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A QUANTITATIVE APPROACH TO DISJOINTLY

NON-SINGULAR OPERATORS

MANUEL GONZÁLEZ AND ANTONIO MARTINÓN

Abstract. We introduce and study some operational quantities which characterize the dis-

jointly non-singular operators from a Banach lattice E to a Banach space Y when E is order

continuous, and some other quantities which characterize the disjointly strictly singular opera-

tors for arbitrary E.

1. Introduction

The disjointly strictly singular operators (DSS operators) were introduced in [12] as those

operators T : E → Y from a Banach lattice E into a Banach space Y such that T is not an

isomorphism in any subspace of E generated by a disjoint sequence of non-zero vectors. These

operators have been useful in the study of the structure of Banach lattices (see [2], [3] and

references therein). More recently, the disjointly non-singular operators (DN-S operators) where

introduced in [6] (see also [1]) as those operators T : E → Y that are not strictly singular in any

subspace of E generated by a disjoint sequence of non-zero vectors. Note that the properties in

the definition of these two classes are opposite.

In this paper we study the classes of operators DSS and DN-S from a quantitative point

of view by introducing four operational quantities Γd(T ), ∆d(T ), τd(T ) and κd(T ). When E is

order continuous, T ∈ DN-S(E,Y ) is equivalent to Γd(T ) > 0, or κd(T ) > 0; and for E arbitrary,

T ∈ DSS(E,Y ) is equivalent to ∆d(T ) = 0, or τd(T ) = 0. These four quantities are inspired by

some others introduced by Schechter [19] in his study of Fredholm theory.

In [6], the quantity β(T ) = inf(xn) lim infn→∞ ‖Txn‖, where the infimum is taken over the

normalized disjoint sequences (xn) in E, was defined. We show that T ∈ DN-S(E,Y ) if and only

if β(T ) > 0 when E is order continuous. This result was proved in [1, Theorem 5.7] using different

techniques. We also prove that β(T ) ≤ Γd(T ), but there is no C > 0 such that Γd(T ) ≤ Cβ(T )

for each T ∈ L(ℓ2, Y ); hence Γd and β are not equivalent. Moreover, τd(T ) ≤ ∆d(T ), but the

quantities τd and ∆d are not equivalent.

We also prove some inequalities for these operational quantities; e.g., for T, S ∈ L(E,Y ), we

have Γd(T + S) ≤ Γd(T ) + ∆d(S). When E is order continuous, this inequality allows us to

improve the stability result for DN-S operators under DSS perturbations obtained in [6].

Notation. Throughout the paper X and Y are Banach spaces, and E is a Banach lattice. The

unit sphere of X is SX = {x ∈ X : ‖x‖ = 1}, and for a sequence (xn) in X, [xn] denotes the

closed subspace generated by (xn).
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All the operators are linear and bounded, and L(X,Y ) denotes the set of all the operators

from X into Y . Given T ∈ L(X,Y ), its injection modulus is j(T ) := inf‖x‖=1 ‖Tx‖. Recall that

j(T ) > 0 if and only if T is an isomorphism from X onto TX. We denote by TM the restriction

of T ∈ L(X,Y ) to a closed subspace M of X.

If (Ω,Σ, µ) is a measure space, the domain of a measurable function f : Ω → R is the set

D(f) = {t ∈ Ω : f(t) 6= 0}, and 1A denotes the characteristic function of A ∈ Σ. We write Lp

for Lp[0, 1], 1 ≤ p ≤ ∞.

2. Preliminaries

An operator T ∈ L(X,Y ) is strictly singular if there is no closed infinite dimensional subspace

M of X such that the restriction TM is an isomorphism, and T is upper semi-Fredholm if its

kernel is finite dimensional and its range is closed.

An operator T ∈ L(E,Y ) is disjointly strictly singular if there is no disjoint sequence of non-

zero vectors (xn) in E such that T[xn] is an isomorphism. We denote by DSS(E,Y ) the set of all

T ∈ L(E,Y ) which are disjointly strictly singular. The class DSS was introduced by Hernández

and Rodŕıguez-Salinas in [12]. More information on this class can be found in [11].

An operator T ∈ L(E,Y ) is disjointly non-singular if there is no disjoint sequence of non-

zero vectors (xn) in E such that T[xn] is strictly singular. We denote DN-S(E,Y ) the set of

all T ∈ L(E,Y ) which are disjointly non-singular. These operators were recently introduced in

[6], and have been studied by Bilokopytov in [1]. They are related to the tauberian operators,

defined by Kalton and Wilansky [13]; in fact, they coincide when E = L1 (see [4] and [6]). We

refer to [9] and [5] for additional information on tauberian operators.

The disjointly non-singular operators can be characterized as follows.

Theorem 2.1. [6, Theorem 2.8] For T ∈ L(E,Y ), the following assertions are equivalent:

(1) T is disjointly non-singular.

(2) There is no disjoint sequence of non-zero vectors (xn) in E such that the restriction T[xn]

is a compact operator.

(3) For every disjoint sequence of non-zero vectors (xn) in E, the restriction T[xn] is an

upper semi-Fredholm operator.

(4) For every normalized disjoint sequence (xn) in E, lim infn→∞ ‖Txn‖ > 0.

It was proved in [4, Proposition 14] and [6, Theorem 3.15] that, for 1 ≤ p < ∞, DSS(Lp, Y )

is the perturbation class of DN-S(Lp, Y ).

Representation of Banach lattices. It is well-known (see [16, Theorem 1.b.14]) that every

order continuous Banach lattice with a weak unit E admits a representation as a Köthe function

space, in the sense that there exists a probability space (Ω,Σ, µ) so that

• L∞(µ) ⊂ E ⊂ L1(µ) with E dense in L1(µ) and L∞(µ) dense in E,

• ‖f‖1 ≤ ‖f‖E ≤ 2‖f‖∞ when f ∈ L∞(µ),

and the order in E is the order induced by L1(µ).

The following fact will allow us to state some of our results omitting the existence of a weak

unit in the Banach lattice.
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Lemma 2.2. Let E be an order continuous Banach lattice. Then each sequence in E is contained

in a closed ideal of E with a weak unit.

Proof. If (fn) is a bounded sequence in E, then e =
∑∞

n=1 |fn|/2
−n is a weak unit in the closed

ideal generated by (fn). �

We also will need the following result.

Lemma 2.3. Let E be an order continuous Banach lattice with a weak unit, and let f ∈ E.

If (Ak) is a disjoint sequence in the σ-algebra Σ associated to the representation of E, then

limk→∞ ‖f1Ak
‖E = 0.

Proof. Let Bk = ∪∞
i=kAi. Since the norm on E is order continuous, (Bk) is decreasing and

limk→∞ µ(Bk) = 0 we have limk→∞ ‖f1Bk
‖E = 0, hence limk→∞ ‖f1Ak

‖E = 0. �

3. Operational quantities

An operational quantity is a map a : L(X,Y ) → [0,∞) satisfying certain conditions. Given

two operational quantities a and b, we write a ≤ b when a(T ) ≤ b(T ) for each T ∈ L(X,Y ).

Moreover, the quantities a and b are equivalent if there exist positive constants c1 < c2 such that

c1a ≤ b ≤ c2a.

We are interested in some classical operational quantities and some new ones that we introduce

here. To describe the classical ones, let S(X) be set of all closed infinite dimensional subspaces of

X. Then, given an operational quantity a : L(X,Y ) → [0,∞), we define two derived quantities

i a and s a as follows:

(1) i a(T ) := inf
M∈S(X)

a(TM ) and s a(T ) := sup
M∈S(X)

a(TM ),

where T ∈ L(X,Y ).

Note that a ≤ b implies ia ≤ ib and sa ≤ sb. Taking the operator norm as a in (1), for

T ∈ L(X,Y ) we obtain

• Γ(T ) := i ‖T‖ = infM∈S(X) ‖TM‖ and

• ∆(T ) := sΓ(T ) = supM∈S(X) Γ(TM ) = supM∈S(X) infN∈S(M) ‖TN‖.

The quantities Γ = i ‖ · ‖ and ∆ = iΓ were introduced by Gramsch and Schechter (see [19, 20]),

who proved that Γ(T ) > 0 if and only if T is upper semi-Fredholm, and ∆(T ) = 0 if and only if

T is strictly singular.

To introduce the new quantities, we denote by d(E) the set of all sequences of disjoint non-

zero vectors of E. Now, given an operational quantity a : L(F, Y ) → [0,∞) defined for F = E

and F ∈ d(E), for each T ∈ L(E,Y ) we define two derived quantities id a and sd a as follows:

(2) id a(T ) := inf
(xn)∈d(E)

a(T[xn]) and sd a(T ) := sup
(xn)∈d(E)

a(T[xn]) .

Again, a ≤ b implies ida ≤ idb and sda ≤ sdb. We are interested in two operational quantities

derived from the norm, whose notation is inspired by that of Schechter:

• Γd(T ) := id ‖T‖ = inf(xn)∈d(E) ‖T[xn]‖ and

• ∆d(T ) := sd Γd(T ) = sup(xn)∈d(E) Γd(T[xn]) = sup(xn)∈d(E) inf(yn)∈d([xn]) ‖T[yn]‖,
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that will allow us to characterize the operators in DN-S and DSS.

In a similar way, for T ∈ L(X,Y ) we consider two classical operational quantities derived

from the injection modulus j:

• τ(T ) := s j(T ) = supM∈S(X) j(TM ) and

• κ(T ) := i τ(T ) = infM∈S(X) τ(TM ) = infM∈S(X) supN∈S(M) j(TN ),

and derive two new quantities for T ∈ L(E,Y ):

• τd(T ) := sd j(T ) = sup(xn)∈d(E) j(T[xn]) and

• κd(T ) := id τd(T ) = inf(xn)∈d(E) τd(T[xn]) = inf(xn)∈d(E) sup(yn)∈d([xn]) j(T[yn]),

The operational quantities τ = s j and κ = i τ were introduced in [19] and [7], where it was

proved that τ(T ) = 0 if and only if T is strictly singular, and κ(T ) > 0 if and only if T is upper

semi-Fredholm. We will show that the quantities τd and κd characterize the operators in DSS

and DN-S, respectively.

The proof of the next lemma shows that for each closed infinite dimensional subspace of a

Banach space with a monotone basis (xn), in particular with a 1-unconditional basis, there is a

block basis (yk) such that [yk] is ‘arbitrarily close’ (in the sense of the gap between subspaces;

see [14, Section IV.2]) to a subspace N of M ; so the action of an operator on [yk] is also close

to its action on N . This idea will appear several times in our arguments.

Lemma 3.1. Let X be a Banach space with a monotone basis (xn), let M ∈ S(X) and 0 < ε < 1.

Then there exist a normalized block basis (yk) of (xn) and a subspace N ∈ S(M) such that for

every operator T ∈ L(X,Y ),

∣

∣‖T[yk]‖ − ‖TN‖
∣

∣ ≤ ε‖T‖ and
∣

∣j(T[yk ])− j(TN )
∣

∣ ≤ ε‖T‖.

Proof. We will choose (yk) and N so that the distance between the unit spheres of N and [yk] is

smaller than ε; hence for each n ∈ SN there is y ∈ S[yk] with ‖n− y‖ < ε, and for each z ∈ S[yk]

there is m ∈ SN with ‖z −m‖ < ε. Clearly this fact implies our result.

Let r = ε/8. Inductively, we will find integers 1 = j1 ≤ l1 < j2 ≤ l2 ≤ · · · and a sequence (ai)

of scalars so that yk =
∑lk

i=jk
aixi satisfies ‖yk‖ = 1 and dist(yk,M) < r/2k+1.

Clearly, y1 exists; so assume that yk has been found for k ≤ k0. Let (x∗i ) be the sequence in

X∗ such that x∗i (xj) = δi,j . Since M ∩
(

∩
lk0
i=1N(x∗i )

)

is infinite dimensional, yk0+1 exists.

Since (yk) is a monotone basic sequence (comment after [15, Definition 1.a.10]), there exists

a sequence (y∗k) in X∗ with ‖y∗k‖ ≤ 2 and y∗k(yj) = δk,j.

For each k ∈ N we choose mk ∈ M with ‖yk −mk‖ < r/2k+1, and define K ∈ L(X) by

Kx :=

∞
∑

k=1

y∗k(x)(yk −mk).

Then K is bounded with ‖K‖ ≤
∑∞

k=1 ‖y
∗
k‖ · ‖yk −mk‖ < r; hence I −K is bijective. Moreover

(I −K)yk = mk for each k ∈ N. We take N = [mk] = (I −K)([yk]). Note that

(I −K)−1 =
∞
∑

l=0

K l = I − L with ‖L‖ ≤
∞
∑

l=1

rl = r/(1− r) < 2r.



A QUANTITATIVE APPROACH TO DN-S OPERATORS 5

For n ∈ SN we take y = ‖(I − L)n‖−1(I − L)n ∈ S[yk]. Then 1 − 2r < ‖(I − L)n‖ < 1 + 2r

and

‖n− y‖ =

∥

∥(‖(I − L)n‖ − 1)n + Ln
∥

∥

‖(I − L)n‖
≤

4r

1− 2r
< 8r = ε.

Similarly, for each z ∈ S[yk], we have m = ‖(I −K)z‖−1(I −K)z ∈ SN and ‖z −m‖ < ε. �

A Banach lattice is called atomic if its order is induced by a 1-unconditional basis.

Proposition 3.2. Let E be an atomic Banach lattice. For an operator T ∈ L(E,Y ),

Γd(T ) = Γ(T ) , ∆d(T ) = ∆(T ) , τd(T ) = τ(T ) and κd(T ) = κ(T ) .

Proof. The inequality Γd(T ) ≥ Γ(T ) is valid in general. The converse inequality is obtained by

applying Lemma 3.1. Suppose without loss generality that ‖T‖ = 1. Given 0 < ε < 1 and a

subspace M of E, there is a block basis (yk) of the unconditional basis of E such that [yk] is

arbitrarily close to some subspace N of M , and consequently

∣

∣‖T[yk]‖ − ‖TN‖
∣

∣ ≤ ε .

Hence Γd(T ) ≤ ‖T[yk]‖ ≤ ‖TN‖+ ε ≤ ‖TM‖+ ε. Therefore Γd(T ) ≤ Γ(T ).

The other equalities can be proved in a similar way. �

Corollary 3.3. We have sd Γd = sd Γ and id τd = id τ . Moreover Γd = id Γd = id Γ and

τd = sd τd = sd τ .

Proof. For each (xn) ∈ d(E), (xn) is a 1-unconditional basis; hence [xn] is an atomic Banach

lattice. Therefore

sd Γd(T ) = sup
(xn)∈d(E)

Γd(T[xn]) = sup
(xn)∈d(E)

Γ(T[xn]) = sd Γ(T ).

The proof of id τd = id τ , id Γd = id Γ and sd τd = sd τ is identical, and for the remaining

equalities, note that id id a = id a and sd sd a = sd a for any quantity a. �

4. Operational quantities derived from the norm

Our first result gives some alternative expressions for Γd(T ) in terms of the classical quantities.

Proposition 4.1. For T ∈ L(E,Y ), we have Γd(T ) = idΓ(T ) = id∆(T ).

Proof. Note that Γd = id ‖ · ‖. Applying id to the inequalities Γ ≤ ∆ ≤ ‖ · ‖, we obtain

id Γ ≤ id ∆ ≤ id ‖ · ‖, and Corollary 3.3 completes the proof. �

It was proved in [6] that T ∈ L(E,Y ) is disjointly non-singular if and only if for every

(fn) ∈ d(Lp), the restriction T[fn] is upper semi-Fredholm. Next we give a quantitative version

of this result when E is an order continuous Banach lattice. Since Γd(T ) = idΓ(T ) by Proposition

4.1, our result says that if T ∈ DN-S(E,Y ) then the restrictions T[xn] are “uniformly” upper

semi-Fredholm, in the sense that inf(xn)∈d(E) Γ(T[xn]) > 0.

Theorem 4.2. Let E be an order continuous Banach lattice, and let T ∈ L(E,Y ). Then

T ∈ DN-S if and only if Γd(T ) > 0.
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Proof. Suppose that Γd(T ) > 0. For every (fn) ∈ d(E) we have that Γ(T[fn]) > 0, hence T[fn] is

upper semi-Fredholm. Consequently, T is disjointly non-singular (Theorem 2.1).

Conversely, we assume that Γd(T ) = 0. By Theorem 2.1, it is enough to construct a normalized

sequence (hn) ∈ d(E) such that limn→∞ ‖Thn‖ = 0.

For each n ∈ N there exists a normalized sequence (fn,k)k ∈ d(E) such that ‖T[(fn,k)k ]‖ < 1/n,

and by Lemma 2.2 we can assume that the functions fn,k (n, k ∈ N) are contained in a closed

ideal of E which has a representation as a Köthe space.

Let g1 = f1,1. As limk→∞ µ(D(f2,k)) = 0, by Lemma 2.3 we have limk→∞ ‖g11D(f2,k)‖E = 0.

So we can find k2 > 1 such that

‖g1‖ = 1 , ‖Tg1‖ < 1 and ‖g11D(f2,k2 )
‖E <

1

22
.

Then, taking g2 = f2,k2 , a similar argument using Lemma 2.3 shows that there exists k3 > k2

such that

‖g2‖ = 1 , ‖Tg2‖ <
1

2
and ‖gi1D(f3,k3 )

‖E <
1

23
for 1 ≤ i < 3.

In this way we find a sequence k1 = 1 < k2 < k3 < · · · such that, taking gl = fl,kl for each

l ∈ N, we have

‖gl‖ = 1 , ‖Tgl‖ <
1

l
and ‖gi1D(fl,kl+1

)‖ <
1

2l+1
(1 ≤ i < l + 1).

Let Ak = ∪∞
j=k+1D(gj) and h̃k := gk − gk1Ak

. For k < l we have D(h̃k) ∩ D(gl) = ∅ and

D(h̃l) ⊂ D(gl), hence D(h̃k) ∩D(h̃l) = ∅. Thus the sequence (h̃k) is disjoint. Since ‖gn‖ = 1,

|1− ‖h̃n‖| ≤ ‖gn − h̃n‖ = ‖gn1An‖

≤

∥

∥

∥

∥

∥

∞
∑

i=n+1

gn1D(gi)

∥

∥

∥

∥

∥

≤
∞
∑

i=n+1

‖gn1D(gi)‖

≤
∞
∑

i=n+1

1

2i
=

1

2n
.

Taking hn = ‖h̃n‖
−1h̃n, we obtain (hn) ∈ d(E) is normalized and

‖hn − gn‖ ≤

∥

∥

∥

∥

∥

h̃n

‖h̃n‖
−

gn

‖h̃n‖

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

gn

‖h̃n‖
− gn

∥

∥

∥

∥

=
‖h̃n − gn‖

‖h̃n‖
+

|1− ‖h̃n‖| ‖gn‖

‖h̃n‖

≤
2‖h̃n − gn‖

‖h̃n‖
≤

1

2n−1‖h̃n‖
.

Consequently limn→∞ ‖hn − gn‖ = 0, and ‖Thn‖ ≤ ‖T (hn − gn)‖ + ‖Tgn‖ and ‖Tgn‖ < 1/n;

hence limn→∞ ‖Thn‖ = 0. �

Next we give some alternative expressions for ∆d(T ).

Proposition 4.3. For T ∈ L(E,Y ), we have ∆d(T ) = sd∆(T ) = sdΓ(T ).

Proof. Note that ∆d(T ) = sdΓd(T ) and, by Corollary 3.3, sd Γ(T ) = sd Γd(T ). So it is enough

to observe that sd a(T ) = sd sd a for any quantity a. �
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Proposition 4.4. T ∈ L(E,Y ) is disjointly strictly singular if and only if ∆d(T ) = 0.

Proof. As ∆d(T ) = sd∆(T ), we have that ∆d(T ) = 0 means that for every (xn) ∈ d(E) we have

that ∆(T[xn]) = 0; that is, all the restrictions T[xn] are strictly singular. By [6, Proposition 2.6],

that is equivalent to T being disjointly strictly singular. �

Obviously, given T ∈ L(E,Y ) and a scalar λ, Γd(λT ) = |λ|Γd(T ) and ∆d(λS) = |λ|∆d(S).

The following result complements these facts.

Proposition 4.5. For operators T, S ∈ L(E,Y ), we have the following inequalities:

(1) Γd(T + S) ≤ Γd(T ) + ∆d(S) and

(2) ∆d(T + S) ≤ ∆d(T ) + ∆d(S).

Proof. Let (xn) ∈ d(E). Then ‖(T + S)[xn]‖ ≤ ‖T‖ + ‖S[xn]‖, and taking the infimum over

(xn) ∈ d(E) we obtain Γd(T + S) ≤ ‖T‖+ Γd(S). Therefore

Γd(T + S) ≤ Γd

(

(T + S)[xn]

)

≤ ‖T[xn]‖+ Γd(S[xn]) ≤ ‖T[xn]‖+∆d(S),

and taking again the infimum over (xn) ∈ d(E) we get (1).

Let (xn) ∈ d(E). From (1) we derive

Γd((T + S)[xn]) ≤ Γd(T[xn]) + ∆d(S[xn]) ≤ Γd(T[xn]) + ∆d(S),

and taking the supremum over (xn) we get ∆d(T + S) ≤ ∆d(T ) + ∆d(S). �

Since ∆d(T ) ≤ ‖T‖, Theorem 4.2 and part (1) of Proposition 4.5 improve the results proved

in [6] that, under some conditions, DN-S(E,Y ) is stable under perturbation by small norm

operators and DSS operators.

Corollary 4.6. Let E be an order continuous Banach lattice. Then

(1) DSS(E,Y ) is a closed subspace of L(E,Y );

(2) DN-S(E,Y ) is an open subset of L(E,Y );

(3) If S ∈ DSS(E,Y ), then Γd(T + S) = Γd(T ), for all T ∈ L(E,Y );

in particular, T ∈ DN-S(E,Y ) implies T + S ∈ DN-S(E,Y ).

Proof. (1) If T, S ∈ DSS(E,Y ), then ∆d(T + S) ≤ ∆d(T ) + ∆d(S) = 0, so T + S ∈ DSS(E,Y );

and ∆d(λT ) = |λ|∆d(T ) implies λT ∈ DSS(E,Y ).

(2) If T ∈ DN-S(E,Y ) and S ∈ L(E,Y ) with ‖S‖ < Γd(T ), then Γd(T+S) ≥ Γd(T )−∆d(S) ≥

Γd(T )− ‖S‖ > 0. Hence T + S ∈ DN-S(E,Y ).

(3) Let S ∈ DSS(E,Y ), so ∆d(S) = 0. For all T ∈ L(E,Y ),

Γd(T + S) ≤ Γd(T ) + ∆d(S) = Γd(T ),

and similarly Γd(T ) = Γd(T + S − S) ≤ Γd(T + S). �

Part (2) of Corollary 4.6 was proved by Bilokopytov [1] using different techniques.

A closed subspace M of E is said to be dispersed if there is no sequence (xn) ∈ d(E) such

that limn→∞ dist(xn,M) = 0 (see [6, Definition 2.1]).
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Remark 4.7. Let M be a non-dispersed closed subspace of E. Denoting by ND(M) the set of

all closed subspaces of M which are non-dispersed in E, it readily follows from Lemma 3.1 that,

for T ∈ L(E,Y ),

Γd(T ) = inf
M∈ND(E)

‖TM‖ and ∆d(T ) = sup
M1∈ND(E)

inf
M2∈ND(M1)

‖TM2
‖.

5. Operational quantities derived from the injection modulus

Next result gives other expressions for the quantity τd.

Proposition 5.1. For T ∈ L(E,Y ), we have τd(T ) = sdκ(T ) = sdτ(T ).

Proof. As j ≤ κ ≤ τ , we have τd = sdj ≤ sdκ ≤ sdτ . Moreover, sd τ = sd τd by Corollary 3.3.

Hence

sd τ(T ) = sd τd(T ) = sd sd j(T ) = sd j(T ) = τd(T ),

because sd sd a = sd a for every quantity a. �

Proposition 5.2. Let T ∈ L(E,Y ). Then T ∈ DSS if and only if τd(T ) = 0.

Proof. We have that τd(T ) = 0 is equivalent to j(T[xn]) = 0, for every sequence (xn) ∈ d(E).

This means that T is not an isomorphism on any subspace [xn] generated by a disjoint sequence.

That is, T is disjointly strictly singular. �

Proposition 5.3. For an operator T ∈ L(E,Y ), we have κd(T ) = idκ(T ) = idτ(T ).

Proof. By Proposition 5.1, κ ≤ τd ≤ τ , hence idκ ≤ idτd = κd ≤ idτ . Moreover, arguing as in the

proof of Corollary 3.3 we get idκ = id κd = id id τd = id τd = id τ , and the result is proved. �

Like Theorem 4.2, by Proposition 5.3 the following result says that T ∈ DN-S(E,Y ) if and

only if the restrictions T[xn] with (xn) ∈ d(E) are “uniformly” upper semi-Fredholm, in the sense

that inf(xn)∈d(E) κ(T[xn]) > 0.

Theorem 5.4. Let E be an order continuous Banach lattice and let T ∈ L(E,Y ). Then T ∈

DN-S if and only if κd(T ) > 0.

Proof. By Proposition 5.3, κd(T ) = idτ(T ). Then if κd(T ) > 0 and (fn) ∈ d(E), τ(T[fn]) > 0.

Hence T[fn] is not strictly singular, and T is disjointly non-singular by Theorem 2.1.

Conversely, suppose that κd(T ) = 0. By Theorem 2.1, in order to show that T is not disjointly

non-singular, it is enough to find a normalized (hn) ∈ d(E) such that limn→∞ Thn = 0.

For each n ∈ N there exists a normalized sequence (fn,k)k ∈ d(E) such that

τd(T[fn,k]k) <
1

n
,

and by Lemma 2.2 we can assume that the vectors fn,k are contained in a closed ideal that

admits a representation as a Köthe space.

As j(T[f1,k ]k) < 1, there exists g1 ∈ [(f1,k)k] with ‖Tg1‖ < 1. From limk→∞ µ(D(f2,k)) = 0,

by Lemma 2.3 we have limk→∞ ‖g11D(f2,k)‖E = 0. So we can to take k2 > 1 such that

‖g1‖ = 1 , ‖Tg1‖ < 1 and ‖g11D(f2,k2 )
‖E <

1

22
.
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Moreover, from

j(T[(f2,k)k≥k2
]) ≤ τd(T[(f2,k)k]) <

1

2
,

we obtain that there is g2 ∈ [(f2,k)k≥k2 ] with ‖Tg2‖ < 1/2. As limk→∞ µ(D(f3,k)) = 0, by

Lemma 2.3 we get limk→∞ ‖gi1D(f3,k)‖E = 0, so we can take k3 > k2 such that

‖g2‖ = 1 , ‖Tg2‖ <
1

2
and ‖gi1D(f3,k3 )

‖E <
1

23
(i ≤ i < 3) .

Now, proceeding as in the proof of Theorem 4.2, we take An = ∪∞
j=n+1D(gj) and obtain a

normalized sequence hn := ‖gn − gn1An‖
−1(gn − gn1An) in d(E). Since limn→∞ ‖Thn‖ = 0, we

conclude that T /∈ DN-S(E,Y ). �

To compare Theorem 5.4 with Theorem 4.2, observe that κd ≤ Γd.

Proposition 5.5. For operators T, S ∈ L(E,Y ), we have the following inequalities:

(1) τd(T + S) ≤ τd(T ) + ∆d(S) and

(2) κd(T + S) ≤ κd(T ) + ∆d(S).

Proof. Since j(T + S) ≤ j(T ) + ‖S‖, for each (xn) ∈ d(E) we get

j(T + S) ≤ j((T + S)[xn]) ≤ j(T[xn]) + ‖S[xn]‖ ≤ τd(T ) + ‖S[xn]‖,

and taking the infimum over (xn) we obtain j(T + S) ≤ τd(T ) + Γd(S).

(1) For (xn) ∈ d(E), we have j((T + S)[xn]) ≤ τd(T[xn]) + Γd(S[xn]) ≤ τd(T ) + Γd(S[xn]), and

taking the supremum over (xn) we get τd(T + S) ≤ τd(T ) + ∆d(S).

(2) Applying (1), τd((T + S)[xn]) ≤ τd(T[xn]) + ∆d(S[xn]) ≤ τd(T[xn]) + ∆d(S) for each (xn) ∈

d(E). So taking the infimum over (xn), we obtain κd(T + S) ≤ κd(T ) + ∆d(S). �

From Proposition 5.5, we could derive an alternative proof of Corollary 4.6.

Remark 5.6. As in Remark 4.7, we can give expressions for κd(T ) and τd(T ) in terms of the

restrictions of T to non-dispersed subspaces. For T ∈ L(E,Y ),

τd(T ) = supM∈ND(E) j(TM ) and κd(T ) = infM1∈ND(E) supM2∈ND(M1) j(TM2
).

6. The quantity β

For an operator T ∈ L(E,Y ), the following quantity was defined in [6]:

β(T ) := inf
{

lim inf
n→∞

‖Txn‖ : (xn) normalized disjoint in E
}

.

We have shown in Theorem 4.2 that the quantity Γd characterizes DN-S(E,Y ) for E an order

continuous Banach lattice. Moreover, it is related with β as follows:

Proposition 6.1. Every operator T ∈ L(E,Y ) satisfies β(T ) ≤ Γd(T ).

Proof. Note that

β(T ) = inf(xn)∈d(E) lim infn→∞

∥

∥

∥
T xn

‖xn‖

∥

∥

∥
≤ inf(xn)∈d(E) ‖T[xn]‖ = Γd(T ). �

It was proved in [6, Proposition 3.1] (see [4] for p = 1) that, for 1 ≤ p < ∞, an operator

T ∈ L(Lp, Y ) is disjointly non-singular if and only if β(T ) > 0. Now we extend this result.

Proposition 6.2. Let E be an order continuous Banach lattice. Then an operator T ∈ L(E,Y )

is disjointly non-singular if and only if β(T ) > 0.
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Proof. If β(T ) > 0, then condition (4) in Theorem 2.1 is satisfied, hence T ∈ DN-S(E,Y ).

Suppose that β(T ) = 0. Then for every n ∈ N we can find a normalized disjoint sequence

(fn,k)k∈N with ‖Tfn,k‖ < 1/n for every k ∈ N, and proceeding as in the proof of Theorem 4.2,

for each n we select kn so that taking gn = fn,kn we have ‖gi1D(gn)‖ < 2−n for 1 ≤ i < n. The

sequence (gn) is almost disjoint (there exists a normalized disjoint sequence (hn) in E such that

limn→∞ ‖gn − hn‖E = 0). Then limn→∞ ‖Thn‖ = 0, hence T /∈ DN-S(E,Y ). �

By Proposition 6.1, β ≤ Γd. In some cases, these two quantities coincide; for example, if

1 ≤ p < 2 and M is a dispersed subspace of Lp, then the quotient map QM : Lp → Lp/M

satisfies β(QM ) = 1 (see [6]), hence Γd(QM ) = ‖QM‖ = 1. However, using the fact proved by

Odell and Schlumprecht in [18] that the Banach space ℓ2 is arbitrarily distortable, we show that

these two quantities are not equivalent:

Example 6.3. For every λ > 1 and ε > 0, there exists a Banach space Yλ isomorphic to ℓ2 and

an operator Tλ ∈ L(ℓ2, Yλ) such that 0 < λ · β(Tλ) ≤ Γd(Tλ) + ε. Thus there is no C > 0 such

that Γd ≤ C · β.

Proof. Since ℓ2 is arbitrarily distortable [18], for every λ > 1 there is a norm | · |λ on ℓ2 equivalent

to the usual one ‖ · ‖2 such that, for each closed infinite dimensional subspace M of ℓ2,

(3) sup

{

|x|λ
|y|λ

: x, y ∈ M, ‖x‖2 = ‖y‖2 = 1

}

> λ.

We denote Yλ = (ℓ2, | · |λ) and Tλ the identity operator from ℓ2 onto Yλ.

Note that the operator Tλ is bounded below, and passing to a closed infinite dimensional

subspace of ℓ2 (that we can identify with ℓ2, with the lattice structure determined by any

orthonormal basis) we can assume that ‖Tλ‖ < Γd(Tλ) + ε.

By inequality (3), λj(Tλ) ≤ ‖Tλ‖ and there exists g1 with ‖g1‖2 = 1 and λ · |g1|λ < Γd(Tλ)+ε.

Moreover, by the denseness of the span of the basis (en) of ℓ2, we can choose g1 ∈ [e1, . . . , em1
] for

some m1 ∈ N. Similarly, there exists g2 ∈ [ei : i > m1] with ‖g2‖2 = 1 and λ · |g2|λ < Γd(Tλ)+ ε,

and again we can choose g2 ∈ [em1+1, . . . , em2
] for some m2 > m1 in N.

In this way we get a sequence (gn) ∈ d(ℓ2) such that λ · |gn|λ = λ · |Tλgn|λ ≤ Γd(Tλ)+ε, which

implies λ · β(Tλ) ≤ Γd(Tλ) + ε. �

7. Order between operational quantities

The order between the operational quantities derived from the norm and the injection modulus

j is showed in the following diagram, where “ → ” means “ ≤ ”:

j κ κd τd τ

Γ Γd ∆d ∆ ‖ · ‖

The vertical arrows in the above diagram connect quantities that characterize the same classes

of operators: upper semi-Fredholm, DN-S, DSS and strictly singular. We observe that none of

these pairs are equivalent quantities.
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Indeed, the quantities κ and Γ are not equivalent because ℓ2 is arbitrarily distortable. Hence,

by [8, Theorem 3.4 and Corollary 3.5], there exist spaces Yn ≃ ℓ2 and operators Tn ∈ L(ℓ2, Yn)

(n ∈ N) such that n · κ(Tn) ≤ Γ(Tn). Since ℓ2 is an atomic Banach lattice, κd(Tn) = κ(Tn) and

Γd(Tn) = Γ(Tn); hence κd and Γd are not equivalent.

Similarly, by [17, Proposition 1], the operators Tn ∈ L(ℓ2, Yn) in the previous paragraph

satisfy n · τ(Tn) ≤ ∆(Tn), showing that τ and ∆ are not equivalent, and also that τd and ∆d are

not equivalent.

7.1. Open Questions. We finish the paper stating some open questions.

Question 1. Is κd ≤ D · β for some constant D > 0?

If E is an order continuous Banach lattice then E is an ideal in E∗∗ [16, Theorem 1.b.16], hence

the quotient E∗∗/E is a Banach lattice [16, Section 1.a]. Moreover, every operator T ∈ L(E,Y )

induces a residuum operator T co ∈ L(E∗∗/E, Y ∗∗/Y ) defined by T co(x∗∗ + E) = T ∗∗x∗∗ + Y .

Question 2. Suppose that E is order continuous and T ∈ DN-S(E,Y ). Is T co ∈ DN-S?

It was proved in [4] that the answer is positive in the case E = L1. We refer to [10] for

information on the residuum operator T co.

In [6, Theorem 3.16] it is shown that for 1 ≤ p < ∞, DSS(Lp, Y ) is the perturbation class

of DN-S(Lp, Y ) in the sense that when DN-S(Lp, Y ) 6= ∅, K ∈ L(Lp, Y ) is DSS if and only if

T +K ∈ DN-S for each T ∈ DN-S(Lp, Y ).

Question 3. Suppose that E is an order continuous Banach lattice and DN-S(E,Y ) 6= ∅.

Is DSS(E,Y ) the perturbation class of DN-S(E,Y )?
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Birkhäuser, 2010.
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