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ON /.-GROTHENDIECK SUBSPACES

MANUEL GONZALEZ, FERNANDO LEON-SAAVEDRA,
AND MARIA DEL PILAR ROMERO DE LA ROSA

ABSTRACT. A closed subspace S of £ is said to be a £ -Grothendieck subspace
if cg € S (hence o C S**) and every o(S*,S)-convergent sequence in S* is
0(S*, € )-convergent. Here we give examples of closed subspaces of £, containing
co which are or fail to be £,.-Grothendieck.

1. INTRODUCTION

The {,-Grothendieck subspaces (defined in the abstract; see also Definition [2))
naturally emerge when some versions of Schur’s Lemma for bounded multiplier con-
vergent series are sharpened (see, e.g., [15], 2] [ [12]).

Apart from /.., only one example of /,-Grothendieck subspace is given in the
literature (see [1, Remark 4.2]), using a result of [10]. This example is isomorphic to
a C'(K) space with the Grothendieck property, and contains no subspaces isomorphic
to f.

Here we prove that if X is a Grothendieck Banach space and M is a closed sub-
space of X with X /M separable then M is a Grothendieck space. As a consequence,
we derive that a closed subspace S of /,, containing ¢y is {,-Grothendieck when
the quotient (/S is separable, and using the fact that L,(0, 1) is isomorphic to a
quotient of /¢, for 2 < ¢ < 0o, we prove the existence of an uncountable family of
pairwise non-isomorphic /,,-Grothendieck subspaces. We also show that for each
closed subspace Y of /., which is a Grothendieck space and contains a subspace
isomorphic to ¢y, there exists a {,-Grothendieck subspace isomorphic to Y.

On the other hand, we show that a closed subspace S of {,, containing ¢q is not
(+-Grothendieck when it is separable or, more generally, when the unit ball of S* is
weak*-sequentially compact.

2. PRELIMINARIES

Let X be a Banach space and let M be a subspace of X** containing X. We say
that a sequence (z) in X* is o(X*, M)-convergent to x* if ((z*™*,z})) converges to
(x**, z*) for every z** € M.
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A Banach space X has weak* sequentially compact dual ball (has W*SC dual
ball, for short) if every sequence in the unit ball of X* has a o(X*, X)-convergent
subsequence. We refer to [6, Chapter XIII] for information about this property. The
next result gives some examples of spaces of this kind.

Proposition 2.1. A Banach space X has W*SC dual ball in the following cases:
(1) X is separable;
(2) X* contains no copies of 1;
(3) X is isomorphic to the dual of a separable space containing no copies of {;.

Proof. (1) is well-known [6]; (2) follows from Rosenthal’s characterization of Banach
spaces containing no copies of /1 and the fact that each weakly Cauchy sequence in
X* is weak*-convergent; and (3) is a consequence of [0, Theorem XIII.10]. O

A Banach space X is Grothendieck if every o(X*, X)-convergent sequence in X*
is o(X*, X**)-convergent.

Obviously reflexive Banach spaces are Grothendieck. Moreover, it is not difficult
to show that Grothendieck spaces with W*SC dual ball are reflexive, it was proved
in [9] that ¢ is a non-reflexive Grothendieck space (see [6, Theorem VII.15]), and
the class of Grothendieck spaces satisfies the three-space property: If M is a closed
subspace of a Banach space X and both M and X /M are Grothendieck, then so is
X (see [8, Corollary 2.6]).

The following result collects some classical characterizations of Grothendieck spaces
taken from [5, Chapter 5, Corollary 5.

Proposition 2.2. For a Banach space X, the following assertions are equivalent:

(1) X is Grothendieck;

(2) every operator T : X — ¢y is weakly compact;

(3) for each separable Banach space Y, every operator T : X — Y is weakly
compact.

It easily follows from Proposition that quotients of a Grothendieck space are
also Grothendieck.

3. MAIN RESULTS
The following notion extends the classical one of Grothendieck space.

Definition 1. Let X be a Banach space and let M be a vector subspace of X** con-
taining X. We say that X is a M-Grothendieck space if every o(X*, X )-convergent
sequence in X* is o(X*, M)-convergent.

Obviously, the Grothendieck spaces are the X**-Grothendieck spaces. Moreover,
since o(X*, X)-convergent sequences are bounded, the M-Grothendieck spaces co-
incide with the M-Grothendieck spaces, where M is the closure of M. So we could
always assume in Definition [Il that M is a closed subspace.

We are interested in a concrete case of Definition [Il Let S be a closed subspace
of {, containing ¢y, and let j : ¢¢ — S be the inclusion map. Then we can identify
l~ with a subspace j™(c§*) of S** containing S.
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Definition 2. Let S be a closed subspace of lo,. We say that S is a {-Grothendieck
subspace if it contains ¢y and each o(S*, S)-convergent sequence in S* is o(S*, l)-
convergent.

Clearly, if S is a closed subspace of /., that contains ¢y and S is a Grothendieck
space, then S is a {,.-Grothendieck subspace.
The following result may be interesting on its own.

Proposition 3.1. Let X be a Grothendieck Banach space. If M is a closed subspace
of X and X/M 1is separable, then M is a Grothendieck space.

Proof. Let S : M — ¢y be an operator. Since the space c¢q is separably injective
[3, Theorem 2.3] and the quotient X/M is separable, the operator S admits an
extension T : X — ¢ [3, Proposition 2.5], which is weakly compact by Proposition
Then S is weakly compact, and applying again Proposition we conclude
that M is Grothendieck. O

As a consequence of the previous result, we obtain that “big” subspaces are (.-
Grothendieck subspaces.

Corollary 3.2. Let S be a closed subspace of ly containing co such that (/S is
separable. Then S is a {s-Grothendieck subspace.

Let us see that there exists an uncountable family of pairwise non-isomorphic
ls-Grothendieck subspaces.

Theorem 3.3. Let 2 < p < 0.
(1) There exists a closed subspace N, of s, containing co such that the quotient

lso /N, is isomorphic to L,(0,1). Hence N, is a l«-Grothendieck subspace.
(2) If 2 <r < oo, p#r, then the subspaces N, and N, are not isomorphic.

Proof. (1) Recall that (« is isomorphic to L. (0, 1), which is the dual of L,(0,1).
Let ¢ such that 1/p + 1/g =1, hence 1 < ¢ < 2.

By [14, Corollary 2.f.5], there exists a closed subspace M, of L;(0,1) which is
isometrically isomorphic to L,(0,1). Therefore, by duality,

M} = Loo(0,1)/M,- = Ly(0,1)* = L,,(0,1).

Let U : Loo(0,1) = (s be a bijective isomorphism. By taking N, = U(M,") we
guarantee that /N, is isomorphic to L,(0,1).

It remains to show that we can choose [NV, containing cy. This is a consequence
of the fact that (/co has a quotient isomorphic to . So we can take as N, the
kernel of a composition of surjective operators like the following one:

loo = loo/Co = loo — Ly(0,1).

(2) Let 2 < p,r < oo, and assume that there exists a bijective isomorphism
T : N, — N,. Since both ¢, /N, and l /N, are reflexive, by [I3, Theorem 2.f.12]
there exists an extension 7" : loo = log Of T which is a Fredholm operator; i.e. the
range R(T) is closed and both the kernel N(7T') and ¢,/ R(T) are finite dimensional.

Then T induces a Fredholm operator S : {y /N, — lo/N,, implying that L,(0,1)
and L,(0,1) are isomorphic. Hence p = r, and the proof is done. O
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Every quotient of L,(0,1) (2 < p < 00) is also a quotient of {,, and we can assume
as before that the kernel of the quotient map contains c¢g, so it provides another
example of /. .-Grothendieck subspace. In particular, we could have formulated
Theorem [B.3 with ¢, instead of L, (0, 1).

The next result provides additional examples.

Proposition 3.4. Let Y be a closed subspace of (o, which is a Grothendieck space
and contains a subspace isomorphic to cy. Then there exists a (s -Grothendieck
subspace isomorphic to'Y .

Proof. Let M be a closed subspace of Y isomorphic to ¢y and let T' : M — ¢
be a bijective isomorphism. Since both (., /M and /¢y are non-reflexive, by [13]
Theorem 2.f.12] there exists an extension T - (oo — Ly of T which is a bijective
isomorphism. Hence T (Y) is a £o-Grothendieck subspace isomorphic to Y. ([l

A remarkable example of Grothendieck space obtained by Bourgain [4] is the
space H* of bounded analytic functions on the unit disc, which is not isomorphic
to a C(K) space, not even isomorphic to a L-space. Moreover, it was proved
in [7, Corollary 10] that the projective tensor product £o,®f, is Grothendieck for
2 <p<oo.

Since both spaces H> and foo@ﬂ@p contain a subspace isomorphic to ¢y and they
are isomorphic to dual spaces of separable spaces (L;/HJ)* and (61@)56;)*, hence
they embed in /., we get the following fact.

Corollary 3.5. There exist .- Grothendieck subspaces which are isomorphic to H™
and @74, for 2 < p < oo.

All known examples of /,.-Grothendieck subspace are Grothendieck spaces. So
the following question arises:

Problem 1. Is it possible to find an example of {.-Grothendieck subspace which is
not a Grothendieck space?

To study this problem we would need a good characterization of /..-Grothendieck
subspaces, which we do not have yet.
Next we show that “small” subspaces are not ¢,.-Grothendieck subspaces.

Proposition 3.6. Let S be a closed subspace of o containing cy. If S has W*SC
dual ball, then S is not a ls-Grothendieck subspace.

Proof. Let j : co — S be the inclusion. Then j* : S* — ¢ is surjective, and we can
select a bounded sequence (z}) in S* such that j*z} = e} for each n € N, where
(ef) is the unit vector basis of {; = ¢.

Since S has W*SC dual ball, (z) has a o(S*, S)-convergent subsequence. Thus
the proof is finished if we show that (z7) has no o (S5, £ )-convergent subsequence.

Indeed, let (7}, ) be a subsequence, and recall that j** : c§* = loc — S™ is the
inclusion. We take z = (a;) € ly with a; = 1 for i = ng, (k € N) and a; = —1
otherwise. Then

<j**Z,l';k> — <Z’]*x;k> — <Z’€:k> = (—l)k’

hence (z;, ) is not o(S*, £)-convergent. O
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Proposition applies in the following cases:

(1) S is a separable closed subspace of ., containing cg.
(2) S =co+ M, where M is a non-separable subspace of ¢, containing no copies
of ¢; and isomorphic to a dual separable space. The space S has W*SC dual ball
because M has W*SC dual ball (Proposition 2.1]) and there is an injective operator
with dense range T': ¢g x M — S; see [0, Chapter XIII]. For example, we can take
M isomorphic to the dual of the James tree space JT' [11].
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