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Chondrocytes

Introduction

Osteoarthritis (OA) is the most common form of arthritis 
and a major cause of musculoskeletal pain and physical dis-
ability in the adult population. OA is a degenerative disease 
that affects the whole joint tissues, including tendons, liga-
ments, synovium, subchondral bone, and articular carti-
lage.1,2 The chondrocyte, the unique cell type present in 
adult articular cartilage, appears as a quiescent cell respon-
sible for the low turnover of the extracellular matrix compo-
nents under normal conditions. In OA, chondrocytes 
become “activated,” and are subject to major phenotypical 
changes and increased production of extracellular matrix-
degrading enzymes such as matrix metalloproteinase-13 
(MMP-13).3 This chondrocyte-phenotypic shift is caused, 
in part, by the exposure to abnormal environmental insults, 
including altered biomechanical stress and elevated levels 
of pro-inflammatory cytokines.3,4 One of the most relevant 
pro-inflammatory cytokines involved in cartilage degenera-
tion is interleukin-1 (IL-1). This cytokine is able to induce 
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Abstract
Objective. Osteoarthritis (Oa) is an age-related biomechanical and low-grade inflammometabolic disease of the joints 
and one of the costliest and disabling forms of arthritis. Studies on matrix-degrading enzymes such as metalloproteases, 
which are implicated in the increased catabolism of extracellular matrix, are of paramount relevance. DKK3 is a member 
of DKK family and is best known for its role in cancer. although there is some information about the participation of 
DKK3 in cartilage pathophysiology and on metalloproteases regulation, in particular, little is known about DKK3 signaling 
mechanisms. thus, the aim of this study is to explore how DKK3 regulates matrix metalloproteinase-13 (MMP-13) 
expression. Design. gene, protein expression and protein phosphorylation in primary human chondrocytes and atDC5 
mouse cells were assessed by rt-qPCr and Western blot analysis. Further studies on DKK3 activity were performed by 
targeting DKK3 gene with a specific sirNa. Results. DKK3 expression was found to be higher in Oa human chondrocytes 
than healthy cells, being its expression decreased in interleukin-1α (il-1α)-stimulated cells. DKK3 knockdown increased 
the induction of MMP-13 elicited by il-1α in human and mouse chondrocytes and after the analysis of different signalling 
pathways, we observed that NF-κB pathway was involved in the regulation of MMP-13 expression by DKK3. Conclusions. 
Herein we have demonstrated, for the first time, that DKK3 gene silencing exacerbated NF-κB activation, resulting in an 
increased il-1α-driven induction of MMP-13. Our results further confirm that DKK3 may play a protective role in Oa by 
attenuating NF-κB activation and the subsequent production of metalloproteases.
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in OA chondrocytes a plethora of catabolic mediators, most 
of them involved in cartilage breakdown, such as MMP-13. 
IL-1α-driven induction of MMP-13 occurs through the acti-
vation of mitogen-activated protein kinases (MAPKs) and 
different transcription factors such as NF-κB.5,6

Dickkopf WNT signaling pathway inhibitor 3 (DKK3) is 
a 38-kDa glycoprotein that belongs to the family of DKK 
proteins. The expression of DKK3 was initially studied in 
mice and developmental studies revealed a coordinate 
expression of this protein in several mesenchymal tissues.7 
DKK3 is best known for its role played in cancer. DKK3 is 
involved in tumorigenesis being downregulated in human 
immortalized cells and human tumor–derived cell lines.8 At 
present, the dysregulation of DKK3 is a consistent and 
widely shared feature among many cancer types and several 
lines of evidence describe this gene as a tumor suppressor.9 
However, very little is known about the role of DKK3 in 
human OA and human cartilage degradation. DKK3 expres-
sion was increased in animal experimentally induced OA.10 
DKK3 decreased levels have been found in synovial cells 
from inflamed zones of synovial membranes compared 
with normal/reactive areas.11 Also, it has been recently pub-
lished that DKK3 can prevent from proteoglycan loss at 
cartilage level, suggesting a protective role for this protein 
in OA.12 This study aimed to test the expression of DKK3 in 
human and mouse chondrocytes and to study its regulation 
by a classic pro-inflammatory cytokine such as IL-1α. But 
the main and most novel goal was to investigate the signal-
ing pathway by which DKK3 modulated cartilage catabo-
lism through the use of knocking-down technique and its 
effects on MMP-13 expression.

Methods

Reagents

All culture reagents were from Sigma and Lonza. For 
reverse transcription–polymerase chain reaction (RT-PCR), 
a First Strand Kit, Master mix, primers for DKK3, MMP-
13, and GAPDH were purchased from SABiosciences. 
Nucleospin kits for RNA isolation were from Macherey-
Nagel. Mouse and human recombinant IL-1α and PDTC 
(pyrrolidine dithiocarbamate) were from Sigma, XAV939 
was from Merck. DKK3 siRNAs were purchased from 
Integrated DNA Technologies.

Cell Culture

Human primary chondrocytes (HAC) and the murine 
ATDC5 cell line culture were developed as previously 
described.13,14 Briefly, healthy human articular cartilage 
samples were obtained from joints of patients with traumatic 
fractures. Osteoarthritic human cartilage samples were 
obtained from patients undergoing total joint replacement 

surgery (with permission from the local ethics committee 
Galician Ethical Committee, Comité Autonómico de Ética 
da Investigación de Galicia Secretaria Xeral, Consellería de 
Sanidade Edificio Administrativo San Lázaro 15703 
Santiago de Compostela; COD 2014/310). Informed written 
consent was obtained from all subjects.

Cartilage samples were obtained from the joint area of 
the minimal load with a normal morphologic examination 
(i.e., no change in color and no fibrillation). Human chon-
drocytes were cultured in Dulbecco’s modified Eagle 
medium (DMEM)/Ham’s F12 medium supplemented with 
10% of fetal bovine serum, l-glutamine, and antibiotics (50 
units/mL penicillin and 50 µg/mL streptomycin). Cells were 
seeded in monolayer up to the high density and used freshly 
to avoid dedifferentiation.

Murine chondrogenic cell line ATDC5, passage 30-50 
(purchased from RIKEN Cell Bank), were cultured in 
DMEM/Ham’s F-12 medium supplemented with 5% fetal 
bovine serum, 10 µg/mL human transferrin, 3 × 10−8 M 
sodium selenite, and antibiotics (50 units/mL penicillin and 
50 µg/mL streptomycin). ATDC5 cells were differentiated 
into hypertrophic chondrocytes. Briefly, cells were seeded 
at a density of 6 × 103/cm2 in 6-well plates with the ATDC5 
standard media supplemented with insulin (10 µg/mL). The 
differentiation media was replaced every 2 days for 14 days. 
On day 15, the culture medium was switched to α-MEM up 
to day 21 to obtain hypertrophic cells. Differentiation was 
qualitatively characterized by increased formation of cell 
nodules and enhanced staining with Alcian blue, which are 
indicative of proteoglycan accumulation. In other experi-
ments (data not shown), differentiation was further ana-
lyzed by the sequential increase in the levels of type II 
collagen, aggrecan, and type X collagen mRNA, as previ-
ously published.14

For RT-PCR and Western blot, cells were seeded in P6 
multiwell plates until complete adhesion and then incubated 
overnight in serum-free conditions. Cells were treated with 
mouse or human IL-1α (0.025, 0.05, or 0.5 ng/mL). NF-κB 
specific pharmacological inhibitor (PDTC) was added 1 
hour before stimulation in a dose of 10 µM.

RNa isolation and Real-time Reverse 
transcription–Polymerase Chain Reaction  
(Rt-qPCR)

mRNA levels were determined using SYBR-green-based 
quantitative PCR (qPCR). Briefly, RNA was extracted 
using a NucleoSpin kit according to the manufacturer’s 
instructions, and reverse-transcribed (RT) using a 
SABiosciences First Strand Kit. After the RT reaction, 
qPCR analysis was performed with a SABiosciences Master 
Mix and specific PCR primers for: human DKK3 (155 bp, 
PPH05547F, reference position 1099, GenBank accession 
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no. NM_015881.5); human GAPDH (175 bp, PPH00150E, 
reference position 1287–1310, GenBank accession no. 
NM_002046.3); mouse Dkk3 (171 bp, PPM05470A, refer-
ence position 1136, GenBank accession no. NM_015814.2); 
mouse Gapdh (140 bp, PPM02946E, reference position 
309, GenBank accession no. NM_008084.2); human MMP-
13 (150 bp, PPH00121B, reference position 221-241, 
GenBank accession no. NM_002427.2); mouse Mmp-13 
(88 bp, PPM03675A, reference position 1114, GenBank 
accession no. NM_008607.1). Amplification efficiencies 
were calculated for all primers utilizing serial dilutions of 
the pooled cDNA samples. The data were calculated, using 
the comparative (ΔΔCt) method and the MxPro software 
(Stratagene), as the ratio of each gene to the expression of 
the housekeeping gene. Data are shown as mean ± standard 
error of the mean (SEM) (error bars) of at least 3 indepen-
dent experiments and represented as fold-change versus 
controls. Melting curves were generated to ensure a single 
gene-specific peak, and no-template controls were included 
for each run and each set of primers to control for unspecific 
amplifications.

Western Blot

Whole cell protein extraction was developed using lysis 
buffer (10 mM Tris/HCl, pH 7.5, 5 mM ethylenediaminetet-
raacetic acid [EDTA], 150 mM NaCl, 30 mM sodium 
pyrophosphate, 50 mM sodium fluoride, 1 mM sodium 
orthovanadate, 0.5% Triton X-100, 1 mM phenylmethylsul-
fonyl fluoride [PMSF], protease inhibitor cocktail), cell 
lysates were obtained by centrifugation at 14,000 × g for 20 
minutes at 4°C. Nuclear protein extracts were obtained 
using buffer A (HEPES 10 mM pH 7.9; EDTA 1 mM; ethyl-
ene glycol tetraacetic acid [EGTA] 1 mM; KCl 10 mM), ice 
incubation for 15 minutes, then we added NP-40 0.5% and 
kept the samples on ice for another 10 minutes. After 15 
minutes of centrifugation at 800 × g, we discarded the 
supernatants and resuspended pellets with buffer C (HEPES 
10 mM pH 7.9; EDTA 1 mM; EGTA 1 mM; glycerol 20%; 
KCl 0.4 M). Samples were then incubated on ice during 30 
minutes with occasional vortex. After 15 minutes of cen-
trifugation at 13,000 rpm, we collected the supernatants 
containing nuclear proteins. Electrophoresis and blotting 
procedures have been described previously.15 Immunoblots 
were incubated with the appropriate antibody (anti-DKK3 
diluted 1:1000, Enogene; anti-β-catenin diluted 1:1000, 
Dako; anti-p65 diluted 1:1000, Santa Cruz; anti-lamin B1 
1:1000, Genetex; anti-phospho p38 diluted 1:1000, 
Millipore; anti-p38 diluted 1:1000, Millipore; anti-phospho 
Erk 1/2 diluted 1:1000, Cell Signaling Technology, MA, 
USA; anti-Erk 1/2 diluted 1:1000, Millipore, MA, USA; 
anti IκB-α diluted 1:1000, Cell Signaling Technology; anti-
phospho GSK3β diluted 1:1000, Cell Signaling Technology; 
anti-GSK3β diluted 1:1000, Cell Signaling Technology) 

and visualized using an Immobilon Western kit (Millipore) 
and anti-goat (Santa Cruz) or anti-rabbit (GE Healthcare) 
horseradish-peroxidase-labeled secondary antibody diluted 
1:2000. To confirm equal loading for each sample, after 
stripping in glycine buffer at pH 3, membranes were reblot-
ted with anti-β-actin antibody diluted 1:5000 (Sigma). 
Autoradiographs were analyzed with an EC3 imaging sys-
tem (UVP).

siRNa transfection

For siRNA-mediated experiments, human primary chon-
drocytes or ATDC5 cells were seeded at 2 × 105 cells per 
well in 6-well plates and incubated overnight with DMEM/
Ham’s F12 with 10% FBS. The medium was then changed 
to serum and antibiotics free medium. Transfections were 
performed following manufacturer’s instructions. Gene 
silencing was made using 10 nM of mouse DKK3 siRNA or 
10 nM of human DKK3 siRNA, we also used a nontarget-
ing control to verify the specificity of the DKK3 gene 
knockdown. Incubation was continued for 72 hours after 
siRNA transfection, and the DKK3 knockdown was veri-
fied at mRNA and protein levels. At 72 hours after transfec-
tion, the cells were treated with IL-1α (0.05 ng/mL). After 
treatment, total RNA or protein was isolated.

Statistical analysis

Data are reported as mean ± SEM (error bars) of at least 
three independent experiments. Statistical analyses were 
performed by 1-way analysis of variance followed by the 
Bonferroni test for multiple comparisons, using the 
GraphPad Prism 4 software, with P values <0.05 consid-
ered significant.

Results

DKK3 is Regulated by Oa and Differentiation 
Status

We first wanted to corroborate the observations made by 
Snelling et al.,12 regarding the expression of DKK3 in OA 
patients and during chondrocyte differentiation. As shown 
in Figure 1A, DKK3 expression is increased in chondro-
cytes from OA patients compared with chondrocytes from 
healthy individuals. In addition, differentiation of ATDC5 
cells, a well-established model of chondrocyte differenti-
ation, revealed that Dkk3 expression had a bell-shaped 
expression profile being augmented in the first stages of 
chondrogenesis and reaching a maximum of expression 
after 14 days of differentiation (Fig. 1B). However, Dkk3 
expression decreased dramatically at 21 days of differen-
tiation, when cells were hypertrophic (Fig. 1B). We 
observed a progressive increase in the expression levels 
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Figure 1. (A, B, C, D, E) Determination of human and mouse DKK3 mrNa expression and mouse Mmp-13 mrNa expression by 
qrt-PCr in human primary chondrocytes (HaC) or atDC5 cells. lower panels: Determination of human and mouse DKK3 protein 
expression by Western blot in HaC or atDC5 cells. (F, G) Data showing densitometric analysis of all Western blots performed in 
panels D and E. *indicates P < 0.05, **indicates P < 0.01, and ***indicates P < 0.001 versus unstimulated control.
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of Mmp-13, a well-known marker of terminally differen-
tiated hypertrophic chondrocytes, which peaked at day 21 
(Fig. 1C). Based on that, we showed that Dkk3 expres-
sion gradually increased during the chondrocyte matura-
tion process, but this tendency was completely reverted 
when cells reached hypertrophy. To note, the expression 
of Mmp-13 during ATDC5 differentiation was found to be 
the highest when Dkk3 expression declined to minimum 
levels after 21 days of differentiation (Fig. 1B and C).

il-1α Decreases DKK3 expression

As shown in Figure 1D, all doses of IL-1α exerted a similar 
effect on DKK3 mRNA expression in human primary chon-
drocytes. On the contrary, we observed a dose-dependent 
decrease in the mRNA expression of Dkk3 in ATDC5 cells 
(Fig. 1E), suggesting that undifferentiated chondrocytes 
were more sensitive to pro-inflammatory stimulation than 
fully differentiated articular chondrocytes, at least in terms 
of mRNA regulation. However, analysis of protein expres-
sion revealed similar effects in both cell types, only IL-1α 
at 0.5 ng/mL inhibited DKK3 protein expression (Fig. 1D 
and E lower panels, F and G).

DKK3 Regulates il-1α-induced MMP-13 
expression

Due to the differential expression of DKK3 in healthy and 
OA chondrocytes and its regulation by a catabolic factor 
such as IL-1α, we wanted to ascertain whether DKK3 could 
have a relevant impact on cartilage catabolism. First, we 
observed that a siRNA against human DKK3 increased the 
IL-1α-induced expression of MMP-13 (Fig. 2A) in human 
primary chondrocytes.

We also performed Dkk3 silencing in the murine ATDC5 
cell line, and similar to that observed for human chondro-
cytes, we detected that Dkk3 gene knockdown was able to 
significantly increase the Mmp-13 expression stimulated by 
IL-1α in ATDC5 cells (Fig. 2B).

DKK3 Regulates MMP-13 expression through 
NF-κB

Dkk3 is a member of the Dickkopf family proteins, which 
are well-known Wnt signaling pathway inhibitors. We first 
tested the ability of Dkk3 to inhibit the canonical Wnt 
pathway, by analyzing 2 important signal transducers of 
the canonical Wnt pathway: GSK3β and β-catenin. As 
shown in Figure 2C and D, Dkk3 gene silencing did not 
affect GSK3β phosphorylation. As expected, IL-1α clearly 
induced the phosphorylation of GSK3β. However, Dkk3 
gene knockdown in IL-1α-treated cells did not modulate 
GSK3β phosphorylation (Fig. 2C and D). The analysis of 

β-catenin showed the same pattern to that observed for 
GSK3β (Fig. 2C and E). To confirm that the canonical 
Wnt pathway was not involved in the observed effects of 
Dkk3 on Mmp-13 induction by IL-1α, we used the 
tankyrase inhibitor XAV939, which antagonizes β-catenin 
signaling. As shown in Figure 2F, the addition of XAV939 
did not modulate the expression of Mmp-13, when admin-
istered together in Dkk3 knocked-down cells stimulated 
with IL-1α.

Next, we analyzed whether Dkk3 influenced NF-κB sig-
naling. As shown in Figure 3A and B, Dkk3 knockdown in 
ATDC5 cells stimulated with IL-1α was able to increase the 
degradation of IκB-α. Moreover, IL-1α-driven NF-κB sub-
unit p65 translocation to the nucleus was greater in Dkk3 
knockdown cells than that observed in nonsilenced chon-
drocytes (Fig. 3A and C). Furthermore, pharmacological 
inhibition of NF-κB by PDTC abolishes the increase of 
MMP-13 expression produced by the Dkk3 knockdown in 
IL-1α-treated cells (Fig. 3D).

For completeness, we explored whether Dkk3 was able 
to regulate relevant kinases involved in Mmp-13 induction 
such as p38 or Erk1/2. As shown in Figure 4A and B, IL-1α 
treatment phosphorylated both kinases. However, Dkk3 
knockdown did not affect the phosphorylation either of p38 
or Erk1/2 in IL-1α-treated cells (Fig. 4A-D).

Discussion

OA is characterized by a progressive loss of articular carti-
lage. Collagen breakdown by metalloproteinases leads to 
irreversible degradation of the extracellular matrix, and the 
participation of MMP-13 as one of the most effective 
enzymes at degrading type II collagen, highlights a major 
role for this enzyme in cartilage catabolism.

Recently, the role of Dickkopf family proteins in the 
development of OA was investigated. DKK1 was found to 
inhibit cartilage destruction in experimental OA, in part  
by decreasing MMP-13 production.16 Regarding DKK3 
participation in OA, only a few works showed the involve-
ment of this protein in OA pathology. An upregulation of 
DKK3 expression in temporomandibular cartilage in 
experimentally induced OA was reported.17 Moreover, a 
study, performed using synovial tissues from OA patients, 
revealed that synovial cells from inflamed zones showed a 
downregulation in DKK3 expression in comparison with 
synovial cells from normal areas.11 We observed increased 
DKK3 expression in OA chondrocytes, which is in agree-
ment with a previously published article.12 Moreover, we 
also corroborated the observations made by Snelling 
et al.12 in which Dkk3 expression increased in the first 
stages of chondrocyte differentiation and followed by a 
rapid and dramatic decrease in the hypertrophic stage, 
matching with a parallel increase in MMP-13 expression. 
This issue suggested an inverse relationship between these 
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Figure 2. (A, B) Determination of human and mouse MMP-13 mrNa expression by qrt-PCr in human primary chondrocytes 
(HaC) and atDC5 cells. (C) Determination of the phosphorylation of gSK3β or β-catenin translocation to the nucleus by Western 
blot. total gSK3β and lamin B1 were used as a loading control. (D, E) Data showing densitometric analysis of all Western blots 
performed in panel C. (F) Determination of mouse Mmp-13 mrNa expression by qrt-PCr in atDC5 cells. *indicates P < 0.05, 
**indicates P < 0.01, and ***indicates P < 0.001 versus unstimulated control, unless stated differently. il-1α (0.05 ng/ml),  
siC- (10 nM), and siDKK3 (10 nM).
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2 factors that deserved further investigations. For that, we 
used human primary chondrocytes and the chondrogenic 
cell line ATDC5, which has been described to be a suitable 
model for the study of inflammatory-related processes 
in chondrocytes. This cell line presented more similar 
behavior to human primary chondrocytes in response to 
pro-inflammatory stimulus than other chondrogenic cell 
lines.18,19 First, we observed that IL-1α, a well-known 
potent inducer of MMP-13, repressed DKK3 expression in 
chondrocytes, as previously described.12 Thus, by silenc-
ing DKK3 gene, we demonstrated for the first time that 
DKK3 is acting as a MMP-13 down-modulator in the 

context of pro-inflammatory cytokine induction, in both 
human primary chondrocytes and murine ATDC5 cells. 
This observation is in line with previously published 
results, which demonstrated that recombinant DKK3 was 
able to repress the IL-1/oncostatin-M-induced MMP-13 
and MMP-1 expression in human primary chondrocytes, 
and also the proteoglycan release in bovine nasal cartilage 
explants.12 Moreover, DKK3 knockdown partially 
repressed the inhibition of MMP-13 elicited by TGF-β.12

DKK proteins are Wnt signaling antagonists. For that 
reason, we examined whether DKK3 modulated MMP-13 
expression via Wnt canonical pathway in IL-1α-treated cells. 

Figure 3. (A) Determination of the protein expression of iκB-α and p65 by Western blot. β-actin and lamin B1 were used as a 
loading control. (B, C) Data showing densitometric analysis of all Western blots performed in panel A. (D) Determination of mouse 
MMP-13 mrNa expression by qrt-PCr in atDC5 cells. *indicates P < 0.05, **indicates P < 0.01, and ***indicates P < 0.001 versus 
unstimulated control, unless stated differently. il-1α (0.05 ng/ml), siC- (10 nM), and siDKK3 (10 nM).
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Previously published articles demonstrated how Wnt/β-
catenin signaling was involved in the regulation of MMP-13 
expression.20 However, in our study, the analysis of GSK3β 
and β-catenin revealed that Dkk3 knockdown did not affect 
the activation of the Wnt canonical pathway elicited by 
IL-1α. Also, the use of XAV939, as an inhibitor of β-catenin 
signaling, did not affect the Dkk3 function either. In contrast 
to other members of Dkk family, whose ability to inhibit 
canonical Wnt/β-catenin signaling pathway by interacting 
with Lrp receptors is well known,21,22 the participation of 
DKK3 in the modulation of this signaling pathway is contro-
versial. Up to now, any receptor for DKK3 has been identi-
fied. For that reason, DKK3 ability to influence Wnt signaling 
routes is thought to be cell and condition dependent. Actually, 
some effects of this protein might occur through Wnt canoni-
cal or noncanonical pathways and even through alternative 
pathways such as the PI3K/Akt pathway.9,23

In contrast to that observed in human chondrocytes 
where DKK3 can inhibit Wnt signaling12 and based on the 
lack of interaction between Dkk3 and canonical 

Wnt signaling in ATDC5 cells, we sought to analyze other 
alternative and novel pathways not yet explored, which 
might be involved in the regulation of MMP-13 expression. 
NF-κB is known for its role in the transcriptional regulation 
of MMP-13 in chondrocytes.24 As far as we are aware, our 
study shows, for the first time, a clear relationship between 
Dkk3 and NF-κB in chondrogenic cells or any other type of 
chondrocytes. Actually, experimental evidence regarding 
IκB-α degradation and p65 modulation in Dkk3 silenced 
cells stimulated with IL-1α is in support of our hypothesis. 
This aspect may be related to the fact that DKK3 can mod-
ify the expression of other transcription factors such as acti-
vating transcription factor 6 (ATF6), as in smooth muscle 
cells.25

Finally, in order to explore other alternative interactions 
of Dkk3 with key signal transducers of Mmp-13, we also 
analyzed, for the first time in chondrogenic cells, the activa-
tion of different MAPKs under the stimulation with IL-1α 
plus Dkk3 knockdown. Other authors observed an interac-
tion between DKK3 and certain kinases such as JNK, Akt 

Figure 4. (A, B) Determination of the phosphorylation of p38 and erk1/2 by Western blot. total p38 and erk1/2 were used as a 
loading control. (C, D) Data showing densitometric analysis of all Western blots performed in panels A and B. *indicates P < 0.05 
and **indicates P < 0.01 versus unstimulated control, unless stated differently. il-1α (0.05 ng/ml), PDtC (10 mM); siC- and siDKK3 
(10 nM).
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or ASK1.23,26 However, in our study, we did not find any 
variation in the activation of p38 or Erk1/2 after the Dkk3 
gene silencing. In agreement with our results, Zhang et al.26 
did not determine differences in the activation of Erk1/2  
as a consequence of DKK3 loss- or gain-of-function experi-
ments in cardiomyocytes. In contrast, the same authors 
have demonstrated an increase in p38 phosphorylation 
when DKK3 is downregulated.26 Altogether these data sug-
gest that similar to what happened with Wnt signaling, 
DKK3 interaction with different kinases might be cell and/
or condition dependent.

In conclusion, we demonstrated for the first time the 
existence of an inverse relationship between the expres-
sion of DKK3 and MMP-13 along chondrocyte differen-
tiation. Moreover, DKK3 knockdown resulted in an 
increase in the induction of MMP-13, one of the most rel-
evant metalloproteases involved in cartilage breakdown, 
in chondrocytes stimulated with IL-1α. Finally, among the 
different signaling pathways tested so far, the aforemen-
tioned effect likely involves the participation of the NF-κB 
transcription factor.
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