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ABSTRACT   

Biomedical optical techniques of treatment, characterization and surgery depend on light propagation in biological tissues. 
As biological tissues are turbid media it is necessary to adequately analyze its influence on optical propagation parameters, 
such as coherence. The influence of a scatterers distribution can be analyzed using Green's functions. Green's functions 
are sets of impulse responses of inverse operators of differential linear operators with homogeneous boundary conditions. 
Optical random beams, mainly Gaussian-based, are employed to model light propagation in turbid biological tissues by 
Green’s functions. Enhanced contrast by coherence could distinguish malignant from healthy tissues or provide diagnostic 
interpretation.     

Keywords: Propagation of light, Scattering in biological tissues, Green’s functions in optics, Optical properties, Numerical 
approaches for light-tissue interactions 

1. INTRODUCTION  
Biomedical optical techniques of treatment, characterization and surgery are strongly dependent on light propagation in 
tissues. Light propagation accuracy and a priori estimations are particularly significant in diagnostic techniques. Optical 
diagnostic techniques usually rely on intensity measurements, such as microscopy [1], fluorescence [2,3] or diffuse 
reflectance spectroscopy [4]. One way of further increasing contrast is the addition of polarization parameters [5,6], for 
instance in Optical Coherence Tomography [7]. Although, strictly speaking, reflection and refraction are also a result of 
scattering (absorption and reemission of electromagnetic energy by material oscillators), in practice the term scattering is 
used in a more restricted sense for processes that change the propagation of light from an ordered way to a random one. 
As biological tissues are turbid media it is necessary to adequately analyze the influence of scattering on optical 
propagation parameters, such as coherence. The notion of coherence is defined more generally by the correlation properties 
between quantities of an optical field. The influence of scatterers distribution can be analyzed using Green's functions, sets 
of impulse responses of inverse operators of differential linear operators with homogeneous boundary conditions. Optical 
random beams, mainly Gaussian-based, are employed to model light propagation in turbid biological tissues by Green’s 
functions. For biological tissues with geometric anisotropy, the 3D power spectrum depends on parameters of the optical 
source and also on optical parameters of biological tissues, such as the outer and the inner scale, the refractive index 
variance and the anisotropic coefficients in each direction. Both the outer scale and the inner scale can be found by 
calculating the fractal dimension of a biological tissue using the box counting technique. The variance of the refractive 
index of a biological tissue can be calculated using phase contrast microscopy. Enhanced contrast by coherence could 
distinguish malignant from healthy tissues or provide diagnostic interpretation. The complexity of the problem increases 
as biological tissues present usually high scattering. As biological tissue are turbid media, with a consequent great 
scattering influence, it is necessary to adequately analyze its influence on optical propagation parameters, such as 
coherence. The influence of a particular distribution of scatterers can be analyzed by Green’s functions [8]. 
Electromagnetic propagation could be then considered, including coherence phenomena.  

Biomedical optical techniques of treatment, characterization and surgery depend on the propagation of light in biological 
tissues. As the biological tissue is a turbid media, with great influence of scattering, it is necessary to adequately analyze 
its influence on optical propagation parameters, such as coherence. The influence of a scatter distribution can be analyzed 
using Green's functions. 
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Next section 2 contains the theoretical model to analyze the light propagation in highly scattering biological tissues by 
Green’s functions. Section 3 shows some of the results obtained and its discussion. Finally, section 4 includes the 
conclusions of the work. 

2. SCATTERING AND GREEN’S FUNCTIONS THEORETICAL MODEL 
One of the fundamental problems of field theory is the construction of solutions to linear differential equations when there 
is a specified source and the differential equation must satisfy certain boundary conditions. Green’s functions provide a 
method for obtaining these solutions. Let 𝑭𝑭𝑳𝑳𝑳𝑳[𝑓𝑓(𝑥𝑥)] = 𝑔𝑔(𝑥𝑥) be a linear differential operator plus certain boundary 
conditions for f(x), BC[f(x)] and represented in the usual Signals and Systems scheme (considering one-dimensional 
signals and derivative operators). In a physical problem, usually g(x) is known — source of some physical magnitude — 
while f(x) is the magnitude generated by g(x). This leads directly to the definition of the Green’s function as the set of 
functions (distributions in a rigorous way) which are the set of impulse responses of the inverse system 𝑭𝑭𝑳𝑳𝑳𝑳,𝑩𝑩𝑩𝑩

−𝟏𝟏 [𝑔𝑔(𝑥𝑥)] =
𝑓𝑓(𝑥𝑥). These functions, denoted by G(x; x′), have to satisfy the Green’s function problem, 
 

                                      �
𝑭𝑭𝑳𝑳𝑳𝑳,𝑩𝑩𝑩𝑩[𝐺𝐺(𝑥𝑥; 𝑥𝑥′)] = 𝛿𝛿(𝑥𝑥 − 𝑥𝑥′)

𝐵𝐵𝐵𝐵[𝐺𝐺(𝑥𝑥; 𝑥𝑥′)] � ⟶ 𝑓𝑓(𝑥𝑥) = ∫ 𝑔𝑔(𝑥𝑥′)𝐺𝐺(𝑥𝑥; 𝑥𝑥′)𝑑𝑑𝑥𝑥′𝑥𝑥′      (1) 
 

Scattering in biological media represents one of the most limiting effects for optical diagnostic imaging. Along with light 
intensity, coherence is particularly affected by the scattering mechanism [9]. The scattered wave 𝑈𝑈𝑠𝑠(𝑟𝑟,𝜔𝜔) from a 
monochromatic incident wave 𝑈𝑈𝑖𝑖(𝑟𝑟,𝜔𝜔) can be expressed as a total 𝑈𝑈(𝑟𝑟,𝜔𝜔) wave, assuming the first-order Born 
approximation, as: 

𝑈𝑈(𝑟𝑟,𝜔𝜔)~𝑈𝑈𝑖𝑖(𝑟𝑟,𝜔𝜔) + ∫ 𝐹𝐹(𝑟𝑟′,𝜔𝜔)𝑈𝑈𝑖𝑖(𝑟𝑟′,𝜔𝜔)𝐺𝐺(|𝑟𝑟 − 𝑟𝑟′|,𝜔𝜔)𝑑𝑑3𝑟𝑟′𝐷𝐷       (2) 

In equation (2), 𝐹𝐹(𝑟𝑟,𝜔𝜔) is the scattering potential of the medium, and 𝐺𝐺(|𝑟𝑟 − 𝑟𝑟′|,𝜔𝜔) is the outgoing free-space Green 
function. If incident light is partially coherent, as it is a more general case, with a cross-spectral density function 
𝑊𝑊𝑖𝑖(𝑟𝑟1, 𝑟𝑟2,𝜔𝜔), the cross-spectral density of the scattered wave can be expressed as: 

𝑊𝑊𝑠𝑠(𝑟𝑟1, 𝑟𝑟2,𝜔𝜔) = ∬ 𝑊𝑊𝑖𝑖(𝑟𝑟1′, 𝑟𝑟2′,𝜔𝜔)𝐹𝐹∗(𝑟𝑟1′,𝜔𝜔)𝐹𝐹(𝑟𝑟2′,𝜔𝜔)𝐺𝐺∗(|𝑟𝑟1 − 𝑟𝑟1′|,𝜔𝜔)𝐺𝐺(|𝑟𝑟2 − 𝑟𝑟2′|,𝜔𝜔)𝑑𝑑3𝑟𝑟1′𝑑𝑑3𝑟𝑟2′𝐷𝐷      (3) 

The cross-spectral density can be expressed as a function of the spectral densities 𝑆𝑆𝑖𝑖(𝑟𝑟1′,𝜔𝜔) and  𝑆𝑆𝑖𝑖(𝑟𝑟2′,𝜔𝜔), and the spectral 
degree of coherence 𝜇𝜇𝑖𝑖(𝑟𝑟1′, 𝑟𝑟2′,𝜔𝜔): 

𝑊𝑊𝑠𝑠(𝑟𝑟1, 𝑟𝑟2,𝜔𝜔) = ∬ �𝑆𝑆𝑖𝑖(𝑟𝑟1′,𝜔𝜔)�𝑆𝑆𝑖𝑖(𝑟𝑟2′,𝜔𝜔)𝜇𝜇𝑖𝑖(𝑟𝑟1′, 𝑟𝑟2′,𝜔𝜔)𝐹𝐹∗(𝑟𝑟1′,𝜔𝜔)𝐹𝐹(𝑟𝑟2′,𝜔𝜔)𝐺𝐺∗(|𝑟𝑟1 − 𝑟𝑟1′|,𝜔𝜔)𝐺𝐺(|𝑟𝑟2 − 𝑟𝑟2′|,𝜔𝜔)𝑑𝑑3𝑟𝑟1′𝑑𝑑3𝑟𝑟2′𝐷𝐷      (4) 

The coherence properties can be also expressed in the space-time domain by the mutual coherence function: 

𝛤𝛤𝑠𝑠(𝑟𝑟𝑠𝑠1, 𝑟𝑟𝑠𝑠2, 𝜏𝜏) = 1
𝑟𝑟2 ∫ 𝑆𝑆𝑖𝑖(𝜔𝜔)∞

0 𝐹𝐹∗�[𝑘𝑘(𝑠𝑠1 − 𝑠𝑠0),𝜔𝜔]𝐹𝐹�[𝑘𝑘(𝑠𝑠2 − 𝑠𝑠0),𝜔𝜔]𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝜔𝜔        (5) 

The Gaussian Schell-model (GSM) is based in the cross-spectral density function has the structure, 

                                                       W(G) �ρ1'����⃗  , ρ2'����⃗  ;ω� = A0
2(ω)e-ρ1

' 2+ρ2
' 2

4σ2(ω) e-
�ρ1

'�����⃗ -ρ2
'�����⃗ �
2

2δ2(ω) ,                                             (6) 

where superscript (G) stands for the Gaussian Schell-model, 𝐴𝐴02 is the maximum value of the spectral density (attained on 
the axis) and the root-mean-square (r.m.s.) widths 𝜎𝜎2 and 𝛿𝛿2 are independent of position but generally depend on 
frequency. 

The optical turbulence is well explained by the presence of irregularities in the refractive index or, so-called, “turbulent 
eddies,” appearing due to fluctuations in various physical properties of matter, such as temperature, pressure and 
concentration of inhomogeneous chemical content. Such eddies are created in different types of matter through certain 
physical/chemical/biological mechanisms. Shearing and mixing of different parts of the irregular structures under influence 
of winds in atmosphere, currents in the ocean, cell growth and fluid transfer in bio-tissues lead to a mechanism of energy 
transfer among eddies of different sizes. The largest possible size of an eddy in the turbulent process is taken as the 
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definition of the outer scale  of turbulence. Larger eddies break down further into smaller ones with energy until the size 
of the eddy reaches the lower limit when the energy dissipates. The size of the smallest eddy before dissipation defines the 
inner scale . 

The most important statistical characteristics of the refractive index in the three-dimensional space are the first two 
moments: the mean value of a field [10], 

                                                                                       𝑛𝑛0(𝒓𝒓�⃗ ) = 〈𝑛𝑛(𝒓𝒓�⃗ )〉𝑀𝑀,                                               (7) 
and its covariance function, 
                                                           𝐵𝐵𝑛𝑛(𝒓𝒓𝟏𝟏����⃗ ,𝒓𝒓𝟐𝟐����⃗ ) = 〈[𝑛𝑛(𝒓𝒓𝟏𝟏����⃗ ) − 𝑛𝑛0(𝒓𝒓𝟏𝟏����⃗ )][𝑛𝑛(𝒓𝒓𝟐𝟐����⃗ ) − 𝑛𝑛0(𝒓𝒓𝟐𝟐����⃗ )]〉𝑀𝑀                                             (8) 
where the angular brackets with subscript 𝑀𝑀 denote the ensemble average over the realizations of the medium. 
 
The interaction of the electromagnetic fields with the turbulent media is a very complex process in the general case when 
the latter are anisotropic and inhomogeneous. In the inertial range of scales the random media are often assumed to be 
homogeneous (statistical moments of the field are translationinvariant). Under such circumstances the relation between 
the spatial covariance function 𝐵𝐵𝑛𝑛(𝒓𝒓�⃗ ) and the power spectrum Φ𝑛𝑛(𝜿𝜿��⃗ ), which determines the distribution of energy among 
the eddies of different sizes, has the form of the three-dimensional Fourier transform pair, 
                                                                        𝐵𝐵𝑛𝑛(𝒓𝒓�⃗ ) = ∭ 𝑒𝑒𝑖𝑖𝜿𝜿��⃗ ∙𝒓𝒓�⃗ Φ𝑛𝑛(𝜿𝜿��⃗ )𝑑𝑑3𝜅𝜅,∞

−∞                                                (9) 

                                                                       Φ𝑛𝑛(𝜿𝜿��⃗ ) = � 1
2𝜋𝜋
�
3
∭ 𝑒𝑒𝑖𝑖𝜿𝜿��⃗ ∙𝒓𝒓�⃗ 𝐵𝐵𝑛𝑛(𝒓𝒓�⃗ )𝑑𝑑3𝑟𝑟,∞

−∞                                                          (10) 

Here 𝜿𝜿��⃗ = (𝜅𝜅𝑥𝑥, 𝜅𝜅𝑦𝑦, 𝜅𝜅𝑧𝑧) is the three-dimensional vector, whose components have the units 𝑚𝑚−1, representing spatial 
frequencies. 
 
A scalar GSM light beam is incident on a soft anisotropic biological tissue with anisotropy factors 𝜇𝜇𝑥𝑥 = 𝜇𝜇𝑧𝑧 ≠ 𝜇𝜇𝑦𝑦 in the 
plane 𝑧𝑧 = 0, termed source plane or plane of incidence and propagates through it in the positive half-space 𝑧𝑧 > 0. 

For biological tissues with geometrical anisotropy the three-dimensional power spectrum can be written in the following 
form, in similarity with other anisotropic random media, [11], 

                                                            Φ𝑛𝑛�𝜅𝜅𝑥𝑥, 𝜅𝜅𝑦𝑦, 0� =
(2𝜋𝜋)3𝜎𝜎𝑛𝑛2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦𝜇𝜇𝑧𝑧𝑒𝑒

− 𝜅𝜅𝑥𝑥2

𝜅𝜅𝑚𝑚𝑥𝑥2 −
𝜅𝜅𝑦𝑦2

𝜅𝜅𝑚𝑚𝑦𝑦2

𝜅𝜅0
3−𝛼𝛼�𝜅𝜅02+4𝜋𝜋2�𝜇𝜇𝑥𝑥2𝜅𝜅𝑥𝑥2+𝜇𝜇𝑦𝑦2𝜅𝜅𝑦𝑦2��

𝛼𝛼
2
 ,                              (11) 

 

Where 𝛼𝛼 is the power spectrum slope, 𝜎𝜎𝑛𝑛2 is the variance of the refractive index of the bio-tissue, 𝜇𝜇𝑥𝑥,𝜇𝜇𝑦𝑦 and 𝜇𝜇𝑧𝑧  are the 
anisotropic strength coefficients in each direction. Further, 𝜿𝜿𝟎𝟎����⃗  is the large-scale cut-off frequency vector with magnitude 

𝜅𝜅0 = �𝜅𝜅𝑥𝑥02 + 𝜅𝜅𝑦𝑦02 + 𝜅𝜅𝑧𝑧02  and components 𝜅𝜅𝑥𝑥0 = 2𝜋𝜋
𝐿𝐿𝑥𝑥

, 𝜅𝜅𝑦𝑦0 = 2𝜋𝜋
𝐿𝐿𝑦𝑦

, 𝜅𝜅𝑧𝑧0 = 2𝜋𝜋
𝐿𝐿𝑧𝑧

, with  𝐿𝐿𝑥𝑥, 𝐿𝐿𝑦𝑦 and 𝐿𝐿𝑧𝑧 being the outer scales along 

𝑥𝑥,𝑦𝑦 and 𝑧𝑧, directions, respectively: 𝐿𝐿𝑥𝑥 = 𝜇𝜇𝑥𝑥𝐿𝐿0, 𝐿𝐿𝑦𝑦 = 𝜇𝜇𝑦𝑦𝐿𝐿0 and 𝐿𝐿𝑧𝑧 = 𝜇𝜇𝑧𝑧𝐿𝐿0. Small-scale cut-off frequency vector 𝜿𝜿𝒎𝒎�����⃗  has 
magnitude 𝜅𝜅𝑚𝑚 = �𝜅𝜅𝑥𝑥𝑚𝑚2 + 𝜅𝜅𝑦𝑦𝑚𝑚2 + 𝜅𝜅𝑧𝑧𝑚𝑚2  and components 𝜅𝜅𝑥𝑥𝑚𝑚 = 2𝜋𝜋

𝑙𝑙𝑥𝑥
, 𝜅𝜅𝑦𝑦𝑚𝑚 = 2𝜋𝜋

𝑙𝑙𝑦𝑦
,𝜅𝜅𝑧𝑧𝑚𝑚 = 2𝜋𝜋

𝑙𝑙𝑧𝑧
 with 𝑙𝑙𝑥𝑥 = 𝜇𝜇𝑥𝑥𝑙𝑙0, 𝑙𝑙𝑦𝑦 = 𝜇𝜇𝑦𝑦𝑙𝑙0 and 𝑙𝑙𝑧𝑧 =

𝜇𝜇𝑧𝑧𝑙𝑙0. 

For an anisotropic turbulent medium and the vector with Cartesian coordinates 𝝆𝝆��⃗ = (𝜉𝜉, 𝜂𝜂), the spectral density is given by, 

                                                                𝑆𝑆(𝝆𝝆��⃗ , 𝑧𝑧) = 1

�Δ𝑥𝑥(𝑧𝑧)Δ𝑦𝑦(𝑧𝑧)
𝑒𝑒
− 𝜉𝜉2

2𝜎𝜎0
2Δ𝑥𝑥(𝑧𝑧)𝑒𝑒

− 𝜂𝜂2

2𝜎𝜎0
2Δ𝑦𝑦(𝑧𝑧)                                              (12) 

 

3. RESULTS AND DISCUSSION 
Figure 1 is plotted from Eq. (11) and it shows the changes in the spectral density of the beam along the propagation path. 
It is observed that increasing the propagation distance produces an elliptical beam profile. 
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Figure 1. Spectral density of the coherent GSM beam propagating in the bio-tissue at different distances z. 

 

4. CONCLUSIONS 
Biomedical optical techniques of treatment, characterization and surgery are strongly dependent on light propagation. 
Further parameters based on polarization or coherence can provide increased contrast in diagnostic techniques. Light 
propagation in static highly scattering biological tissues can be analyzed by Green’s functions, including coherence 
phenomena. Results for dermatological tumoral tissues were obtained, and the potential diagnostic contrast of coherence 
parameters was analyzed. 

ACKNOWLEDGEMENTS 

This work has been partially supported by the project “High-pressure driven plasmonic and luminescence properties of 
naked and core/shell metal-oxide nanocomposites” (PGC2018-101464-B-I00) of the Spanish Ministry of Science, 
Research and Universities, cofunded by FEDER funds, and by the San Cándido Foundation. 

REFERENCES 

[1] Girkin, J. M. and Carvalho, M. T., “The light-sheet microscopy revolution,” J. Opt. 20, 053002 (2018). 
[2] Salas-García, I., Fanjul-Vélez, F. and Arce-Diego, J. L., “Superficial radially-resolved fluorescence and three-

dimensional photochemical time-dependent model for Photodynamic Therapy,” Opt. Lett. 39, 1845-1848 (2014). 
[3] I. Salas-García, F. Fanjul-Vélez, J. L. Arce-Diego, Influence of the human skin tumor type in Photodynamic 

Therapy analysed by a predictive model”, International Journal of Photoenergy, 1-9 (2012). 
[4] Fanjul-Vélez, F., Arévalo-Díaz, L. and Arce-Diego, J. L., “Intra-class variability in diffuse reflectance 

spectroscopy: application to porcine adipose tissue,” Biomedical Optics Express 9, 2297-2303 (2018). 
[5] N. Ortega-Quijano, F. Fanjul-Vélez, J. L. Arce-Diego, "Polarimetric study of birefringent turbid media with three-

dimensional optic axis orientation”, Biomedical Optics Express 5, 287-292 (2014) 
[6] D. Pereda-Cubián, J. L. Arce-Diego, R. Rentmeesters, “Characterization of depolarising optical media by means 

of the entropy factor:  Application to biological tissues”. Applied Optics. 20 January 2005, Vol. 44, No. 3 
[7] Fanjul-Vélez, F., Pircher, M., Baumann, B., Götzinger, E., Hitzenberger, C. K. and Arce-Diego, J. L., 

“Polarimetric analysis of the human cornea by Polarization Sensitive Optical Coherence Tomography,” J. 
Biomed. Opt. 15, 056004 (2010). 

Proc. of SPIE Vol. 11640  116400I-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12 Mar 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 
 

 
 

 
 

[8] Ganoza-Quintana, J. L., Fanjul-Vélez, F. and Arce-Diego, J. L., “Optical coherence propagation in biological 
tissues with significant scattering by Green’s functions,” Optical Society of America, Frontiers in Optics, paper 
JTu3A.106 (2018). 

[9] Born, M. and Wolf, E., Principles of Optics (Cambridge University Press, 2013), Chap.13. 
[10] Korotkova, O., Random Light Beams: Theory and Applications, (CRC Press, 2014), Chap.6. 
[11] Chen, X. and Korotkova, O., "Optical beam propagation in soft anisotropic biological tissues," OSA Continuum 

Vol. 1, Issue 3, pp. 1055-1067 (2018). 
 

Proc. of SPIE Vol. 11640  116400I-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12 Mar 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


	Felix Fanjul Velez - new address
	PW2021
	3D optimal light distribution in brain tumors for photodynamic therapy _ SPIE Photonics West
	116400D
	Optical propagation of partially coherent light through anisotropic biological tissues by Green’s functions _ SPIE Photonics West
	116400I




