© <2020>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/ licenses/by-nc-nd/4.0/

ON ℓ_{∞} -GROTHENDIECK SUBSPACES

MANUEL GONZÁLEZ, FERNANDO LEÓN-SAAVEDRA, AND MARÍA DEL PILAR ROMERO DE LA ROSA

ABSTRACT. A closed subspace S of ℓ_{∞} is said to be a ℓ_{∞} -Grothendieck subspace if $c_0 \subset S$ (hence $\ell_{\infty} \subset S^{**}$) and every $\sigma(S^*, S)$ -convergent sequence in S^* is $\sigma(S^*, \ell_{\infty})$ -convergent. Here we give examples of closed subspaces of ℓ_{∞} containing c_0 which are or fail to be ℓ_{∞} -Grothendieck.

1. INTRODUCTION

The ℓ_{∞} -Grothendieck subspaces (defined in the abstract; see also Definition 2) naturally emerge when some versions of Schur's Lemma for bounded multiplier convergent series are sharpened (see, e.g., [15, 2, 1, 12]).

Apart from ℓ_{∞} , only one example of ℓ_{∞} -Grothendieck subspace is given in the literature (see [1, Remark 4.2]), using a result of [10]. This example is isomorphic to a C(K) space with the Grothendieck property, and contains no subspaces isomorphic to ℓ_{∞} .

Here we prove that if X is a Grothendieck Banach space and M is a closed subspace of X with X/M separable then M is a Grothendieck space. As a consequence, we derive that a closed subspace S of ℓ_{∞} containing c_0 is ℓ_{∞} -Grothendieck when the quotient ℓ_{∞}/S is separable, and using the fact that $L_q(0, 1)$ is isomorphic to a quotient of ℓ_{∞} for $2 \leq q < \infty$, we prove the existence of an uncountable family of pairwise non-isomorphic ℓ_{∞} -Grothendieck subspaces. We also show that for each closed subspace Y of ℓ_{∞} which is a Grothendieck space and contains a subspace isomorphic to c_0 , there exists a ℓ_{∞} -Grothendieck subspace isomorphic to Y.

On the other hand, we show that a closed subspace S of ℓ_{∞} containing c_0 is not ℓ_{∞} -Grothendieck when it is separable or, more generally, when the unit ball of S^* is weak*-sequentially compact.

2. Preliminaries

Let X be a Banach space and let M be a subspace of X^{**} containing X. We say that a sequence (x_n^*) in X^* is $\sigma(X^*, M)$ -convergent to x^* if $(\langle x^{**}, x_n^* \rangle)$ converges to $\langle x^{**}, x^* \rangle$ for every $x^{**} \in M$.

The authors were supported by Ministerio de Ciencia, Innovación y Universidades (Spain), grants PGC2018-101514-B-I00, PID2019-103961GB-C22, and by Vicerrectorado de Investigación de la Universidad de Cádiz. This work was also co-financed by the 2014-2020 ERDF Operational Programme, and by the Department of Economy, Knowledge, Business and University of the Regional Government of Andalusia. Project reference: FEDER-UCA18-108415. 2010 Mathematics Subject Classification. Primary: 46A35; 46B20; 40H05.

Keywords: Grothendieck Banach space; ℓ_{∞} -Grothendieck subspace.

M. GONZÁLEZ, F. LEÓN-SAAVEDRA, AND M.P. ROMERO DE LA ROSA

A Banach space X has weak^{*} sequentially compact dual ball (has W*SC dual ball, for short) if every sequence in the unit ball of X^{*} has a $\sigma(X^*, X)$ -convergent subsequence. We refer to [6, Chapter XIII] for information about this property. The next result gives some examples of spaces of this kind.

Proposition 2.1. A Banach space X has W^*SC dual ball in the following cases:

(1) X is separable;

2

- (2) X^* contains no copies of ℓ_1 ;
- (3) X is isomorphic to the dual of a separable space containing no copies of ℓ_1 .

Proof. (1) is well-known [6]; (2) follows from Rosenthal's characterization of Banach spaces containing no copies of ℓ_1 and the fact that each weakly Cauchy sequence in X^* is weak*-convergent; and (3) is a consequence of [6, Theorem XIII.10].

A Banach space X is *Grothendieck* if every $\sigma(X^*, X)$ -convergent sequence in X^* is $\sigma(X^*, X^{**})$ -convergent.

Obviously reflexive Banach spaces are Grothendieck. Moreover, it is not difficult to show that Grothendieck spaces with W*SC dual ball are reflexive, it was proved in [9] that ℓ_{∞} is a non-reflexive Grothendieck space (see [6, Theorem VII.15]), and the class of Grothendieck spaces satisfies the three-space property: If M is a closed subspace of a Banach space X and both M and X/M are Grothendieck, then so is X (see [8, Corollary 2.6]).

The following result collects some classical characterizations of Grothendieck spaces taken from [5, Chapter 5, Corollary 5].

Proposition 2.2. For a Banach space X, the following assertions are equivalent:

- (1) X is Grothendieck;
- (2) every operator $T: X \to c_0$ is weakly compact;
- (3) for each separable Banach space Y, every operator $T : X \to Y$ is weakly compact.

It easily follows from Proposition 2.2 that quotients of a Grothendieck space are also Grothendieck.

3. Main results

The following notion extends the classical one of Grothendieck space.

Definition 1. Let X be a Banach space and let M be a vector subspace of X^{**} containing X. We say that X is a M-Grothendieck space if every $\sigma(X^*, X)$ -convergent sequence in X^* is $\sigma(X^*, M)$ -convergent.

Obviously, the Grothendieck spaces are the X^{**} -Grothendieck spaces. Moreover, since $\sigma(X^*, X)$ -convergent sequences are bounded, the *M*-Grothendieck spaces coincide with the \overline{M} -Grothendieck spaces, where \overline{M} is the closure of *M*. So we could always assume in Definition 1 that *M* is a closed subspace.

We are interested in a concrete case of Definition 1. Let S be a closed subspace of ℓ_{∞} containing c_0 , and let $j: c_0 \to S$ be the inclusion map. Then we can identify ℓ_{∞} with a subspace $j^{**}(c_0^{**})$ of S^{**} containing S. **Definition 2.** Let S be a closed subspace of ℓ_{∞} . We say that S is a ℓ_{∞} -Grothendieck subspace if it contains c_0 and each $\sigma(S^*, S)$ -convergent sequence in S^* is $\sigma(S^*, \ell_{\infty})$ -convergent.

Clearly, if S is a closed subspace of ℓ_{∞} that contains c_0 and S is a Grothendieck space, then S is a ℓ_{∞} -Grothendieck subspace.

The following result may be interesting on its own.

Proposition 3.1. Let X be a Grothendieck Banach space. If M is a closed subspace of X and X/M is separable, then M is a Grothendieck space.

Proof. Let $S: M \to c_0$ be an operator. Since the space c_0 is separably injective [3, Theorem 2.3] and the quotient X/M is separable, the operator S admits an extension $T: X \to c_0$ [3, Proposition 2.5], which is weakly compact by Proposition 2.2. Then S is weakly compact, and applying again Proposition 2.2 we conclude that M is Grothendieck.

As a consequence of the previous result, we obtain that "big" subspaces are ℓ_{∞} -Grothendieck subspaces.

Corollary 3.2. Let S be a closed subspace of ℓ_{∞} containing c_0 such that ℓ_{∞}/S is separable. Then S is a ℓ_{∞} -Grothendieck subspace.

Let us see that there exists an uncountable family of pairwise non-isomorphic ℓ_{∞} -Grothendieck subspaces.

Theorem 3.3. Let $2 \le p < \infty$.

- (1) There exists a closed subspace N_p of ℓ_{∞} containing c_0 such that the quotient ℓ_{∞}/N_p is isomorphic to $L_p(0,1)$. Hence N_p is a ℓ_{∞} -Grothendieck subspace.
- (2) If $2 \leq r < \infty$, $p \neq r$, then the subspaces N_p and N_r are not isomorphic.

Proof. (1) Recall that ℓ_{∞} is isomorphic to $L_{\infty}(0,1)$, which is the dual of $L_1(0,1)$. Let q such that 1/p + 1/q = 1, hence $1 < q \leq 2$.

By [14, Corollary 2.f.5], there exists a closed subspace M_q of $L_1(0,1)$ which is isometrically isomorphic to $L_q(0,1)$. Therefore, by duality,

$$M_q^* \equiv L_\infty(0,1)/M_q^\perp \equiv L_q(0,1)^* \equiv L_p(0,1).$$

Let $U: L_{\infty}(0,1) \to \ell_{\infty}$ be a bijective isomorphism. By taking $N_p = U(M_q^{\perp})$ we guarantee that ℓ_{∞}/N_p is isomorphic to $L_p(0,1)$.

It remains to show that we can choose N_p containing c_0 . This is a consequence of the fact that ℓ_{∞}/c_0 has a quotient isomorphic to ℓ_{∞} . So we can take as N_p the kernel of a composition of surjective operators like the following one:

$$\ell_{\infty} \to \ell_{\infty}/c_0 \to \ell_{\infty} \to L_p(0,1).$$

(2) Let $2 \leq p, r < \infty$, and assume that there exists a bijective isomorphism $T: N_p \to N_r$. Since both ℓ_{∞}/N_p and ℓ_{∞}/N_r are reflexive, by [13, Theorem 2.f.12] there exists an extension $\hat{T}: \ell_{\infty} \to \ell_{\infty}$ of T which is a Fredholm operator; i.e. the range $R(\hat{T})$ is closed and both the kernel $N(\hat{T})$ and $\ell_{\infty}/R(\hat{T})$ are finite dimensional. Then \hat{T} induces a Fredholm operator $S: \ell_{\infty}/N_p \to \ell_{\infty}/N_r$, implying that $L_p(0,1)$ and $L_r(0,1)$ are isomorphic. Hence p = r, and the proof is done.

Every quotient of $L_p(0,1)$ $(2 \le p < \infty)$ is also a quotient of ℓ_{∞} , and we can assume as before that the kernel of the quotient map contains c_0 , so it provides another example of ℓ_{∞} -Grothendieck subspace. In particular, we could have formulated Theorem 3.3 with ℓ_p instead of $L_p(0,1)$.

The next result provides additional examples.

4

Proposition 3.4. Let Y be a closed subspace of ℓ_{∞} which is a Grothendieck space and contains a subspace isomorphic to c_0 . Then there exists a ℓ_{∞} -Grothendieck subspace isomorphic to Y.

Proof. Let M be a closed subspace of Y isomorphic to c_0 and let $T : M \to c_0$ be a bijective isomorphism. Since both ℓ_{∞}/M and ℓ_{∞}/c_0 are non-reflexive, by [13, Theorem 2.f.12] there exists an extension $\hat{T} : \ell_{\infty} \to \ell_{\infty}$ of T which is a bijective isomorphism. Hence $\hat{T}(Y)$ is a ℓ_{∞} -Grothendieck subspace isomorphic to Y. \Box

A remarkable example of Grothendieck space obtained by Bourgain [4] is the space H^{∞} of bounded analytic functions on the unit disc, which is not isomorphic to a C(K) space, not even isomorphic to a \mathcal{L}_{∞} -space. Moreover, it was proved in [7, Corollary 10] that the projective tensor product $\ell_{\infty} \widehat{\otimes}_{\pi} \ell_p$ is Grothendieck for 2 .

Since both spaces H^{∞} and $\ell_{\infty} \widehat{\otimes}_{\pi} \ell_p$ contain a subspace isomorphic to c_0 and they are isomorphic to dual spaces of separable spaces $(L_1/H_0^1)^*$ and $(\ell_1 \widehat{\otimes}_{\varepsilon} \ell_p^*)^*$, hence they embed in ℓ_{∞} , we get the following fact.

Corollary 3.5. There exist ℓ_{∞} -Grothendieck subspaces which are isomorphic to H^{∞} and $\ell_{\infty} \widehat{\otimes}_{\pi} \ell_p$ for 2 .

All known examples of ℓ_{∞} -Grothendieck subspace are Grothendieck spaces. So the following question arises:

Problem 1. Is it possible to find an example of ℓ_{∞} -Grothendieck subspace which is not a Grothendieck space?

To study this problem we would need a good characterization of ℓ_{∞} -Grothendieck subspaces, which we do not have yet.

Next we show that "small" subspaces are not ℓ_{∞} -Grothendieck subspaces.

Proposition 3.6. Let S be a closed subspace of ℓ_{∞} containing c_0 . If S has W^*SC dual ball, then S is not a ℓ_{∞} -Grothendieck subspace.

Proof. Let $j : c_0 \to S$ be the inclusion. Then $j^* : S^* \to c_0^*$ is surjective, and we can select a bounded sequence (x_n^*) in S^* such that $j^*x_n^* = e_n^*$ for each $n \in \mathbb{N}$, where (e_n^*) is the unit vector basis of $\ell_1 \equiv c_0^*$.

Since S has W*SC dual ball, (x_n^*) has a $\sigma(S^*, S)$ -convergent subsequence. Thus the proof is finished if we show that (x_n^*) has no $\sigma(S^*, \ell_{\infty})$ -convergent subsequence.

Indeed, let $(x_{n_k}^*)$ be a subsequence, and recall that $j^{**}: c_0^{**} \equiv \ell_\infty \to S^{**}$ is the inclusion. We take $z = (a_i) \in \ell_\infty$ with $a_i = 1$ for $i = n_{2k}$ $(k \in \mathbb{N})$ and $a_i = -1$ otherwise. Then

$$\langle j^{**}z, x_{n_k}^* \rangle = \langle z, j^*x_{n_k}^* \rangle = \langle z, e_{n_k}^* \rangle = (-1)^k,$$

hence $(x_{n_k}^*)$ is not $\sigma(S^*, \ell_{\infty})$ -convergent.

Proposition 3.6 applies in the following cases:

(1) S is a separable closed subspace of ℓ_{∞} containing c_0 .

(2) $S = \overline{c_0 + M}$, where M is a non-separable subspace of ℓ_{∞} containing no copies of ℓ_1 and isomorphic to a dual separable space. The space S has W*SC dual ball because M has W*SC dual ball (Proposition 2.1) and there is an injective operator with dense range $T : c_0 \times M \to S$; see [6, Chapter XIII]. For example, we can take M isomorphic to the dual of the James tree space JT [11].

Acknowledgements. We thank our colleagues of the Department of Mathematics, University of Cantabria for their support during a research stay.

References

- A. Aizpuru; R. Armario; F.J. García-Pacheco; F.J. Pérez-Fernández. Banach limits and uniform almost summability. J. Math. Anal. Appl. 379 (2011), 82–90.
- [2] A. Aizpuru; F.J. García-Pacheco; C. Pérez-Eslava. Matrix summability and uniform convergence of series. Proc. Amer. Math. Soc. 135 (2007), 3571–3579.
- [3] A. Avilés; F. Cabello Sánchez; J.M.F. Castillo; M. González; Y. Moreno. Separably injective Banach Spaces. Lecture Notes in Math. 2132. Springer-Verlag, 2016.
- [4] J. Bourgain. H^{∞} is a Grothendieck space. Studia Math. 75 (1983), 193–216.
- [5] J. Diestel. Geometry of Banach Spaces Selected topics. Lecture Notes in Math. 485. Springer-Verlag, 1975.
- [6] J. Diestel. Sequences and series in Banach Spaces. Springer-Verlag, 1984.
- [7] M. González; J.M. Gutiérrez. Polynomial Grothendieck properties. Glasgow Math. J. 37 (1995), 211–219.
- [8] M. González; V.M. Onieva. Lifting results for sequences in Banach spaces. Math. Proc. Cambridge Philos. Soc. 105 (1989), 117–121.
- [9] A. Grothendieck. Sur les applications linéaires faiblement compactes d'espaces du type C(K). Canad. J. Math. 5 (1953), 129–173.
- [10] R. Haydon. A non-reflexive Grothendieck space that does not contain ℓ_{∞} . Israel J. Math. 40 (1981), 65-73.
- R.C. James. A separable somewhat reflexive Banach space with non-separable dual. Bull. Amer. Math. Soc. 80 (1974), 738–743.
- [12] F. León-Saavedra; M.P. Romero de la Rosa; A. Sala. Schur lemma and uniform convergence of series through convergence methods. Mathematics 8 (10) (2020), art. no. 1744; 11 pp.
- [13] J. Lindenstrauss; L. Tzafriri. Classical Banach Spaces I. Springer-Verlag, 1977.
- [14] J. Lindenstrauss; L. Tzafriri. Classical Banach Spaces II. Springer-Verlag, 1979.
- [15] C. Swartz, The Schur lemma for bounded multiplier convergent series. Math. Ann. 263 (1983), no. 3, 283–288.

Departamento de Matemáticas, Facultad de Ciencias, Universidad de Cantabria, Avda. de los Castros s/n, 39071-Santander, Spain

Email address: manuel.gonzalez@unican.es

REGIONAL MATHEMATICAL CENTER OF SOUTHERN FEDERAL UNIVERSITY, ROSTOV-ON-DON, RUSSIA & DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CÁDIZ, AVDA. DE LA UNI-VERSIDAD S/N, 11402-JEREZ DE LA FRONTERA, SPAIN.

Email address: fernando.leon@uca.es

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CÁDIZ, CASEM, POL. RÍO SAN PEDRO S/N, 11510-PUERTO REAL, SPAIN.

Email address: pilar.romero@uca.es