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Abstract. A closed subspace S of ℓ∞ is said to be a ℓ∞-Grothendieck subspace
if c0 ⊂ S (hence ℓ∞ ⊂ S∗∗) and every σ(S∗, S)-convergent sequence in S∗ is
σ(S∗, ℓ∞)-convergent. Here we give examples of closed subspaces of ℓ∞ containing
c0 which are or fail to be ℓ∞-Grothendieck.

1. Introduction

The ℓ∞-Grothendieck subspaces (defined in the abstract; see also Definition 2)
naturally emerge when some versions of Schur’s Lemma for bounded multiplier con-
vergent series are sharpened (see, e.g., [15, 2, 1, 12]).
Apart from ℓ∞, only one example of ℓ∞-Grothendieck subspace is given in the

literature (see [1, Remark 4.2]), using a result of [10]. This example is isomorphic to
a C(K) space with the Grothendieck property, and contains no subspaces isomorphic
to ℓ∞.
Here we prove that if X is a Grothendieck Banach space and M is a closed sub-

space of X with X/M separable then M is a Grothendieck space. As a consequence,
we derive that a closed subspace S of ℓ∞ containing c0 is ℓ∞-Grothendieck when
the quotient ℓ∞/S is separable, and using the fact that Lq(0, 1) is isomorphic to a
quotient of ℓ∞ for 2 ≤ q < ∞, we prove the existence of an uncountable family of
pairwise non-isomorphic ℓ∞-Grothendieck subspaces. We also show that for each
closed subspace Y of ℓ∞ which is a Grothendieck space and contains a subspace
isomorphic to c0, there exists a ℓ∞-Grothendieck subspace isomorphic to Y .
On the other hand, we show that a closed subspace S of ℓ∞ containing c0 is not

ℓ∞-Grothendieck when it is separable or, more generally, when the unit ball of S∗ is
weak∗-sequentially compact.

2. Preliminaries

Let X be a Banach space and let M be a subspace of X∗∗ containing X . We say
that a sequence (x∗

n) in X∗ is σ(X∗,M)-convergent to x∗ if (〈x∗∗, x∗

n〉) converges to
〈x∗∗, x∗〉 for every x∗∗ ∈ M .
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A Banach space X has weak∗ sequentially compact dual ball (has W∗SC dual
ball, for short) if every sequence in the unit ball of X∗ has a σ(X∗, X)-convergent
subsequence. We refer to [6, Chapter XIII] for information about this property. The
next result gives some examples of spaces of this kind.

Proposition 2.1. A Banach space X has W∗SC dual ball in the following cases:

(1) X is separable;

(2) X∗ contains no copies of ℓ1;
(3) X is isomorphic to the dual of a separable space containing no copies of ℓ1.

Proof. (1) is well-known [6]; (2) follows from Rosenthal’s characterization of Banach
spaces containing no copies of ℓ1 and the fact that each weakly Cauchy sequence in
X∗ is weak∗-convergent; and (3) is a consequence of [6, Theorem XIII.10]. �

A Banach space X is Grothendieck if every σ(X∗, X)-convergent sequence in X∗

is σ(X∗, X∗∗)-convergent.
Obviously reflexive Banach spaces are Grothendieck. Moreover, it is not difficult

to show that Grothendieck spaces with W∗SC dual ball are reflexive, it was proved
in [9] that ℓ∞ is a non-reflexive Grothendieck space (see [6, Theorem VII.15]), and
the class of Grothendieck spaces satisfies the three-space property: If M is a closed
subspace of a Banach space X and both M and X/M are Grothendieck, then so is
X (see [8, Corollary 2.6]).

The following result collects some classical characterizations of Grothendieck spaces
taken from [5, Chapter 5, Corollary 5].

Proposition 2.2. For a Banach space X, the following assertions are equivalent:

(1) X is Grothendieck;

(2) every operator T : X → c0 is weakly compact;

(3) for each separable Banach space Y , every operator T : X → Y is weakly

compact.

It easily follows from Proposition 2.2 that quotients of a Grothendieck space are
also Grothendieck.

3. Main results

The following notion extends the classical one of Grothendieck space.

Definition 1. Let X be a Banach space and let M be a vector subspace of X∗∗ con-

taining X. We say that X is a M-Grothendieck space if every σ(X∗, X)-convergent
sequence in X∗ is σ(X∗,M)-convergent.

Obviously, the Grothendieck spaces are the X∗∗-Grothendieck spaces. Moreover,
since σ(X∗, X)-convergent sequences are bounded, the M-Grothendieck spaces co-
incide with the M -Grothendieck spaces, where M is the closure of M . So we could
always assume in Definition 1 that M is a closed subspace.

We are interested in a concrete case of Definition 1. Let S be a closed subspace
of ℓ∞ containing c0, and let j : c0 → S be the inclusion map. Then we can identify
ℓ∞ with a subspace j∗∗(c∗∗

0
) of S∗∗ containing S.
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Definition 2. Let S be a closed subspace of ℓ∞. We say that S is a ℓ∞-Grothendieck
subspace if it contains c0 and each σ(S∗, S)-convergent sequence in S∗ is σ(S∗, ℓ∞)-
convergent.

Clearly, if S is a closed subspace of ℓ∞ that contains c0 and S is a Grothendieck
space, then S is a ℓ∞-Grothendieck subspace.
The following result may be interesting on its own.

Proposition 3.1. Let X be a Grothendieck Banach space. If M is a closed subspace

of X and X/M is separable, then M is a Grothendieck space.

Proof. Let S : M → c0 be an operator. Since the space c0 is separably injective
[3, Theorem 2.3] and the quotient X/M is separable, the operator S admits an
extension T : X → c0 [3, Proposition 2.5], which is weakly compact by Proposition
2.2. Then S is weakly compact, and applying again Proposition 2.2 we conclude
that M is Grothendieck. �

As a consequence of the previous result, we obtain that “big” subspaces are ℓ∞-
Grothendieck subspaces.

Corollary 3.2. Let S be a closed subspace of ℓ∞ containing c0 such that ℓ∞/S is

separable. Then S is a ℓ∞-Grothendieck subspace.

Let us see that there exists an uncountable family of pairwise non-isomorphic
ℓ∞-Grothendieck subspaces.

Theorem 3.3. Let 2 ≤ p < ∞.

(1) There exists a closed subspace Np of ℓ∞ containing c0 such that the quotient

ℓ∞/Np is isomorphic to Lp(0, 1). Hence Np is a ℓ∞-Grothendieck subspace.

(2) If 2 ≤ r < ∞, p 6= r, then the subspaces Np and Nr are not isomorphic.

Proof. (1) Recall that ℓ∞ is isomorphic to L∞(0, 1), which is the dual of L1(0, 1).
Let q such that 1/p + 1/q = 1, hence 1 < q ≤ 2.
By [14, Corollary 2.f.5], there exists a closed subspace Mq of L1(0, 1) which is

isometrically isomorphic to Lq(0, 1). Therefore, by duality,

M∗

q ≡ L∞(0, 1)/M⊥

q ≡ Lq(0, 1)
∗ ≡ Lp(0, 1).

Let U : L∞(0, 1) → ℓ∞ be a bijective isomorphism. By taking Np = U(M⊥

q ) we
guarantee that ℓ∞/Np is isomorphic to Lp(0, 1).
It remains to show that we can choose Np containing c0. This is a consequence

of the fact that ℓ∞/c0 has a quotient isomorphic to ℓ∞. So we can take as Np the
kernel of a composition of surjective operators like the following one:

ℓ∞ → ℓ∞/c0 → ℓ∞ → Lp(0, 1).

(2) Let 2 ≤ p, r < ∞, and assume that there exists a bijective isomorphism
T : Np → Nr. Since both ℓ∞/Np and ℓ∞/Nr are reflexive, by [13, Theorem 2.f.12]

there exists an extension T̂ : ℓ∞ → ℓ∞ of T which is a Fredholm operator; i.e. the
range R(T̂ ) is closed and both the kernel N(T̂ ) and ℓ∞/R(T̂ ) are finite dimensional.

Then T̂ induces a Fredholm operator S : ℓ∞/Np → ℓ∞/Nr, implying that Lp(0, 1)
and Lr(0, 1) are isomorphic. Hence p = r, and the proof is done. �
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Every quotient of Lp(0, 1) (2 ≤ p < ∞) is also a quotient of ℓ∞, and we can assume
as before that the kernel of the quotient map contains c0, so it provides another
example of ℓ∞-Grothendieck subspace. In particular, we could have formulated
Theorem 3.3 with ℓp instead of Lp(0, 1).

The next result provides additional examples.

Proposition 3.4. Let Y be a closed subspace of ℓ∞ which is a Grothendieck space

and contains a subspace isomorphic to c0. Then there exists a ℓ∞-Grothendieck

subspace isomorphic to Y .

Proof. Let M be a closed subspace of Y isomorphic to c0 and let T : M → c0
be a bijective isomorphism. Since both ℓ∞/M and ℓ∞/c0 are non-reflexive, by [13,

Theorem 2.f.12] there exists an extension T̂ : ℓ∞ → ℓ∞ of T which is a bijective

isomorphism. Hence T̂ (Y ) is a ℓ∞-Grothendieck subspace isomorphic to Y . �

A remarkable example of Grothendieck space obtained by Bourgain [4] is the
space H∞ of bounded analytic functions on the unit disc, which is not isomorphic
to a C(K) space, not even isomorphic to a L∞-space. Moreover, it was proved
in [7, Corollary 10] that the projective tensor product ℓ∞⊗̂πℓp is Grothendieck for
2 < p < ∞.

Since both spaces H∞ and ℓ∞⊗̂πℓp contain a subspace isomorphic to c0 and they
are isomorphic to dual spaces of separable spaces (L1/H

1

0
)∗ and (ℓ1⊗̂εℓ

∗

p)
∗, hence

they embed in ℓ∞, we get the following fact.

Corollary 3.5. There exist ℓ∞-Grothendieck subspaces which are isomorphic to H∞

and ℓ∞⊗̂πℓp for 2 < p < ∞.

All known examples of ℓ∞-Grothendieck subspace are Grothendieck spaces. So
the following question arises:

Problem 1. Is it possible to find an example of ℓ∞-Grothendieck subspace which is

not a Grothendieck space?

To study this problem we would need a good characterization of ℓ∞-Grothendieck
subspaces, which we do not have yet.

Next we show that “small” subspaces are not ℓ∞-Grothendieck subspaces.

Proposition 3.6. Let S be a closed subspace of ℓ∞ containing c0. If S has W∗SC

dual ball, then S is not a ℓ∞-Grothendieck subspace.

Proof. Let j : c0 → S be the inclusion. Then j∗ : S∗ → c∗
0
is surjective, and we can

select a bounded sequence (x∗

n) in S∗ such that j∗x∗

n = e∗n for each n ∈ N, where
(e∗n) is the unit vector basis of ℓ1 ≡ c∗

0
.

Since S has W∗SC dual ball, (x∗

n) has a σ(S∗, S)-convergent subsequence. Thus
the proof is finished if we show that (x∗

n) has no σ(S∗, ℓ∞)-convergent subsequence.
Indeed, let (x∗

nk
) be a subsequence, and recall that j∗∗ : c∗∗

0
≡ ℓ∞ → S∗∗ is the

inclusion. We take z = (ai) ∈ ℓ∞ with ai = 1 for i = n2k (k ∈ N) and ai = −1
otherwise. Then

〈j∗∗z, x∗

nk
〉 = 〈z, j∗x∗

nk
〉 = 〈z, e∗nk

〉 = (−1)k,

hence (x∗

nk
) is not σ(S∗, ℓ∞)-convergent. �
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Proposition 3.6 applies in the following cases:

(1) S is a separable closed subspace of ℓ∞ containing c0.
(2) S = c0 +M , where M is a non-separable subspace of ℓ∞ containing no copies

of ℓ1 and isomorphic to a dual separable space. The space S has W∗SC dual ball
because M has W∗SC dual ball (Proposition 2.1) and there is an injective operator
with dense range T : c0 ×M → S; see [6, Chapter XIII]. For example, we can take
M isomorphic to the dual of the James tree space JT [11].
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