A QUANTITATIVE APPROACH TO DISJOINTLY
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ABSTRACT. We introduce and study some operational quantities which characterize the dis-
jointly non-singular operators from a Banach lattice E to a Banach space Y when E is order
continuous, and some other quantities which characterize the disjointly strictly singular opera-

tors for arbitrary E.

1. INTRODUCTION

The disjointly strictly singular operators (DSS operators) were introduced in [12] as those
operators T : E — Y from a Banach lattice E into a Banach space Y such that T is not an
isomorphism in any subspace of F generated by a disjoint sequence of non-zero vectors. These
operators have been useful in the study of the structure of Banach lattices (see [2], [3] and
references therein). More recently, the disjointly non-singular operators (DN-S operators) where
introduced in [6] (see also [I]) as those operators T : E — Y that are not strictly singular in any
subspace of F generated by a disjoint sequence of non-zero vectors. Note that the properties in
the definition of these two classes are opposite.

In this paper we study the classes of operators DSS and DN-S from a quantitative point
of view by introducing four operational quantities I'4(T"), Ay(T), 74(T) and k4(T). When FE is
order continuous, T € DN-S(FE,Y) is equivalent to I'y(T') > 0, or k4(T") > 0; and for E arbitrary,
T € DSS(E,Y) is equivalent to Ay(T") = 0, or 74(T") = 0. These four quantities are inspired by
some others introduced by Schechter [19] in his study of Fredholm theory.

In [6], the quantity 3(T) = inf(,,)liminf, . || T7,[|, where the infimum is taken over the
normalized disjoint sequences (x,) in F, was defined. We show that 7' € DN-S(E,Y") if and only
if 3(T") > 0 when F is order continuous. This result was proved in [Il, Theorem 5.7] using different
techniques. We also prove that 5(T') < T'4(T"), but there is no C > 0 such that I'y(T) < C5(T)
for each T' € L(¢2,Y); hence I'y and 8 are not equivalent. Moreover, 74(T) < Ay4(T), but the
quantities 74 and Ay are not equivalent.

We also prove some inequalities for these operational quantities; e.g., for T, S € L(E,Y), we
have T'g(T + S) < T'4(T) + Aq(S). When E is order continuous, this inequality allows us to
improve the stability result for DN-S operators under DSS perturbations obtained in [6].

Notation. Throughout the paper X and Y are Banach spaces, and E is a Banach lattice. The
unit sphere of X is Sx = {x € X : ||z| = 1}, and for a sequence (x,) in X, [x,] denotes the

closed subspace generated by (z;,).
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All the operators are linear and bounded, and L(X,Y") denotes the set of all the operators
from X into Y. Given T' € L(X,Y), its injection modulus is j(T') := inf| ;=1 [|Tz|. Recall that
J(T') > 0 if and only if 7" is an isomorphism from X onto T'X. We denote by T the restriction
of T € L(X,Y) to a closed subspace M of X.

If (Q,%, ) is a measure space, the domain of a measurable function f : Q — R is the set
D(f) ={t € Q: f(t) # 0}, and 14 denotes the characteristic function of A € ¥. We write L,
for L,[0,1], 1 <p < o0.

2. PRELIMINARIES

An operator T' € L(X,Y) is strictly singular if there is no closed infinite dimensional subspace
M of X such that the restriction T is an isomorphism, and T is upper semi-Fredholm if its
kernel is finite dimensional and its range is closed.

An operator T' € L(E,Y) is disjointly strictly singular if there is no disjoint sequence of non-
zero vectors (z,) in E such that T, | is an isomorphism. We denote by DSS(E,Y’) the set of all
T € L(E,Y ) which are disjointly strictly singular. The class DSS was introduced by Herndndez
and Rodriguez-Salinas in [12]. More information on this class can be found in [11].

An operator T' € L(E,Y) is disjointly non-singular if there is no disjoint sequence of non-
zero vectors (x,) in E such that Tj, ; is strictly singular. We denote DN-S(E,Y’) the set of
all T € L(E,Y) which are disjointly non-singular. These operators were recently introduced in
[6], and have been studied by Bilokopytov in [I]. They are related to the tauberian operators,
defined by Kalton and Wilansky [13]; in fact, they coincide when E = L (see [4] and [6]). We
refer to [9] and [5] for additional information on tauberian operators.

The disjointly non-singular operators can be characterized as follows.

Theorem 2.1. [0, Theorem 2.8] For T € L(E,Y), the following assertions are equivalent:
(1) T is disjointly non-singular.
(2) There is no disjoint sequence of non-zero vectors (z,) in E such that the restriction Tj, |
18 a compact operator.
(3) For every disjoint sequence of non-zero vectors (x,) in E, the restriction Tz, s an
upper semi-Fredholm operator.

(4) For every normalized disjoint sequence (xy,) in E, liminf, o ||Tz,| > 0.

It was proved in [4, Proposition 14] and [6, Theorem 3.15] that, for 1 < p < oo, DSS(L,,Y)
is the perturbation class of DN-S(L;,Y).

Representation of Banach lattices. It is well-known (see [16, Theorem 1.b.14]) that every
order continuous Banach lattice with a weak unit £ admits a representation as a Kéthe function
space, in the sense that there exists a probability space (€2, %, 1) so that

o Loo(p) C EC Li(p) with E dense in Lj(p) and Loo(pe) dense in E,
o [l < flle < 2l flloc when f € Loo(p),
and the order in E is the order induced by L;(u).

The following fact will allow us to state some of our results omitting the existence of a weak

unit in the Banach lattice.
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Lemma 2.2. Let E be an order continuous Banach lattice. Then each sequence in E is contained

i a closed ideal of E with a weak unit.

Proof. If (fy) is a bounded sequence in E, then e = Y >7 | f,|/27" is a weak unit in the closed
ideal generated by (fy). O

We also will need the following result.

Lemma 2.3. Let E be an order continuous Banach lattice with a weak unit, and let f € FE.
If (Ag) is a disjoint sequence in the o-algebra ¥ associated to the representation of E, then

limy o0 [ f1a,]l5 = 0.

Proof. Let By, = U2, A;. Since the norm on E is order continuous, (Bj) is decreasing and
limy_y o0 14(Bg) = 0 we have limy_, || f1B,||r = 0, hence limg_, || f14, ||z = 0. O

3. OPERATIONAL QUANTITIES

An operational quantity is a map a : L(X,Y) — [0,00) satisfying certain conditions. Given
two operational quantities a and b, we write a < b when a(T") < b(T') for each T € L(X,Y).
Moreover, the quantities a and b are equivalent if there exist positive constants ¢; < ¢g such that
c1a < b < caa.

We are interested in some classical operational quantities and some new ones that we introduce
here. To describe the classical ones, let S(X) be set of all closed infinite dimensional subspaces of
X. Then, given an operational quantity a : L(X,Y) — [0,00), we define two derived quantities
1a and sa as follows:

(1) ia(T):= inf a(Ty) and sa(T):= sup a(Ty),
MeS(X) MeS(X)
where T' € L(X,Y).

Note that a < b implies ia < ib and sa < sb. Taking the operator norm as a in (), for

T € L(X,Y) we obtain

o I(T) :=i||T[| = infpres(x) [Tmll  and

o A(T) :=sI'(T) = suppregx) I'(Tm) = suppresx)y infnesan 11w |-
The quantities I' =i || - || and A =i T were introduced by Gramsch and Schechter (see [19, 20]),
who proved that I'(T") > 0 if and only if 7" is upper semi-Fredholm, and A(T) = 0 if and only if
T is strictly singular.

To introduce the new quantities, we denote by d(E) the set of all sequences of disjoint non-
zero vectors of E. Now, given an operational quantity a : L(F,Y) — [0,00) defined for F' = E
and F € d(FE), for each T € L(E,Y’) we define two derived quantities iga and s4a as follows:
(2) iga(T) == inf a(Ty,)) and sqa(T):= sup a(T,).

@edE) @)
Again, a < b implies iga < igb and sqga < sgb. We are interested in two operational quantities
derived from the norm, whose notation is inspired by that of Schechter:

o I'y(T) :==iq||T|| = inf(,,)ecar) 1Tz, | and
o Ay(T) == s4Ta(T) = sup(y,yea(p) La(Tiz,) = SuD(, () 0 () ed(en]) | Tlya) s
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that will allow us to characterize the operators in DN-S and DSS.
In a similar way, for 7' € L(X,Y) we consider two classical operational quantities derived

from the injection modulus j:
o 7(T) :=sj(T) = suppes(x)j(Tn)  and

o (1) :=i7(T) = infregx)7(Tnr) = infrregx) SUPNES(M)j(TN),

and derive two new quantities for ' € L(E,Y):
o 74(T) = 845(T) = sup(y,)ea(p) J(1e,)  and
o ka(T) :=iqg74(T) = inf(,, )eam) Ta(Tlz,) = nf (2, ed(B) SUP)ed((zn]) I (Llya))s

The operational quantities 7 = sj and k = i7 were introduced in [19] and [7], where it was
proved that 7(7") = 0 if and only if T is strictly singular, and (T") > 0 if and only if T is upper
semi-Fredholm. We will show that the quantities 74 and k4 characterize the operators in DSS
and DN-S, respectively.

The proof of the next lemma shows that for each closed infinite dimensional subspace of a
Banach space with a monotone basis (z,,), in particular with a 1-unconditional basis, there is a
block basis (y) such that [yx] is ‘arbitrarily close’ (in the sense of the gap between subspaces;
see [14], Section IV.2]) to a subspace N of M; so the action of an operator on [y is also close

to its action on N. This idea will appear several times in our arguments.

Lemma 3.1. Let X be a Banach space with a monotone basis (xy,), let M € S(X) and0 < e < 1.
Then there exist a normalized block basis (yi) of (x,) and a subspace N € S(M) such that for
every operator T € L(X,Y),

Tyl = I Tnll] < el TN and  [§(Ty,)) — 5(Tw)| < el|T-

Proof. We will choose (yx) and N so that the distance between the unit spheres of N and [yy] is
smaller than ¢; hence for each n € Sy there is y € S, with ||n —y|| <, and for each z € 5},
there is m € Sy with ||z — m| < e. Clearly this fact implies our result.

Let r = £/8. Inductively, we will find integers 1 = j; < ; < jo <ly < --- and a sequence (a;)
of scalars so that y;, = ék:jk a;x; satisfies ||yx|| = 1 and dist(yg, M) < r/2F+1.

Clearly, y; exists; so assume that yj has been found for £ < ky. Let (z}) be the sequence in
X* such that zf(z;) = 6; ;. Since M N <ﬂi@1]\7(xj)> is infinite dimensional, yy,+1 exists.

Since (yx) is a monotone basic sequence (comment after [I5] Definition 1.a.10]), there exists
a sequence (y;) in X* with [Jyz]| < 2 and y}(y;) = 0k, ;-

For each k € N we choose my, € M with |lyr, — my| < /281, and define K € L(X) by

Kz =Y yi(z)(yr — mu).
h=1

Then K is bounded with [|K[| < 3277, [lyzll - lyx — mxll < r; hence I — K is bijective. Moreover
(I — K)yx = my, for each k € N. We take N = [my] = (I — K)([yx]). Note that

[e.e] [e.e]
(I-K)'=) K'=I-Lwith |[L| <> r'=r/0-7r)<2r
=0 =1
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For n € Sy we take y = ||(I — L)n||~*(I — L)n € Sp,). Then 1 —2r < ||(I — L)n|| < 14 2r
and
H(H(I — L)n|| —1)n —|—Ln|| < 4r
(I = L)n|| —1-2r
Similarly, for each z € Sy}, we have m = ||(I — K)z|| 7' (I = K)z € Sy and |z —m|| <e. O

< 8r==¢.

In —yll =

A Banach lattice is called atomic if its order is induced by a 1-unconditional basis.

Proposition 3.2. Let E be an atomic Banach lattice. For an operator T € L(E,Y),
Tu(T) = T(T) , Ag(T) = AT) , 74(T) = 7(T) and sa(T) = 5(T)

Proof. The inequality I'y(T") > I'(T) is valid in general. The converse inequality is obtained by
applying Lemma Bl Suppose without loss generality that |7 = 1. Given 0 < e < 1 and a
subspace M of E, there is a block basis (yi) of the unconditional basis of E such that [y] is
arbitrarily close to some subspace N of M, and consequently

1Tyl = I TNl < e
Hence T'y(T) < ||Tjy, Il < ITn | + & < [Tl + €. Therefore I'y(T) < I'(T).

The other equalities can be proved in a similar way. O

Corollary 3.3. We have sqUg = sqI' and igtqg = iq7. Moreover I'y = 14Uy = g’ and

Td = S4Td = S4T-

Proof. For each (z,,) € d(E), (xy) is a l-unconditional basis; hence [z,] is an atomic Banach

lattice. Therefore

sala(T) = sup Ty4(Ty,)) = sup T(Tj,,)) =sq¢0(T).
(zn)ed(E) (zn)€d(E)

The proof of ig7y = iq7, igl'y = igl’ and sy7y = sq47 is identical, and for the remaining

equalities, note that igyiga = iga and sqsqa = sqa for any quantity a. O

4. OPERATIONAL QUANTITIES DERIVED FROM THE NORM

Our first result gives some alternative expressions for I'¢(7") in terms of the classical quantities.
Proposition 4.1. For T € L(E,Y), we have I'4(T) = iqI(T') = iaA(T).

Proof. Note that 'y = igq]| - ||. Applying ig to the inequalities ' < A < || - ||, we obtain
igl <igA <igl - |, and Corollary B3] completes the proof. O

It was proved in [6] that T € L(F,Y) is disjointly non-singular if and only if for every
(fn) € d(Lp), the restriction Ty, is upper semi-Fredholm. Next we give a quantitative version
of this result when E is an order continuous Banach lattice. Since I'y(T) = i4I'(T") by Proposition
[.T] our result says that if 7' € DN-S(E,Y’) then the restrictions T},,) are “uniformly” upper
semi-Fredholm, in the sense that inf, ycq(g) I'(Tjz,)) > 0.

Theorem 4.2. Let E be an order continuous Banach lattice, and let T € L(E,Y). Then
T € DN-S if and only if Ty(T) > 0.
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Proof. Suppose that I'y(T') > 0. For every (f,) € d(E) we have that I'(Tjy,)) > 0, hence T}y, is
upper semi-Fredholm. Consequently, T is disjointly non-singular (Theorem [2.1]).

Conversely, we assume that I'y(7") = 0. By Theorem[2.1] it is enough to construct a normalized
sequence (hy,) € d(F) such that lim,_,~ [|Thy| = 0.

For each n € N there exists a normalized sequence (fy k)i € d(E) such that [T, )l <1/n,
and by Lemma we can assume that the functions f, i (n,k € N) are contained in a closed
ideal of E which has a representation as a Kothe space.

Let g1 = fi,1- As limg—00 n(D(f2,5)) = 0, by Lemma 2.3 we have limy, [|911p(, )|l = 0.
So we can find ko > 1 such that

1
lgsl =1, IToill <1 and [lgilp(s, ;e < 55

Then, taking g» = f2,, a similar argument using Lemma 23] shows that there exists k3 > ko
such that

1 1 .
lgall = 1 1 Tgall < 5 and Jlgilpg,lle < 55 for 1<i<3.

In this way we find a sequence k1 = 1 < kg < k3 < --- such that, taking g; = f , for each
[ € N, we have

1 1 )
lall =1, 1Tall <+ and |lgilpgs,, Il <opg (A <i<l+1).
l I+1 A+

Let Ay = U352, 1D(g;) and hi = gr — grla,. For k < 1 we have D(h) N D(g) = 0 and

D(h;) € D(g;), hence D(hi,) N D(h;) = 0. Thus the sequence (hy,) is disjoint. Since ||g,|| = 1,

1= 1nlll < llgn = Ball = llgnla, |

oo (o]

< Z Inlpgn||l < Z 91D |
i=n+1 i=n+1

< —~ =

= 2@ 211
i=n+1

Taking hy,, = || ||~ n, we obtain (hy,) € d(E) is normalized and

hn  gn 9n
[ = gnll < |l = = || |55 7 — 9n
[Bnll - [Fen]] 172
gl 1= Ll
17| (17|
b gl 1
[1fin 27| B
Consequently lim,,_,« |[|hn — gn|| = 0, and ||Thy|| < [|T(hn — gn)|l + || Tgn|| and ||Tg,| < 1/n;
hence lim,,_,o0 [|Thy || = 0. O

Next we give some alternative expressions for Ay(T).
Proposition 4.3. For T' € L(E,Y), we have Ay(T) = sqA(T) = sq4I'(T).

Proof. Note that Ay(T) = s4I'¢(T) and, by Corollary B3l sq'(T) = sq'¢(T). So it is enough
to observe that sqa(T) = s454a for any quantity a. O
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Proposition 4.4. T € L(E,Y) is disjointly strictly singular if and only if Ag(T) = 0.

Proof. As Ay(T') = sqA(T), we have that Ayg(T) = 0 means that for every (x,,) € d(E) we have
that A(Tj,,)) = 0; that is, all the restrictions Tj, | are strictly singular. By [6, Proposition 2.6],
that is equivalent to T" being disjointly strictly singular. O

Obviously, given T' € L(E,Y) and a scalar A\, T3(AT) = |[ATq(T) and Ag(AS) = |A[Ag(S).

The following result complements these facts.

Proposition 4.5. For operators T,S € L(E,Y), we have the following inequalities:
(1) Ty(T+ S) <T4(T) + Ay(S) and
(2) Ag(T+ S) < A4(T) + Aq(5).

Proof. Let (z,) € d(E). Then [[(T + S)ig Il < T[] + |S[z,ll, and taking the infimum over
() € d(E) we obtain I'q(T' + S) < ||T|| + T'4(S). Therefore

Lg(T +5) < Ty ((T + S)[mn]> < HT[a:n}H + Fd(s[mn]) < HT[mn}H + Aq(S),

and taking again the infimum over (x,) € d(E) we get (1).
Let (x,) € d(E). From (1) we derive

Pd((T + S)[a:n]) < Fd(T[mn]) + Ad(S[mn]) < Pd(T[mn]) + Ad(s)7
and taking the supremum over (z,) we get Ay(T + 5) < Ag(T') + Ag(S). O

Since Ay(T') < ||T'||, Theorem and part (1) of Proposition improve the results proved
in [6] that, under some conditions, DN-S(E,Y) is stable under perturbation by small norm
operators and DSS operators.

Corollary 4.6. Let E be an order continuous Banach lattice. Then
(1) DSS(E,Y) is a closed subspace of L(E,Y);
(2) DN-S(E,Y) is an open subset of L(E,Y);
(3) If Se€ DSS(E,Y), then Ty(T + S) =T4(T), for all T € L(E,Y);
in particular, T € DN-S(E,Y') implies T + S € DN-S(E,Y).

Proof. (1) If T, S € DSS(E,Y), then Ag(T + 5) < Ag(T) + Ay(S) =0,s0 T+ S € DSS(E,Y);
and Ag(A\T) = |NA4(T') implies A\T' € DSS(E,Y).

(2) If T € DN-S(E,Y) and S € L(E, Y) with ||S]| < T4(T), then Tg(T+S) > Ta(T)—Ay(S) >
Ty(T)—||S|| > 0. Hence T+ S € DN-S(E,Y).

(3) Let S € DSS(E,Y), so A4(S) =0. For all T € L(E,Y),

Lg(T+ S) <Tu(T)+ Au(S) =Ty(T),
and similarly I'y(T) =T4¢(T'+ S — S) <Ty(T + 5). O
Part (2) of Corollary was proved by Bilokopytov [I] using different techniques.

A closed subspace M of E is said to be dispersed if there is no sequence (z,) € d(F) such
that lim,,_,o dist(zy, M) = 0 (see [6, Definition 2.1}).
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Remark 4.7. Let M be a non-dispersed closed subspace of E. Denoting by ND(M) the set of
all closed subspaces of M which are non-dispersed in E, it readily follows from Lemmal3 1l that,
forT € L(E)Y),

Ly(T)= inf ||[Twy| and Ag(T)= sup inf  [|Tag]-
MeND(E) MieND(E) M26ND(M)

5. OPERATIONAL QUANTITIES DERIVED FROM THE INJECTION MODULUS

Next result gives other expressions for the quantity 7.
Proposition 5.1. For T € L(E,Y), we have 174(T) = sqr(T) = sq7(T).

Proof. As j < k < 7, we have 7y = sqj < sqk < s47. Moreover, sq7 = sq474 by Corollary B3l
Hence

5a7(T) = 847a(T) = 8454 (T) = 54 §(T) = 74(T),

because sq sqa = sqa for every quantity a. O
Proposition 5.2. Let T € L(E,Y). Then T € DSS if and only if 74(T) = 0.

Proof. We have that 74(T") = 0 is equivalent to j(T},,]) = 0, for every sequence (z,,) € d(E).
This means that 7" is not an isomorphism on any subspace [z,,] generated by a disjoint sequence.
That is, T is disjointly strictly singular. O

Proposition 5.3. For an operator T € L(E,Y), we have kq(T) = igr(T) = iqr(T).

Proof. By PropositionB.1] x < 74 < 7, hence igk < igry = kq < iq7. Moreover, arguing as in the
proof of Corollary B3]l we get igk = igkq = 1q1qTq = iqTq = %4 T, and the result is proved. O

Like Theorem [£.2] by Proposition 53] the following result says that T € DN-S(E,Y) if and
only if the restrictions Tj,,; with (z5,) € d(F) are “uniformly” upper semi-Fredholm, in the sense
that inf(mn)ed(E) K(T[mn]) > 0.

Theorem 5.4. Let E be an order continuous Banach lattice and let T € L(E,Y). Then T €
DN-S if and only if kq(T) > 0.

Proof. By Proposition B3] £¢(T) = ig7(T). Then if kq(T) > 0 and (f,) € d(E), 7(T}s,;) > 0.
Hence Tjy,) is not strictly singular, and 7' is disjointly non-singular by Theorem .11
Conversely, suppose that k4(7") = 0. By Theorem [2.1] in order to show that 1" is not disjointly
non-singular, it is enough to find a normalized (h,,) € d(E) such that lim,,_,o, T'h,, = 0.
For each n € N there exists a normalized sequence (fy, x)r € d(£) such that

1
Td(T[fn,k]k) < n’
and by Lemma we can assume that the vectors f,, 5 are contained in a closed ideal that
admits a representation as a Kothe space.
As j(Tiy, ) < 1, there exists g1 € [(f1,)x] with [[Tg1]] < 1. From limy,eo p(D(f2,x)) = 0,
by Lemma 23] we have limg . [|911p(f, ) l2 = 0. So we can to take kg > 1 such that

1
lgull =1, 1 Tg1 <1 and [lgrlp(s, e < 55
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Moreover, from
. 1
T fapeny) < TaTip000) < 5
we obtain that there is go € [(for)k>k,) With [|[Tg2|| < 1/2. As limg_yoo p(D(f3)) = 0, by

Lemma 23] we get limg o0 [|9i1p(s, ) |2 = 0, so we can take k3 > ko such that

1 [
loall =1, ITgoll < 5 and lgil gyl < o5 (<0 <3)

Now, proceeding as in the proof of Theorem 2] we take A, = U2, 4+1D(g;) and obtain a
normalized sequence fiy = [|gn — gnla, |71 (9 — gnla,) in d(E). Since limy, oo [ Thy|l = 0, we
conclude that 7' ¢ DN-S(E,Y). O

To compare Theorem 5.4l with Theorem [£.2] observe that kg < I'y.
Proposition 5.5. For operators T,S € L(E,Y), we have the following inequalities:

(1) 7a(T + ) < 74(T) + Aqa(S) and
(2) Ka(T +8) < kg(T) + Ag(S).

Proof. Since j(T + S) < j(T') + ||5]|, for each (x,) € d(E) we get
J(T+8) < (T + 9wn) < I Ten) + 1Sl < 7a(T) + (1Sl

and taking the infimum over (x,) we obtain j(T'+ S) < 74(T") + T'4(S).

(1) For (zn) € d(E), we have j((T' + S)z,)) < 7a(Tfz,) + La(Sp,)) < 7a(T) + Ta(Sp,)), and
taking the supremum over (z,) we get 74(T +5) < 74(T) + Aq(S5).

(2) Applying (1), 7a((T' + S)(z,)) < 7a(Tfz,)) + Aa(S[z,)) < Ta(Tl,)) + Aa(S) for cach (zn) €
d(F). So taking the infimum over (z,), we obtain k(T + S) < kqa(T) + Ay(S). O

From Proposition [5.5], we could derive an alternative proof of Corollary

Remark 5.6. As in Remark [{.7], we can give expressions for kq(T) and 174(T") in terms of the
restrictions of T to non-dispersed subspaces. For T € L(E,Y),

T4(T) = supMeND(E)j(TM) and  kq(T) = infrr e npep) supMQEND(Ml)j(TM2).
6. THE QUANTITY S
For an operator T' € L(E,Y), the following quantity was defined in [6]:
B(T) := inf {hnrr_1>1£f |Txy| : (x,) normalized disjoint in E} .

We have shown in Theorem [.2] that the quantity I'y characterizes DN-S(E,Y’) for E an order

continuous Banach lattice. Moreover, it is related with 8 as follows:
Proposition 6.1. Every operator T € L(E,Y) satisfies 5(T) < T'q(T).

Proof. Note that
BIT) = inf e, cam lim infsoo || Ty | < infe,cam) 1T | = TulT). =

It was proved in [6, Proposition 3.1] (see [4] for p = 1) that, for 1 < p < oo, an operator
T € L(Lp,Y) is disjointly non-singular if and only if 8(T') > 0. Now we extend this result.

Proposition 6.2. Let E be an order continuous Banach lattice. Then an operator T € L(E,Y)
is disjointly non-singular if and only if B(T) > 0.
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Proof. If B(T') > 0, then condition (4) in Theorem 2] is satisfied, hence T' € DN-S(E,Y).
Suppose that S(T') = 0. Then for every n € N we can find a normalized disjoint sequence
(frk)ken with [|[Tf, k]| < 1/n for every k € N, and proceeding as in the proof of Theorem 2]
for each n we select k;, so that taking g, = fnx, we have [[gilp(g,)ll < 27" for 1 <i <n. The
sequence (g,,) is almost disjoint (there exists a normalized disjoint sequence (h,,) in E such that
lim,, o0 [|gn — hnlle = 0). Then lim,,_,« [|Thy|| = 0, hence T' ¢ DN-S(E,Y). O

By Proposition 6.1, 8 < I'y. In some cases, these two quantities coincide; for example, if
1 < p < 2and M is a dispersed subspace of L,, then the quotient map Qs : L, — L,/M
satisfies B(Qnr) = 1 (see [6]), hence I'y(Qar) = [|Qar]| = 1. However, using the fact proved by
Odell and Schlumprecht in [18] that the Banach space ¢ is arbitrarily distortable, we show that

these two quantities are not equivalent:

Example 6.3. For every A > 1 and € > 0, there exists a Banach space Yy isomorphic to {5 and
an operator Ty € L(l2,Y)) such that 0 < X - B(T)\) < Tq(T)\) + . Thus there is no C > 0 such
that Tg < C'- .

Proof. Since {5 is arbitrarily distortable [18], for every A > 1 there is a norm |-|) on ¢3 equivalent

to the usual one || - ||z such that, for each closed infinite dimensional subspace M of /o,
EiPYS —lully =
(3) S Y €M [zlla = [lyll2 =1 p > A.

We denote Yy = (fo,] - |x) and T the identity operator from ¢ onto Y).

Note that the operator T is bounded below, and passing to a closed infinite dimensional
subspace of ¢y (that we can identify with /5, with the lattice structure determined by any
orthonormal basis) we can assume that | Ty| < Tq(T)) + €.

By inequality @), Aj(Tx) < ||T\|| and there exists g1 with ||g1]2 =1 and A-|g1[x < Ta(T))+e¢.
Moreover, by the denseness of the span of the basis (e, ) of 2, we can choose g1 € [e1, ..., en,] for
some my € N. Similarly, there exists ga € [e; : i > mq] with ||g2]|2 = 1 and - [g2|x < Tq(T)) +¢,
and again we can choose g2 € [€p, 41, - ., €m,] for some my > my in N.

In this way we get a sequence (g,,) € d(f2) such that A-|gn|x = A-|Thgn|r < Tq(T))+e, which
implies A - B(T) < Ta(Ty) +e. O

7. ORDER BETWEEN OPERATIONAL QUANTITIES

The order between the operational quantities derived from the norm and the injection modulus

j is showed in the following diagram, where “ — ” means “ < ”:

I —— Iy — A — A —— ||

j————Kk ——— Kl ————— T4 ———T

The vertical arrows in the above diagram connect quantities that characterize the same classes
of operators: upper semi-Fredholm, DN-S, DSS and strictly singular. We observe that none of

these pairs are equivalent quantities.
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Indeed, the quantities x and I' are not equivalent because £ is arbitrarily distortable. Hence,
by [8, Theorem 3.4 and Corollary 3.5], there exist spaces Y,, ~ ¢, and operators T;, € L(¢2,Y},)
(n € N) such that n - k(T},) < I'(T},). Since {5 is an atomic Banach lattice, k4(T,,) = k(T},) and
Ty(T,) = I'(T},); hence k4 and T'y are not equivalent.

Similarly, by [I7, Proposition 1], the operators T,, € L(/2,Y},) in the previous paragraph
satisfy n-7(T,) < A(T},), showing that 7 and A are not equivalent, and also that 7, and Ay are
not equivalent.

7.1. Open Questions. We finish the paper stating some open questions.
Question 1. Is kg < D - 3 for some constant D > 07

If E'is an order continuous Banach lattice then E is an ideal in E** [16, Theorem 1.b.16], hence
the quotient E**/FE is a Banach lattice [16] Section 1.a]. Moreover, every operator T € L(E,Y)
induces a residuum operator T € L(E**/E,Y**/Y) defined by T (z** + E) = T** 2™ + Y.

Question 2. Suppose that E is order continuous and T € DN-S(E,Y). Is T € DN-S?

It was proved in [4] that the answer is positive in the case E = L;. We refer to [10] for

information on the residuum operator 7.

In [6, Theorem 3.16] it is shown that for 1 < p < oo, DSS(L,,Y) is the perturbation class
of DN-S(L,,Y) in the sense that when DN-S(L,,Y) # 0, K € L(Lp,Y) is DSS if and only if
T+ K € DN-S for each T € DN-S(L,, Y.

Question 3. Suppose that E is an order continuous Banach lattice and DN-S(E,Y") # (.
Is DSS(E,Y) the perturbation class of DN-S(E,Y)?

Acknowledgements. We thank the referees for a careful reading of the manuscript and some
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