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Abstract
We study the surjectivity of, and the existence of right inverses for, the asymptotic Borel map
in Carleman–Roumieu ultraholomorphic classes defined by regular sequences in the sense
of E. M. Dyn’kin. We extend previous results by J. Schmets and M. Valdivia, by V. Thilliez,
and by the authors, and show the prominent role played by an index, associated with the
sequence, thatwas introducedbyV.Thilliez. The techniques involve regular variation, integral
transforms and characterization results of A. Debrouwere in a half-plane, stemming from his
study of the surjectivity of the moment mapping in general Gelfand–Shilov spaces.

Keywords Carleman ultraholomorphic classes · Asymptotic expansions ·
Borel–Ritt–Gevrey theorem · Laplace transform · regular variation

Mathematics Subject Classification 30D60 · 30E05 · 47A57 · 34E05

1 Introduction

The concept of asymptotic expansion, introduced by H. Poincaré in 1886, has played an
essential role in the understanding of the analytical meaning of the formal power series
solutions to large classes of functional equations (ordinary and partial differential equations,
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difference and q-difference equations, and so on). The existence of such an expansion for
a complex holomorphic function in a sector S of the Riemann surface of the logarithm
amounts to a precise control on the growth of its derivatives, and this fact gives the link
with ultraholomorphic classes, on whose elements’ derivatives are usually imposed local or
global bounds in terms of a weight sequence M = (Mp)p∈N0 of positive real numbers. See
Sect. 2.3 for an account in this respect. The asymptotic Borel map sends a function in one of
such classes into its formal power series of asymptotic expansion, and in many instances it
is important to decide about its injectivity and surjectivity when considered between suitable
spaces. We refer the reader to our previous paper [10], whose introduction contains a non
comprehensive historical account of the results in this respect, and where the problem of
injectivity in unbounded sectors and for general weight sequences is completely closed, by
solving a pending case not covered by the powerful results of S. Mandelbrojt [14] and B.
Rodríguez-Salinas [17].

Regarding surjectivity, the classical Borel–Ritt–Gevrey theorem of B. Malgrange and J.-
P. Ramis [16], solving the case of Gevrey asymptotics, was extended to differentmore general
situations by J. Schmets and M. Valdivia [19], V. Thilliez [20,21] and the authors [10,18].
For a weight sequenceM, our main satisfactory results have been the following:

(i) The Borel map is never bijective [10, Theorem 3.17].
(ii) The strong nonquasianalyticity condition is equivalent to the fact that the index γ (M) of

V. Thilliez is positive, and this condition is necessary for surjectivity [10, Lemma 4.5].
(iii) For a sector Sγ of opening πγ (γ > 0) and under the hypothesis of strong regularity

for M, V. Thilliez [21] proved surjectivity of the Borel map for γ < γ (M). Conversely,
we have proved [10, Corollaries 4.18 and 4.19] that surjectivity implies γ ≤ γ (M)

and, in case γ (M) is a rational number, even γ < γ (M) is obtained whenever uniform
asymptotics are considered.

(iv) Surjectivity was completely characterizedwheneverM admits a nonzero proximate order
[18, Theorem 6.1].

The present paper intends to go one step further and complete the partial information
given in [10, Theorem 4.14] concerning the case of regular weight sequences in the sense of
E.M.Dyn’kin [6],which instead ofmoderate growth satisfy themilder condition of derivation
closedness (see Sect. 2.2 for the precise definitions). Moreover, the existence of extension
operators, continuous linear right inverses for the Borel map, is studied in this general case.
It is interesting to note that the condition (β2), introduced by H.-J. Petzsche [15] in a similar
study for ultradifferentiable classes, plays again a prominent role here, and its relationship
with other conditions of rapid variation is elucidated. In particular, the condition γ (M) = ∞,
stronger than (β2), guarantees the surjectivity of the Borel map and the existence of global
extension operators for any sector in the Riemann surface of the logarithm.

We have not considered in this paper the closely related case of Beurling ultraholomorphic
classes. The surjectivity of theBorelmap in this setting, forγ < γ (M) andunder themoderate
growth condition, was established by V. Thilliez [21, Cor. 3.4.1], and A. Debrouwere [4] has
very recently proved the existence of extension operators under the same hypotheses by using
results from the splitting theory of Fréchet spaces. We think our techniques apply, with really
slight modifications, to the Beurling framework, and results similar to the ones presented
here could be established for regular sequences, so extending the results in [4]. We note
that, in this context, the condition (β2) (see Sect. 4) is no longer needed for global extension
operators to exist, and so this condition will not appear in the corresponding Beurling version
of Theorem 4.2 in this paper.
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2 Preliminaries

2.1 Notation

We set N := {1, 2, . . .}, N0 := N ∪ {0}. R stands for the Riemann surface of the logarithm,
where the notation z = |z|eiθ refers to the element (|z|, θ) ∈ (0,∞)×R. C[[z]] is the space
of formal power series in z with complex coefficients.

For γ > 0, we consider unbounded sectors bisected by direction 0,

Sγ :=
{

z ∈ R : |arg(z)| <
γ π

2

}

or, in general, bounded or unbounded sectors

S(d, α, r) :=
{

z ∈ R : |arg(z) − d| <
α π

2
, |z| < r

}
, S(d, α) :=

{
z ∈ R : |arg(z) − d| <

α π

2

}

with bisecting direction d ∈ R, opening α π and (in the first case) radius r ∈ (0,∞).
A sector T is said to be a proper subsector of a sector S if T ⊂ S (where the closure of

T is taken inR, and so the vertex of the sector is not under consideration). In case such T is
also bounded, we say it is a bounded proper subsector of S.

2.2 Weight sequences and their properties

In what follows, M = (Mp)p∈N0 will always stand for a sequence of positive real numbers,
and we will always assume that M0 = 1. We define its sequence of quotients m = (m p)p∈N0

by m p := Mp+1
Mp

, p ∈ N0; clearly, the knowledge of M amounts to that of m, since Mp =
m0 · · · m p−1, p ∈ N. We will denote by small letters the quotients of a sequence given by
the corresponding capital letters. The following properties for a sequence will play a role in
this paper:

(i) M is logarithmically convex (for short, (lc)) if

M2
p ≤ Mp−1Mp+1, p ∈ N.

(ii) M is stable under differential operators or satisfies the derivation closedness condition
(briefly, (dc)) if there exists D > 0 such that

Mp+1 ≤ D p+1Mp, p ∈ N0.

(iii) M is of, or has, moderate growth (briefly, (mg)) whenever there exists A > 0 such that

Mp+q ≤ Ap+q Mp Mq , p, q ∈ N0.

(iv) M satisfies the condition (snq) if there exists B > 0 such that

∞∑
q=p

Mq

(q + 1)Mq+1
≤ B

Mp

Mp+1
, p ∈ N0.

It will be convenient to introduce the notation M̂ := (p!Mp)p∈N0 . All these properties
are preserved when passing from M to M̂. In the classical work of H. Komatsu [11], the
properties (lc), (dc) and (mg) are denoted by (M .1), (M .2)′ and (M .2), respectively, while
(snq) forM is the same as property (M .3) for M̂. Obviously, (mg) implies (dc).
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The sequence of quotientsm is nondecreasing if and only ifM is (lc). In this case, it is well-
known that (Mp)

1/p ≤ m p−1 for every p ∈ N, the sequence ((Mp)
1/p)p∈N is nondecreasing,

and lim p→∞(Mp)
1/p = ∞ if and only if lim p→∞ m p = ∞. In order to avoid trivial

situations, we will restrict from now on to (lc) sequences M such that lim p→∞ m p = ∞,
which will be called weight sequences.

Following E. M. Dyn’kin [6], if M is a weight sequence and satisfies (dc), we say M̂ is
regular. According to V. Thilliez [21], ifM satisfies (lc), (mg) and (snq), we sayM is strongly
regular; in this caseM is a weight sequence, and the corresponding M̂ is regular.

We mention some interesting examples. In particular, those in (i) and (iii) appear in the
applications of summability theory to the study of formal power series solutions for different
kinds of equations.

(i) The sequences Mα,β := (
p!α ∏p

m=0 log
β(e + m)

)
p∈N0

, where α > 0 and β ∈ R, are
strongly regular (in case β < 0, the first terms of the sequence have to be suitably
modified in order to ensure (lc)). In case β = 0, we have the best known example of
a strongly regular sequence, Mα := Mα,0 = (p!α)p∈N0 , called the Gevrey sequence of
order α.

(ii) The sequence M0,β := (
∏p

m=0 log
β(e + m))p∈N0 , with β > 0, satisfies (lc) and (mg),

and m tends to infinity, but (snq) is not satisfied.
(iii) For q > 1, Mq := (q p2)p∈N0 satisfies (lc), (dc) and (snq), but not (mg).

Two sequencesM = (Mp)p∈N0 andL = (L p)p∈N0 of positive real numbers, with respec-
tive quotients m and �, are said to be:

(i) equivalent, and we write M ≈ L, if there exist positive constants A, B such that

Ap Mp ≤ L p ≤ B p Mp, p ∈ N0.

(ii) strongly equivalent, and we write m 
 �, if there exist positive constants a, b such that

am p ≤ �p ≤ bm p, p ∈ N0.

Whenever m 
 � we have M ≈ L, but not conversely.
As an example, for α > 0 we set Lα := (�(1+ α p))p∈N0 , where � denotes the Eulerian

Gamma function; it is well-known that �α 
 ((p + 1)α)p∈N0 and so Lα ≈ Mα , the Gevrey
sequence of order α.

Conditions (dc) and (mg) are clearly preserved by ≈, and so also by 
, for general
sequences; (snq) is obviously preserved for weight sequences by 
, but also by ≈ (see the
work of H.-J. Petzsche [15, Cor. 3.2] for an indirect argument, and our paper [9, Cor. 3.14]
for a direct proof of a more general statement).

Given two sequences M and L, we use the notation M · L = (Mp L p)p∈N0 and M/L =
(Mp/L p)p∈N0 . We will use the fact that M satisfies (mg), respectively (dc), if and only if
M · Lα orM/Lα satisfy (mg), resp. (dc), for some α > 0.

2.3 Asymptotic expansions, ultraholomorphic classes and the asymptotic Borel map

In this paragraph S is a sector and M a sequence. We start by recalling the concept of
asymptotic expansion.

We say a holomorphic function f in S admits the formal power series f̂ = ∑∞
p=0 apz p ∈

C[[z]] as its {M}-asymptotic expansion in S (when the variable tends to 0) if for every bounded
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proper subsector T of S there exist CT , AT > 0 such that for every p ∈ N0, one has

∣∣∣∣ f (z) −
p−1∑
n=0

anzn
∣∣∣∣ ≤ CT Ap

T Mp|z|p, z ∈ T .

If the expansion exists, it is unique, and we will write f ∼{M} f̂ in S. Ã{M}(S) stands for
the space of functions admitting {M}-asymptotic expansion in S.

We say a holomorphic function f : S → C admits f̂ as its uniform {M}-asymptotic
expansion in G (of type 1/A for some A > 0) if there exists C > 0 such that for every
p ∈ N0, one has

∣∣∣∣∣∣
f (z) −

p−1∑
n=0

anzn

∣∣∣∣∣∣
≤ C Ap Mp|z|p, z ∈ S. (2.1)

In this case we write f ∼u
{M},A f̂ in S, and Ãu

{M},A(S) denotes the space of functions
admitting uniform {M}-asymptotic expansion of type 1/A in S, endowed with the norm

‖ f ‖
M,A,

∼
u

:= sup
z∈S,p∈N0

∣∣∣ f (z) − ∑p−1
k=0 ak zk

∣∣∣
Ap Mp|z|p

,

which makes it a Banach space. Ãu
{M}(S) stands for the (L B) space of functions admitting a

uniform {M}-asymptotic expansion in S, obtained as the union of the previous classes when
A runs over (0,∞). When the type needs not be specified, we simply write f ∼u

{M} f̂ in

S. Note that, taking p = 0 in (2.1), we deduce that every function in Ãu
{M}(S) is a bounded

function.
Finally, we define for every A > 0 the class A{M},A(S) consisting of the functions holo-

morphic in S such that

‖ f ‖M,A := sup
z∈S,p∈N0

| f (p)(z)|
Ap Mp

< ∞.

(A{M},A(S), ‖ · ‖M,A) is a Banach space, and A{M}(S) := ∪A>0A{M},A(S) is called a
Carleman–Roumieu ultraholomorphic class in the sector S, whose natural inductive topology
makes it an (L B) space.

We warn the reader that these notations do not agree with the ones used in [10,18],
where Ã{M}(S) was denoted by ÃM(S), Ãu

{M}(S) by Ãu
M

(S), A{M},A(S) by AM/L1,A(S),
and A{M}(S) by AM/L1(S).

IfM is (lc), the spacesA{M}(S), Ãu
{M}(S) and Ã{M}(S) are algebras, and ifM is (dc) they

are stable under taking derivatives. Moreover, ifM ≈ L the corresponding classes coincide.
Since the derivatives of f ∈ A{M},A(S) are Lipschitz, for every p ∈ N0 one may define

f (p)(0) := lim
z∈S,z→0

f (p)(z) ∈ C. (2.2)

As a consequence of Taylor’s formula and Cauchy’s integral formula for the derivatives,
there is a close relation between Carleman–Roumieu ultraholomorphic classes and the con-
cept of asymptotic expansion (the proof may be easily adapted from [1]).

Proposition 2.1 Let M be a sequence and S be a sector. Then,
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(i) If f ∈ A{M̂},A(S) then f admits f̂ := ∑
p∈N0

1
p! f (p)(0)z p as its uniform {M}-asymptotic

expansion in S of type 1/A, where ( f (p)(0))p∈N0 is given by (2.2). Moreover, ‖ f ‖
M,A,

∼
u

≤
‖ f ‖

M̂,A, and so the identity A{M̂},A(S) ↪→ Ãu
{M},A(S) is continuous. Consequently, we

also have that

A{M̂}(S) ⊆ Ãu
{M}(S) ⊆ Ã{M}(S),

and A{M̂}(S) ↪→ Ãu
{M}(S) is continuous.

(ii) f ∈ Ã{M}(S) if and only if for every (bounded or, if possible, unbounded) proper subsec-
tor T of S there exists AT > 0 such that f |T ∈ A{M̂},AT

(T ). In case any of the previous
holds and f ∼{M}

∑∞
p=0 apz p, then for every such T and every p ∈ N0 one has

ap = lim
z→0
z∈T

f (p)(z)

p! , (2.3)

and we can set f (p)(0) := p!ap.
(iii) If S is unbounded and T is a proper subsector of S, then there exists a constant c =

c(T , S) > 0 such that the restriction to T , f |T , of functions f defined on S and admitting
a uniform {M}-asymptotic expansion in S of type 1/A > 0, belongs to A{M̂},cA(T ),

and ‖ f |T ‖
M̂,cA ≤ ‖ f ‖

M,A,
∼
u
. So, the restriction map from Ãu

{M},A(S) to A{M̂},cA(T ) is

continuous, and it is also continuous from Ãu
{M}(S) to A{M̂}(T ).

One may accordingly define classes of formal power series

C[[z]]{M},A =
⎧
⎨
⎩ f̂ =

∞∑
p=0

apz p ∈ C[[z]] : ∣∣ f̂
∣∣
M,A := sup

p∈N0

|ap|
Ap Mp

< ∞
⎫
⎬
⎭ .

(C[[z]]{M},A, | · |M,A) is a Banach space and we put C[[z]]{M} := ∪A>0C[[z]]{M},A, again
an (L B) space.

Given f ∈ Ã{M}(S) with f ∼{M} f̂ , and taking into account (2.3), it is straightforward
that f̂ ∈ C[[z]]{M}, so it is natural to consider the asymptotic Borel map

B̃ : Ã{M}(S) −→ C[[z]]{M}

sending a function f ∈ Ã{M}(S) into its {M}-asymptotic expansion f̂ . By Proposition 2.1.(i)
the asymptotic Borel map may be defined in Ãu

{M}(S), A{M̂}(S) and A{M̂},A(S) (in the last
case, with target space C[[z]]{M},A).

We would like to highlight that, alternatively, the target space for the Borel map could be
considered to be a space of sequences comprising the derivatives at 0 of a function f in the
classes, as defined in (2.2), and subject to the corresponding control on the growth of their
terms. This equivalent approach has been followed by many authors, and in particular in the
works of J. Schmets and M. Valdivia [19] and A. Debrouwere [3]. Note that their results,
stated in this paper as Theorems 3.4, 4.1 and 4.3, have been adapted to our setting.

IfM is (lc), B̃ is a homomorphism of algebras; ifM is also (dc), differentiation commutes
with B̃. Moreover, it is continuous when considered between the corresponding Banach or
(L B) spaces previously introduced. Finally, note that ifM ≈ L, then C[[z]]{M} = C[[z]]{L},
and the corresponding Borel maps are in all cases identical.

123



Surjectivity of the asymptotic Borel map… Page 7 of 18 181

Since the problem under study is invariant under rotation, we will focus on the surjectivity
of the Borel map in unbounded sectors Sγ . So, we define

S{M̂} :={γ > 0; B̃ : A{M̂}(Sγ ) −→ C[[z]]{M} is surjective},
S̃u
{M} :={γ > 0; B̃ : Ãu

{M}(Sγ ) −→ C[[z]]{M} is surjective},
S̃{M} :={γ > 0; B̃ : Ã{M}(Sγ ) −→ C[[z]]{M} is surjective}.

We again note that these intervals were respectively denoted by SM, S̃u
M

and S̃M in [10].
It is clear that S{M̂}, S̃u

{M} and S̃{M} are either empty or left-open intervals having 0 as
endpoint, called surjectivity intervals. Using Proposition 2.1, items (i) and (iii), we easily see
that

(S̃u
{M})

◦ ⊆ S{M̂} ⊆ S̃u
{M} ⊆ S̃{M}, (2.4)

where I ◦ stands for the interior of the interval I .

3 Surjectivity results for regular sequences

In the study of the surjectivity of the Borel map the index γ (M), introduced in this regard
by V. Thilliez [21, Sect. 1.3] for strongly regular sequences M, will play a central role.
His definition makes sense for (lc) sequences, in this case γ (M) ∈ [0,∞], and it may be
equivalently expressed by different conditions:

(i) A sequence (cp)p∈N0 is almost increasing if there exists a > 0 such that for every
p ∈ N0 we have that cp ≤ acq for every q ≥ p. It was proved in [8,9] that for any weight
sequenceM one has

γ (M) = sup{γ > 0 : (m p/(p + 1)γ )p∈N0 is almost increasing}. (3.1)

(ii) For any β > 0 we say that m satisfies the condition (γβ) if there exists A > 0 such that

∞∑
�=p

1

(m�)1/β
≤ A(p + 1)

(m p)1/β
, p ∈ N0. (γβ )

For β = 1, this condition was introduced by H. Komatsu [11], and named (γ1) after
H.-J. Petzsche [15]). Subsequently, it was considered for β ∈ N by J. Schmets and M.
Valdivia [19]. We have obtained (see [7,9]) that for a weight sequenceM,

γ (M) = sup{β > 0; m satisfies (γβ) }; γ (M) > β ⇐⇒ m satisfies (γβ). (3.2)

Note that the definition of this index can be coherently extended for an arbitrary sequence
M of positive real numbers as

γ (M) = sup{γ ∈ R : (m p/(p + 1)γ )p∈N0 is almost increasing}
(with values ∞, resp. −∞, in case the previous set is R, resp. empty). We consider in the
sequel this extension.

Whenever M̂ = (p!Mp)p∈N0 is (lc) we have (see [7, Ch. 2] and [9, Cor. 3.13]) that
γ (M) > 0 if and only ifM is (snq). We recall also the following result for later use.

Lemma 3.1 ([9], Remark 3.15). For an arbitrary sequence M1 such that γ (M1) > 1, there
exists a weight sequence M2 such that m̂2 
 m1, and so γ (M̂2) = γ (M1).
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A straightforward verification shows that for any sequenceM and for every s > 0 one has

γ ((p!s Mp)p∈N0) = γ ((�(1 + sp)Mp)p∈N0) = γ (M) + s, (3.3)

γ ((Mp/p!s)p∈N0) = γ (Mp/(�(1 + sp))p∈N0) = γ (M) − s. (3.4)

As a consequence of the characterization of the surjectivity of the Borel map in the
ultradifferentiable setting given by H.-J. Petzsche [15, Thm. 3.5], we proved the following
result, already announced by V. Thilliez in [21].

Lemma 3.2 ([10], Lemma 4.5). Let M be a weight sequence. If S̃{M} �= ∅, then M has (snq)
or, equivalently, γ (M) > 0.

Our aim in this section is to solve (except for some limiting cases) the problem of sur-
jectivity whenever M is a weight sequence satisfying (dc) or, in other words, M̂ is a regular
sequence in the sense of Dyn’kin. Our previous main result is the following. We denote by
�x� the greatest integer not exceeding x .

Theorem 3.3 ([10], Thm. 4.14 and Cor. 4.15). Let M be a weight sequence satisfying (dc).

(i) Let α > 0 be such that B̃ : Ãu
{M}(Sα) → C[[z]]{M} is surjective. Then, γ (M) > �α�.

(ii) If we have that S̃u
{M} = (0,∞), then S{M̂} = S̃u

{M} = S̃{M} = (0,∞) and γ (M) = ∞.

One has S{M̂} ⊆ S̃u
{M} ⊆ (0, �γ (M)� + 1); if moreover γ (M) ∈ N, then S{M̂} ⊆ S̃u

{M} ⊆
(0, γ (M)).

At that moment and to the best of our knowledge, no general surjectivity result had been
proved for regular M̂, except for the special case of the q-Gevrey sequencesMq = (q p2)p∈N0 ,
q > 1, seeC. Zhang [22]. In a recent collaboration of the first two authorswithA.Debrouwere
[5] we have studied the existence and uniqueness of solutions for the Stieltjes moment
problem in Gelfand–Shilov spaces, subspaces of the Schwartz space of rapidly decreasing
smooth functions for which the growth of the products of monomials times the derivatives
of their elements is controlled in terms of weight sequences. By a suitable application of the
Fourier transform, there exists a close connection between this problem and the surjectivity
or injectivity of the asymptotic Borel map in ultraholomorphic classes in a half-plane, and so
our results in [10] could be transferred, providing a complete solution for the surjectivity of
the moment map whenever strongly regular sequences are considered, and only a partial one
for regular sequences. The key point for our coming results is a new work by A. Debrouwere
[3], where the surjectivity of the Stieltjes moment problem for regular sequences has been
characterized. Again thanks to the Fourier transform (but in the opposite direction) he has
taken this information into the asymptotic framework. We state next a version adapted to our
needs: firstly, while we ask for M to be (lc), it is enough that M̂ is; secondly, the condition
γ (M) > 1 amounts, in view of (3.3) and (3.2), to the fact that M̂ satisfies (γ2), which is the
condition appearing in [3, Thm. 7.4.(b)].

Theorem 3.4 ([3]). Let M̂ be regular. The following are equivalent:

(i) B̃ : A{M̂}(S1) → C[[z]]{M} is surjective.
(ii) γ (M) > 1.

We highlight that (i)⇒(ii) is slightly weaker than part (i) of Theorem 3.3 when α = 1; on
the other hand, the implication (ii)⇒(i) provides the first general surjectivity result for weight
sequences not subject to condition (mg) (apart from a result of J. Schmets and M. Valdivia
for rapidly varying sequences which we will comment on later).
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However, the previous method seems to be valid only for a half-plane. We will be able to
carry the information to the case of a general sector by applying general Laplace, Lα , and
Borel, Bα , transforms of order α > 0, which basically arise from the classical transforms
(inverse of each other) combined with ramifications of exponent α. Namely, we will follow
the approach in Sections 5.5 and 5.6 of the book ofW. Balser [1], where details can be found.
We recall that, for 0 < α < 2, one considers the Laplace kernel function

eα(z) := 1

α
z1/α exp(−z1/α), z ∈ Sα,

whose moment function is

mα(λ) :=
∫ ∞

0
tλ−1eα(t)dt = �(1 + αλ), �(λ) ≥ 0,

and the corresponding Borel kernel function

Eα(z) :=
∞∑

p=0

z p

mα(p)
=

∞∑
p=0

z p

�(1 + α p)
, z ∈ C,

which is the classical Mittag-Leffler function of order α.
Subsequently, given a function f holomorphic in a sector S = S(d, β) (for some β > 0)

and with suitable growth, for any direction τ in S the α-Laplace transform in direction τ of
f is defined as

(Lα,τ f )(z) :=
∫ ∞(τ )

0
eα(u/z) f (u)

du

u
, | arg(z) − τ | < απ/2, |z| small enough,

where the integral is taken along the half-line parameterized by t ∈ (0,∞) �→ teiτ . The
family {Lα,τ f }τ in S defines a function Lα f , named the α-Laplace transform of f , which is
holomorphic in a sectorial region bisected by d of opening π(β + α).

Secondly, let S = S(d, β, r) be a sector with β > α, and f : S → C be holomorphic in S
and continuous at 0 (i.e. the limit of f at 0 exists when z tends to 0 in every proper subsector
of S). For τ ∈ R such that |τ − d| < (β − α)π/2 we may consider a path δα(τ ) in S like the
ones used in the classical Borel transform, consisting of a segment from the origin to a point
z0 with arg(z0) = τ + α(π + ε)/2 (for some suitably small ε ∈ (0, π)), then the circular arc
|z| = |z0| from z0 to the point z1 on the ray arg(z) = τ − α(π + ε)/2 (traversed clockwise),
and finally the segment from z1 to the origin.

The α-Borel transform in direction τ of f is then defined as

(Bα,τ f )(u) := −1

2π i

∫

δα(τ )

Eα(u/z) f (z)
dz

z
, u ∈ S(τ, ε0), ε0 small enough.

The family {Bα,τ f }τ defines the α-Borel transform of f , holomorphic in the sector S(d, β −
α) and denoted by Bα f .

In case α ≥ 2, the integral transforms Lα f and Bα f are introduced by the combination
of the previous ones with suitable ramification operators, see [1] for details.

The formal α-Laplace andα-Borel transforms, defined fromC[[z]] intoC[[z]], are respec-
tively given by

L̂α

⎛
⎝

∞∑
p=0

apz p

⎞
⎠ :=

∞∑
p=0

�(1 + α p)apz p, B̂α

⎛
⎝

∞∑
p=0

apz p

⎞
⎠ :=

∞∑
p=0

ap

�(1 + α p)
z p.
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The following result, involving two sequences, can be found in a slightly different form
in [1, Thms. 27 and 28], where only the case of two Gevrey sequences is considered, and in
[13, Thm. 3.16], where a general sequence and a sequence admitting a nonzero proximate
order intervene. Here, we consider an intermediate situation.

Theorem 3.5 Suppose M is an arbitrary sequence, and α, γ > 0. Let f ∈ Ãu
{M}(Sγ ) and

f ∼u
{M} f̂ . Recall that Lα := (�(1 + α p))p∈N0 . Then, the following hold:

(i) For every β with 0 < β < γ one has

Lα f ∈ Ãu
{M·Lα}(Sβ+α) and Lα f ∼u

{M·Lα} L̂α f̂ .

Moreover, there exist C, c > 0, depending only on α, β and γ , such that for every
A > 0 and every f ∈ Ãu

{M},A(Sγ ) one has ‖Lα f ‖
M·Lα,cA,

∼
u

≤ C‖ f ‖
M,A,

∼
u
, and so the

maps Lα : Ãu
{M},A(Sγ ) → Ãu

{M·Lα},cA(Sβ+α) and Lα : Ãu
{M}(Sγ ) → Ãu

{M·Lα}(Sβ+α) are
continuous.

(ii) Suppose γ > α. For every β with α < β < γ one has

Bα f ∈ Ãu
{M/Lα}(Sβ−α) and Bα f ∼u

{M/Lα} B̂α f̂ .

Moreover, there exist C, c > 0, depending only on α, β and γ , such that for every
A > 0 and every f ∈ Ãu

{M},A(Sγ ) one has ‖Bα f ‖
M/Lα,cA,

∼
u

≤ C‖ f ‖
M,A,

∼
u
, and so the

maps Bα : Ãu
{M},A(Sγ ) → Ãu

{M/Lα},cA(Sβ−α) and Bα : Ãu
{M}(Sγ ) → Ãu

{M/Lα}(Sβ−α)

are continuous.

With the help of this result we can complete the information in (2.4). We will use the clear
fact that the formal Laplace and Borel transforms, L̂α and B̂α , are (topological) isomorphisms
between the space C[[z]]{M} and C[[z]]{M·Lα}, respectively C[[z]]{M/Lα}, for an arbitrary
sequenceM.

Lemma 3.6 For any weight sequence M, S̃{M} is contained in the closure of S̃u
{M} in (0,∞).

Proof Due to the form of these intervals, it is equivalent to prove that whenever γ > 0
belongs to S̃{M}, one has (0, γ ) ⊆ S̃u

{M}. Let us see that any β ∈ (0, γ ) belongs to S̃u
{M}.

Choose positive real numbers α, β ′ such that α < β < β ′ < γ . First, we deduce that
B̃ : Ãu

{M/Lα}(Sβ ′−α) → C[[z]]{M/Lα} is surjective. Given ĝ ∈ C[[z]]{M/Lα}, we know f̂ :=
L̂α ĝ ∈ C[[z]]{M}. Since B̃ : Ã{M}(Sγ ) → C[[z]]{M} is surjective, there exists f ∈ Ã{M}(Sγ )

such that f ∼{M} f̂ . One may apply the Borel transform Bα to f , and the proof of [13,
Thm. 3.16.(ii)] shows that from the asymptotic estimates in bounded proper subsectors of
Sγ for f one can deduce uniform asymptotic estimates in Sβ ′−α for Bα f , and moreover
Bα f ∼u

{M/Lα} ĝ, as desired.
Subsequently, a similar use of the Laplace transform Lα shows, by taking into account

Theorem 3.5.(i), that B̃ : Ãu
{M}(Sβ) → C[[z]]{M} is also surjective, and we conclude. ��

We can now state our first main result.

Theorem 3.7 Let M̂ be a regular sequence such that γ (M) > 0. Then,

(0, γ (M)) ⊆ S{M̂} ⊆ S̃u
{M} ⊆ S̃{M} ⊆ (0, γ (M)].

Proof According to (2.4) and Lemma 3.6, it suffices to prove that (0, γ (M)) ⊆ S̃u
{M} ⊆

(0, γ (M)].
Firstly, we suppose 0 < γ < γ (M) and prove that γ ∈ S̃u

{M}. We distinguish two cases:
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(a.1) If γ (M) > 1, it suffices to work with γ > 1. Take γ ′ such that γ < γ ′ < γ (M). The
sequenceP1 := M̂/Lγ ′−1 satisfies (dc) and, thanks to (3.4), γ (P1) = γ (M)−γ ′+2 >

2. By Lemma 3.1, there exists a weight sequence P2 such that P̂2 ≈ P1, γ (P2) =
γ (P1) − 1 > 1, and which satisfies (dc). Theorem 3.4 applies, so B̃ : A{P̂2}(S1) →
C[[z]]{P2} is surjective, and the same holds when the map departs from Ãu

{P2}(S1).

Combining this fact with an application of the Laplace transformLγ ′−1 : Ãu
{P2}(S1) →

Ãu
{P2·Lγ ′−1}(Sγ ), Theorem 3.5.(i) shows that, since γ < γ ′ = 1 + (γ ′ − 1), also

B̃ : Ãu
{P2·Lγ ′−1}(Sγ ) → C[[z]]{P2·Lγ ′−1} is surjective. We conclude by observing that

P2 · Lγ ′−1 ≈ (P1/L1) · Lγ ′−1 = M̂/L1 = M, so that the corresponding classes
coincide and γ ∈ S̃u

{M}.
(a.2) If γ (M) ≤ 1, choose α ∈ (0, 1) such that γ (M) + α > 1. Hence, M · Lα is a

weight sequence satisfying (dc) and, by using (3.3), γ (M · Lα) > 1. Given γ ′ such
that γ < γ ′ < γ (M), by the previous item (a.1) we know that γ ′ + α ∈ S̃u

{M·Lα}.
In this case, we may combine this fact with an application of the Borel transform
Bα : Ãu

{M·Lα}(Sγ ′+α) → Ãu
{M}(Sγ ), and Theorem 3.5.(ii) implies that, since γ < γ ′,

also γ ∈ S̃u
{M}, as desired.

Secondly, we take γ ∈ S̃u
{M} and we will prove that γ ≤ γ (M). We again have different

cases:

(b.1) If 0 < γ < 1, consider positive real numbers α, γ ′ with 1− α < γ ′ < γ . By applying
the Laplace transform Lα : Ãu

{M}(Sγ ) → Ãu
{M·Lα}(Sγ ′+α), Theorem 3.5.(i) shows that

γ ′+α ∈ S̃u
{M·Lα}. Observe that γ ′+α > 1, sowe deduce by restriction to the half-plane

S1 that, according to Proposition 2.1.(iii), also 1 ∈ S{M̂·Lα}. Theorem 3.4 implies then
that γ (M · Lα) > 1 or, equivalently by (3.3), γ (M) > 1 − α. Since α can be chosen
arbitrarily while keeping 1 − α < γ , we deduce γ (M) ≥ γ .

(b.2) If γ ∈ N, we know that γ (M) > γ by Theorem 3.3.(i).
(b.3) If γ ∈ (1,∞) \ N, again by Theorem 3.3.(i) we deduce that γ (M) > �γ �, so that the

sequence P1 := M̂/L�γ � is such that γ (P1) > 1 by using (3.3) and (3.4). Hence, by
Lemma 3.1 there exists a weight sequence P2 such that P2 ≈ M/L�γ �, and P2 will
also satisfy (dc). Consider a value γ ′ with �γ � < γ ′ < γ . An application of the Borel
transform B�γ � : Ãu

{M}(Sγ ) → Ãu
{M/L�γ �}(Sγ ′−�γ �) and Theorem 3.5.(ii) shows that

γ ′ − �γ � ∈ S̃u
{M/L�γ �} or, equivalently, γ

′ − �γ � ∈ S̃u
{P2}. Since γ ′ − �γ � ∈ (0, 1), we

may invoke item (b.1) and deduce that γ (P2) ≥ γ ′−�γ �, what amounts to γ (M) ≥ γ ′.
We conclude by making γ ′ tend to γ .

��
The previous result confirms that, as indicated by V. Thilliez in [21, Sect. 3.3], the mod-

erate growth condition (mg) was of a technical nature for surjectivity. For weight sequences
satisfying (dc) it is only pending to determine whether γ (M) belongs or not to the surjec-
tivity intervals. In the particular case that γ (M) ∈ N we know S{M̂} = S̃u

{M} = (0, γ (M))

(see Theorem 3.3), and the same is valid if M is strongly regular and γ (M) is rational [10,
Corollary 4.18]. On the other hand, if M admits a nonzero proximate order (which is more
restrictive than strong regularity, but a common situation in applications) we also know that
S̃{M} = (0, γ (M)], see [18, Thm. 6.1] and [10, Thm. 4.24].

In general, for an arbitrary weight sequence we have no proof of surjectivity for any
opening, and the surjectivity intervals could possibly be empty; however, in [10, Thm. 4.10
and Cor. 4.11] we have obtained that S̃{M} ⊂ (0, �γ (M)� + 1].
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In view of the previous information, our conjecture is that S{M̂} = S̃u
{M} = (0, γ (M)) and

S̃{M} = (0, γ (M)] in general.

4 Global extension operators

One may ask about the existence of extension operators, linear continuous right inverses for
the asymptotic Borel map. This can be done, in principle, in the Banach spaces Ãu

{M},A(S)

and A{M},A(S), which we call the local case, or in the (L B) spaces Ãu
{M}(S) and A{M}(S),

which we refer to as the global one. The first situation was studied by V. Thilliez, see [21,
Thm. 3.2.1], who obtained local extension operators with a scaling of the type for strongly
regular sequences in sectors Sγ as long as γ < γ (M).

In the global situation and in the ultradifferentiable setting, H.-J. Petzsche [15] introduced
the condition

∀ε > 0, ∃k ∈ N, k > 1 : lim sup
p→∞

(
Mkp

Mp

) 1
(k−1)p 1

mkp−1
≤ ε, (β2)

which again appeared in the results of J. Schmets andM.Valdivia [19] andA.Debrouwere [3]
about the existence of global extension operators in the ultraholomorphic framework. Please
note that the sequence of quotients considered in these two previously cited papers results
from our sequencem after an index shift by 1, which explains the slightly different expression
given here to condition (β2) if compared with [3,19]. We subsequently mention a version of
the result by A. Debrouwere adapted to our needs, in a similar way as in Theorem 3.4.

Theorem 4.1 ([3], Thm. 7.4). Suppose M̂ is a regular sequence. The following are equivalent:

(i) There exists a global extension operator UM : C[[z]]{M} → A{M̂}(S1).
(ii) γ (M) > 1, and M satisfies (β2).

The use of Laplace and Borel transforms of arbitrary positive order allows us to generalize
this statement. We will also take into account that condition (β2) is evidently stable under
strong equivalence 
 and, as a consequence of Stirling’s formula (see [19, Lemma 2.2.(b)]),
a sequenceM satisfies (β2) if and only ifM ·Lα orM/Lα satisfies (β2) for some/any α > 0.

Theorem 4.2 Suppose M̂ is a regular sequence, and let r > 0. Each of the following state-
ments implies the next one:

(i) r < γ (M), and M satisfies (β2).
(ii) There exists a global extension operator UM,r : C[[z]]{M} → A{M̂}(Sr ).

(iii) There exists a global extension operator VM,r : C[[z]]{M} → Ãu
{M}(Sr ).

(iv) r ≤ γ (M), and M satisfies (β2).

Proof (i) �⇒ (ii) We consider two cases:

(a.1) Suppose r > 1, and take a real number r ′ with r < r ′ < γ (M). Reasoning as in the
proof of Theorem 3.7.(a.1), there exists a weight sequence P such that p 
 m/�r ′−1,
satisfies (dc) and (β2), and γ (P) = γ (M) + 1 − r ′ > 1. Theorem 4.1 provides an
extension operator U : C[[z]]{M/Lr ′−1} → A{M̂/Lr ′−1}(S1). By Proposition 2.1.(i), this

induces an extension operator Ũ : C[[z]]{M/Lr ′−1} → Ãu
{M/Lr ′−1}(S1). Theorem 3.5.(i)

implies that the composition Lr ′−1 ◦ Ũ ◦ B̂r ′−1 will be an extension operator from
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C[[z]]{M} to Ãu
{M}(Sρ) for every 0 < ρ < r ′ = 1 + (r ′ − 1). If we choose ρ =

(r + r ′)/2 > r , the restriction of the elements of this last space to Sr provides, by
Proposition 2.1.(iii), the extension operator UM,r : C[[z]]{M} → A{M̂}(Sr ) we were
looking for.

(a.2) If r ≤ 1, consider α such that α + r > 1, and take r ′ with r < r ′ < γ (M). The
sequenceM ·Lα satisfies (β2) and γ (M ·Lα) > r ′ +α > 1. By item (a.1), there exists
an extension operator U : C[[z]]{M·Lα} → A{M̂·Lα}(Sr ′+α). Again Proposition 2.1.(i)

allows us to obtain an extension operator Ũ : C[[z]]{M·Lα} → Ãu
{M·Lα}(Sr ′+α). Now,

Theorem 3.5.(ii) implies that Bα ◦ Ũ ◦ L̂α will be an extension operator fromC[[z]]{M}
to, say, Ãu

{M}(S(r+r ′)/2), and the restriction of the elements of this space to Sr provides
the desired extension operator as before.

(ii) �⇒ (iii) Obvious from Proposition 2.1.(i).
(iii) �⇒ (iv) We consider again two cases:

(b.1) Suppose r > 1, and take a real number r ′ with 1 < r ′ < r . The existence of VM,r

implies that the corresponding Borel map is surjective in Sr , and by Theorem 3.7 we
have γ (M) ≥ r . So, repeating the argument in (a.1), there exists a weight sequence
P such that p 
 m/�r ′−1, satisfies (dc) and γ (P) = γ (M) + 1 − r ′ > 1. Since
the classes associated with M and P · Lr ′−1 agree, we have an extension operator
ṼM,r : C[[z]]{P·Lr ′−1} → Ãu

{P·Lr ′−1}(Sr ). Note that 1 + (r − r ′)/2 < r − (r ′ − 1),

and so the mapping Br ′−1 ◦ ṼM,r ◦ L̂r ′−1 is an extension operator from C[[z]]{P} to
Ãu

{P}(S1+(r−r ′)/2). The restriction of the elements of this last space to S1 provides,
by Proposition 2.1.(iii), an extension operator UM,r : C[[z]]{P} → A{̂P}(S1). Then,
Theorem 4.1 guarantees that P satisfies (β2), and so M will also do according to the
stability properties of (β2). Moreover, γ (P) > 1, from where γ (M) > r ′. Since r ′ was
arbitrarily close to r , we deduce that γ (M) ≥ r , as desired.

(b.2) If r ≤ 1, consider α such that α + r > 1, and take α′ > α. Since r + α < r + α′,
Theorem 3.5.(i) asserts that the mapping Lα′ ◦ VM,r ◦ B̂α′ will be an extension operator
fromC[[z]]{M·Lα′ } to Ãu

{M·Lα′ }(Sr+α). We can apply item (b.1) and deduce thatM ·Lα′

satisfies (β2), and so M will also do, and that γ (M · Lα′) = γ (M) + α′ ≥ r + α. We
conclude by making α′ tend to α.

��
Our conjecture is that (i), (ii) and (iii) in Theorem 4.2 are equivalent, but we are not able

to fill the gap at this moment.
Observe that ifM is a weight sequence satisfying (β2), we may apply Lemma 2.4 in [19]

to the sequence M̂ and deduce that γ (M) > 0. So, if M̂ is regular and satisfies (β2), one can
always obtain extension operators for 0 < r < γ (M) thanks to the previous theorem.

In the last part of our study,wewant to determine theweight sequences forwhich extension
operators exist for sectors of arbitrary opening. In this respect, J. Schmets and V. Valdivia
state the following result for sequences with fast growth. Please recall that the sequence of
quotients considered by these authors results from our sequence m after an index shift by 1.

Theorem 4.3 ([19], Thm. 5.6). Let M be a weight sequence such that

for every r ∈ N, (m p−1/pr )p∈N is increasing from some term on. (4.1)

The following are equivalent:

(i) For every r ∈ N, there exists a global extension operator UM,r : C[[z]]{M} → A{M̂}(Sr ).
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(ii) For some r ∈ N, there exists a global extension operator UM,r : C[[z]]{M} → A{M̂}(Sr ).
(iii) M satisfies (β2).

However, it turns out that the conditions (4.1) and (β2) are related to each other. The
connection among these and other conditions of fast growth, usually appearing in the liter-
ature, can be inferred from the theory of rapid variation (see the classical book of Bingham
et al. [2]) and our study of the indices and orders of regular variation associated with weight
sequences [9].

We recall that in the study of the injectivity of the Borel map for ultraholomorphic classes
in unbounded sectors, completed in [10], the growth index (introduced in [18], see also [8])

ω(M) := lim inf
p→∞

log(m p)

log(p)
∈ [0,∞] (4.2)

played a prominent role. Moreover, the moderate growth condition (mg) is satisfied by M

preciselywhen the upperMatuszewska index associatedwith its sequence of quotients,α(m),
is finite (see [9, Cor. 3.17]), and we recall that, for a general weight sequence,

0 ≤ γ (M) = β(m) ≤ ω(M) ≤ α(m) ≤ ∞ (4.3)

always holds, where β(m) is the lower Matuszewska index associated with m ( [9, Rem. 3.4
and Thm. 3.10]).

Proposition 4.4 Let M be a weight sequence. Each of the following statements implies the
next one, and only the implications (ii) �⇒ (iii) �⇒ (iv) may be reversed:

(i) M satisfies (4.1).
(ii) γ (M) = ∞.

(iii) For every k ∈ N, k ≥ 2, one has lim p→∞
mkp

m p
= ∞.

(iv) There exists k0 ∈ N, k0 ≥ 2, such that lim p→∞
mk0 p

m p
= ∞.

(v) M satisfies (β2).

(vi) lim p→∞
m p

M1/p
p

= ∞.

(vii) ω(M) = ∞.
(viii) α(m) = ∞ (in other words, M does not satisfy (mg)).

Proof (i) �⇒ (ii) The condition (4.1) clearly implies that the sequence (m p−1/pr )p∈N is
almost increasing for every r ∈ N. As indicated in [9, Rem. 3.8], this entails the same for the
sequence (m p/pr )p∈N, and we only need to recall (3.1) in order to deduce γ (M) = ∞. On
the contrary, consider the sequenceM whose quotients (m p)p∈N0 are given by

m p−1 =
{

q2p+1 if p �= 2k + 1 for every k ∈ N0,

q2p−1 if p = 2k + 1 for some k ∈ N0,

where q > 1 and p ≥ 1. It is not difficult to check that the sequence (m p−1/p)p∈N is
not eventually increasing, while (m p/pr )p∈N is almost increasing for every r ∈ N, and so
γ (M) = ∞.
(ii) �⇒ (iii) Consider the function f (x) := m�x�, x ≥ 1, which is measurable, nonde-
creasing, and whose lower Matuszewska index β( f ) equals that of m, which is precisely
γ (M) = ∞ (see [2], [9, Sect. 3]). This means that f belongs to the class M R∞ of rapid

123



Surjectivity of the asymptotic Borel map… Page 15 of 18 181

variation ( [2, p. 83]), which, by Proposition 2.4.4.(iii) in [2], amounts to the fact that
limx→∞ m�λx�/m�x� = ∞ for every λ > 1. This implies (iii).
(iii) �⇒ (iv) Obvious.
(iv) �⇒ (ii) If (iv) is satisfied, for k ∈ N with k ≥ k0 and for every β > 0 we have

lim inf
p→∞ mkp/(k

βm p) = ∞,

and so also limk→∞ lim inf p→∞ mkp/(kβm p) = ∞. By Theorem 3.11 in [9] we see that
γ (M) > β and, β being arbitrary, we deduce that γ (M) = ∞.
(iv) �⇒ (v) We put m̃ p := m p−1 for p ∈ N, m̃0 := 1, and m̃ := (m̃ p)p∈N0 . By the previous
items, (iv) amounts to γ (M) = ∞ = β(m), and this is the same as β(m̃) = ∞ again by [9,
Rem. 3.8]. This, in turn, is equivalent to the fact that condition (iv) is satisfied now by the
sequence m̃, and this appears in thework of H.-J. Petzsche [15] as condition (β0

2 ). Proposition
1.6.(a) in [15] proves that (β0

2 ) for m̃ implies (v).
The implication cannot be reversed because of the Example 1.8.(a) in [15], and the fact

that m satisfies (iv) if and only if m̃ does.

(v) �⇒ (vi) In [15, p. 304] it is proved that (v) implies that lim p→∞
m p−1

M1/p
p

= ∞, and (vi)

follows since m p ≥ m p−1, p ∈ N.
On the contrary, by Example 1.8.(b) in [15] there exists an increasing sequence of positive

real numbers m̃ := (m̃ p)p∈N0 with m̃0 = 1 such that, if one defines m p = m̃ p+1, p ∈ N0,

and the correspondingM, it holds thatM does not satisfy (β2) and lim p→∞
m p−1

M1/p
p

= ∞, so

that (vi) is satisfied.
(vi) �⇒ (vii) For convenience, we put αp := log(m p), p ∈ N0; β0 := α0, βp :=
log

(
m p

M1/p
p

)
, p ≥ 1. By Lemma 3.8 in [8] we know that

αp =
p−1∑
k=0

βk

k + 1
+ βp, p ∈ N0,

and so, using (vi), we have

lim
p→∞

(αp+1 − βp+1) − (αp − βp)

log(p + 1) − log(p)
= lim

p→∞
βp/(p + 1)

1/p
= ∞.

We deduce by Stolz’s criterion that

lim
p→∞

αp − βp

log(p)
= ∞,

and since βp ≥ 0 for every p, we obtain that lim p→∞ αp/ log(p) = ∞. The conclusion
follows from (4.2).

On the contrary, consider two increasing sequences of natural numbers (qk)k∈N and
(pk)k∈N such that q1 = 2, for every k ∈ N one puts pk := q2

k − 1, and the qk are recursively
chosen under the condition

qk+1 ≥ k log(qk+1) + pk, k ≥ 1. (4.4)
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Note that one has qk < pk < qk+1 for every k ∈ N. We define the sequence M whose
quotients are given by

m p−1 = exp

⎛
⎝

p∑
j=1

δ j

⎞
⎠ , p ≥ 1,

where (δ j ) j≥1 is the sequence with δ1 = δ2 = 0 and

δ j =
{
0, if qk + 1 ≤ j ≤ pk for some k ≥ 1,

1, if pk + 1 ≤ j ≤ qk+1 for some k ≥ 1.

Since the δ j are nonnegative,M automatically satisfies (lc). It is plain to show that for every
p ∈ N one has

m p

(Mp)1/p
= exp

⎛
⎝ 1

p

p∑
j=1

jδ j+1

⎞
⎠ .

Then,

log

(
m pk

(Mpk )
1/pk

)
= 1

pk

pk∑
j=1

jδ j+1 ≤ 1

pk

qk∑
j=1

j = qk

qk − 1

1

2
≤ 1,

and thus (vi) is violated. On the other hand, note that for every k ≥ 1 one has

log(mqk+1−1)

log(qk+1)
= 1

log(qk+1)

qk+1∑
j=1

δ j ≥ qk+1 − pk

log(qk+1)
≥ k,

where the last inequality stems from (4.4). From here,

log(m pk+1)

log(pk+1 + 1)
= 1

log(pk+1 + 1)

pk+1+1∑
j=1

δ j = 1

log(q2
k+1)

qk+1∑
j=1

δ j ≥ k

2
.

A simple study of the monotonicity of the sequence (
log(m p)

log(p+1) )p∈N implies that

lim p→∞
log(m p)

log(p+1) = +∞ (in particular,M is a weight sequence), and so ω(M) = ∞.
(vii) �⇒ (viii) The implication comes from (4.3).However, from the theory of rapid variation
we learn that strict inequalities are possible in every case in (4.3). A particular example
showing that α(m) = ∞ and ω(M) < ∞ may simultaneously hold can be found in [7, p.
106], resting on another example by M. Langenbruch [12]. ��

As a first consequence, note that for strongly regular sequences surjectivity does hold
for small openings and local extension operators exist with a scaling in the type (see [21,
Thm. 3.2.1]), but no global extension operator is possible, since condition (β2) implies that
moderate growth cannot hold.

Secondly, the next result clarifies the situation for rapidly growing sequences and avoids
to impose the condition (dc). Note that γ (M) = ∞ guarantees that (snq) is satisfied, but is
independent from condition (dc).

Theorem 4.5 Let M be a weight sequence. The following are equivalent:

(i) γ (M) = ∞.
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(ii) For every r > 0, there exists a global extension operator UM,r : C[[z]]{M} → A{M̂}(Sr ).

(iii) For every r > 0, there exists a global extension operator VM,r : C[[z]]{M} → Ãu
{M}(Sr ).

(iv) All the surjectivity intervals are (0,∞).

Proof (i) �⇒ (ii) Given r > 0, consider r0 := �r� + 1 > r . From (3.3) it is clear that
γ (M̂) = ∞, and by Proposition 4.4 we have that M̂ satisfies (β2). Moreover, (3.2) implies
that m̂ satisfies (γr0+1).We can apply Theorem 5.4 in [19] for the sequence M̂ and the positive
integer r0 + 1, and subsequently Theorem 5.5 in [19] for the value α = r , in order to obtain
an extension operator UM,r : C[[z]]{M} → A{M̂}(Sr ).
(ii) �⇒ (iii) It is clear by Proposition 2.1.(i).
(iii) �⇒ (iv) By the definition of global extension operators as right inverses for the Borel
map, we obviously have S̃u

{M} = (0,∞). Then, (2.4) leads to the statement.
(iv) �⇒ (i) It suffices to apply Theorem 4.10 in [10]. ��

We note that pathological situations are possible. For example, if M̂ is regular, γ (M) ∈
(0,∞) and (β2) holds, we have surjectivity in Sγ , with global right inverses, for every
γ < γ (M), but surjectivity fails for γ > γ (M); since (β2) implies ω(M) = ∞, injectivity
will not hold in any (narrow or wide) sector.

Author Contributions All the results in this publication have been obtained in joint work by the authors.

Funding The first two authors are partially supported by the Spanish Ministry of Economy, Industry and
Competitiveness under the project MTM2016-77642-C2-1-P, and by the Spanish Ministry of Science and
Innovation under the project PID2019-105621GB-I00. The third author is supported by FWF-Projects P32905-
N and P33417-N.

Availability of data andmaterials Full availability.

Code Availability Not applicable.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Balser, W.: Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations.
Springer, Berlin (2000)

2. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Encyclopedia of mathematics and its
applications, Cambridge University Press, Cambridge (1989)

3. Debrouwere, A.: Solution to the Stieltjes moment problem in Gelfand-Shilov spaces. Stud. Math. 254,
295–323 (2020). https://doi.org/10.4064/sm190627-8-10

4. Debrouwere, A.: The Borel-Ritt problem in Beurling ultraholomorphic classes. Results Math. 76, 151
(2021). https://doi.org/10.1007/s00025-021-01458-7

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4064/sm190627-8-10
https://doi.org/10.1007/s00025-021-01458-7


181 Page 18 of 18 J. Jiménez-Garrido et al.

5. Debrouwere, A., Jiménez-Garrido, J., Sanz, J.: Injectivity and surjectivity of the Stieltjesmomentmapping
in Gelfand-Shilov spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113, 3341–3358
(2019). https://doi.org/10.1007/s13398-019-00693-6

6. Dyn’kin, E.M.: Pseudoanalytic extension of smooth functions. The uniform scale. Am.Math. Soc. Transl.
115(2), 33–58 (1980)

7. Jiménez-Garrido, J.: Applications of regular variation and proximate orders to ultraholomorphic classes,
asymptotic expansions and multisummability, PhD dissertation, University of Valladolid, 2018. http://
uvadoc.uva.es/handle/10324/29501. Accessed 13 July 2020

8. Jiménez-Garrido, J., Sanz, J.: Strongly regular sequences and proximate orders. J. Math. Anal. Appl.
438(2), 920–945 (2016)

9. Jiménez-Garrido, J., Sanz, J., Schindl, G.: Indices of O-regular variation for weight functions and weight
sequences. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(4), 3659–3697 (2019)

10. Jiménez-Garrido, J., Sanz, J., Schindl, G.: Injectivity and surjectivity of the asymptotic Borel map in
Carleman ultraholomorphic classes. J. Math. Anal. Appl. 469(1), 136–168 (2019)

11. Komatsu, H., Ultradistributions, I.: Structure theorems and a characterization. J. Fac. Sci. Univ. Tokyo
Sect. IA Math. 20, 25–105 (1973)

12. Langenbruch, M.: Ultradifferentiable functions on compact intervals. Math. Nachr. 140, 109–126 (1989)
13. Lastra, A., Malek, S., Sanz, J.: Summability in general Carleman ultraholomorphic classes. J. Math. Anal.

Appl. 430, 1175–1206 (2015)
14. Mandelbrojt, S.: Séries adhérentes, régularisation des suites, applications.Collection de monographies

sur la théorie des fonctions. Gauthier-Villars, Paris (1952)
15. Petzsche, H.-J.: On E. Borel’s theorem. Math. Ann. 282(2), 299–313 (1988)
16. Ramis, J.P.: Dévissage Gevrey. Asterisque 59–60, 173–204 (1978)
17. Rodríguez-Salinas, B.: Funciones con momentos nulos. Rev. Acad. Ci. Madrid 49, 331–368 (1955)
18. Sanz, J.: Flat functions in Carleman ultraholomorphic classes via proximate orders. J. Math. Anal. Appl.

415, 623–643 (2014)
19. Schmets, J., Valdivia, M.: Extension maps in ultradifferentiable and ultraholomorphic function spaces.

Stud. Math. 143(3), 221–250 (2000)
20. Thilliez, V.: Extension Gevrey et rigidité dans un secteur. Stud. Math. 117, 29–41 (1995)
21. Thilliez, V.: Division by flat ultradifferentiable functions and sectorial extensions. Results Math. 44,

169–188 (2003)
22. Zhang, C.: Développements asymptotiques q-Gevrey et séries Gq-sommables. Ann. Inst. Fourier 49,

227–261 (1999)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/s13398-019-00693-6
http://uvadoc.uva.es/handle/10324/29501
http://uvadoc.uva.es/handle/10324/29501

	Surjectivity of the asymptotic Borel map  in Carleman–Roumieu ultraholomorphic classes defined  by regular sequences
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Weight sequences and their properties
	2.3 Asymptotic expansions, ultraholomorphic classes and the asymptotic Borel map

	3 Surjectivity results for regular sequences
	4 Global extension operators
	References




