Finally, the categorical cross
entropy as loss function and the Adam algorithm with a learn-
ing rate 10−4 have been chosen for the optimization process.
The model was implemented using the Keras library on the
JRC Big Data Platform [7]. Jupyter notebooks are available
upon request.

4. EXPERIMENTAL RESULTS

For the evaluation of the performance of the CPCC system,
75% of the parcels have been assigned to the training set and
the remaining 25% to the test set, following a stratified ran-
dom sampling. The following metrics summarize the per-
formance of the proposed CPCC classifier over the test set;
overall accuracy: 0.845, weighted accuracy by the frequency
of samples in each class: 0.848, macro-averaged F1-score:
0.863 and overall pixel accuracy (i.e. percentage of well clas-
sified pixels): 0.92. Hence, 84% of the parcels and 92% of
the pixels from the test set have been correctly identified by
the model. Besides, the similar value of the weighted accu-
racy (0.848) to the overall accuracy (0.845) indicates that the
model is not biased to the more frequent classes. The con-
fusion matrix obtained by the comparison of the reference
crop types and the predicted labels with respect to the test
set, is shown in Table 2. Each element cij of the confusion
matrix corresponds to the number of crop types predicted as
crop type i known to be crop type j. In Table 2, the recall
(user’s accuracy) values per class are placed at the last col-
umn, the precision (producer’s accuracy) values per class and
the F1-scores per class are placed at the last rows of the ta-
ble. F1-scores per class close to 1 are a good indicator of
the classification performance, as it implies a low number of
false positive (high precision value) and false negative pre-
dictions (high recall value). Table 2 allows to observe how
the classification performance depends on the crop type. The
classification results for some of the crop types such as corn
(recall equal to 0.93), rice (recall equal to 0.99) and rapeseed
(recall 0.95) are very good, as the model classifies correctly
more than 90 % of the crop types of the test set. Other crop
types such as lying fallow and almond trees show lower clas-
sification performance. The case of lying fallow may be due



Table 2: Confusion matrix of the results obtained by CPCC system over DUN-SIGPAC dataset.

Predicted crops

R
ef

er
en

ce
cr

op
s

Label BA OT WH VI AT LF PT AL CO RI OT RG PT RA PE AT HT OT RY SU Recall
Barley 21783 237 724 21 73 511 6 46 37 1 279 66 1 22 49 0 3 1 4 2 0.91

Olive trees 298 26140 79 402 1783 791 92 59 17 2 55 26 28 3 12 11 143 39 2 0 0.87
Wheat 1134 57 12186 1 24 141 0 24 33 0 112 36 1 15 20 1 1 0 11 2 0.88

Vineyards 19 444 1 11177 256 337 24 8 2 0 5 7 4 0 1 4 25 1 0 1 0.91
Almond trees 94 3351 15 223 8867 620 51 10 4 0 5 7 31 1 2 6 51 3 1 0 0.67
Lying fallow 495 2045 104 561 1072 9240 92 95 60 3 185 105 56 19 24 26 61 14 1 8 0.65
Peach trees 4 104 4 46 34 74 3485 3 4 1 5 1 56 0 0 24 7 4 0 0 0.90

Alfalfa 36 37 15 8 17 149 6 5577 28 0 88 140 7 6 3 4 2 2 12 0 0.91
Corn 88 12 25 5 1 49 6 21 3585 0 17 33 1 0 2 2 0 0 1 5 0.93
Rice 0 0 0 0 0 0 0 0 2 818 0 0 0 0 0 0 0 0 0 0 0.99
Oats 391 100 136 10 30 219 2 93 12 0 4493 139 0 14 5 0 4 0 6 1 0.80

Ray-grass 59 36 22 0 2 85 2 109 22 0 111 3867 3 4 0 1 1 1 1 1 0.89
Pear trees 1 45 2 11 19 39 83 14 4 0 1 0 1480 0 0 39 3 3 0 0 0.85
Rapeseed 24 6 24 0 3 19 0 5 1 0 8 13 0 2005 3 0 0 0 0 0 0.95
Peas (PE) 81 12 9 2 1 34 0 4 7 0 18 2 1 1 1283 0 0 0 0 1 0.88

Apple trees 3 24 3 12 12 26 29 13 2 0 2 1 34 0 0 1083 4 0 0 0 0.87
Hazelnut trees 2 225 2 38 61 45 1 2 0 0 0 2 3 0 0 1 1953 0 0 0 0.84
Orange trees 0 116 0 1 6 22 1 0 0 0 0 2 1 0 0 0 2 380 0 0 0.72

Rye 15 9 13 0 1 7 0 8 1 0 10 6 0 0 0 0 0 0 225 0 0.76
Sunflower 10 2 3 2 2 27 0 4 7 0 3 4 0 2 0 0 0 0 0 208 0.76
Precision 0.89 0.79 0.91 0.89 0.72 0.74 0.9 0.92 0.94 0.99 0.83 0.87 0.87 0.96 0.91 0.9 0.86 0.85 0.85 0.91
F1-score 0.9 0.83 0.9 0.9 0.69 0.69 0.9 0.91 0.93 0.99 0.81 0.88 0.86 0.95 0.9 0.88 0.85 0.78 0.81 0.83

to the confusion of terrains declared as unused with remaining
crops in some of the parcels declared as lying fallow, whereas
the lower figures in relation to almond trees are mostly due to
the growth profile similarity with other trees like olive trees.

Furthermore, the proposed model is compared with an
RNN architecture proposed in [4] for a crop classification
problem with S1 imagery. This complex deep learning ar-
chitecture (9,465,876 parameters in contrast to the 2,625,236
parameters of the proposed TempCNN model) shows lower
performance on the DUN-SIGPAC dataset (overall accuracy
of 0.819 vs the 0.845 of the proposed model) while demon-
strating a much higher computational cost (2.7 h vs 0.5 h).
Therefore, we can conclude that the proposed approach based
on TempCNN is an efficient approach, reaching higher accu-
racy in lower training time.

5. CONCLUSIONS

This work proposes a deep learning approach for multi-
spectral time series classification based on temporal convo-
lutional neural networks. The proposed parcel crop classi-
fication system tackles the classification of a large number
of crop classes, including crops with similar growth profiles,
such as different types of fruit trees. The proposed CPCC
system achieves an accuracy over 85% for the majority of the
crop types. As future research, we will consider the inclusion
of the spatial information through the use of 3D CNNs.
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