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Abstract 

Gear transmissions are complex systems composed of numerous elements with 

a sophisticated geometry. In order to operate correctly, a gear transmission, 

and more importantly an epicyclic transmission, requires the synergy of 

multiple factors. Besides, its proper functioning is affected by numerous issues, 

which hinder the identification of problems in its performance. 

Despite its complexity or maybe because of it, planetary transmissions have 

vastly grown in popularity in the last few decades. In the industry, new 

applications and classical applications have emerged or developed to a point 

where planetary transmissions play a crucial role in its correct performance. 

This development has led to the creation of new hypothesis along with the 

appearance of new problems also.  

In relation to these new problems and applications, this Thesis aims to deepen 

the knowledge in some of them, as well as studying other possible scenarios in 

search for answers to some of the unknowns that both manufacturers and 

researchers have in relation to this topic. Mainly, this Thesis focuses on the 

role played by the geometry in the behaviour of a planetary transmission. As 

far as this work is concerned, the geometry refers to the planet spacing and 

mesh phasing, which are direct consequences of the transmission’s design 

criteria. Thus, this Thesis analyses in depth the impact of these effects in the 

behaviour of a planetary transmission. More precisely, the load sharing of the 

transmission is the magnitude chosen to analyse the state of the planetary 

transmission throughout the performed simulations.  

Once the impact of these effects is established, another point of crucial 

importance in the gear transmissions involves the inevitable manufacturing 

errors and their incidence. These will affect the performance, reliability, 

durability and quality of the planetary transmission. All the previously 



 

xviii 

mentioned illustrate the importance of this point. In this Thesis, the study has 

been limited to the tooth thickness error and the pinhole position error. The 

scope of possible errors is vastly wide, and these errors are considered some of 

the most important in terms of their influence in the load sharing. In addition, 

given their geometry the impact of these errors depends on the working 

conditions, thus, different load levels and directions are studied. 

After this, the focus is set on the experimental measuring procedures and the 

validity of the results obtained by them. This section combines the effects 

previously studied, geometry and errors, together with the measurements of 

strain in the root of the sun gear. Thus, a numerical approach is developed to 

mimic the experimental strain measurements. These are compared to the real 

load sharing in the transmission in order to analyse the accuracy of this 

measurement procedure in comparison to the real behaviour of the simulated 

transmission. 

The results obtained prove that for in-phase transmissions the impact of the 

angular spacing is only visible if there is floatability in the gear supports. In 

addition, the influence of the floatability is shown to change with the number 

of planets, which is prove in the impact of the floatability for 5-planet 

transmissions in comparison to the 3-planet ones. Besides, the behaviour of a 

sequentially phased transmission is worse, in terms of the amount of load borne 

by each planet, than the analogous in-phase transmission.  

This becomes more notable whenever there exists errors in the transmission. 

The imbalance created by the error is higher and the impact in the maximum 

and minimum load values is different from in in-phase transmissions due to 

the delay in the phasing.  

In terms of the measurements, the results prove a lack of accuracy in the 

experimental procedure results in comparison to the real load sharing. The 

inclusion of sequential mesh phasing and errors in the simulations dramatically 

affects the accuracy of the strains measurements as a tool to calculate the load 

sharing in a planetary transmission.  

Finally, as part of the conclusions extracted from this work, it is visible how 

sequential mesh phasing affects the balance in the load sharing and leads to 

imbalances in the transmission, due to the delay in the contacts. This phasing 

also increases the impact of the manufacturing errors in the load sharing. This 

impact increases with the number of planets because of the raise in the rigidity 
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in the system. The impact of the stiffness becomes clear with different changes 

as the various number of planets and the changes in the geometry in the shaft 

mounting.  

On the other hand, the experimental measurements prove to be inaccurate for 

any configuration different from an equally spaced in-phase transmission 

without error. This inaccuracy increases with the size of the error and is bigger 

for sequentially phased transmissions.  

Given the conclusions extracted, in a near future this work can be extended 

in different lines. Firstly, the number of dimensions in the model influences 

some of the effects studied, thus, the model should be extended to 3D to 

consider helical gears. At the same time, increase the number of planets in the 

transmission to more than 5, therefore, more combinations of possibilities will 

appear for an even number of planets. However, in the planar model without 

changing the number of planets, it is also possible to extend the measuring 

approaches to some other procedures than are commonly employed. 
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Resumen 

Las transmisiones de engranajes son sistemas complejos compuestos por 

numerosos elementos de geometría complicada. El correcto funcionamiento de 

una transmisión de engranajes, y más concretamente una transmisión 

planetaria, necesita de la sinergia de muchos factores y se ve afectado por 

muchos condicionantes que dificultan la identificación de los problemas. 

A pesar de su complejidad o quizá consecuencia de ella, las transmisiones de 

engranajes planetarios han adquirido un papel muy relevante en la industria 

en las últimas décadas. Nuevas aplicaciones y aplicaciones clásicas han surgido 

o evolucionado hasta el punto en que las transmisiones de engranajes 

epicicloidales tienen un papel determinante en su buen funcionamiento. Este 

desarrollo también ha llevado al planteamiento de nuevas hipótesis y a la 

aparición de nuevos problemas. 

En relación con la aparición de nuevos problemas y aplicaciones, esta Tesis 

trata de analizar en profundidad algunos de ellos, así como, estudiar otros 

posibles escenarios en busca de dar respuesta a algunos de los interrogantes 

que surgen tanto a fabricantes como a investigadores sobre el correcto 

funcionamiento de dichas transmisiones. Principalmente, esta Tesis se centra 

en el papel que juega la geometría en el comportamiento de las transmisiones 

planetarias. En lo que se refiere a la geometría, en esta Tesis el interés se 

centra en el impacto del espaciado angular y la fase de engrane, que son 

consecuencia directa de los criterios de diseño de la transmisión. En más 

detalle, esta Tesis analiza el impacto que tienen esos criterios en el reparto de 

carga en transmisiones planetarias. El reparto de carga se escoge como la 

magnitud que permite analizar el estado de la transmisión a lo largo de las 

simulaciones. 
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Una vez que se ha establecido el impacto del espaciado y la fase en el 

comportamiento de la transmisión, se incluyen nuevos efectos. En este caso, se 

considera la importancia que tienen los inevitables errores de fabricación en 

las transmisiones planetarias. Estos errores afectan a la calidad, durabilidad y 

el comportamiento de las transmisiones planetarias, lo cual da una idea de la 

importancia que los errores tienen en este campo. En esta Tesis, los errores 

escogidos se limitan a errores en el espesor de los dientes, así como, errores de 

montaje de los planetas en el portaplanetas. Además, dadas las características 

de estos errores, su influencia varía dependiendo de las condiciones de trabajo, 

por esto, se amplía el estudio a diferentes niveles de carga y sentidos de 

aplicación de la carga. 

Después de esto, el interés se centra en el análisis de los procedimientos 

experimentales de medida y su validez. En esta parte de la Tesis se combinan 

los estudios anteriores con el uso de la medida de deformaciones en la raíz de 

los dientes del sol para el cálculo de reparto de carga en transmisiones 

planetarias. 

Los resultados demuestran que en configuraciones en fase solo se hace visible 

la influencia del espaciado de los planetas cuando los apoyos de las ruedas 

cuentan con flotabilidad. Además, la influencia de la flotabilidad en los apoyos 

demuestra tener un efecto diferente para transmisiones de 5 planetas que para 

transmisiones de 3 planetas. Además, el comportamiento de las transmisiones 

con fase secuencial prueba ser peor, en su reparto de carga, que el de la 

configuración en fase análoga. 

Esto, se hace más visible cuando se incluyen errores en las transmisiones 

simuladas. El desequilibrio creado por un error es mayor y el impacto que tiene 

en los valores máximos y mínimos de carga es mayor debido a la fase en el 

engrane. 

En cuanto a las medidas experimentales, los resultados prueban ser imprecisos 

en comparación con el reparto de carga real en la transmisión. Además, la 

inclusión de secuencia en la fase de engrane y errores afecta notablemente la 

precisión de las medidas de deformaciones como una herramienta de cálculo 

del reparto de carga en transmisiones planetarias. 

Finalmente, como conclusiones extraídas de los resultados comentados 

anteriormente, se demuestra como la secuencia en el engrane afecta 

notablemente al equilibrio en el reparto de carga en las transmisiones y genera 
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desequilibrios debidos al desfase en el engrane. Esta fase de engrane también 

incrementa el impacto de los errores en el reparto de carga de la transmisión. 

Por otra parte, otro factor que incrementa el impacto de los errores es el 

aumento del número de planetas. El impacto de la rigidez se hace patente con 

otros cambios como la modificación del número de planetas en la transmisión 

y el tamaño de los ejes sobre los que se montan las ruedas. 

En cuanto a las medidas experimentales, prueban ser imprecisas en cualquier 

configuración diferente de una transmisión equiespaciada y en fase sin errores. 

Además, esta falta de precisión crece con el tamaño del error y se hace mayor 

para configuraciones secuenciales. 

Vistas las conclusiones que se extraen es posible plantear nuevas líneas para 

continuar con este trabajo. En primer lugar, el modelo se puede extender a un 

planteamiento tridimensional para tener en cuenta la influencia de esta tercera 

dimensión en los fenómenos estudiados mediante el análisis de transmisiones 

planetarias helicoidales. Al mismo tiempo, el número de planetas se puede 

incrementar por encima de 5, así, nuevos escenarios de estudio aparecen, 

principalmente en configuraciones con un número par de planetas superior a 

5. No obstante, en el modelo plano con el número de planetas ya estudiado, 

las técnicas de medida experimental estudiadas se pueden extender a otros 

procedimientos que también se utilizan habitualmente.
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Chapter 1: Introduction 

1.1. BACKGROUND & MOTIVATION 

This work is an extension of the works on gear transmissions developed by 

members of the Mechanical Engineering research group from the University of 

Cantabria throughout the last decades. At first, a model for simple gear 

transmissions was presented in (Fernández del Rincón, 2010). This model is 

appropriate for the simulation of external gears from points of view both quasi-

static and dynamic. After this, the logical step to take was to extend this 

approach to numerous simultaneous meshings in both external and internal 

gears, making possible the simulation of planetary gears (Iglesias Santamaría, 

2013). From the development of those models, numerous contributions have 

been made to the state of the art in mechanical transmission of power by using 

gear transmissions, and in the field of efficiency in gear transmissions (Diez-

Ibarbia, 2016). The development of the technology in planetary transmissions 

has led to new scenarios of study in search of the necessary enhancement of 

the classical approaches in search for higher power, better performances, and 

a higher reliability. The interest in this branch of study leads to extend the 

activity performed by this research group with the following Ph. D. Thesis, 

which extends the study of planetary gears to different scenarios of simulation. 

Thus, this work responds to the ongoing growth in the interest of planetary 

transmissions as a means to transmit torque in various applications. In the 

current society, these transmissions are used for various applications such as 
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wind turbines, vehicle transmissions both electric and internal combustion 

vehicles, rotorcrafts and agricultural machinery among others. In search of 

fulfilling the emission reduction objective, in order to increase the efficiency of 

this equipment, its durability and their overall performance, the understanding 

of these infrastructures has to be enhanced and updated to new approaches. 

Thus, this work focuses on the importance of the planet spacing and mesh 

phasing, geometrical characteristics of any planetary transmission, in its 

performance. To this end, several studies are performed combining those 

factors, in order to analyse different configurations that correspond to 

industrial applications. Thus, this work looks at enhancing the understanding 

of the influence of these changes in the geometry on the transmission 

performance. The points that are the focus of this work regard the mesh 

phasing, the planet spacing, and the number of planets. In addition, this work 

includes the impact of the unavoidable errors in the manufacturing of the 

transmissions, together with the effects previously mentioned. Besides, the 

validity of the measuring techniques to address the load sharing in the 

transmissions. To that aim, a new numerical approach for this procedure is 

performed and the results are compared to the real load sharing.  

1.2. OBJECTIVES 

The main objective consists in the expansion and enhancement of the 

knowledge in the behaviour of the load sharing in planetary transmissions in 

new scenarios of analysis influenced by changes in its geometry. At the same 

time, this work aims to deepen the knowledge of these new scenarios as part 

of the preliminary studies necessary to propose the modelling of these cases of 

study. Besides, this work presents a series of partial objectives as tasks to 

complete in order to achieve the previously mentioned global objectives. Thus, 

these partial objectives are gathered below: 

- Determining the impact of design parameters such as the number of 

teeth and the planet spacing in the performance of any planetary 

transmission. 
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- Enhance the knowledge on the behaviour of planetary transmissions 

with an odd number of planets. 

- Establish the impact that the mesh phasing has in the behaviour of 

any planetary transmission both with and without any error. 

- Establishing the impact of various errors in the behaviour of planetary 

transmissions. 

- Numerically address the problem of the measurements in planetary 

transmission and the calculation of the load sharing from those 

measurements. Likewise, quantify the error made by the 

measurements in comparison to the real load sharing in an epicyclic 

transmission. 

1.3. MEMORY STRUCTURE 

This memory is divided in four parts clearly differentiated in order to organise 

neatly the contents and to show the development of all the work performed in 

the context of this Ph. D. thesis.  

In more detail, the first part belongs to the introduction to this work. Thus, 

the origin and motivation to this work are presented together with the 

objectives that were proposed at the beginning of this multiyear work. All 

these previous points set the grounds on where the following parts will be 

developed. Then, the second part of the memory is a mix of a look to the past, 

present and future due to the combination of the study of the state of the art, 

highlighting the most important contributions to the topic that have been 

made in recent times. Besides, apart from revising the previous contributions, 

new ideas are proposed as the object of the studies that are shown further in 

this Thesis. The third part gathers every aspect of the definition of the studies 

performed in regards to the ideas proposed previously. Later, the results of 

these studies are presented in sequence where different effects are analysed 

separately and combined in further simulations. 
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Finally, the last part brings the conclusions extracted from this work and the 

future scenarios of work that surge after all the ideas commented throughout 

the memory.
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Chapter 2: State of the art  

2.1. INTRODUCTION 

Mechanical transmissions are broadly employed in the industry, gear 

transmissions are one of the most common mechanical transmissions. 

Numerous different solutions exist in terms of gear transmissions depending 

on its construction, material, and gear teeth to name a few possible aspects. 

Amongst those possible solutions, planetary transmissions are of great interest 

given their advantages and numerous applications. These transmissions are 

composed by three kinds of wheels. The first kind is a central wheel called sun, 

the second kind are the planets and the last one is an internal gear, the ring. 

These wheels are disposed as follows, the sun is at the centre of the 

transmission, the N number of planets are disposed in a structural element 

called carrier, surrounding the sun. Between the sun and each planet there will 

be external contact. The carrier is coaxial with the sun. Finally, the ring is in 

the periphery of the transmission, its centre coincides with the sun and carrier 

centre and has inner contact with each planet. Given their construction, these 

transmissions allow handling higher torque levels than a simple gear 

transmission of equal size. Furthermore, they provide different speed ratios 

between inlet and outlet members just by changing the reaction (fixed) 

member. Additionally, there exists a coaxiality between the inlet and the 

outlet in these transmissions, whereas this is not as common in multi-stage 

simple transmissions. 
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Figure 1. Layout of a planetary transmission. 

Thus, given all the previous, in the following chapter a review of the state of 

the art in the topic of gear transmissions is presented. 

2.2. SIMPLE GEAR TRANSMISSIONS 

Virtual modelling in gear transmissions is a technique that started to be used 

in the midst of the 20th century. It has experienced a still ongoing raise in 

popularity throughout the last decades. This technique is vastly used 

nowadays, due to the reduction in the cost that it provides. This reduction is 

comparing it to an analogous experimental work. Not only is it due to the 

cost, but also it is popular given the high degree of realism that is possible to 

reach with the latest models. This realism came along with the development 

of new hardware and software to reduce computational time and allow notably 

complex simulations in short computational times. 
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Given all the previous, it is important to understand and study the 

development of this new branch of study. Furthermore, this understanding is 

of crucial importance to make a choice for modelling transmissions and to 

recreate real problems in gear transmissions in a virtual environment.   

As a first approach to the topic, before getting into modelling in planetary 

transmissions, the logical previous step is the study of the modelling in simple 

gear transmissions. Obviously, the modelling of these simpler transmissions 

are the grounds on where the planetary transmission models stand. 

In the modelling of simple and planetary transmissions, there are different 

aspects to solve. Then, for planetary gears, these have to be solved for multiple 

contacts and consider the interactions amongst them. In the following, the 

main aspects of gear transmission modelling will be studied. Afterwards, the 

study will be more focused on the modelling of planetary transmissions.  

2.2.1 Geometrical definition: profile cutting, contact point and contact 

areas 

For starters, in order to model a gear transmission the geometry of the whole 

problem must be defined. Not only does it include the tooth profiles, but also 

it includes the geometry of the entire transmission. This geometrical definition 

affects crucially the stiffnesses in the elements and consequently, will have a 

relevant impact on the performance in any model. 

The geometrical description of the wheels, together with the location of the 

contact points and areas, comes from the meshing theory (Faydor L. Litvin & 

Fuentes, 2004). This is related to the manufacturing, design and metrology in 

gears. 

Therefore, this branch of the science is focused on the definition of the teeth 

profiles, as well as the tools and verification procedures in order to define not 

only the teeth, but also the geometry of the wheels and the transmission. 

Nowadays, the strategy presented by Litvin & Fuentes in (Faydor L. Litvin 

& Fuentes, 2004) is the most commonly used by researchers in order to define 
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the geometry of the wheels in their virtual models. This approach is based on 

the definition of the cutting tool and the simulation of the wheel cutting 

procedure. One of the strengths of this definition, in comparison to others, 

relies on the possibility to define the trochoid directly, which is not possible in 

many other approaches. Besides, this procedure provides the possibility to 

include slight changes in the profiles such as, profile shifting, tip relief and tip 

rounding arc. The two latter are highly useful to avoid contacts on the edge 

of the flank. 

Previously, the same author solved the problem of the determination of the 

contact points and areas in (F.L. Litvin, Tsung, Coy, Handschuh, & Tsay, 

1986). This problem is solved by employing a geometrical approach, under the 

condition of tangentiality between the profiles of opposed teeth. After this, the 

Hertzian theory allows to obtain the contact ellipses. This methodology allows 

determining the trajectory of the contact. Likewise, it has been used to 

improve the efficiency in transmissions by adjusting some details in the 

manufacturing process, looking for lowering the noise and vibration levels, 

which is also known as tooth contact analysis. 

The calculation of the contact areas is a problem that has been faced from 

numerous points of view throughout the years. At first, the determination of 

the contact areas was based on formulations that omitted the deflections due 

to the effect of the loads. These just focused on the kinematical design of the 

transmission and the decrease of the noise and vibration. On this line, the 

approaches focused on the definition of design and synthesis tools to determine 

the adjustments in the manufacturing process to obtain a precise sequence in 

each contact. This was solved for spiral conical gears in (Argyris, Fuentes, & 

Litvin, 2002), hypoidal gears in (J. Zhang, Fang, Cao, & Deng, 2007), and 

worm gears in (Seol & Litvin, 1996). These look for punctual contacts among 

the profiles avoiding the contact on the edges. This formulation obtains the 

parametric coordinates of the contact point and the angular rotation of the 

wheel to find that contact. This solution is obtained from numerically solving 
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a system of non-linear equations; however, this is not the only solution to this 

problem. Other authors such as Sheveleva et al. (Sheveleva, Volkov, & 

Medvedev, 2007) calculate the minimum distance among profiles, defining a 

mesh of points in each of them. Thus, it is possible to consider the influence 

of some flaws along the profile in the contact, as presented by Wink & Sherpa 

in (Wink & Serpa, 2005, 2008). In a similar approach rather than any flaw, 

the wear in the profiles due to the operation in the transmission can be 

considered also. This was performed for spur cylindrical gears by Wojnarowski 

& Oshnichenko in (Wojnarowski & Onishchenko, 2003). 

Despite the wide range of approaches, some of them are not affordable in 

dynamic models. The complexity of the approaches make impossible its 

calculation for every contact in a dynamic model, in a reasonable 

computational time. This makes necessary a simplification in the approaches, 

thus, Velex & Maatar in (P. Velex & Maatar, 1996) (Figure 2), as well as, 

Blankenship & Singh in (Wesley Blankenship & Singh, 1995b, 1995a) limit the 

search for contact to the meshing line or plane. Another possibility consists in 

the discretization of the profiles and looks for the minimum distance between 

them, this was presented by Kasuba & Evans (Kasuba & Evans, 1981) and 

Vijayakar (Vijayakar, 1991). 

 
Figure 2. Gear system lumped-parameter model in (P. Velex & Maatar, 1996) 
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2.2.2 Contact forces 

The solution of the contact problem represents one of the most complex 

aspects in any model for gear transmissions. The complexity of this problem 

varies depending on the approach taken. However, it is also possible to apply 

simplifications, which are appropriate in some of the cases to study. Taking 

into account these notable differences in the approaches, a division in quasi-

static and dynamic modelling has been established, looking for organizing the 

information and trying to avoid any misunderstanding in the simplifications 

employed in every approach and, more importantly, its applicability. 

2.2.2.1 Quasi-static models 

Normally, quasi-static approaches to solve the contact between teeth employ 

the finite-element (FE) method. This approach allows the study of the small 

changes due to local phenomena and the load distribution along the teeth. 

However, a previous analysis is necessary to establish the refining of the 

meshes and the nodes of interest, dependent on the contact point. 

In this line, Argyris et al. (Argyris et al., 2002) proposed to model only a 

portion of the geometry of the gear and the pinion. Besides, the contour of the 

gear model is embedded and the profiles of every teeth are considered non-

deformable. This approach was at the beginning particularized for spiral 

conical gears and later on, extended to helical cylindrical gears in (F.L. Litvin 

et al., 2003) and worm gears in (F.L. Litvin, Gonzalez-Perez, Yukishima, 

Fuentes, & Hayasaka, 2007). 

Another point of view taken by other authors consists of focusing on the 

construction of these models, emphasizing the need for denser meshes along 

the contact areas and their surroundings. In this area, Sirichai in (Sirichai, 

1999) employs a commercial solution for proposing a 2D model. This is later 

extended by Wang (Jainde Wang, n.d.) reaching 2D and 3D approaches. These 

models are based on the Simplex method to solve the contact problem and 

include denser meshes in the areas close to the contact points. Similarly, Li in 
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(Li, 2007) presents a new model, but this time this model is entirely developed 

by the author, avoiding the use of commercial solutions. This model also covers 

up to 3D approaches and employs a similar strategy to solve the contact 

problem as the one taken by both Sirichai and Wang previously. 

At the same time, Brauer presents a series of works about the procedure to 

follow in the construction of a FE model in conical gears (J. Brauer, 2002; 

Jesper Brauer, 2004). These models, similarly to the ones presented above, 

include a more refined mesh in the contact areas, avoiding contacts in just one 

element. Besides, these models, presented in Figure 3, are extended for their 

use in applications where both flanks of the teeth are active. Finally, the same 

author in (J. Brauer, 2005) extends this approach to 3D problems. 

 

Figure 3. FE models influenced by the helix and cone angles (Jesper Brauer, 2004) 
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Despite the existence of these solutions, they are not useful for some 

applications. These require for an immense number of calculations to solve the 

systems of non-linear equations that describe the models, which translates in 

long computational times for each iteration. This makes these solutions 

unaffordable for some approaches. That is the reason why for dynamic models 

the approach has to be based on other ideas. 

2.2.2.2 Dynamic models 

The additional complexity of the integration of the dynamic equations makes 

necessary a simplification in the contact models. It is not possible to face the 

dynamic problem together with the solution of the systems of non-linear 

equations in the FE models.  

The search for simplifications in the approach to solve the contact problem 

has led to the development of multibody and lumped-parameter approaches, 

where the number of degrees of freedom is limited. These approaches focus the 

contact solving on the overlap between flanks and the calculation of the 

meshing stiffness. For this meshing stiffness, the deflections in the teeth are 

calculated under a known applied load. Then, this deflection relates with the 

meshing stiffness and the contact forces are proportional to that meshing 

stiffness. However, in dynamic approaches the meshing stiffnesses are 

calculated beforehand and normally are invariable in time due to the difficulty 

of repeating its calculation for every contact position, as commented before. 

Following this approach in (A. Kahraman, 1993) Kahraman presents the 

simplest possible solution, where the meshing stiffness is considered constant 

and its value corresponds to the average value of the meshing stiffness in the 

meshing cycle. This simplification is useful in dynamic models where the 

objective is the analysis of the vibrational behaviour in the transmission. 

However, in search for a more realistic behaviour, some authors like Kasuba 

(Kasuba & Evans, 1981) or Theodossiades (Theodossiades & Natsiavas, 2001) 

model the meshing stiffness as the summation of successive harmonics in order 
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to recreate the sinusoidal meshing stiffness in helical gears. Likewise, the 

approach to a squared meshing stiffness for spur gears has been employed by 

Lin & Parker in (J. Lin & Parker, 2002) among others. 

Nonetheless, for studies more focused in other aspects of the dynamic 

behaviour of a gear transmission rather than the vibrational behaviour, the 

approaches mentioned before are not accurate enough. Consequently, other 

approaches were proposed along the years. Starting by Weber & Banaschek’s 

proposal in (Weber, C. Banaschek, 1951) where the deformation energy is used 

to calculate the deformation in any point of the tooth, considering the effects 

of bending and shear forces. This was a first step, which was taken further by 

Attia in (Attia, 1959). This work joins the effect of the body of the gear and 

the adjacent teeth to the above mentioned. 

Later in time, Umezawa et al. (Umezawa, Sato, & Ishikawa, 1984) focused in 

a special aspect in the gears modelling, which refers to the transition in the 

number of pairs of teeth in contact. These models divide the axial sections of 

the helical gear in fillets. In any of these fillets, the effects of the bending, 

shear, and axial stresses are considered. Then, the calculation of the 

deformations corresponds to the addition of those effects plus the deformations 

in the body of the gear and the ones due to the contact. On the other hand, 

Sainsot et al. in (Sainsot, Velex, & Duverger, 2004) present a new analytical 

approach to include the effect of the gear body in the deformation calculation 

problem. This approach shows results similar to the ones obtained by using an 

analogous FE model. 

These previous works prove the difficulty in finding the ideal analytical 

procedure to establish the relation between the deformation and the contact 

forces between gears. Thus, this led to determining as the most appropriate 

solution the use of a previous FE analysis. The majority of this approaches are 

based on the modelling of the contact between a pair of teeth, of which (Chung 

& Shaw, 2007; Howard, Jia, & Wang, 2001) are proposals applied to spur gears 

and worm gears respectively. 



18                                                                          Chapter 2: State of the Art 

 

 

Once this solution started to be a standard, the next challenge appeared in 

the ponderation of two different effects. The deformations due to the contact 

in the teeth and the influence of other components present in the transmission. 

The hardest part in the contact solving side is related to the local deformations 

in the contact area. Meanwhile, a highly accurate model has to be able to 

include the effect of components such as the shafts or the deformations in other 

components or in the surrounding teeth, which affects the meshing stiffness. 

All these lead to the situation where a balance has to be found between the 

accuracy in the local deformations and the computational effort. Considering 

all those global effects too. In this line, Blankenship & Singh in (Wesley 

Blankenship & Singh, 1995a) presents the first model where it is possible to 

apply torque in the transversal direction to the transmission’s plane. 

Furthermore, the model includes a time-dependent meshing stiffness that also 

varies with the position along the meshing line, which makes it also dependent 

on the number of pairs of teeth in contact. Likewise, Velex & Maatar in (P. 

Velex & Maatar, 1996) develop a 6 degree of freedom (dof) model composed 

by rigid cylinders where the meshing line is discretized. Along this meshing 

line, the contact points are connected by a series of springs, which represent 

the meshing stiffness, variable along the contact. In each of the sections along 

the meshing line, differences in the contact due to variations in the teeth 

profiles can be included. Once the displacements are obtained, the contact 

forces will be the result of the product of those displacements and the meshing 

stiffness for each specific section of the meshing line. The trickiest part of this 

model, as in previous approaches, rests on the determination of the stiffness 

value for each section. In this case, the authors highlight that the values 

employed refer only to the stiffness of the tooth in contact and none other 

effect. Finally, this model is valid for both spur and helical cylindrical gears. 

In this same approach, Erltenel & Parker and Ajmi & Velex presented in 

(Ajmi & Velex, 2005; Erltenel & Parker, 2005) respectively, both proposals 

based on the previous (P. Velex & Maatar, 1996). The former based on an 

approach where the effects are splitted between the influence of the bending 



Part II  19 

 

 

and shear stresses in the gear, and the contact effects, whereas the latter 

establishes a division of the considered effects in three groups. This consists of 

separating the deformation in the body of the gear, the deformation in the 

tooth and the deformation due to the contact. A cantilever model emulates 

the deformations in the gear body, while the deformation in the tooth is based 

on Pasternak’s theory. 

This division of the effects in a gear transmission due to the contact between 

gears led to the development of hybrid solutions, which were proposed firstly 

by Vijayakar in (Vijayakar, 1991) combining a finite-element model with the 

Bousinesq solution in a semi-infinite space.  

The above mentioned is considered one of the first proposals for a hybrid 

formulation to the contact problem in gears. Some years after this proposal, 

these solutions started to spread and become more sophisticated and accurate. 

Nowadays, these hybrid solutions are common in the modelling of planetary 

transmissions, which leads us to the next section of this document where the 

focus is on the modelling of planetary transmissions. 

2.3. PLANETARY TRANSMISSIONS MODELLING 

The research in planetary/epicyclic transmissions has experimented a still 

ongoing growth in popularity and lately sky-rocketing interest as presented in 

(Cooley & Parker, 2014) and shown in Figure 4. This development led to the 

appearance of various valid approaches. These can be classified in lumped-

parameter and analytical, finite-element, and hybrid models. As mentioned, 

all of these approaches are valid, the choice depends on different factors such 

as the accuracy in the results, the computational effort, the complexity of the 

formulations, and the problem faced among others. As a result, and seeing the 

existent kinds of models, from this point on, a detailed compilation of the 

already present studies in the literature is presented focusing on the modelling 

in planetary transmissions. 
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Figure 4. Development of the number of publications (1965-2015) (Cooley & Parker, 2014) 

2.3.1 Lumped parameter and analytical modelling 

Classical models for the virtual recreation of planetary transmissions normally 

are based on an analytical approach or a lumped-parameter modelling. Thus, 

whenever gear transmissions and especially planetary transmissions became 

more important, this kind of models started to appear. The popularity of these 

models in the past comes from the existent hardware limitations at that time. 

At the beginning, the models could just be as complex as proposing a rotational 

model with meshing elements with a linear constant stiffness or a stiffness 

variable in time. Thus, allowing non-linearities in the model and obtaining its 

time response (Cunliffe, Smith, & Welbourn, 1974). This was proposed by 

Cunliffe et al. as a method to identify the natural frequencies and vibrational 

modes of a planetary transmission. As a result, that still stands; a classification 

for the vibrational modes was proposed. The categories for the modes are based 

on the shape of the mode and the elements affected by the vibrations. Finally, 

this work highlights the importance of the flexibility in the body of the ring 

gear for the existence of some vibrational modes.  This last detail would have 

a crucial impact in the models developed in the future. In this same line of 

study, Botman in (Botman, 1976) presented one of the first lumped-parameter 

models for a single-stage planetary transmission. This model studied the 
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vibrational modes of the transmission from a dynamic point of view, by solving 

the eigenvalue problem. In this model, the gear meshing stiffness is modelled 

as linear springs and it is invariant in time, therefore, not allowing to obtain 

the time response. For this model, only the vibrations in the plane are studied, 

considering the rest negligible due to working with spur gears. The tooth load 

is considered linear and the tooth stiffness constant.  In addition, in this model, 

the gear supports have a finite stiffness, which means they can float along the 

plane. Besides, some torsional stiffness is considered in all the gears but the 

planets. Moreover, the relative movement of the carrier is included and so are 

their effects in the vibrations. Thus, the author determines that along with 

the carrier movement the lateral modes disappear and only the axisymmetric 

stay. This leads to the conclusion that measuring vibrations in the radial 

direction in the ring gear would lead to no dominant peaks due to resonance. 

Likewise, McFadden in (McFadden & Smith, 1985) proposes a model to study 

the asymmetry of the sidebands in the vibrational spectra of epicyclic gears. 

Furthermore, these results are validated with the data obtained in the 

experiments carried out in a series of transmissions, finding numerous 

similarities. 

Then, August & Kasuba (August & Kasuba, 1986b) presented a lumped-

parameter model, partially shown in Figure 5. The model consists of a lumped-

parameter approach for solving the dynamic problem in a planetary 

transmission under different loads, also modifying the floatability in the sun 

gear, limiting the degrees of freedom in the rest of the elements to purely 

rotational ones. Thus, after varying the meshing stiffness, they observed how 

the orbits described by the sun gear vary with the angular speed. These are 

mainly translational for low speeds, becoming notably circular whenever the 

speed is incremented. From these orbits, they induced that the stiffness in the 

sun gear support plays a crucial role in the loads in the sun, except for a 

narrow window of angular speeds. Hence, they determined that a fixed sun is 

better than a floating one from the vibrational point of view.  
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Figure 5. Lumped-parameter approach for the contact between sun and planet, proposed by 

Kasuba (August & Kasuba, 1986b)  

At the same time, the complexity of the dynamic models increased including 

effects not seen before in models such as non-linear tooth stiffnesses, flexibility 

in the ring and errors both in the gears and in the alignment of the shafts. Ma 

& Botman presented this model in (Ma & Botman, 1985) aimed to study the 

load sharing in transmissions for turboprop engines. 

In the early 90s, these gear modelling technique reaches a breakthrough 

moment with the publication of a series of papers by Kahraman (A. 

Kahraman, 1994; A Kahraman, 1994a, 1994b; Ahmet Kahraman, 1994) that 

have had a big impact in this topic  throughout the last decades. In (A 

Kahraman, 1994a) the author presents a spatial lumped-parameter dynamic 

model of a three-planet planetary gear set with helical gears. Thus, in this 

model the dof related to the transverse, torsional, axial, and rotational 

movements are included. This work presents a new technique for analysing the 

multi-meshing between the middle gear and the other two that mesh with it, 

proposing two possible configurations, being the middle gear either the driver 
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or the driven wheel by any of the others. In (A. Kahraman, 1994) the same 

author presents the comparison between lumped-parameter planar models, 

including torsional and transversal dof in one and just torsional in the other, 

to analyse the vibrational behaviour in the transmission and the modes 

associated to the lower frequencies. Closed form expressions for natural 

frequencies in a planetary transmission are derived by using the torsional 

model and contrasting it with the transversal-torsional model. As a conclusion, 

the author determines that a proposal limited to the torsional dof is accurate 

enough to determine the natural frequencies in a transmission, which 

represents a notably simpler approach than the more complex and accurate 

transversal-torsional model. A more complex planar model is presented in 

(Ahmet Kahraman, 1994), where the model corresponds to a two-dimensional 

n-planet planetary transmission where several errors related to manufacturing 

and mounting of the transmission could be included. At the same time, the 

meshing stiffness is variable in time and any possible number of pinions and 

pinion spacing can be included, as well as tooth separations. Finally, this model 

provides results of the load sharing for a four-planet transmission. From those, 

guidelines are extracted to improve its performance under the influence of the 

factors mentioned above. The last contribution of this series (A Kahraman, 

1994b) extends the previously mentioned model to a three-dimensional 

dynamic model, as seen in Figure 6 & Figure 7, but considering some 

limitations. Amongst the most important ones, the main components of the 

transmission are considered infinitely rigid; therefore, the deformations of the 

gears and carrier are negligible. Likewise, the gear tooth flexibilities are 

considered linear and modelled as springs. Gear backlash and radial bearing 

clearances are included, but tooth separation is assumed not to exist. 

Furthermore, the frictional forces derived from the sliding between surfaces 

are considered negligible. Finally, the errors in the tooth spacing and 

misalignment, that were possible previously (Ahmet Kahraman, 1994), are not 

included in order to limit the model and reduce the number of modelling 

parameters. Overall, this model with its limitations performs an accurate 
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dynamic study of the resonances in the transmission and the vibrational modes 

under different considerations of spacing and phasing. 

 

Figure 6. 3D lumped-parameter approach presented by Kahraman in (A Kahraman, 1994b) 

Later on, Kahraman (Ahmet Kahraman, 1999) developed a new model with a 

different approach based on an analytical formulation, including different 

design parameters to consider various errors. Therefore, this model takes into 

account the influence of those errors in the transmission geometry and its 

performance. The model considers not only the backlash in the teeth, but also 

the floatability in the sun gear, as it is common in planetary gearboxes for 

automotive industry. This model is oriented to calculate the gear meshing 

forces and derive the load sharing in the transmission under the influence of 

different pinhole position errors. 

Also in the line of the lumped-parameter models, in (Jian Lin & Parker, 1999) 

Lin & Parker presented a model for N-planet planetary gear sets that includes 

three dof in each gear and the carrier, two translational and one rotational, 

therefore, a planar model. This model is employed to solve the dynamic 
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problem in planetary gears. In this approach, the meshing stiffness is 

considered constant. In addition, it includes as a novelty from other similar 

approaches, matrixes for the gyroscopic and centripetal stiffnesses derived 

from the carrier movement. This gyroscopic term becomes important for high 

angular speeds due to its mathematical formulation. In the same year, this 

model is employed to study the sensitivity of the planetary transmissions 

vibrational behaviour to the variation of some working parameters in (J Lin 

& Parker, 1999). 

 

Figure 7. Detail of the dof considered: a) sun-pinion, b) pinion-ring and c) pinion-carrier (A 
Kahraman, 1994b) 

With the beginning of the new century, the popularity of these models dropped 

dramatically due to the introduction of the new hybrid solutions thanks to the 

advance in the hardware, which allowed more complexity in the models. 
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However, these models are still in use for some specific problems where they 

have proven to be accurate and more efficient than other possible solutions. 

Continuing with this line of models, Chaari et al. in (Chaari, Fakhfakh, 

Hbaieb, Louati, & Haddar, 2006) propose a lumped-parameter model including 

three dof in every element, two translational and one rotational. This model 

represents the gear mesh with a linear spring and does not include damping. 

The input in the model is a torque in either the sun, carrier or ring. This model 

is employed for solving the dynamic problem and to include some errors and 

observe its impact in the dynamic behaviour of the transmission. 

In this same line, Ligata et al. in (Ligata, Kahraman, & Singh, 2009) present 

a new approach for a lumped-parameter model to predict the load sharing in 

planetary transmissions with N planets, in presence of pinhole position errors. 

This model presents a translational approach as an analogy to previous 

classical rotational models. This translational approach models the stiffnesses 

in every contact as a compilation of linear springs, with any number of planets 

and any possible spacing. Then, the pinhole position errors affect the length 

of the springs; therefore, considering the load to be applied uniformly on a 

plane that rests on the springs, the longer ones bear more load than the rest. 

Finally, the results obtained by this approach, in terms of load sharing, are 

validated with the results from a FE model and experimental results. This 

validation shows a notable accuracy in the results considering the simplicity 

of the approach compared to a FE model. 

Continuing with this work, Singh presented the first (Singh, 2005) of two 

works, where the author works on the influence of pinhole position errors in 

the load sharing in a planetary transmission. This work employs a system level 

model to analyse the impact of tangential position errors in transmission with 

a number of planets from 3 to 6. Also in this topic, the same author in (Singh, 

2011) derives a series of analytical expressions to determine the influence of 

those same errors. This contribution provides a physical explanation to the 

imbalances produced by the mentioned errors and gives expressions to obtain 
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the amount of load in each planet parameterized for any error and any load. 

These are performed both for floating and non-floating systems. However, this 

approach leads to stating that the influence of radial errors is null, which will 

be proved to be wrong later on in (M. Iglesias et al., 2017; Sanchez-Espiga, 

Fernandez-del-Rincon, Iglesias, & Viadero, 2020). Finally, the response of the 

transmission to the change on different working parameters such as the 

floatability is observed, and in conclusion, the load sharing improves with 

higher loads, less tolerance to the errors and less stiffness in the system. These 

conclusions restate some of the conclusions extracted in previous works, but 

with a completely different approach. Finally, the results of this new approach 

are validated by comparison with the results obtained from the models 

employed in (Singh, 2005), which are more complex. 

Likewise, Gu & Velex in (Gu & Velex, 2011, 2012) present a new lumped-

parameter model to interpret the influence of planet position errors in the 

dynamic behaviour of planetary transmissions. This model, in contrast with 

more conventional approaches mentioned before, includes time-varying 

meshing stiffness with non-linearities. In addition, this model accounts for the 

deflections of the components and its immediate influence in the contacts. The 

results obtained present several similarities with experimental results. 

Lately, Hu et al. (Hu, Talbot, & Kahraman, 2018) presented a load 

distribution model capable of simulating planetary transmissions. This model 

has a 3D-analytical formulation with different considerations in terms of 

construction, errors and design variables. This model allows calculating the 

amount of load in each planet under different conditions such as spacing, 

phasing, errors etc. 
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Figure 8. Lumped-parameter model with the definition of the position error in any planet (Gu 

& Velex, 2012) 

2.3.2 FE and hybrid models 

In contrast with the lumped-parameter models, FE and hybrid approaches are 

more recent, even though the beginning of the FE analysis dates back to the 

1960s. However, FE analysis requires from either sophisticated hardware or 

lots of computational time. 

Thus, at the beginning of the modelling times in gears, the models were mainly 

faced from analytical or lumped-parameters approaches. Nonetheless, Hidaka 

et al. in (Teruaki Hidaka, Terauchi, Nohara, & Oshita, 1977) employ FE 

models for the calculation of deflections in the ring gear. Firstly, the model 

consists of a superposition of two, the first for the body of the gear and the 
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second for the tooth. These models are employed to calculate the strains in 

the ring gear tooth and compare them with the deflections calculated 

analytically. Later in this work, the model is extended to the whole ring gear 

and a higher number of teeth. 

Nonetheless, FE models include a high grade of difficulty in their definition. 

Besides, the search for accuracy in the results requires from refined meshes in 

the contact area. Apart from that, there exist inherent problems related to the 

FE modelling such as the stress concentration due to punctual forces. 

Moreover, meshes should be redefined and refined for every contact position. 

These difficulties make necessary the combination of FE approaches and 

others, in order to develop sophisticated models for the simulation of planetary 

transmissions. In this line, Vijayakar in (Vijayakar, 1991) at the beginning of 

the 90s presented a proposal in relation to a hybrid combination of finite-

element models and integral surfaces to solve the contact stresses and 

deformations between three-dimensional surfaces, presenting examples for 

hypoid surfaces. However, this proposal will not be implemented in a model 

until some years after. 

Following Vijayakar’s proposal, Parker et al. in (Robert G. Parker, Agashe, & 

Vijayakar, 2000) implement a hybrid solution for the modelling of planetary 

transmissions. This hybrid approach employs the technique suggested by 

Vijayakar in (Vijayakar, 1991). In this model, given the complexity and the 

necessary refinement of the meshes, a combination of an analytical solution to 

the contact and finite-element models is employed. This model studies the 

dynamic response of a gearbox, under different rotating speeds and torques. 

This study, firstly, validates the model and then concludes that some 

vibrational modes appearance depends directly on the mesh phasing. 

This previous model presented by Parker et al. (Robert G. Parker et al., 2000) 

employed a hybrid approach for a dynamic model; on the other hand, 

Kahraman & Vijayakar (A Kahraman & Vijayakar, 2001) also combined a 

finite-element and a semi-analytical approach for a quasi-static model. This 
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proposal models the complicated shapes of the tooth flanks by using FE and 

a semi-analytical deformation models to avoid problems of bad conditioning 

in the problem resolution. Furthermore, this approach avoids the need for 

extremely refined meshes due to the small contact areas, and the remeshing 

for every contact position. Therefore, two regions are defined, the contact area 

and its surroundings, where the semi-analytical procedure is employed to solve 

the contact problem and obtain strains and deflections. The second region 

corresponds to the rest of the gear, in this part a conventional FE model is 

accurate and therefore, appropriate. Finally, this model is employed to study 

the impact of a flexible ring in the transmission performance, considering 

different width in the ring and some supports along its periphery, avoiding 

embedding the whole periphery. 

In this new trend, Kahraman et al. in (A Kahraman, Kharazi, & Umrani, 

2003) presented their contribution for a dynamic model, also pointing out the 

limitations of a pure finite-element approach. In such a model, the mesh would 

have to be extremely refined in the contact area given its tiny size, and it 

would have to be remeshed for every contact position. Therefore, their hybrid 

approach consists of the combination of finite-element and a surface integral 

method, described previously by Vijayakar in (Vijayakar, 1991). The FE 

model solves the contact problem for the area far from the contact, and the 

surface integral method is employed for the contact area and its surroundings 

given the lack of accuracy of a conventional FE model in this area. 

In this new line of models, which employ hybrid approaches, Abousleiman & 

Velex (Abousleiman & Velex, 2006) present a new combination for a model, 

lumped parameter/3D-FE model. This proposal combines the model proposed 

by Velex & Flamand in (Ph. Velex & Flamand, 1996) for external contact 

between gears, which was a lumped parameter model, extending this idea for 

internal gears and including a FE model for the body of the ring gear. In the 

ring gear, two possibilities are presented, 2D and 3D, as seen in Figure 9. With 

this approach, it is possible to consider the deflection of the ring gear, which 
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plays a crucial role, as commented in (Cunliffe et al., 1974; Ahmet Kahraman 

& Vijayakar, 2001) among others. 

 
 

Figure 9. Details of the FE model for the ring gear in (Abousleiman & Velex, 2006): a) 
elements in the model, b) interface between body and teeth in the gear. 

Another combination of approaches, but not considered a hybrid model, is the 

one proposed by Yuksel & Kahraman (Yuksel & Kahraman, 2004), where a 

model previously presented in (A Kahraman et al., 2003) that account for 

flexible planetary transmissions is combined with a wear model presented by 

Bajpai in (Bajpai, Kahraman, & Anderson, 2004). This way, in the model for 

the epicyclic transmission the effect of the wear in the gears and the 

subsequent modifications in its geometry are incorporated to the pre-existent 

model. Later, this model is employed for the dynamic problem in planetary 

transmissions observing the highest concentrations of wear in the dedendum 

of the sun gear. 

Later, Ambarisha and Parker in (Ambarisha & Parker, 2007) combine an 

analytical procedure with a finite-element model to solve the dynamic problem 

in planetary gears. For the analytical procedure the lumped parameter model 

corresponds to the one presented in (J. Lin & Parker, 2007) modelling the gear 

mesh as a nonlinear spring where the meshing stiffness varies periodically due 

to the number of pairs in contact in each moment. For the friction forces and 

other similar effects modal damping is employed. Then, for the definition of 

a) b) 
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the geometry in a 2D finite-element model, the software Calyx is employed. 

This software implements the hybrid approach proposed by Vijayakar in 

(Vijayakar, 1991). 

In (Singh, Kahraman, & Ligata, 2008) Singh et al. employ a Gear System 

Analysis Modules (GSAM), “a multi body contact analysis model” that creates 

3D multimesh models. These models combine a FE approach with a three-

dimensional multibody contact solver (Calyx). This software solves the contact 

problem beyond the meshing stiffness calculation and then, the stiffness is 

obtained by combining finite elements and surface integrals. This model is 

based on the same ideas as previous contributions (A Kahraman & Vijayakar, 

2001; Robert G. Parker et al., 2000), but in this case, it is used to make 

predictions on the strains in the planets and compare them to the experimental 

results measured by using hoop and root strain gauges. 

 

Figure 10. GSAM model of the 5-planet transmission studied in (Singh et al., 2008) 
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Another proposal was performed by Helsen et al. in (Helsen, Vanhollebeke, 

Marrant, Vandepitte, & Desmet, 2011) that presents a new approach for 

modelling in the “booming market of wind turbines” employing three different 

techniques for modelling of a multi-stage gearbox. This model is oriented to 

the study of the modal behaviour of the test rig by using three different 

approaches: a sheer torsional multibody model, a six dof multibody model with 

discrete flexibility and, finally, a fully flexible multibody model. For the 

utilization of a model such as the last one, fully flexible, the challenge of 

condensing dof in a finite element model has to be overcome, and in this work 

it is done successfully. Also, as a conclusion of this work, new kinds of modes 

are observed and categorised as planet carrier modes and planetary ring modes. 

The limitations of the pure torsional model and the eigen frequencies, which 

are identified in the fully flexible model, are experimentally validated in a 

back-to-back test rig. 

Later, Shweiki et al. in (Shweiki, Mundo, Korta, Oranges, & Palermo, 2016) 

propose a combination of the ideas presented by Helsen and Kahraman. 

Firstly, combining finite-element models with multibody models, as seen in 

(Helsen et al., 2011), and then use a static transmission error as the inlet in 

the simulations, as Kahraman and other authors do in their models. 

In 2020, Liu et al. in (J. Liu, Pang, Ding, & Li, 2020), continuing with works 

such as the one presented by Helsen (Helsen et al., 2011), presented the 

combination of a flexible multibody dynamic (FMBD) model and a FE model 

for the ring gear. The multibody model developed in ADAMS and the FE 

model in ANSYS. This approach includes bearings in the planets. Besides, the 

modelling of the ring makes it flexible and therefore reactive to the loads. 

Apart from this new model, another novelty corresponds to the inclusion of a 

fault in the races of one of the planets is included. All this is set to analyse the 

vibrational behaviour in planetary transmissions. 

Finally, in this current year, Kahnamouei & Yang in (Kahnamouei & Yang, 

2021) present a hybrid approach for a dynamic model. This model consists of 
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a lumped-parameter approach for the transmission, as well as includes 

elasticity in the ring gear by employing a FE model to reproduce this gear; 

these models are shown in Figure 11. In more depth, the FE model includes a 

number of finite elements with a finite stiffness that represent the elastic 

supports in the periphery of the ring gear. Then, moving loads are included to 

model the planet-ring contacts. 

 

 

Figure 11. Models employed in (J. Liu et al., 2020): a) multibody model, b) FE model of the 
ring gear. 

All these models are aimed to analyse real problems derived from the use of 

planetary transmissions, however, those problems vary significantly with 

depending on its industrial application. Thus, the industrial applications for 

planetary transmissions are the focus of the next section. 

2.4. INDUSTRIAL APPLICATIONS OF PLANETARY TRANSMISSIONS 

As mentioned previously, planetary gear transmissions are vastly employed in 

the industry. This kind of transmission plays a crucial role in some sectors of 

the industry. Given their notable advantages in comparison to other gear 

transmissions, planetary transmissions can be found in industries such as 

automotive, renewable energies, rotorcraft, agricultural machinery and many 

more. 

a) b) 
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Planetary transmissions in wind generators include a number from 3 to 5 

planets, however, it is expected to be increased. These transmissions are 

prepared to deal with huge amounts of input torque and are composed by a 

succession of, either epicyclic or simple gear transmissions (Helsen et al., 2011; 

Xinghui Qiu, Han, & Chu, 2015; Jungang Wang, Yang, Liu, & Mo, 2019) that 

convert the rotating speed to the nominal speed of the generator. However, 

the popularity of the wind energy (GWEC, 2019), with up to 51.3 GW of new 

installation in 2018, as seen in Figure 12, and the booming spread of this 

technology leads to the presence of numerous problems related to their 

presence, performance, and productivity. 

 

Figure 12. Historic development of total wind energy producing installations in GW (GWEC, 
2019). 

Firstly, wind generators are a source of controversy due to the noise and 

vibrations (Gioia, Peeters, Guillaume, & Helsen, 2019; X. Liu, Yang, & Zhang, 

2018; Zhu, Xu, Liu, Luo, & Zhai, 2014) that they produce. The dynamic 

performance of a planetary transmission is not exempt of vibrations and due 

to it, noise. This problem is even more relevant in the wind generators located 

close to inhabited areas. Apart from this noise problem, it is another source of 

debate the location of the generators due to their visual impact and the 

interaction with living creature habitats. Not only is it because of these 
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problems, but also it is due to the increment on their productivity (Colmenar-

Santos, Perera-Perez, Borge-Diez, & Depalacio-Rodríguez, 2016; Kalogeri et 

al., 2017; Zountouridou, Kiokes, Chakalis, Georgilakis, & Hatziargyriou, 2015) 

that wind generators have become an offshore industry also, whose growth is 

illustrated in Figure 13. This new placement of the generators increases the 

amount of energy produced by each generator (Global Wind Energy Council, 

2020; Karki, 2017), but such increment comes together with a raise in the 

operation problems. One of such problems was illustrated by Viadero et al. in 

(Viadero et al., 2014), where the dynamics of the wind generator were modelled 

considering the effects of the wind, like in onshore facilities, together with the 

floating platform dynamics and the stiffnesses of the anchoring chains that 

connect the platform to the rock bottom. 

 

Figure 13. Growth of the offshore installations in GW (GWEC, 2019) 

Apart from the floatability and the difficulties that it involves, the 

productivity of wind generators and the ratio between investment and 

production depends crucially on the amount of hours the generator is 

producing, both onshore and offshore. This problem is even more important 

in offshore wind generators that need from new technologies to access the 
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founded or floating platforms, in Garcia et al. (García et al., 2019) the authors 

gather the existent approaches to solve this problem. The need for these 

systems comes from the impact of the downtime in the economic viability 

(Faulstich, Hahn, & Tavner, 2011) of the offshore wind industry together with 

the hard accessibility for its maintenance. Given that, the avoidance of failures 

in the gearbox and its condition monitoring play a crucial part in its economic 

viability.  

In relation to the avoidance of failures, there are different factors to study in 

planetary transmissions for wind generators. Firstly, the distribution of the 

load amongst the planets (X. Qiu, Han, & Chu, 2015; Jungang Wang et al., 

2019) will influence dramatically the life expectancy of the components. The 

overloading of a component could overwork it and lead to the appearance of a 

crack (Joshi & Darpe, 2019) or the failure of any component (Gallego-Calderon 

& Natarajan, 2015; Teng et al., 2019) and, therefore, an increment in the noise 

generated by the gearbox (X. Liu et al., 2018).  

Nonetheless, planetary gears are not exclusive to the wind energy industry. 

They are equally common in an even more popular industry such as 

automotive. In 2019 alone, more than 80 million cars were sold around the 

world (“GLOBAL EV OUTLOOK 2020,” n.d.). Amongst the different 

constructive options in internal combustion cars, the ones with an automatic 

transmission incorporate planetary gears in their powertrain. In this kind of 

application the analysis and reduction of the vibrational response  (A 

Kahraman, 1994a; Robert G. Parker et al., 2000; Robert G. Parker & Wu, 

2010) of the transmission, and the noise they produce, is even more important 

due to its relation with the comfort in the car and somehow with the market 

price of the vehicle. 

In addition, analogous to what happens in the wind generators, failures in the 

vehicle transmission are something to avoid, which is the reason why the load 

sharing in these transmissions is measured experimentally (Boguski, 

Kahraman, & Nishino, 2012; Ligata, Kahraman, & Singh, 2008) and these 
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transmissions modelled in presence of errors (Bodas & Kahraman, 2004; 

Ahmet Kahraman, 1999; Singh, 2005).  

Apart from the conventional internal combustion engine cars, the market for 

electric vehicles (EV) is experimenting an ongoing spread, reaching a 

maximum of 2.1 million electric cars sold in 2019 (“GLOBAL EV OUTLOOK 

2020,” n.d.). This is a relatively new application for planetary gear 

transmission where the problem focuses on the powertrain.  

Given the youth of this constructive solution for cars, there is not a standard 

in its fundamental construction yet (Shimizu, Harada, Bland, Kawakami, & 

Chan, 1997). At this stage of the development of this technology, one of the 

faced bottlenecks is the autonomy of these cars. To this point, there are two 

possible solutions, an improvement in the capacity of the batteries or an 

improvement in the usage of that energy (C. Zhang, Zhang, Han, & Liu, 2017). 

To the latter, considering their powertrains, electric vehicles can be classified 

in distributed and centralized-driven systems (Du, Zhao, Jin, Gao, & Zheng, 

2021). The former refers to a configuration where motors are included in each 

wheel; therefore, there is no need for a powertrain. However, the latter 

implicates a motor and a reducer. Thus, in (Du et al., 2021) Du et al. analyse 

the performance of these variety of powertrain solutions in electric vehicles. In 

addition, the authors model these solutions and analyse its dynamics in search 

for optimizing each design. 

Nonetheless, this area is still experimenting dramatic changes in its technology, 

consequently, there are new approaches to the transmission system, such as 

the ones presented by Fang et al. (Fang et al., 2016) and Tian et al. in (Tian, 

Zhang, Zhou, & Walker, 2020). In both contributions, the authors present 

proposals for two-speed transmissions to connect the electric motor of the 

vehicle with its wheels. These configurations improve the comfort in the vehicle 

in comparison with a distributed approach. This is due to the increment of the 

unsprung mass of the vehicle in the distributed-driven system (Du et al., 2021). 

On the contrary, the centralized solutions such as the ones presented before 
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(Fang et al., 2016; Tian et al., 2020), normally have a low efficiency, however, 

these approaches opt for a two-speed system and thus increase the efficiency 

and reduce the energy consumption of the powertrain. In both proposals, an 

epicyclic transmission provides the opportunity of the two-speed functioning 

by changing the fix element and input in the transmission. Despite the 

presented solutions, the efficiency and construction of the powertrains in 

electric vehicles is still in ongoing development, thus, Peng et al. in (H. Peng, 

Qin, Hu, & Fu, 2020) present a new tool for the synthesis and analysis of new 

powertrain solutions in centralized constructions. 

Apart from the automotive industry, epicyclic transmissions are also necessary 

and play a crucial role in the rotorcraft industry. Consequently, these 

transmissions are the focus of numerous studies, where the number of planets 

(Singh, 2005, 2011) is incremented and the ring gear thickness is reduced 

(Ahmet Kahraman & Vijayakar, 2001). Additionally, these models study the 

influence of the deformations of the ring gear, which is a crucial factor in the 

rotorcraft transmission given the high working speed (Robert G. Parker & 

Wu, 2010; Wu & Parker, 2008) . Apart from those studies the dramatic 

importance of the proper functioning of the rotorcraft transmissions was 

proved by Fox in (Fox, 2005) where the data prove that a failure in the 

powertrains is responsible for 15% of the helicopter crashes. 

This last point leads us to the importance of the study of the impact that 

errors have in the performance of a transmission and the possible consequences 

of their presence. 

2.5. INFLUENCE OF ERRORS IN GEAR TRANSMISSIONS 

The complexity of the planetary gearboxes and the imperfection of the 

manufacturing and mounting processes make the existence of errors inevitable. 

The impossibility of avoiding the presence of errors in any planetary 

transmission makes them a popular topic in the field of planetary gear 

transmissions. However, the importance of them is not in their existence rather 
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than in the impact that they have in the transmission performance. Therefore, 

many contributions can be found in the literature related to this topic. This 

kind of studies offers countless possibilities in terms of points of views and 

errors to consider. Nonetheless, this section is focused in the works where the 

target is on the presence of errors, beyond the numerous works presented 

before, where the possibility of the error existence is considered, but is not 

developed. 

Following this line, there have been numerous different approaches to model 

and understand the influence of errors in gear transmissions. This coincides 

with the variety of useful approaches for the modelling of these transmissions. 

Firstly, Velex and Maatar (P. Velex & Maatar, 1996) presented a dynamic 

model, previously mentioned, and focused their study in the influence of errors 

in the shape of the teeth as well as the mounting errors. This model is limited 

to a pair of gears, avoiding the complication of the epicyclic transmissions. 

However, in this model, the focus is on the deviations in shape in the teeth 

profiles and in errors such as pitch and eccentricity errors. To include these 

errors, the meshing line is discretized and in each of these sections, the meshing 

stiffness is represented with a spring. Thus, the meshing stiffness consists of a 

series of springs whose stiffnesses vary depending on the mentioned errors. 

At the same time, Kahraman (Ahmet Kahraman, 1999) modelled and 

experimentally validated the influence of pinhole position errors in the 

planetary transmissions load sharing. This study is limited to tangential errors, 

excluding radial pinhole position errors. The radial errors at that time were 

consider to have a negligible effect. Then, Bodas & Kahraman (Bodas & 

Kahraman, 2004) widened the scope and considered more kinds of errors for 

planetary transmissions with 3-6 planets. In this work, the authors observe the 

impact of pinhole position errors, average tooth thickness errors, and run-out 

errors. Those errors are implemented in a FE model of a three, four, and five-

planet planetary transmission. This work proves the higher sensitivity of a 

transmission to errors whenever the number of planets is higher. However, in 
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the pinhole position errors, the radial error is still not considered a case of 

study. From a completely different point of view, Singh studied the effect of 

the pinhole position errors in a pair of publications (Singh, 2010, 2011) with a 

purely analytical approach. Firstly, presented a model where in the the error 

is included as a parameter in the formulation, the graphical definition of this 

approach is presented in Figure 14. These works derive the expressions to 

obtain the load sharing in the transmission and the imbalance generated by 

the errors, in transmissions from three to seven planets. In (Singh, 2010) the 

author, due to the employed formulation, reaches the conclusion of the null 

effect of the radial error. On the other hand, Iglesias et al. firstly in (Miguel 

Iglesias, Fernández, De-Juan, Sancibrián, & García, 2013), and later in more 

depth in (M. Iglesias et al., 2017) study from a quasi-static approach the 

incidence of the pinhole position error in a three-planet planetary transmission. 

In both works, but more evidently in the latter, it is proved that the incidence 

of the radial position error is neither null nor negligible, in contrast with what 

was stated in previous studies (Singh, 2010) or not even considered (Bodas & 

Kahraman, 2004). More recently,  this topic continues to be of interest and in 

(Hu et al., 2018) Hu et al. present a new approach to model planetary 

transmissions and study the influence of the pinhole position errors in 

transmissions with different number of planets, under various load levels and 

mesh phasing. 

However, not everything has been modelling in this topic. Proper experimental 

results still beat the accuracy of the modelling results. Therefore, experimental 

works such as the one presented by Singh et al. in (Singh et al., 2008) or the 

one presented by Ligata et al. (Ligata et al., 2008) are performed. These relate 

to the works previously presented by Singh. In this case, they present a method 

to measure the strains in the periphery of the transmission. Strain gauges are 

placed in the ring, both in the root and in the hoop of the ring. These 

measurement data are used to observe the load sharing in the transmission 

with position errors in the planet carriers. Besides, these works test different 

placements for the gauges and their influence in the measurements. Later on, 
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Boguski et al. in (Boguski et al., 2012) perform new techniques to monitor the 

load sharing in epicyclic transmissions. These load sharing is influenced by 

tangential pinhole position errors of different sizes. 

 

Figure 14. Singh’s sketch to analyse the behaviour of a 7-planet transmission with a position 
error in planet 1 (Singh, 2011) 

Despite its importance, the influence of the errors in the load sharing of the 

transmission is not the only effect of the errors in the performance of the 

transmission. Errors also affect the vibrational behaviour of the transmission. 

Thus, Inalpolat & Kahraman (M. Inalpolat & Kahraman, 2009) worked in an 

analytical model to predict the sidebands in the transmission harmonic 

spectra. The model consists in a formulation where the modulation of the data 

acquired by an accelerometer located in the periphery of the ring is considered. 

To this formulation, a term that accounts for the imbalance in the load sharing 

due to the manufacturing error in the carrier or gear is included. Consequently, 

sidebands appear in the theoretical spectra calculated by this analytical 

approach. Likewise, the authors established a relation between the planet 

spacing and mesh phasing in the transmission and the sidebands.  
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The next step taken by these authors is presented in (Murat Inalpolat & 

Kahraman, 2010), where they employ a dynamic model for a planetary 

transmission in order to observe the above mentioned sidebands. By means of 

using a dynamic model, the spectra are predicted under different run-out and 

eccentricity errors. After this, an experimental validation of the model is 

performed and presented, proving the appearance of sidebands due to the 

existence of the mentioned errors. 

On the other hand, in (Gu & Velex, 2012) Gu & Velex combine the study of 

the influence of pinhole position errors with the dynamics of the transmission. 

However, in this case the focus is not on the vibrational behaviour of the 

transmission, it is in the impact of the errors in the meshing stiffness instead. 

This study gets in more depth by changing the rotational speed in the sun 

gear, proving the influence of the errors under different circumstances. It 

proves how a higher rotational speed leads to a higher influence of the errors 

in the maximum values of the load sharing. A similar approach is taken by 

Saxena et al. (Saxena, Chouksey, & Parey, 2017), however, the authors in this 

case employ a lumped-parameter approach and include the effect of a crack in 

a tooth of the sun gear. This work presents a simple gear transmission and the 

change in the meshing stiffness in consecutive teeth, the first healthy and in 

the second includes cracks with various sizes. Furthermore, the natural 

frequencies are determined in every case and a reduction on the value of these 

frequencies is noted in some of the modes. 

As seen in (Hu et al., 2018; Sanchez-Espiga, Fernandez-del-Rincon, Iglesias, & 

Viadero, 2019; Sanchez-Espiga et al., 2020) a crucial point to understand the 

impact of the errors relies on its interaction with the mesh phasing, otherwise 

the results could lead to conclusions that minimize the impact of the errors, 

specially the pinhole position errors. Thus, in the next section the focus is 

placed on the relevance of the mesh phasing in planetary gears. 
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2.6. IMPACT OF MESH PHASING IN PLANETARY TRANSMISSIONS 

The influence of the mesh phasing in the behaviour of planetary transmissions 

is still subject of study given the fact that there are numerous aspects to 

analyse. Throughout the last decades, some authors have set their focus on 

this topic. Thus, mesh phasing has been a technique employed, and proved 

effective, in order to improve some aspects of the transmission performance. 

Despite the fact that it is currently a popular topic in gears and in ongoing 

study, the mesh phasing in gears was in the spotlight many years ago in works 

such as the one presented by Hidaka et al. (Teruaki Hidaka, Terauchi, & 

Nagamura, 1979a). This work presents a comparison of the influence of errors 

in the dynamic behaviour of a planetary transmission under two different mesh 

phasings. Thus, it was determined that the imbalance generated by such errors 

is smaller in the transmissions where the phasing is the same in each planet 

than whenever they are different. This was one of the first steps to prove the 

importance of the mesh phasing in gear transmissions. From this point on, 

mesh phasing was included as a design factor in virtual models such as the 

ones presented in (Abousleiman & Velex, 2006; August & Kasuba, 1986a; Gu 

& Velex, 2012; Kahnamouei & Yang, 2021; A Kahraman, 1994b; R G Parker, 

Agashe, & Vijayakar, 2000; Shweiki et al., 2016) to name a few. 

The implications of the mesh phasing are numerous. In simple transmissions, 

Gill-Jeong in (Gill-Jeong, 2010) proposes the division of the tooth width in 

two sections shown in Figure 15, thus, providing a second string of teeth with 

a half-pitch phasing. This aims to reduce the variation of the meshing stiffness, 

therefore, uniform the load in the teeth. Because of applying this technique, 

the peak-to-peak value of the meshing stiffness is reduced in half, but the 

number of variations per meshing cycle is raised. However, the values within 

the ones the meshing stiffness fluctuates depend on the contact ratio. On the 

other hand, the efficacy of the mesh phasing in planetary transmissions was 

analytically analysed by Parker & Lin in (Robert G. Parker, 2000). 

Nonetheless, the effect of the double line of teeth in a simple gear or the mesh 
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phasing in the mounting of a planetary transmission is similar. In this case, 

Parker & Lin focus in the possibility of supress some vibrational modes by 

choosing the appropriate mesh phasing amongst planets, and prove that mesh 

phasing is a cost effectively technique to suppress some of those modes just by 

rearranging the planets. 

These same authors continue to study the mesh phasing in (R. G. Parker & 

Lin, 2004), but this time they observe its impact in the meshing stiffness. This 

work presents similarities with (Gill-Jeong, 2010) but for planetary 

transmissions, knowing that (R. G. Parker & Lin, 2004) is a prior work. In 

this work, Parker & Lin analyse every possible combination in terms of inlet 

and outlet in the transmission, also determine analytical expressions for the 

mesh phasing, whose variability appears in Figure 16. 

 

Figure 15. Double phasing gears shown in (Gill-Jeong, 2010) 

From an experimental point of view, Boguski et al. in (Boguski et al., 2012) 

combine the previously mentioned errors in the pinhole position and the effect 

of the mesh phasing to observe the influence they both have on the load 

sharing in a 4-planet planetary transmission. This work compares in-phase, 

sequentially phased, and counter-phased transmissions. This work reaches the 

conclusion that the imbalances in the load sharing are just a function of the 

effective errors, while the mesh phasing has a negligible effect. However, in a 
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recent publication the author of this document et al. (Sanchez-Espiga et al., 

2020) prove the relevance of the mesh phasing in the impact errors have in 

the load sharing in a planetary transmission. This work reaches different 

number of planets, various load levels, and in phase and sequential phasing 

amongst the planets. 

But mesh phasing affects also the dynamic behaviour of the transmission, such 

is the effect that Inalpolat & Kahraman (M. Inalpolat & Kahraman, 2009; 

Murat Inalpolat & Kahraman, 2010) studied the effect of planet spacing and 

mesh phasing in the harmonic spectra of various planetary transmissions. A 

technique is derived to obtain these spectra from an analytical approach. Then, 

this approach is validated experimentally, reaching conclusions that show the 

use of sequential mesh phasing as a beneficial technique for vibration 

improvement. Besides, it is possible to relate the spacing and mesh phasing 

with the sidebands that appear in the harmonic spectrum of a transmission. 

 

Figure 16. Variation of the meshing stiffness in the contacts of a 3-planet planetary 
transmission analysed in (R. G. Parker & Lin, 2004) 
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Lately, phasing has been used to locate faults in any wheel in a planetary 

transmission by using accelerometers. Peng et al. (D. Peng, Smith, Randall, & 

Peng, 2019) identify and develop a method to use mesh phasing as a key factor 

to identify faults in any planet gear inside a planetary transmission. This 

technique employs the mesh phasing in the vibration monitoring finding a 

relationship between the position of the fault, which planet presents the fault, 

and the timing of the fault-related impulse, due to the sequential phasing. 

Thus, the delay on the impulse related to the relative position of each planet 

to the accelerometer provides the position of the fault. A phase indicator is 

developed to be able, with the help of a tachometer, to identify the positioning 

of the faulty gear. 

Experimental studies represent a major quantity of the research related to 

gears. Although virtual tools become more popular by years, they are not 

capable to equalize the realism obtained in experimental studies. Thus, new 

techniques for measuring and monitoring are developed and presented, as well 

as, are new applications to implement these solutions. In the next section, all 

these aspects are considered. 

2.7. EXPERIMENTAL STUDIES 

Despite the popularity of modelling in gear transmissions, the realism of the 

results is obviously higher in the experimental results. An appropriate 

experimental work has the capacity for showing the influence of all the effects 

involved in the performance of the gear transmission. Given this, experimental 

studies have been and are still performed to characterize the behaviour of gear 

transmissions, and more precisely, planetary transmissions.  

At the beginning of the research in planetary gear transmissions the models 

were quite limited due to the employed approaches and the limitations in the 

hardware. Thus, in the studies performed by Hidaka et al. experimental and 

analytical approaches were combined. These studies focused in the effect of 

different circumstances in the behaviour of the planetary transmissions from a 
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dynamic point of view. As a result, a number of reports were published at the 

end of the 1970s such as (Teruaki Hidaka & Terauchi, 1976; Teruaki Hidaka, 

Terauchi, & Ishioka, 1976; Teruaki Hidaka et al., 1979a; Teruaki Hidaka, 

Terauchi, & Nagamura, 1979b; Teruaki Hidaka et al., 1977). These focused on 

various topics such as the load sharing in the transmission, the influence of 

errors, its dynamic behaviour or the influence of the mesh phasing. This 

research led to conclusions such as the importance of measuring the strains in 

the root of the sun teeth instead of the ring. Thus, for a flexible ring the 

distortion in the results created by the deformation of the ring invalidates the 

monitoring in this gear. As a result, the location of the strain gauges in the 

sun seems to be much more effective in such a situation as described above. 

Furthermore, Hidaka in (T. Hidaka, 1979) defines the dependency between 

the modes in the ring and the mesh phasing in the transmission. Not only the 

modes, but also the load sharing is proved to be drastically influenced by the 

mesh phasing in the transmission. 

However, in (Boguski et al., 2012) Boguski et al. place the strain gauges inside 

the planet pins in the tangential direction to the planet carrier. This way they 

measure the load sharing in planetary transmissions under in-phase, sequential 

and counter-phase mesh phasing. The authors reach the conclusion that the 

variation of the mesh phasing plays a negligible role in the load sharing of 

planetary transmissions with presence of tangential pinhole position errors. 

Also in relation with the conclusion extracted by Hidaka in (T. Hidaka, 1979), 

in (Ligata et al., 2008; Singh et al., 2008) the authors place strain gauges in 

the body and the root of the teeth in the ring gear. With this procedure, they 

are able to measure the deflection in the ring and calculate the load sharing. 

Therefore, they proceed oppositely to what was stated in Hidaka’s research. 

On the contrary, following Hidaka’s recommendation Dai et al. in (Dai, 

Cooley, & Parker, 2016) place the strain gauges in the trochoid of the sun gear 

tooth. The study focuses on the strains due to the contact and the contact 

forces calculations. The experimental results are compared to the ones 
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obtained with a FE model. In this case, the experimental data is employed to 

validate the results obtained from the model. A similar experimental technique 

is employed by Aurrekoetxea & Ruiz de Ocenda in (Aurrekoetxea et al., n.d.), 

in this case, the strain gauges are located along the flank root of the tooth in 

the sun gear. The strains measured by this procedure are employed to 

indirectly calculate the load sharing in planetary transmissions. 

Nonetheless, experiments are not exclusive for the load sharing in the 

transmissions. Meltzer & Ivanov present in (Meltzer & Ivanov, 2003) a series 

of experimental works in the condition monitoring of planetary transmissions 

employed in the vehicle industry. In this work, the focus is on the run-up run-

down of the gears, therefore, under non-stationary rotational speed, and 

employing time-frequency techniques for the analysis of the data.  

The condition monitoring has proven to be crucial in applications like 

rotorcrafts, given the data  presented by Fox in (Fox, 2005), where around 

15% of the rotorcraft accidents are due to failures in the powertrains. This 

kind of statistics led to perform studies like the ones presented by Antolick et 

al. (Antolick, Branning, Wade, & Dempsey, 2010) and Delgado et al. in 

(Delgado, Dempsey, Antolick, & Wade, 2013), where they employ condition 

monitoring and set condition indicators (CI) to address and detect failures in 

the nose gearbox of a U.S. Army helicopter. 

More recently in the condition-monitoring spectrum, a new technology 

emerged. This technology denominated Acoustic Emission (AE) improves the 

sensitivity of the measurements compared to accelerometry. This new 

technology has been employed to monitor rotating machinery (Caso, 

Fernandez-del-Rincon, Garcia, Iglesias, & Viadero, 2020; Ferrando-Chacon, 

2015; Fischer & Coronado, 2015) by using CI in order to predict failures in 

gears. However, this technology needs from a complex processing of the data 

given the immense amount of data gathered for each second of monitoring, in 

the order of MHz for the acquisition frequency. 
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2.8. CRITICAL ANALYSIS 

Hereinafter the analysis of all the presented previously is gathered. The study 

of the behaviour in gear transmissions and, more precisely, in planetary 

transmissions is a still rather unknown area. The development of different 

techniques for modelling or experimenting has helped to understand part of 

the phenomena that occur in the transmission during its operation. However, 

the modelling techniques prove to be limited and to idealize the results, which 

compared to the experimental ones, sometimes, makes difficult to find 

similarities and validation. 

The importance of the transmissions in the industrial environment and on 

everybody’s lives is a proven fact. Apparently, this importance is going to stay 

or even grow in the following decades, thus, the importance to improve the 

knowledge of these transmissions is proportional to their impact.  

In terms of modelling, the hybrid approaches proved to be the best solution in 

terms of accuracy-computational effort ratio. On the other hand, if there were 

no limitations in terms of hardware and computational times, then FE 

approaches would provide the most accurate results, but at a cost. However, 

lumped-parameter models are the simple quick solution, good enough for many 

cases and even the best approach in some cases. These prove the difficulty in 

choosing the most suitable approach for modelling a gear transmission. 

Then, in order to study the influence that the errors have in the behaviour of 

a planetary transmission, there is still a lot of scope to cover. More 

importantly, in this document contradictions are presented. This proves the 

difficulty in the choice of the appropriate approach to perform an analysis and 

how the results to similar ideas can be opposed just by that. Therefore, not 

only are there many other effects pending of study, but also there are still to 

unveil these unknowns. In the 0 of this Ph. D. thesis, the study of the impact 

that errors have in the functioning of planetary transmissions is extended, 

covering the necessary study of the interaction of these errors with the different 
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mesh phasing in any planetary transmission, which is something that lacks 

study in the previous references. 

Finally, in terms of experiments and techniques to implement the same 

experiment, there exists a wide scope of solutions: accelerometry, 

extensometry, acoustic emission, acoustic intensity, etc. All of them are aimed 

to understand better what happens in a real transmission. However, the 

employment of a concrete technique leads to different results than the others. 

In the load sharing study, it seems obvious that employing extensometers is 

the right path to take, however, the appropriate location of the strain gauges 

is still to determine. On the other hand, in condition monitoring seemed that 

the appropriate technology was accelerometers, but lately acoustic emission 

appears to be a way more sensitive technology and potentially provide better 

results or at least notify any kind of problem earlier due to its higher 

sensitivity. 

In regards to the measurements, this Ph. D. Thesis addresses, from a numerical 

approach, the accuracy of the measuring of strains in the sun tooth root for 

calculating the load sharing in the transmission. This measuring technique is 

employed in planetary gearboxes as presented previously, however, its 

accuracy has not been analysed, and the results obtained are quite relevant 

given the need of these measurements to certify gearboxes, at least for wind 

generators (Aurrekoetxea et al., n.d.; “IEC61400 – 4: Design Requirements for 

wind turbine gearboxes,” n.d.). 

All in all, the research in gears has suffered numerous changes throughout 

years, these have transformed the field and have led to more sophisticated 

techniques, which give better results and provide the opportunity to improve 

the knowledge of such complex mechanism. 
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Chapter 3: Virtual model 

3.1. INTRODUCTION 

Numerous approaches exist nowadays for the formulation of a virtual model 

that analyses the behaviour of gear transmissions and, more precisely, epicyclic 

transmissions. However, out of those various possibilities, in this work a hybrid 

model is employed (M. Iglesias et al., 2015). The employed formulation allows 

to reduce computational times and maintain a high degree of accuracy in the 

results.  

The computational time is reduced compared to other approaches given the 

less refined meshes in the finite-element models. These are not necessary due 

to the hybrid approach, which combines the FE model with an analytical 

formulation. Apart from this point, there are numerous steps to follow in the 

model, as seen in Figure 17, in order to simulate the behaviour of an analogous 

planetary transmission. These are divided in three stages, the definition of the 

inputs, the formulations in the model and problem solving, and the results 

obtaining. In the following, all the details of this approach and the foundations 

of this effective formulation are explained.  
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Figure 17. Sketch of the algorithm followed in the employed virtual model. 
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The model presented in this part of the document, was developed previously 

by other members of this research team, and their contributions gathered in 

(Fernández del Rincón, 2010; Fernandez del Rincon, Viadero, Iglesias, García, 

& Sancibrian, 2013; M. Iglesias et al., 2015; Iglesias Santamaría, 2013). Thus, 

in this part the aspects of this model that are relevant for this work are 

compiled and treated. For further explanation, the author refers the reader to 

the previous references.  

3.2. MODEL INPUTS 

The first step to take in order to set a transmission, both in the physical and 

virtual world, consist of the definition of an appropriate geometry for its 

working conditions. This geometry englobes from the tiniest detail, such as the 

profile shifting or the tip relief, to the number of teeth in each wheel and the 

mounting distance between wheel’s centres. Below, these points are defined 

together with how they are modelled in the virtual environment. Likewise, the 

input parameters that define the working conditions are concerned. 

3.2.1 Wheel cutting 

Firstly, the profiles of the teeth have to be defined. The definition of the 

profiles, in this model, depends on the gear. In a planetary transmission, the 

sun and the planets interact as pairs of external gears. For these, the profiles 

are defined by the vectorial definition proposed by Litvin (Faydor L. Litvin & 

Fuentes, 2004). This procedure defines analytical expressions for each of the 

sections along the tooth profile. This procedure mimics the industrial gear 

cutting process. 

In the model, firstly, the geometry of the tool has to be defined. For the 

external gear, the chosen tool is a rack. This rack is defined by the following 

parameters: module (m), pressure angle (φ) addendum (ad), dedendum (dd), 

and tip rounding arc radius (ro). These define the geometry of the tool’s flank. 

By the commented procedure, the teeth in the wheel will be cut. To this end, 
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it is also important to set the number of teeth for each wheel. This defines the 

angular length devoted to each teeth and to each section within an individual 

flank. The analytical expressions that define this cutting process are gathered 

in (M. Iglesias et al., 2015; Iglesias Santamaría, 2013). 

 

 

Figure 18. Result of the profile cutting for a) sun gear, b) planet gear 

 

As illustrated in Figure 18, the result of the cutting process, following the 

commented procedure, leads to a succession of external arc, tip rounding arc 

(optional), involute, trochoid and internal arc. These sections together 

compose the geometry of the external gear’s flanks. It is important to point 

a) 

b) 
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out the fact that the tip-rounding arc is included to avoid contact on the edges 

of the flank, which would lead to undesired stress concentrations and wear or 

fault problems. 

In contrast to the external gears, the definition of the internal gear (ring gear) 

is faced by a similar procedure as the previous, but employing a different tool, 

the pinion cutter. This procedure also responds to the vectorial definition by 

Litvin (Faydor L. Litvin & Fuentes, 2004) and can be found described in more 

depth in (M. Iglesias et al., 2015). 

 

Figure 19. Result of the profile cutting in the ring gear 

In the case of the ring gear, the flank concatenates an internal arc, a 

hypotrochoid, an involute, a tip-rounding arc, and an external arc (Figure 19). 

Similarly, to the flanks in the external gears, the tip-rounding arc is optional 

and it was included to avoid the edge effects. 

Once the profile of the flanks is defined, this procedure has to be repeated for 

up to Zw times, where Z refers to the number of teeth and the subindex w to 

the wheel, which could be S (sun), P (planet) or R (ring). 
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3.2.2 Transmission mounting 

Once the geometry of the wheels and the teeth profiles are defined, the next 

step consists in the mounting of the wheels in its location in the transmission. 

In order to define its mounting, the planet spacing (𝜓𝑖), and mounting distance 

(𝑑𝑡) have to be established. This point is of crucial importance in the 

performance of the transmission given the fact that the mesh phasing is a 

direct consequence of the planet spacing and the number of teeth in the ring, 

as explained in more depth in 4.2 in this document.  Another relevant detail 

consists in the definition of the number of planets. The number of planets 

plays a crucial role in the performance of the transmission and in the influence 

of various effects, such as errors, non-equal spacing and floatability in the 

supports. 

 

Figure 20. 5-planet planetary transmission mounted. 

Nevertheless, it is important not to forget the influence of the mounting 

distance in the behaviour of the planets and the planet-carrier. A mounting 

distance that corresponds to its ideal value, calculated following (3), leads to 

a balance in the radial components of the contact forces in the planets. 
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Previously to (3), (1) & (2) provide the ideal mounting distance in both 

contacts, the external and internal.  

 
𝑑𝑡𝑆−𝑃 =

𝑍𝑆 · 𝑚

2
+
𝑍𝑃 · 𝑚

2
 (1) 

 
𝑑𝑡𝑅−𝑃 =

𝑍𝑅 · 𝑚

2
−
𝑍𝑃 · 𝑚

2
 (2) 

 
𝑑𝑡𝑖𝑑𝑒𝑎𝑙 =

𝑑𝑡𝑆−𝑃 + 𝑑𝑡𝑃−𝑅
2

 (3) 

However, modifying the mounting distance is a criteria used by designers to 

transform the performance of the transmission in their favour. Nonetheless, it 

is important to take into account the implications of this modification. A 

change in the mounting distance that affects the effective pressure angle in 

each of the contacts in each planet will create an imbalance in the contact 

forces, as seen in Figure 21. Thus, the balance in torque in the planet is 

reached, however, the different pressure angle leads to a different radial 

component of the contact forces. Therefore, there will be a net force acting on 

its support. This force, depending on the mounting distance, will act inwards 

or outwards with respect to the carrier. Thus, in each meshing cycle the carrier 

will suffer tractions or compressions due to this imbalance in the contact forces 

in each planet. Besides, in each planet this imbalance will be the same, so the 

deflections in the carrier will spread to its entirety. It is important to point 

out the similarities in some of the effects that the radial pinhole position errors 

have on the transmission, which will be treated in more depth in section 5.3.2.  

Another relevant aspect in the mounting of the transmission refers to the shaft, 

which is considered by defining its external radius. In this model, the detail in 

the mounting of the shafts is an approximation given the boundary conditions 

used later in the FE models. Thus, these shafts are supposed to be cylindrical 

and the wheel to be embedded in it, along the mounting circle. This will be 

shown in more detail in section 4.6. The radius of the shaft is important in the 

definition of the stiffness in the wheels and supports.  
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Figure 21. Contact forces and its imbalance due to the mounting distance. 

Whenever the inclusion of floatability in the supports is referred, the model 

employed provides different opportunities for its modelling. The first and 

simplest consists of a lumped-parameter approach, where the stiffness of the 

support is defined by a couple of springs in the principal directions in the 

plane. This approach will be described in more depth in section 4.4.3.  

On the contrary, if the focus of the study is on the forces on the supports and 

their distribution, there exists the possibility of facing the problem by using a 

ball-bearing model. This component is built by the rolling elements (balls), 

the cage that keeps them in position, and the inner and outer races (Figure 

22). 
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Figure 22. Construction of the ball bearing*. 

This model is based on the Hertzian theory for the contact of the balls and 

the races. The application of this theory leads to obtaining the stiffness of each 

rolling element. Besides, the number of rolling elements has to be defined. 

Then, by the calculation of the positions of the balls, and the Hertzian theory 

the loads on each of them are calculated. By this, the orbit of the gear can be 

obtained, taking into account the mounting of the bearing. For more details 

about this point (Iglesias Santamaría, 2013). 

3.2.3 Definition of errors  

The last step in the definition of the whole geometry of the transmission is the 

optional inclusion of errors. These errors could respond to various approaches 

such as mounting, manufacturing and run-out errors. All of them were 

considered as possibilities in the conception of this model. 

In the manufacturing errors every flaw related to the carving of the wheels are 

included. Thus, the tooth thickness errors, which affect the overlap between 

wheels, are included in this category (This error is explained in more detail in 

section 5.2.2). Then, the deviations in the shape of the teeth profile also 

Cage 
Races 

Balls 

*https://www.skf.com/es/products/rolling-bearings/ball-bearings/angular-contact-ball-
bearings/single-row-angular-contact-ball-bearings (11/02/2021 19:40) 
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correspond to this category. The superficial roughness and the deviations of 

the theoretical shape in the profile influence the contact between active flanks 

and consequently the performance of the transmission. Likewise, the index 

error could be included modifying the angular distribution of the teeth and 

affecting the backlash also. This error is defined as a summation of harmonics, 

defined by the measurements of the wheels. 

The mounting errors considered include the pinhole position errors. This error 

refers to the existing difference between the ideal positioning of the pinhole 

and the position of the manufactured pinhole.  In this model, these errors are 

divided in two categories, radial and tangential errors, in relation to the two 

principal axis in the plane. Also, making a difference between the errors 

considering its effect in the transmission performance. The virtual definition 

of this exact error will be explained in more detail in section 5.2.1. 

Finally, the run-out errors correspond to the presence of eccentricities in any 

of the wheels or carrier, thus, modifying the geometry on any consecutive 

contacts. This problem modifies the distances between the pivoting point and 

the contact point and has a crucial impact in the search of the balance in the 

transmission, which will be explained in more detail in section 3.3.3. 

3.2.4 Load transmission 

In terms of the torque transmission, in every simulation performed for this 

work the input is set in the sun gear, and the output in the planet carrier. 

This configuration also conserves the ring gear fixed; therefore, it is the 

reaction member. Given this configuration, the following kinematics will have 

to be solved in order to define the movement of the transmission. The 

kinematics are completely affected by the setup of the configuration, any 

change in the fixed member and the behaviour of the transmission changes 

dramatically. Besides, this kinematics relate directly with the load 

transmission.  
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The equation (4) shows the transmission ratio in an epicyclic transmission 

such as the one described above. 

 𝜃𝑠/𝑜̇ = 𝜃𝑐/𝑜̇ · (1 +
𝑍𝑅
𝑍𝑆
) (4) 

In the following, the kinematics of the rest of elements is solved, as seen in 

equations (5) & (6).  

 �̇�𝑃/𝐶 = �̇�𝑆/𝑂 ·
𝑍𝑆
𝑍𝑃

 (5) 

 �̇�𝑃/𝑂 = �̇�𝑃/𝐶 + �̇�𝐶/𝑂  (6) 

These equations also solve the load transmission, given the fact that no losses 

due to friction or damping will be considered. Besides, throughout the entirety 

of the simulations the speed will be considered constant, then avoiding 

dynamic effects. Therefore, the load in the outlet will be transmission ratio 

times the load in the inlet, as expressed in equation (7).  

 𝑇𝑜 = 𝑇𝑖 · (1 +
𝑍𝑅
𝑍𝑆
) (7) 

Where To and Ti refer to the torque in the outlet and the inlet respectively. 

Thus, the speed in the carrier will be, always, lower than in the sun and its 

load will be higher.  

Once all these preliminary aspects are solved and set, the model can start 

working and solving the interactions between the elements and the contacts 

amongst teeth. The approaches taken to solve all these are gathered in the 

following section. 

3.3. MODEL FORMULATION 

The modelling of the analysis of a planetary transmission needs from the 

solving of various problems. Thus, this section compiles every aspect of the 
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formulations selected to face the problems found in the simulation of planetary 

transmissions.  

Firstly, in order to solve the simultaneous contacts in the transmission, there 

are two parallel lines at the same time, the obtaining of the stiffnesses in the 

problem and the solving of the overlaps among active flanks in the external 

and internal gears. The junction of both lines provide the contact forces 

amongst contacting wheels, as seen in Figure 23. 

 

 
Figure 23. Scheme of the iterative solution to the contact problem. 

3.3.1 Contact problem   

As seen in Chapter 2:, virtually solving the contact problem in gear 

transmissions could be faced from various points of view. In this case, after 

setting the geometrical characteristics of the wheels, cutting each of them and 

defining its mounting, the next step consist in solving the load transmission in 

the gearbox. Thus, a succession of steps is employed. At first, the meshing 

stiffness has to be calculated. To this end, a combination of an analytical and 

a FE approach is employed. After this, a geometrical approach is employed to 

locate any contact between wheels and to finish calculating the contact forces. 

Stiffness matrixes 

𝛽𝑘
𝑞
՜ 𝛽𝑅𝑖𝑅𝑗

𝑘  

Local & Global FE 

models 

Matrix 

𝛌ሺ𝑞)𝑁𝑥𝑁 

Overlaps 

ሼ𝛿ሺ𝑞)ሽ𝑁𝑥1 

Input data 

Geometry, Transmission 

mounting & Errors  

Geometrical definition of the 

contact 

ሼ𝑞ሽ = ሼ𝑥𝑅 , 𝑦𝑅 , 𝜃𝑅ሽ 
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Firstly, the semi-analytical approach is going to be explained in detail in the 

following two sections. Later, the geometrical location of the contacts will be 

explained. Finally, the balance in the transmission will be searched and, thus, 

the contact problem and the load transmission in the gearbox will be solved. 

3.3.1.1 Finite-element models 

These models are defined following the proposal in (Jesper Brauer, 2004) by 

Brauer. A pair of FE models for each gear is employed in order to study the 

flexibility of the gears in the contact.  

The first model consists of a global representation of the body of the gear, the 

mounting on the shaft, and a Z number of teeth. The model is created in 

MATLAB environment by using the Partial Differential Equations Toolbox. 

The geometry mentioned serves to create a mesh of triangular planar elements 

with nodes in each vertex. Then, in terms of boundary conditions, the nodes 

along the inner circle, representing the mounting on the shaft, are embedded. 

The rest of the nodes are free to move in the plane. A global model is defined 

for each gear. The model for the sun gear is presented in Figure 24. 

 
Figure 24. Global FE model of the sun gear in configuration 1. 



68 Chapter 3: Virtual model 

 

In this model, a number of load cases are applied in successive points along 

the active flank in the (Z/2)+1 tooth, where the active flank is the left flank. 

These loads are unitary and are used to obtain the displacements in the nodes 

between the initial position of the nodes and their position after applying the 

load. 

 
 

 

Figure 25. Compilation of load cases in the global FE model with no load (blue) and under 
load (red) 

Then, as it can be seen in Figure 25, the punctual load generates a distortion 

in the deflections where the load is applied. That is an inherent problem 

derived from using a FE approach. Thus, a local model is necessary to avoid 

that distortion. 

This model is limited to the geometry of the flank of the middle tooth and an 

h depth inside the tooth, this geometry is shown in Figure 26. The depth was 

obtained empirically in (Iglesias Santamaría, 2013). The definition of this 

model is analogous to the previous, in terms of elements and tools. As far as 

boundary conditions are concerned, all nodes along the interface between this 

model and the rest of the tooth are embedded. In this model, a load equal to 

the one applied in the first model, but with opposite direction is applied in the 

same position and with the same magnitude. Thus, the distortion in the tooth 
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flank due to the punctual force is erased by applying the superposition 

principle to their results.  

 

Figure 26. Local FE model for the sun gear. 

In Figure 27 a series of results for the deflections of the local model are shown. 

These results correspond to the same load cases as the ones gathered in Figure 

25. The result of the superposition of these, as seen in Figure 28, provides the 

deflection in the active tooth, the surrounding tooth and the body of the gear. 

Thus, by knowing the deflections produced by a unitary load applied on the 

active tooth, the calculation of the meshing stiffness is derived. 

Nonetheless, this step represents a crucial part of the contact problem solution, 

but it is not the only one. The FE models apart from the problem with the 

punctual force need extremely refined meshes to solve the local contact 

problem accurately. Thus, in search for reducing the computational cost of 

each simulation, keeping the level of accuracy, an analytical approach is 

h 
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combined with the FE models. This approach is presented in detail in the next 

section. 

   

Figure 27. Compilation of load cases in the local FE model with no load (blue) and under 
load (red) 

 

 

Figure 28. Application of the superposition principle to the contact problem steps 

3.3.1.2 Analytical approach  

The analytical formulation employed for the solving of the local contact 

problem is based on the approach presented by Weber & Banaschek in (Weber, 

C. Banaschek, 1951). This formulation comes to solve the problem of the 

contact in the local area for external gears. The analytical formulation 
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employed is presented in equations (8)-(11). The equations (8) & (9) allow 

calculating the deformations due to contacts in the profile and up to an h 

depth, both for planar deformation (8) and planar tension (9) scenarios. 

𝑢𝑙𝑜𝑐𝑎𝑙ሺ𝑞) =
2ሺ1 − 𝜐2)

𝜋𝐸
𝑞 [𝑙𝑛(

ℎ

𝐿
+ √1 + (

ℎ

𝐿
)
2

) −
𝜐

1 − 𝜐
(
ℎ

𝐿
)
2

(√1 + (
𝐿

ℎ
)
2

− 1)]  (8) 

𝑢𝑙𝑜𝑐𝑎𝑙ሺ𝑞) =
2

𝜋𝐸
𝑞 [𝑙𝑛(

ℎ

𝐿
+ √1 + (

ℎ

𝐿
)
2

) − 𝜐 (
ℎ

𝐿
)
2

(√1 + (
𝐿

ℎ
)
2

− 1)] (9) 

In these expressions, q refers to the intensity of the load (in terms of force by  

length unit), then the L refers to half the length of the distributed load applied 

along the profile. In order to calculate this semi-length the equation (10) has 

to be employed. 

𝐿 = √
4

𝜋
(
1 − 𝜐1

2

𝐸1
+
1 − 𝜐2

2

𝐸2
)
𝜒1𝜒2
𝜒1 + 𝜒2

𝑞 (10) 

Where 𝐸𝑖, 𝑣i and 𝜒𝑖 refer to the Young’s Modulus, Poisson’s coefficient and 

the curvature radius in the body i respectively. 

As part of the development of this model, Iglesias derived the formulation for 

an analogous procedure applicable for the internal contact in gears (M. Iglesias 

et al., 2015; Iglesias Santamaría, 2013). The calculation of the deflections by 

using (8) & (9) is accurate for any of the contacts, however, the use of (10) to 

obtain the length of the flank affected by the contact is only accurate for 

convex-convex contacts. On the contrary, for contacts between concave and 

convex flanks the formulation shown in (11) was proposed by Iglesias, and is 

used in the internal contacts in this model, remembering that the internal 

contact between the tip rounding arc in the ring gear and the involute in the 

planet gear does not correspond to a concave-convex contact. 
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𝐿 = √
4

𝜋
(
1 − 𝜐1

2

𝐸1
+
1 − 𝜐2

2

𝐸2
)

𝜒1𝜒2
𝑎𝑏𝑠ሺ𝜒1 + 𝜒2)

𝑞 (11) 

3.3.1.3 Composition of deflections and contact forces 

In the previous steps, the relation between the deflections and the loads has 

been stablished. As a result, the deflections due to a contact can be formulated 

as the summation of the deflections both local and global in both of the wheels 

in contact. 

The superposition of the results in both FE models brings the deformations 

both in the body of the gear and in the tooth due to the contact, eliminating 

the distortion due to the point force in the FE models. Despite representing 

just one tooth in the Figure 28, the summation of the first two steps considers 

the whole body of the gear. After this, the analytical approach allows the 

calculation of the local deflections in the contact area and its surroundings.  

By adding all these together, the obtained results correspond to the deflection 

suffered by both the teeth and the body of the gear under a unitary load. 

With these data, it is possible to obtain the stiffness for the contacts in the 

wheels, in any load case along the teeth flank. The next step consist in 

identifying the contacts and determining the magnitude of the contact forces, 

which are proportional to the stiffness already obtained. To this end, a 

geometrical approach is taken in order to calculate the overlaps between 

flanks. 

3.3.2 Overlap calculation 

Every one of the previous points will affect in some way the solving of the 

overlap problem between teeth flanks. Firstly, for this point, this model 

supposes that the teeth in the wheels are infinitely rigid and can overlap each 

other.  By this, the possible contacts in a Z number of teeth is studied, setting 

the contact detection as those pairs of teeth where the result of the geometrical 
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overlap between profiles is positive. Thus, this would mean a contact between 

them exists, given the fact that the overlap is not possible in reality. 

In order to define analytically this problem, it is important to define the 

sections in the profiles that could get in touch. The expressions employed to 

solve the overlap problem in each of the possible external contacts are derived 

in (M. Iglesias et al., 2015; Iglesias Santamaría, 2013). 

Once solved this overlap, the magnitude of the overlap combined with the 

calculated stiffnesses provide the solution for the contact forces. In order to 

get in more depth in this topic, the author refers the reader to (Fernandez del 

Rincon et al., 2013; M. Iglesias et al., 2015; Iglesias Santamaría, 2013). 

Besides, later in this Thesis the overlap calculation expressions are gathered 

in section 5.3 in order to analyse the influence of the errors in the overlap 

calculation problem.  

3.3.3 Load balance in the transmission 

Once the contact problem is solved, the balance in the numerical problem is 

searched. By this, a system of linear equations is proposed. This system 

combines the balance in each of the planets with the balance in the 

transmission between the inlet and the outlet.  

Thus, the balance in the transmission is searched by adding up the entire load 

transmitted to the outlet, plus, the losses due to the friction and damping. 

However, in the simulations performed in this work the latter effects are not 

considered whatsoever. Therefore, there is a balance between the torque in the 

input and in the output. However, these torques are affected by the 

transmission ratio, for a lower speed in the carrier, always, there will be a 

higher torque than in the sun. In this case, this balance has been formulated 

as seen in (12), observing the balance between the inlet torque and the torque 

transmitted to the planets by each sun-planet contact. This equation is 

appropriate given the fact that only the tangential component of the contact 

force produces torque in the planet, and in the planet carrier.  
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∑�⃗�𝑖𝑠−𝑝 × 𝑟𝑖𝑠 = �⃗⃗�𝑖𝑛

𝑁

𝑖=1

 (12) 

Each �⃗�𝑖𝑠−𝑝 refers to any contact force in the sun due to its contact with any 

of the planets. Then, 𝑟𝑖𝑠 expresses the distance between the centre of the sun 

and each contact point. 

At the same time, the iterative procedure employed to solve the system of 

equations looks for a balance, in torque, in each of the planets. Thus, the 

torque in the planet due to its contact with the sun must be equal and in 

opposite direction to the one due to its contact with the ring. Thus, this 

balance is searched by employing (13), as many times as the N number of 

planets. 

�⃗�𝑖𝑝−𝑠 × 𝑟𝑖𝑝 = �⃗�𝑖𝑝−𝑟 × 𝑟𝑖𝑝 (13) 

The �⃗�𝑖𝑝−𝑠 refers to any contact force in the planet due to its contact with the 

sun gear. Likewise, �⃗�𝑖𝑝−𝑟 refers to any contact force between the planet and 

the ring. Then, 𝑟𝑖𝑝 expresses the distance between the centre of the planet and 

the contact point. 

With these two steps commented above, the basic load balance would be solve 

after a number of iterations. However, this system considers only the rotational 

dof. In search for a more complex approach, a number of translational dof can 

be added to the plan. Thus, in order to include some floatability in the support 

of any of the wheels a new equation is added. This equation expresses the 

balance that should exist between the contact forces on the wheel. If this 

balance does not exist, a force in the support is necessary. 
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Figure 29. Balance in the sun gear due to the contacts: a) perfectly balanced, b) With 
support force. 

 

∑�⃗�𝑖𝑝−𝑠

𝑁

𝑖=1

= 𝐾𝑠 · 𝐶𝑐𝑠 (14) 

Finally, in the expression (14) the summation of any contact force in the sun 

with any planet �⃗�𝑖𝑝−𝑠 and its equalize to the stiffness in the support (𝐾𝑠) 

multiplied by the local coordinates of the sun centre position. 

In terms of the stiffness in the supports, as seen in section 3.2.2, the calculation 

takes different approaches, however, any of them leads to the determination 

of the position of the centre of the wheel and a rigidity. 
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Finally, the solution to the system of equations presented in (12)-(14) leads to 

finding the balance in each of the angular positions studied. After finding this 

balance, a number of different results can be obtained. These results are 

presented in the following section. 

3.4. RESULTS OBTAINING 

After all the steps detailed above, this model provides the opportunity of 

determining a wide scope of results that characterize the behaviour of the 

modelled transmission.  These magnitudes can be classified in two groups, the 

first related to the loads, and the second to the displacements. 

In the first group, all the magnitudes related with the contact forces and the 

loads in the transmission are compiled, such as Load Sharing Ratio (LSR), 

contact forces, and forces in the supports and the contact force in each tooth. 

The LSR refers to the relative magnitude of the contact force in one of the 

planets compared to the total load in the system. Thus, the LSR analytical 

expression is gathered in (15). 

 𝐿𝑆𝑅𝑖 =
𝐹𝑖

∑ 𝐹𝑗
𝑁
𝑗=1

 (15) 

Thus, the 𝐹𝑖 refers to the contact force in the planet i and 𝐹𝑗 is the contact 

force in each planet for the summation of all the contact forces. Thus, the 𝐿𝑆𝑅𝑖 

corresponds to the load sharing ratio in the planet i. This magnitude provides 

the actual load sharing in a planetary transmission. 

As far as contact forces are concerned, they are calculated by following the 

algorithm to solve the contact problem and the iteration process to solve the 

balance in the transmission. In order to solve the balance, the resultant forces 

in each of the wheels are calculated. However, the contact problem algorithm 

provides the detail of the overlaps for each of the teeth and then the contact 

forces in each is derived by knowing the meshing stiffness. In conclusion, the 

contact forces both in every tooth and in every wheel are known. 
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Apart from the contact force, also the effective pressure angle can be obtained 

and by using it the components of the forces.  Thus, the balance in the planets, 

as seen in Figure 21, can be analysed.  

The magnitudes gathered in the second group refer to the displacements of the 

elements, as well as the deflections due to the contact loads. Thus, the 

transmission error (TE), the orbits on the elements, and the deflections in the 

elements are part of this group. 

Whenever the balance is found for each of the angular positions, the locations 

of the centres of each of the gears are known. Thus, it is possible to draw the 

orbits of the elements whose support stiffness is not infinite. However, to be 

able to study better the orbits, the influence of the angular speed and its effect 

in the vibrational behaviour of the transmission, a dynamic study is more 

suitable. 

Regarding the TE, the definition followed to calculate it refers to its most 

classical approach, where the TE expresses the difference between the 

theoretical angular position of the element (Өk) and the actual angular position 

of the element (Өa), analytically expressed in (16). Thus, this responds to the 

difference between the solution of the kinematic problem and the actual 

position due to the deflections and the contacts.  

 𝑇𝐸 = Ө𝑘 − Ө𝑎 (16) 
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Chapter 4: Study of the transmission 

geometry 

4.1. INTRODUCTION 

Gears are elements of an immense complexity in terms of its geometry. Each 

teeth flank is composed by 4-5 sections, without considering any correction in 

the profiles, such as a tip relief. However, in planetary transmissions the 

geometry is even more complicated due to its configuration. A planetary 

transmission is composed by three kinds of wheels: sun, planets, and ring. 

Apart from the wheels, it incorporates a structural element that plays two 

roles. Firstly, it supports the planets in position surrounding the sun. Secondly, 

depending on the transmission it can be the inlet or outlet to the transmission. 

Due to this complexity, it is interesting to study and control the implications 

of the geometrical characteristics in each transmission. In this section, a study 

of the influence of macrogeometrical characteristics is performed in order to 

observe the influence of the planet spacing and mesh phasing in planetary 

transmissions. Whenever macrogeometrical characteristics are mentioned, it 

refers to the geometry related to the mounting of the transmission beyond the 

geometry of the flanks or the wheels. 
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4.2. TRANSMISSION PRELIMINARY VERIFICATIONS 

The design of a planetary transmission depends on a series of factors that have 

to be taken into account in macrogeometrical terms. All these will be related 

to the possibility of mounting the transmission. At first, the least mesh angle 

(LMA) has to be defined.  

 𝐿𝑀𝐴 =
2𝜋

𝑍𝑟 + 𝑍𝑠
 (17) 

 𝜓𝑖 = 𝑘 · 𝐿𝑀𝐴 (18) 

The LMA (17) is a magnitude necessary to calculate any possible angular 

positioning of the planets surrounding the sun. Every possible result obtained 

for the LMA represents every possible relative positioning of a planet, in 

relation to the sun, by rotating a planetary transmission with just one planet. 

All these possible solutions are analytically expressed in (18). 

Other necessary verification, exclusively for equally spaced planetary 

transmissions, is the following equation (19). 

 𝑍𝑟 + 𝑍𝑠
𝑁

= 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (19) 

This refers to the fact that for every planet to be equally spaced and the 

transmission to be mounted, there has to exist a proportion between the 

summation of the sun and ring teeth number with the number of planets. 

Unless this verification is cleared, the transmission will not be mounted as an 

equally spaced gearbox. 

Finally, the last verification is referred to the space occupied by each wheel. 

Given the fact that every wheel has the same module, this verification refers 

to the primitive radius of each wheel. Therefore, equation (20) analyses the 

existence of the necessary space to mount the transmission, but also there 

exists the possibility of different combinations depending on the design 

requirements. 
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 𝑍𝑟 ≥ 2 · 𝑍𝑝 + 𝑍𝑠 (20) 

4.3. TRANSMISSION CLASSIFICATION 

In this section, planetary transmissions are classified taking into consideration 

two factors, planet spacing and mesh phasing. These factors are a consequence 

of the wheel geometry amongst other factors. As seen in Table 1, not only the 

number of teeth in some of the wheels, but also the number of planets affect 

crucially the transmission. 

Table 1. Types of planetary transmission regarding their geometry 

Assembly 

configuration 
Mathematical conditions  

ESIP 𝜓𝑖 =
2𝜋 · ሺ𝑖 − 1)

𝑁
; 
𝑍𝑟 · 𝜓𝑖
2𝜋

= 𝑛 

ESSP 𝜓𝑖 =
2𝜋 · ሺ𝑖 − 1)

𝑁
; 
𝑍𝑟 · 𝜓𝑖
2𝜋

≠ 𝑛 

NESIP 𝜓𝑖 ≠
2𝜋 · ሺ𝑖 − 1)

𝑁
; 
𝑍𝑟 · 𝜓𝑖
2𝜋

= 𝑛 

NESSP 
𝜓𝑖 ≠

2𝜋 · ሺ𝑖 − 1)

𝑁
; 
𝑍𝑟 · 𝜓𝑖
2𝜋

≠ 𝑛;  ∑ሺ𝑍𝑟 · 𝜓𝑖) = 𝑚𝜋

𝑁

𝑖=1

 

NESAP 
𝜓𝑖 ≠

2𝜋 · ሺ𝑖 − 1)

𝑁
; 
𝑍𝑟 · 𝜓𝑖
2𝜋

≠ 𝑛;  ∑ሺ𝑍𝑟 · 𝜓𝑖) ≠ 𝑚𝜋

𝑁

𝑖=1

 

In the contents gathered in Table 1 ESIP stands for Equally Spaced In-Phase 

configurations, as well as ESSP is for Equally Spaced Sequentially Phased 

configurations. On the other hand, the configurations NESIP are Non-Equally 

Spaced In-Phase, NESSP Non-Equally Spaced Sequentially Phased and 

NESAP Non-Equaly Spaced Arbitrarily Phased. 

In this case, the defining factors to classify the transmissions are the ring teeth 

number and the planet spacing. In the expressions above, n and m refer to 

integer values. For equally spaced transmissions is mathematically impossible 
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to have an arbitrarily phased transmission, given the fact that the spacing 

always sums a multiple of π. Therefore, the result of the third equation, the 

one that proves the arbitrary phasing, is always equal to mπ. 

In addition, by analysing the equations, it is possible to conclude that in 

sequentially phased transmissions, the sequence does not have to be always 

uniform. This will influence the performance of the transmission. That is the 

reason why another equation should be included to determine if the sequence 

is uniform or not. This is commented and derived in depth in 4.5.2. 

The sequence in the mesh phasing influences the meshing stiffness in the 

contacts. Therefore, the phasing will influence the load sharing in the 

transmission. Afterwards, this will be analysed in more depth and the above 

statements proved. 

In the following section, the influence of the first consideration, planet spacing, 

will be studied under different conditions.  

4.4. PLANET SPACING 

The planet spacing refers to the angular positioning of the planets around the 

sun. Following the above-mentioned classification, there exist two different 

possible spacings. In the following, each of these options will be observed in 

depth. For all the possibilities considered, the transmissions will be considered 

in phase, in terms of mesh phasing. Different mesh phasings will be included 

later in this document.  

4.4.1 Equally spacing 

Equally spacing is also implicitly uniform spacing. This spacing is the result 

of the division of the angular circumference by the number of planets. In 

addition, it is necessary to prove that the spacing coincides with multiples of 

the LMA, this way the mounting of the transmission will be assured. 
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The equal spacing and the lack of any error lead to a uniform behaviour in 

any planetary transmission beyond any possible mesh phasing. The mesh 

phasing, in this case, would only delay the same load cycles in each of the 

planets. 

4.4.2 Non-equal spacing 

In this case, the possible combinations are endless, always following the LMA 

verification (17). This non-equal spacing erases the uniformity in the 

positioning of the planets around the sun. Furthermore, this influences other 

factors in the transmission performance. For an ideal transmission, where the 

elements are infinitely rigid, the change in the spacing will not be notable 

given the fact that this imbalance created by the spacing will be absorbed by 

the supports; this fact is illustrated in Figure 30.  

 
Figure 30. Influence of the spacing in the sun-planet contact forces and the balance in the sun 

gear 

Therefore, in order to observe and, in modelling terms, mimic the behaviour 

of a planetary transmission with non-equal spacing, it is necessary to decrease 
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the stiffness in the supports allowing more than just rotating degrees of 

freedom in the model. These degrees of freedom should include also the 

translations along the plane of study by the centre of the wheels given the 

non-infinite stiffness of the supports. In the following, the effect of these 

floatabilities combined with the planet spacing is analysed. 

4.4.3 Floatability 

Planetary transmissions can include numerous different solutions for the 

mounting of its wheels; one of the common solutions includes bearings in the 

supports of some of their wheels. These could be wheels, cones, balls or barrels 

bearings. In addition, these wheels can be mounted on shafts using form-fit. 

All these possibilities, and many other, share the same detail; all of them 

include some looseness apart from the fact that none of them is infinitely rigid. 

Given this, there are different ways to model the stiffness in the support. In 

this case, a lumped-parameter approach has been the chosen option. By this 

approach, an approximate stiffness is calculated for each of the principal 

directions and them this rigidity is modelled as a spring that connects the 

centre of the wheel with the reference to its movement. The latter is important 

given the fact that for the sun, the reference will be the frame, but for the 

planet, the reference is the carrier. In the Figure 31, this lumped-parameter 

approach is illustrated. 

 

Figure 31. Lumped-parameter approach to the floatability in the sun gear support. 
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Firstly, the floatability in the sun gear plays a crucial role. In transmissions 

where the planets are equally spaced and the contacts in phase, there is no 

force in the support of the sun gear. However, in non-equally spaced 

transmissions there exist an imbalance in the loads on the sun gear, as seen in 

Figure 30. This means that a force in the sun support appears. Therefore, this 

force together with the floatability in the support provides a translation inside 

the transversal plane and consequently, the sun describes an orbit. Normally, 

the floatability in the sun gear leads to improve the balance in the load sharing 

in the transmission and a better behaviour in terms of load for 3-planet 

transmissions; otherwise, for other number of planets this effect is not assured. 

On the contrary, the vibratory behaviour of the transmission is worse, given 

the presence of a higher number of degrees of freedom. 

4.5. MESH PHASING 

Apart from the planet spacing, the number of teeth in the ring together with 

the spacing influence the mesh phasing in the transmission. The mesh phasing 

gathered in Table 1 refers to the timing between the contacts either in every 

planet with the sun or the contact in each planet with the ring. In more depth, 

the mesh phasing determines how far along the meshing line each of the 

contacts in the planets are in comparison to the ones in the other planets. This 

affects the meshing stiffness in each of the contacts and, therefore, the contact 

forces. Figure 32 & Figure 33 illustrate the meshing stiffnesses in every contact 

for different mesh phasing. The differences between them are commented in 

the following sections. 
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Figure 32. Snapshots of the meshing 
stiffness in an in-phase transmission 

Figure 33. Snapshots of the meshing 
stiffness in a sequentially phased 

transmission 

4.5.1 In-phase phasing 

In-phase mesh phasing refers to the fact that every contact, either sun-planet 

or planet-ring in every planet, is at the same point of the meshing line at any 

moment of the transmission performance. To obtain this mesh phasing, taking 

into account the conditions to sort out the transmissions, the following can be 

derived for ESIP transmissions. 

 𝑍𝑟 · 𝜓𝑖
2𝜋

= 𝑛 ՜
2𝜋 · ሺ𝑖 − 1)

𝑁
·
𝑍𝑟
2𝜋

= 𝑛 ՜
𝑍𝑟 · ሺ𝑖 − 1)

𝑁
= 𝑛;     𝑖 = 1, 2, 3 …  𝑁 (21) 

 

Therefore, if the ring teeth number is a multiple of the number of planets then 

the configuration will be in-phase, only for equally spaced transmissions. 

This mesh phasing affects the geometry of the contact between teeth flanks. 

As seen in Figure 32 & Figure 33, the modifications in the geometry of the 

contacts influences the meshing stiffnesses in every contact and the moment 

when every contact reaches the maximum stiffness. 

kmax 

kmin 
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Finally, for non-equally spaced transmissions, the previous observation does 

not stand, given that the spacing is not uniform. Therefore, both conditions 

will have to be verified. 

4.5.2 Sequential phasing 

By working with the expressions related to the determination of the phasing 

in the transmission it is possible to identify a couple of possibilities. These 

involve sequential phasing where the sequence could be either uniform or non-

uniform. In equations (22) & (23) the expressions derived for such a 

classification are gathered.  

 𝑍𝑟 · 𝜓𝑖
2𝜋

≠ 𝑛 ՜  
𝑍𝑟 ·

2𝜋 · ሺ𝑖 − 1)
𝑁

2𝜋
≠ 𝑛;  𝐼𝑓 𝜓𝑖 =

2𝜋 · ሺ𝑖 − 1)

𝑁
 ՜  

𝜓𝑖+1
𝜓𝑖

= 𝑖𝑛𝑡𝑒𝑔𝑒𝑟               

𝜓𝑖+1
𝜓𝑖

=
𝑛𝑖+1
𝑛𝑖

  𝑖 = 1, 2, 3 …  𝑁 

(22) 

 𝑍𝑟 · 𝜓𝑖
2𝜋

; 𝐼𝑓 𝜓𝑖 ≠
2𝜋 · ሺ𝑖 − 1)

𝑁
 ՜  

𝜓𝑖+1
𝜓𝑖

 ≠ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  & 
𝜓𝑖+1
𝜓𝑖

≠  
𝑛𝑖+1
𝑛𝑖

   𝑖 = 1, 2, 3 …  𝑁 (23) 

These expressions show a direct relation between the spacing and the 

uniformity of the sequential spacing. There is no possibility of uniform 

sequential phasing for transmissions where the planets are not equally spaced. 

This involves that the meshing stiffness and the load sharing will be affected 

by this. The lack of uniformity in the phasing affects crucially the behaviour 

of the transmission, and as far as this thesis is concerned, its load sharing. 

4.5.3 Arbitrary phasing 

The definition of arbitrary mesh phasing defers to the non-uniform sequential 

phasing just in mathematical considerations. Thus, the behaviour of both 

kinds of transmissions will be analogous but the mathematical conditions are 

different. The difference comes on the last condition gathered in Table 1, which 

in arbitrarily configuration does not stand. 

In behavioural terms, there exists no difference between sequential, with non-

uniform sequence, and arbitrarily phased transmissions, at least in their load 
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sharing. Given that, in the results section the arbitrarily phased configurations 

have not been considered. 

4.6. CONFIGURATIONS OF INTEREST 

The configurations presented in this section take into account all the 

commented above. Firstly, the mounting of the transmissions is checked. Then, 

the spacing and mesh phasing are calculated and, therefore, the transmissions 

are classified. These verifications are presented in the following, and further 

calculations made in this context are included in ANNEX I 

Table 2 gathers the characteristics of the proposed transmissions.  

Table 2. Detailed number of teeth in the proposed transmissions 

Configuration Number of teeth 

 ZS ZP ZR 

1º 165 44 75 

2º 166 45 74 

For both proposed configuration the LMA is the same. Then, by using (17) 

the LMA is: 

 𝐿𝑀𝐴 =
2𝜋

𝑍𝑟 + 𝑍𝑠
=
2𝜋

240
  

Then, this number of teeth are useful for transmissions with a number of 

planets from 3 to 6. This can be proved by using (19), employed for equally 

spaced transmissions. 
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𝑍𝑟 + 𝑍𝑠
𝑁

=

{
 
 
 

 
 
 
240

3
= 80;𝑁 = 3

240

4
= 60;𝑁 = 4

240

5
= 48;𝑁 = 5

240

6
= 40;𝑁 = 6

  

Finally, every configuration proves to be physically big enough for its 

mounting, this verification is made by using (20). 

 165 − 75

2
≥ 𝑍𝑝 = 44  

 166 − 74

2
≥ 𝑍𝑝 = 45  

In the following, the transmissions considered are limited to 3 and 5 planet 

gearboxes, looking for odd number of planets transmissions. Once the number 

of teeth in each wheel and the mounting of the transmission is verified, then 

the spacing and mesh phasing have to be set considering the requirements for 

each of the possible configurations. 

Table 3. Classification of the possible transmissions with 3 planets 

N=3 Number of teeth Planet spacing 

 ZS ZP ZR ψ1 ψ2 ψ3 

ESIP 165 44 75 0 
2𝜋

3
 

4𝜋

3
 

ESSP 166 45 74 0 
2𝜋

3
 

4𝜋

3
 

NESIP 165 44 75 0 
2𝜋

3
 

22𝜋

15
 

NESSP 165 44 75 0 
41𝜋

60
 

91𝜋

60
 

NESAP 165 44 75 0 
7𝜋

10
 

27𝜋

20
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Table 4. Classification of the possible transmissions with 5 planets 

N=5 Number of teeth Planet spacing 

 ZR ZP ZS ψ1 ψ2 ψ3 ψ4 ψ5 

ESIP 165 44 75 0 
2𝜋

5
 

4𝜋

5
 

6𝜋

5
 

8𝜋

5
 

ESSP 166 45 74 0 
2𝜋

5
 

4𝜋

5
 

6𝜋

5
 

8𝜋

5
 

NESIP 165 44 75 0 
2𝜋

5
 

2𝜋

3
 

6𝜋

5
 

26𝜋

15
 

NESSP 165 44 75 0 
7𝜋

24
 

52𝜋

79
 

37𝜋

30
 

101𝜋

60
 

NESAP 165 44 75 0 
23𝜋

60
 

59𝜋

73
 

29𝜋

24
 

17𝜋

10
 

The verifications for the classification of the transmissions are included in 

ANNEX I in detail. Besides, it is important to emphasise the fact that the 

non-equally spaced configurations, and more precisely, within them, the last 

two options correspond more to theoretical approaches rather than real 

industrial applications. Normally in the industry, equally spaced 

configurations are employed, and as an exception occasionally a diametrically 

opposed configuration where the spacing is uniform by pairs of planets. 

Although the calculations were performed for numerous configurations, for the 

simulations in this part of the document only transmissions with an odd 

number of planets have been considered. This is due to the need for addressing 

in more depth the behaviour of this kind of transmission, mainly the 5-planet 

transmission. Besides, the lack of symmetries supports the study of the effects 

of the planet spacing and mesh phasing in detail. In addition, the 3-planet 

transmission is used as a reference point to start with the analysis and 

corresponds to the most conventional configuration in planetary transmissions, 

even having a self-balancing quality non-existent with any other N. 
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4.7. RESULTS 

In the following section, the results to all the scenarios taken into account 

previously are gathered. The effects of each geometrical consideration will be 

added independently at first and then a combination of more than one at the 

same time. Thus, the impact of the spacing and the mesh phasing can be 

understood as well as the floatability. 

4.7.1 3-planet configurations 

At first, the focus is on the 3-planet configurations, a more classical 

configuration, at least in the wind turbine industry. Thus, the results to the 

simulations with this number of planets are gathered in the following sections. 

4.7.1.1 Spacing 

The influence of the spacing in the behaviour of the transmission, more 

precisely, in its load sharing is the object of this section. The first scenario to 

study corresponds to a 3-planet equally spaced transmission with in-phase 

contacts. A priori, the results to this simulation should be a perfectly balanced 

LSR, where every planet bears the same amount of load. These results are 

presented in Figure 34. The results fulfil the expectations. 
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Figure 34. LSR in a 3-planet ESIP transmission. 

In order to present more detail of the uniformity of the LSR in this scenario, 

in Figure 35 the Figure 34 is zoomed in. Thus, it is visible that the only 

discrepancy in the load in each planet corresponds to negligible computational 

errors. 

 

Figure 35. Detail of the LSR in a 3-planet ESIP transmission. 
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The next step to take consist in eliminating the uniformity in the spacing of 

the planets. Thus, the spacing correspond to the one for the NESIP 

configuration gathered in Table 3. However, the lack of floatability in any of 

the rolling elements impedes the visualization of the imbalance due to the non-

equal spacing. The imbalance in the contact forces is absorbed by the infinitely 

rigid supports, thus, homogenizing the LSR. 

 

Figure 36. LSR in a 3-planet NESIP transmission. 

As it was done in the previous case, the resolution in the LSR graph is 

augmented in order to see more details. Thus, it is visible how the behaviour 

of the transmission in this scenario is exactly the same as the previous. 

Therefore, the uniformity of the spacing in the planets plays no role whatsoever 

whenever the rigidity in the supports tends to an infinite value. 

The next step to take in order to prove what has been stated in this section 

consists in the inclusion of some degree of floatability in the sun support. 

However, before it is important to observe the impact of the mesh phasing 

alone. 
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Figure 37. Detail of the LSR in a 3-planet NESIP transmission. 

4.7.1.2 Equally spacing various mesh phasing 

Apart from the influence of the planet spacing, the geometry of the 

transmission also determines the mesh phasing. This mesh phasing influences 

the meshing stiffness in each contact throughout the transmission. A 

sequential mesh phasing means that every sun-planet or planet-ring contact is 

at a different point along the meshing line, as commented previously in this 

document. Thus, as seen before, the transmission equally spaced and in-phase 

has a perfectly balanced and synchronous behaviour in any of the contacts, 

whereas the sequentially phased transmission has a different behaviour, as seen 

in Figure 38.  

Given the uniformity in the sequence of the mesh phasing in the ESSP 

transmission, the LSR shows an n number of maximum values, as many as 

planets in the transmission, for each meshing cycle in the sun. The equal 

spacing makes the variation in the loads in each of the planets identical to the 

rest, but the mesh phasing makes the load level change along the simulation. 

Nonetheless, the average load level in each of the planets is the same and is 

equal to the ideal load level and to the one in the ESIP transmission. These 
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moments where the maximum load is reached coincide with the double 

contacts, therefore, the highest meshing stiffness.  

 

Figure 38. Load sharing in 3-planet ESSP transmission. 

4.7.1.3 Nonequally spaced and various mesh phasing 

Whenever the effect of the mesh phasing acts together with an unequal spacing 

in the transmission, the results do not vary for an in-phase transmission due 

to the lack of floatability in the wheel supports, as mentioned previously and 

shown in Figure 36.  

On the contrary, the unequal spacing affects the uniformity of the sequence  

and because of that modifies the behaviour of the sequentially phased 

transmission, which is visible comparing the results in Figure 38 & Figure 39. 

Thus, the sequence is modified to a point where the highest meshing stiffness 

is reached by the planet 2, which reaches the highest and the lowest load level 

along the simulation. Then, the behaviour on the rest of planets is less abrupt 

given the proximity between them, in terms of spacing. 
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Figure 39. 3-planet NESSP transmission. 

4.7.1.4 Configurations with floatability in the sun gear 

In the following, some floatability is included in the sun gear support. Given 

that, the sun centre will be able to modify its position in order to look for 

balance in the transmission, thus, describing an orbit composed by its every 

instantaneous position in each of the angular positions studied. The rigidity of 

the sun support is specified in Table 5, following the lumped-parameter 

approach explained in 4.4.3. 

Table 5. Lumped rigidity in the sun support. 

Direction Rigidity (N/m) 

X 1e8 

Y 1e8 

In the configuration where the planets are equally spaced, the inclusion of 

floatability in the sun gear support does not make any difference. This is due 

to the fact of the existence of perfect balance amongst planets due to the 
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spacing and mesh phasing. If the weight of the wheels and the planet-carrier 

were considered, this balance would be modified.  

 

Figure 40. Detail of the LSR in a 3-planet ESIP transmission with floating sun. 

Given the perfect balance in the transmission, the centre of the sun-gear does 

not modify its position from the reference position, located in the centre of the 

epicyclic transmission.  

The detail of the orbit, presented in Figure 41, shows the small translation in 

the centre of the sun gear. This corresponds to the movement provoked by the 

small variation in the results due to numerical reasons. This scenario in reality 

stands for an ideal configuration where the load sharing is perfect and, 

therefore, there is no orbit described by the sun gear. However, in reality this 

scenario is far-fetched. 

On the contrary, in the same configuration but with a non-equal spacing, the 

results are dramatically different. Firstly, the spacing in the transmission 

generates a notable imbalance amongst the planets. Besides, the floatability 

in the sun support is not enough to compensate this imbalance and uniform 

the load sharing in the transmission. Thus, the load level in the planet who is 
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further, in terms of angular spacing, from the other two, will bear more load, 

as seen in Figure 42. On the other hand, the two planets that are closer to 

each other are the ones that bear less load. The floatability will tend to move 

the sun further from those two planets and closer to the other one, in this case 

planet 2. However, the transmission is notably unbalanced, and this is due to 

the unequal spacing together with a not enough floatability. The latter refers 

to the fact that a lower stiffness in the support of the sun gear would allow 

bigger translations and a bigger orbit. Therefore, this bigger freedom would 

enable the sun gear to go to the appropriate position to balance the meshing 

stiffnesses in the contacts and the load sharing in the transmission. 

 

Figure 41. 3-planet ESIP transmission with floating sun: Detail of the sun orbit. 
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Figure 42. Load sharing in 3-planet NESIP transmission with floating sun. 

The movement described by the sun is shown in detail in Figure 43, where a 

composed movement is visible. Firstly, the translation due to the difference in 

stiffness in the contacts, commented before. Secondly, there is a loop around 

that first movement, this loop is described by the sun due to the changes in 

the meshing stiffnesses in each of the angular positions calculated along the 

simulation. If the simulation were extended to an entire turn of the carrier, 

this loop would be repeated a number of times, derived by the transmission 

ratio, and the translation due to the spacing would describe a circumference 

alongside the rotation in the carrier, surrounding the reference position. 



100 Chapter 4: Study of the transmission geometry 

 

 

Figure 43. 3-planet NESIP transmission with floating sun: Sun orbit. 

After all the scenarios presented before, the next logical step consists in 

combining every effect that has been analysed separately. Thus, to the 

previous approach with spacing and mesh phasing combined, the effect of the 

floatability in the sun gear support is added.  

Hereinafter, the scenarios with ESSP and NESSP transmissions are analysed 

including a floatability in the sun as the one seen in Table 5.  

In the ESSP transmission, the floatability in the sun works as expected, 

reducing the variability of the load on each of the planets, as seen in Figure 

44 in the amplitude of the load cycles in each planet. Even with the floatability 

there are some analogies with the fixed configuration, in this case also, an N 

number of peaks can be seen, and they are uniformly spaced along the 

simulation. However, there exists the mentioned attenuation of the load due 

to the floatability. 
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Figure 44. 3-planet ESSP transmission with floating sun: Sun orbit. 

The reason to that attenuation is visible in the orbit described by the sun gear, 

seen in Figure 45. The sun describes an orbit composed by three identical loops 

around its reference position. Therefore, the sun translates along the plane 

while the meshing stiffness varies along the simulation. This translation 

attenuates the variations in the meshing stiffness and decreases the differences 

amongst planets in terms of load. If this simulation continued, the loops would 

repeat themselves, however, the next time these loops would include a rotation 

due to the angular displacement in the carrier and the variation in the 

positioning of the planets with respect to the sun. 
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Figure 45. 3-planet ESSP transmission with floating sun: Sun orbit. 

Finally, in the NESSP transmission, the combination of the planet spacing 

and the sequence in the mesh phasing combines their effect with the 

floatability and everything that was stated before in this section appears 

together in this last case. Thus, as seen in Figure 46 the load in each planet 

varies along the meshing cycle due to the mesh phasing, the load level is 

different in each planet due to the unequal spacing and there exists an 

attenuation on the variability of the load in each planet due to the floating 

sun. 
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Figure 46. 3-planet ESIP transmission with floating sun: Sun orbit. 

The mentioned combination of effects is also visible in the orbit described by 

the sun, as seen in Figure 47. In this case, the loops described by the sun are 

similar to the ones in the ESSP transmission, but these are not identical to 

each other, due to the unequal spacing. In addition, there exists a translation 

with respect to the reference position, which did not exist for the ESSP 

transmission. This translation is also due to the spacing. Therefore, the 

similarities are visible, even though they are affected by the change in the 

spacing with respect to the previous scenario. 
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Figure 47. 3-planet ESIP transmission with floating sun: Sun orbit. 

4.7.2 5-planet configurations 

In the next step, the number of planets is raised to 5, this configuration keeps 

an odd number of planets as well as augments the stiffness of the entire 

transmission due to the raise in the number of simultaneous contacts. This 

raise in the stiffness of the system is expected to augment the sensitivity of 

the transmission to the changes, as Bodas & Kahraman observed in the case 

of the errors in (Bodas & Kahraman, 2004). 

4.7.2.1 Spacing 

At first, in analogy with the 3-planet transmissions the effect of the spacing in 

the load sharing of the transmissions is studied. However, in this case, looking 

for conciseness the scenarios with in-phase and sequential mesh phasing are 

presented together in the same section. 
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Figure 48. Load sharing in 5-planet ESIP transmission. 

In both scenarios, equally and unequally spaced, the results are the same. The 

lack of floatability in every gear leads to a similar scenario as seen previously 

for 3 planets, but in this case, the ideal load level is at 20%, given the new 

number of planets. 

 

Figure 49. Load sharing in 5-planet NESIP transmission. 
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In the following, it is visible how the load sharing of a sequentially phased 

transmission provides an n number of maximum values in the load sharing, as 

many as the number of planets for each meshing cycle. Each planet describes 

an identical cycle in terms of load, however, each cycle is delayed a T/5 in 

time, where T provides the period for each meshing cycle. This statement can 

be confirmed observing the results in Figure 50. 

 

Figure 50. Load sharing in 5-planet ESSP transmission. 

On the other hand, the unequal spacing modifies the uniformity of the 

sequence in the mesh phasing as it happened for the 3-planet transmission, as 

seen in Figure 39. Thus, the uniformity in the load cycles in each planet is 

lost, as seen in Figure 51. Besides, this modifies the amount of load in each 

planet and shows how the spacing makes every maximum value in each planet 

different, and in this case, the planet 4 is the one that bears more load. In 

addition, this unequal spacing leads to a higher load level in that planet than 

in the ESSP scenario. Therefore, in this case, the non-equal spacing not only 

affects the uniformity on the load sharing, but also provides a less favourable 

load sharing for some of the planets. 
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Figure 51. Load sharing in 5-planet NESSP transmission. 

These results prove how the non-equal spacing leads always to an irregular 

sequence in the mesh phasing, as derived in 4.5.2, that corresponds with an 

unbalanced load sharing. Besides, this lack of regularity in the sequence 

generates higher load levels in some of the planets with the implications that 

this could have in the durability of the wheels or other components. 

4.7.2.2 Various spacing with floatability 

In contrast to the previous results, the floatability included in the sun gear 

changes the behaviour of the non-equally spaced transmissions. In the ESIP 

transmission, the results do not change with the floatability as it happened 

previously for the 3-planet gearbox. These results are expected, but also 

correspond to an ideally perfectly balanced transmission. On the contrary, the 

load sharing in the NESIP transmission is a more realistic response, where 

there exists an imbalance due to the unequal spacing, as seen in Figure 54. 
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Figure 52. Load sharing in 5-planet ESIP transmission with floating sun. 

 

Figure 53. 5-planet ESIP transmission with floating sun: Sun orbit. 

The results in Figure 54 provide a better image of the behaviour of a NESIP 

transmission than the ones obtained with a fixed sun gear. The similarities 
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with the 3-planet transmission, for both ESIP and NESIP configurations, are 

evident. 

 

Figure 54. Load sharing in 5-planet NESIP transmission. 

Also in analogy with the 3-planet transmission, the sun gear modifies its 

position looking for balance in the load sharing. However, in 5-planet 

transmissions this effect does not have the same result as in a 3-planet 

configuration. In addition, as commented before there exists a joint movement 

a translation from the reference position together with the loop described due 

to the changes in the contacts along the meshing cycle, as seen in Figure 55. 
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Figure 55. 5-planet NESIP transmission with floating sun: Sun orbit. 

Finally, the results for ESSP and NESSP transmissions are also affected by 

the floating sun. Firstly, it is visible in the ESSP transmission, shown in Figure 

56, the floatability in a 5-planet planetary transmission does not have the aim 

of balancing the load sharing in the transmission. Actually, the results 

presented in Figure 56 compared to the ones in Figure 50 show a higher level 

of load in each of the planets. However, the average load level is lower than in 

the scenario with fixed sun. Apart from that effect, the similarities with the 

previous scenarios are visible and are logical in the performance in a ESSP 

transmission.  
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Figure 56. Load sharing in 5-planet ESSP transmission with floating sun. 

As it happened with the analogous 3-planet scenario, the sun gear describes 

an orbit around the reference position composed by an n number of loops, in 

this case 5, that are identical. Thus, the sun gear modifies its position alongside 

the changes in the meshing stiffnesses in each contact.  
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Figure 57. 5-planet ESSP transmission with floating sun: Sun orbit. 

Finally, whenever the spacing is non-equal and the phasing sequential, there 

is no pattern in the behaviour of the load sharing. The inclusion of floatability 

in the sun gear does not help for the balance in the load sharing, as shown in 

Figure 58. This effect is only in the 3-planet transmissions.  
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Figure 58. Load sharing in 5-planet NESSP transmission. 

In addition, the orbit in Figure 59 shows a completely irregular behaviour 

compared to the ESSP transmission with the same number of planets.  

 

Figure 59. 5-planet NESSP transmission with floating sun: Sun orbit. 
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4.8. MAIN EFFECTS RECAP 

Once all the results have been presented, it is interesting to gather the main 

effects that were observed along these results. Firstly, the spacing has no 

impact in transmissions with in-phase meshing that include no floatability in 

any of the supports. However, in sequentially phased transmissions the effect 

of both the spacing and mesh phasing becomes visible under any circumstance. 

At the same time, the sequential phasing proves to influence the load sharing 

generating a load cycle in each planet separated by T/N along the studied 

meshing cycle. Thus, every planet behaves identically but with a delay.  

Regarding the number of planets, there are analogies between 3 and 5 planet 

configurations. However, the most important difference relies on the influence 

of the floatability in the load sharing. For 3-planet transmissions, this 

floatability uniforms the load sharing, whereas in 5-planet transmissions this 

effect is not seen. 

Finally, with respect to the orbits, it is significant to highlight the symmetry 

in the orbits for equally spaced transmissions affected by a sequential phasing, 

whereas this behaviour is not visible in any of the other scenarios.  It is also 

relevant the fact of the direct relation between the number of planets and the 

number of closed loops in the orbit described by the sun gear.
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Chapter 5: Error presence in planetary 

transmissions 

5.1. INTRODUCTION 

Planetary transmissions are complex configurations composed by numerous 

moving elements. Although the various advantages due to the epicyclic 

configuration of the gears, there exists also a high probability of error presence 

in any of the components. At the same time, the manufacturing process of the 

components is not perfect, even though it has reached a high level of accuracy 

and repeatability. This makes impossible the avoidance of the error presence 

in any planetary transmission in the world. 

The presence of errors influences directly, and in occasions dramatically, the 

life expectancy of the components and as a consequence the performance of 

the transmission. Given their importance, this section focuses on the presence 

of errors in the main elements (gears and carrier) that compose the gear 

transmission. A variety of errors is studied. For those, its influence in the 

performance of the transmission is analysed. However, not only is it important 

to analyse the sheer effect of the error but also its interaction with other 

variables such as planet spacing, mesh phasing, interaction between errors and 

floatability amongst others. 

Apart from the above mentioned it is considered important the impact that 

the load has in such a transmission. The flexibility considered in the 
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components and the load should a priori work together in the uniformity of 

the loads and the balancing of the transmission performance. 

5.2. GEOMETRICAL DEFINITION OF THE STUDIED ERRORS 

Before including errors in the employed model, it is necessary to study the 

geometry of each error, the measurement procedure and the main parameters 

that describe every error.  

Once these errors are analysed, the parameters are included in the model in 

order to emulate them. Given the definition of the model, for every analysis 

the geometrical definition of every error is required. In the following, the 

parameters necessary to include the errors in the model will be specified. Given 

the wide scope of possible errors in planetary transmissions, this work limits 

the considered spectra to the pinhole position errors and tooth thickness errors. 

These have proven to influence significantly the transmission performance, as 

seen in (Bodas & Kahraman, 2004; M. Iglesias et al., 2017; Ahmet Kahraman, 

1999; Singh, 2005) 

5.2.1 Pinhole position errors 

The concept of pinhole position errors refers to the difference between the ideal 

and the real positioning of the pinhole. Whenever a transmission is designed, 

a position tolerance is defined for each of the pinholes in the carrier. However, 

this tolerance responds to a magnitude that defines a circumference inside of 

which the centre of the pinhole should be located. Apart from this tolerance, 

measurements of the radial distance between the centre of the carrier and the 

centre of the pinhole are made. In addition, angular measurements are 

performed to establish the angular spacing between consecutive planets and 

for each planet in relation to an angular reference, common for every pinhole. 

In some of the main publications in this topic (Bodas & Kahraman, 2004; Hu 

et al., 2018; Ahmet Kahraman, 1999; Singh, 2005, 2010) , the pinhole position 

errors are defined by two parameters, the magnitude of the error and the angle 
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from a reference position. However, in this work the definition for these errors 

follows the one presented in (M. Iglesias et al., 2017; Sanchez-Espiga et al., 

2020). From now on, this error will be defined in two components, each 

corresponding to one principal direction inside the transversal plane; every 

wheel rotates inside this plane. 

At first, there is the tangential error, which corresponds to the difference 

between the ideal and the real position of the pinhole along the direction that 

is tangential to the carrier circumference with a radius equal to the mounting 

distance. This error will be the component X of the pinhole position error.  

Secondly, the radial error is defined. This refers to the discrepancy along the 

line that connects the wheel centres between the ideal and the real position of 

the pinhole. This will be the Y component of the error and together with the 

tangential are referred as the pinhole position error. In contrast to previous 

conceptions, in this case the two parameters just refer to the magnitude of the 

error in each direction. For comparison with the position tolerance, the module 

of the error should be calculated and compared. This definition is considered 

the most appropriate solution because it provides information about the 

magnitude and the direction of the error in a more straightforward way than 

the other mentioned definition. Finally, Figure 60 illustrates every aspect 

stated regarding the definition of the pinhole position error in the transmission. 

It also includes the local reference frames for each of the planets and the global 

for the transmission. 
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Figure 60. Geometrical definition of the pinhole position error 

5.2.2 Tooth thickness errors 

This error refers to the difference in thickness between the ideal tooth and the 

real tooth. In this case, the magnitude of this error depends on the 

measurement procedure, for the study performed, the measurement procedure 

proposed by Wildhaber in (Wildhaber, 1923) is taken as reference. 

This measuring technique consists in measuring the length of a straight line, 

tangent to the gear base circle. The points that are the limits of the segment 

belong to opposite flanks. To measure appropriately, the plates of the tool 

should be tangent to the involutes. This measured distance is referred as wk. 

The drawing in Figure 61 aims to illustrate such procedure. 

The main advantage of this measuring technique is the fact that one can 

measure in any point throughout the involute profile. The tool has to be 

perpendicular to the profile. Thus, the measured distance will be a straight 

line tangent to the base circle, and the tool will be perpendicular to the 

involute profile at the other edge.  
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Figure 61. Measurement of the wk 

In order to induce the tooth thickness error, the ideal wk should be calculated, 

by following the analytical definition in (24). Then, for the calculation of this 

error, the difference between the ideal value, calculated by the equation (24), 

and the length measured has to be established. Even though the number of 

teeth used for the measuring varies, the error does not depend on the number 

of teeth reached within the tool edges.  

 𝑤𝑘 =
cos𝜑

𝑃
[ሺ2𝑆 + 1)

𝜋

2
+ 𝑁ሺtan𝜑 − tan−1 𝜑)] (24) 

In equation (24) P refers to diametral pitch of the gear, S is the number of 

tooth spaces between the measured profiles, 𝜑 is the pressure angle, and N the 

number of teeth in the gear. It is important to stress the fact that this 

expression was developed to be employed with imperial units; however, it has 

been kept as is in order to preserve the way it was written originally. 

In order to model this error, there are various approaches. Firstly, given the 

small magnitude of the error, it is assumed that this error will not modify the 
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stiffness in the FE models and therefore it is not included in them. However, 

its impact in the contact problem will be notable; generating an advance or 

delay in the contact analogous to the effect of the tangential error, and 

consequently it is included. The chosen way to include it consists in the 

modification of the overlap calculation. For such procedure, the amount of 

error is multiplied by the pressure angle to obtain an accurate approximation 

of the modification of the involute profile by the error and then this distance 

is sum to the results of the overlap calculation. 

Once this point is solved, to observe the influence of such an error it is possible 

either to assume that the error is symmetrical, therefore the same amount in 

both flanks, or apply it asymmetrically to both flanks. If this error is 

considered symmetrical then the procedure to apply consist in obtaining the 

difference between the ideal thickness of the tooth and the result of the 

measurement. Once this difference is known, then divide it into both flanks. 

Not forgetting that the measurement procedure considers the errors in both 

flanks at the same time and does not make difference between each flank. This 

is the option chosen in the simulations performed in this chapter. 

5.3. EFFECT OF THE ERRORS IN THE LOAD SHARING 

Beyond the geometrical definition of the errors and its modelling for this work, 

the most important thing is analysing how they influence the performance of 

the transmission. This section is aimed to the geometrical study of the 

contacts, the modifications due to errors, and its impact in the performance of 

a transmission. 

5.3.1 Tangential position error 

Based on their geometrical definition, tangential errors in the positioning of 

the planets in the carrier imply a series of modifications in the geometry of the 

contacts. Hence, the load sharing in the transmission will experience a 

subsequent change. 
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In a first approach, tangential errors produce an advance or delay in the 

contact between the planet that includes the error and the other gear that is 

going to contact with it. This advance or delay, depends on the direction of 

the error and the applied torque. For instance, taking into account the 

geometrical references shown in Figure 60 a positive error and a Clockwise 

(CW) torque would result in an advance in the contact of the planet with the 

positive error. 

 

 

Figure 62. Influence of the tangential error a) detail of the external contact b) both contacts 

Figure 62 illustrates the changes in the geometry of the contacts derived from 

the presence of a, in the picture positive, tangential error. This kind of error 

will modify the mounting distance between gears and as a consequence or in 

parallel, the pressure angle between the gears. It is important to highlight, as 

seen in Figure 62b, that the effect of the error is equal for both contacts. 

Furthermore, the impact of such modification is a direct function of the size 

of the error and the transmission. More precisely, the relative size of the error, 

a) b) 
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in comparison to the dimensions of the transmission influences crucially the 

effect of the error in the mounting distance and pressure angle.  

At this point, it is interesting to remind the equations presented before in 

(Iglesias Santamaría, 2013), where the overlaps are calculated for any of the 

possible contacts. These equations prove that these changes affect the overlaps 

between flanks and, given the definition of the contact problem, will affect the 

amount of load borne by each planet. These groups of equations (25) & (26) 

are for external and internal contact, respectively. 

{

𝛿𝑖𝑣−𝑖𝑣 = ሺ𝜌1 + 𝜌2)ሺtan 𝜑0 + 𝜑𝑇 − 𝜑0 + 𝜓) − ሺ𝜌1𝜃1 + 𝜌2𝜃2) − 𝑑𝑇 sin 𝜑𝑇
𝛿𝑖𝑣−𝑟1 = 𝜌2(tan 𝜑0 + 𝜑𝑇

𝑟1 − 𝜑0 + ሺ𝜓 − 𝜃1)) − ሺ𝑅𝑒𝑥𝑡1 − 𝑟𝑜1) sinሺ𝜑𝑇
𝑟1 − 𝜆1) − 𝑟𝑜1 + 𝑑𝑇 sin𝜑𝑇

𝑟1

𝛿𝑖𝑣−𝑟2 = 𝜌1(tan 𝜑0 + 𝜑𝑇
𝑟2 − 𝜑0 + ሺ𝜓 − 𝜃2)) − ሺ𝑅𝑒𝑥𝑡2 − 𝑟𝑜2) sinሺ𝜑𝑇

𝑟2 − 𝜆2) − 𝑟𝑜2 + 𝑑𝑇 sin 𝜑𝑇
𝑟2

 (25) 

{

𝛿𝑖𝑣−𝑖𝑣 = 𝑑𝑇 + ሺ𝜌1 + 𝜌2)ሺ𝑡𝑎𝑛 𝜑0 + 𝜑𝑇 − 𝜑0 + 𝜓) − ሺ𝜌1𝜃1 + 𝜌2𝜃2)

𝛿𝑖𝑣−𝑟𝑒𝑥𝑡 = 𝑑𝑇 𝑠𝑖𝑛 𝜑𝑇
𝑟1 + 𝜌2(𝜑𝑇

𝑟1 − 𝑡𝑎𝑛 𝜑0 − 𝜑0 + ሺ𝜓 − 𝜃1)) + ሺ𝑅𝑒𝑥𝑡 − 𝑟𝑜1) 𝑠𝑖𝑛ሺ𝜑𝑇
𝑟1 − 𝜆1) + 𝑟𝑜1

𝛿𝑖𝑣−𝑟𝑖𝑛𝑡 = 𝑑𝑇 𝑠𝑖𝑛 𝜑𝑇
𝑟2 + 𝜌1(𝑡𝑎𝑛 𝜑0 + 𝜑𝑇

𝑟2 − 𝜑0 + ሺ𝜓 − 𝜃2)) − ሺ𝑅𝑚𝑖𝑛 + 𝑟𝑜2) 𝑠𝑖𝑛ሺ𝜑𝑇
𝑟2 − 𝜆2) + 𝑟𝑜2

 (26) 

In conclusion, for an error such as the commented as an example, an advance 

in the contact and the geometrical impact that this has, produces an imbalance 

that overloads the planet with the error and underloads the rest. The amount 

of overload in the planet with error splits in N-1 parts and gives the amount 

of load that every planet with no error is sparing. Consequently, the total of 

load is the same, but splitted in a non-equal manner. 

This stands for any mesh phasing. The mesh phasing will affect the variation 

of the load in the planet, but the average load in that planet will always be 

over the rest. 

Consequently, the opposite effect can be expected if the error is negative. 

Then, the load that will be spared by the planet with error will be distributed 

amongst the rest of planets. This stands due to the non-symmetrical geometry 

of the error for both torque directions. 

5.3.2 Radial error 

Hereinafter, the focus is placed on the effects of the radial error, which are 

expected to be different and less significant than for tangential errors, as 
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proved in previous works (M. Iglesias et al., 2017), but not negligible as stated 

in (Bodas & Kahraman, 2004; Ahmet Kahraman, 1999). At first, the advance 

or delay in the contact does not appear due to the presence of the error. 

Consequently, the imbalance derived of this effect does not exist under these 

new conditions. 

Despite their differences, there are also some similarities in the effect of both 

components in the pinhole position error. Figure 63 illustrates the modification 

of the geometry induced by the radial error. This error modifies the mounting 

distance as well as the pressure angles, as it happens with the tangential error. 

However, these changes are not equal for external and internal contact, in 

contrast to what happens with the tangential error.  

 

 

Figure 63. Influence of the radial error a) detail of the external contact b) both contacts 

The unequal modification on the pressure angles, contrary to what happens in 

the tangential errors, will provoke an imbalance in the contact forces in the 

a) b) 
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planet. Even with this imbalance the equilibrium in moments in the planet 

stands, given the lack of friction, viscous forces or acceleration, but the vertical 

component of the contact forces will be different and due to it there will exists 

an imbalance and a force will appear in the gear support. As a reminder, at 

this point Figure 64 is included, which is identical to Figure 21; however, in 

this case the imbalance is generated by the radial error. 

 

Figure 64. Contact forces and its imbalance due to the mounting distance. 

In conditions of high stiffness in the gear support, this imbalance will continue 

in the carrier and expectedly will generate a deflection in it. This deflection 

will tend to open or close the carrier, depending on the sign of the radial error. 

Observing the formulation for the contact together with the Figure 63, it is 

possible to induce the implications of the modification of the mounting 

distance and the pressure angle, but no advance or delay exist whatsoever in 

the contact. Therefore, this error modifies the geometry of the contact and 

moves the contact point along the meshing line, but every planet contacts at 

the same time. This shift along the meshing line of the contact point will 

modify slightly the meshing stiffness in that contact. Consequently, the effect 

of this error is less crucial than the tangential, in load sharing terms. Hence, 

there could exists a higher tolerance for this error. Apart from that, the effect 
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of this error is independent to the torque direction in contrast to what happens 

with the tangential component of the pinhole position error. 

5.3.3 Tooth thickness errors 

As mentioned in the modelling of this error, there is a big difference between 

considering the error symmetrical or not. In this section, only the symmetrical 

scenario is going to be studied. 

The tooth thickness error is analogous to a tangential pinhole position error 

up to a point. This error will generate an advance or delay in the contact, but 

will not modify neither the mounting distance nor the pressure angle. 

As it happens in the case of the tangential error, this advance or delay 

generates a modification in the number of pairs of teeth in contact and 

consequently, in the meshing stiffness that translates in an imbalance in the 

load sharing. According to the previously stated, under some conditions it is 

possible that opposed tangential and tooth thickness errors have opposite 

effects and sometimes neutralize each other.  

If the tooth thickness error is considered symmetrical in both flanks of the 

tooth, then, the effect will not change with the torque direction. However, its 

effect is likely to change with the change in the number of planets. 

5.4. CONSIDERED CONFIGURATIONS 

The configurations considered cover the scope of the common configurations 

in industrial applications, except for diametrically opposed configurations. As 

a result, not only are the errors are considered but also different mesh phasings 

are considered for equally spaced transmissions. In addition, the number of 

planets is modified considering three and five planet configurations. 

Furthermore, a couple of load levels are tested. 

In more detail, equally spaced configurations both in-phase and sequentially 

phased are simulated. Furthermore, three possible errors are considered and 
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the combination of them. Likewise, two levels of load are considered. Overall, 

the relevant information for the performed simulations is gathered in Table 6. 

Table 6. Considerations for studied cases. 

Number of planets: 3 and 5 

Mesh phasing: ESIP and ESSP 

Case et(μm) et(μm) et(μm) Torque direction 

1 2.5 0 0 CW & CCW 

2 0 20 0 CW & CCW 

3 0 0 2.5 CW & CCW 

4 2.5 20 0 CW & CCW 

5 2.5 0 2.5 CW & CCW 

6 2.5 20 2.5 CW & CCW 

Input torque (Nm): 1200 and 3600 

 

In conclusion, all the details considered and the combinations of them, lead to 

as many as 96 cases of study that will provide an accurate enough image of 

the influence that these errors have on the performance of planetary 

transmissions under different mesh phasing conditions. 

Besides, it is important to observe the change in the performance on the 

transmission with its stiffness; in this case, this stiffness is modified by 

changing the dimensions of the shaft mounting in the wheels. Thus, for all the 

considered cases, mentioned above, there will be two different configurations 

with different shaft mounting dimensions. The characteristics of these two are 

gathered in Table 7. 
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Table 7. Dimensions of the shaft mountings in the considered configurations 

Configuration 
Spacing & 

phasing 
Sun Planets Ring* 

1 
ESIP 40 20 1.3·rint 

ESSP 40 20 1.3·rint 

2 
ESIP 143 80 1.2·R 

ESSP 145 82 1.2·R 

*For the ring gear this dimension refers to its outer radius. 

The change in the definition of the shaft mounting in the configuration 2 

corresponds to the guidance made in (ISO 6336-1, 2006) regarding the back-

up ratio in the external gears. On the contrary, configuration 1 corresponds to 

the geometry of the wheels for a project developed previously. It can be 

expected that in view of this geometry, the wheels in configuration 2 and the 

boundary conditions considered in the FE models, the entire transmission will 

be more rigid and sensitive to the errors (Bodas & Kahraman, 2004).  

5.5. RESULTS 

From this point, the mentioned errors are included consecutively to obtain the 

sheer effect of each error. In these cases, floatability is not included in any of 

the supports. 

5.5.1 Crucial values of the LSR: Configurations 1 & 2 

The values that are considered crucial to define the impact of the errors in the 

transmission performance are the maximum and minimum reached along the 

simulation by the Load Sharing Ratio. These show the imbalances generated 

by any of the errors in the transmission and quantify how significant is the 

size of the error in relation with the imbalance generated. Hereinafter, these 
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results are presented for the gearboxes named configuration 1 & 2 previously 

in this document. 

For starters, in Figure 65 & Figure 66  the results for configuration 1 & 2 

under a 1200 Nm input torque are gathered for the 6 cases of study. At first, 

it is visible that the effect of the tangential error (Case 1) is significantly higher 

than the radial one (Case 2). This can be stated given the fact that the size of 

radial error is even higher, therefore, leaving no doubt to the difference in 

influence between both errors. However, as expected and mentioned before, 

the influence of the radial error is not negligible. Even though its influence is 

small, it has to be taken into consideration. 

Then, for a tooth thickness error as big as the tangential, the influence is 

almost the same. To get more accuracy in these comparisons, in ANNEX I the 

numerical data of the values are gathered for every case. Comparing cases 1 

and 3, one can see the same effect both for the tangential and tooth thickness 

error, also having the same size. This stands at least for a three-planet 

configuration where the size of the tangential error is small and does not 

produce a notable modification in the mounting distance and pressure angle. 

For the last three cases, the joint action of different errors augments the 

imbalances. The torque direction makes errors to sum their effects and 

together produce a bigger imbalance. However, the result of the imbalance in 

the LSR is not the analytic summation of both effects. This proves that the 

joint action of different errors can be beneficial or detrimental depending on 

the circumstances. 

Given the geometrical definition of the errors considered, the change in the 

direction of the torque affects them differently. On the one hand, the 

tangential error approximately has the same effect in both cases, just changes 

the sign in the imbalance that produces. On the other hand, the tooth 

thickness error is not influenced by the torque direction; a thicker tooth is 

more loaded than a slimmer one under any torque direction. Likewise, radial 

error effects stay unchanged by the turn in the torque direction. 
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It is relevant to highlight the behaviour in case 5, where the effect of both 

tangential and tooth thickness errors null each other, giving a result of no 

imbalance in the LSR. Given the geometry of the transmission, this occurs due 

to the small size of the tangential error that generates insignificant changes in 

the mounting distance and the angle pressure. Given that, the influence of 

both errors is exactly the same, but with opposite signs, as a result, the 

imbalance is null. 
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Figure 65. Max. and min. in the LSR for three-planet ESIP a) 1200 Nm CCW b) 1200 Nm 
CW (Conf. 1) 

 

a)

b)
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Figure 66. Max. and min. in the LSR for three-planet ESIP a) 1200 Nm CCW b) 1200 Nm 
CW (Conf. 2) 

 

a)

b)
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As seen in the results, these are almost identical for the two configurations 

except for the fact of the magnitude of the imbalance generated by the error, 

which, as expected, is bigger in the configuration 2 due to its higher stiffness. 

In Figure 67 & Figure 68, the results belong to the same scenarios as before 

but under a 3600 Nm input torque. At first sight, something that stands out 

is the fact that the imbalances due to the same errors in the transmission 

under a higher load are smaller. In case 2, it is visible how for high level of 

loads the influence of the radial error is close to null, whereas for a lower load 

this did not happen. Furthermore, the analogy in the effects of the tangential 

and tooth thickness error stays under higher load, this is due to the fact that 

the tooth thickness error is not big enough to significantly change the teeth 

stiffness. 

Once both the higher load and the CW direction for the torque act together, 

the imbalances in the transmission are significantly smaller than in any of the 

previously studied scenarios. It even reaches levels close to zero in three of the 

cases (2, 5 & 6) as seen in Figure 67a & Figure 68a. 
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Figure 67. Max. and min. in the LSR for three-planet ESIP a) 1200 Nm CCW b) 1200 Nm 
CW (Conf. 1) 

 

 

a)

b)
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Figure 68. Max. and min. in the LSR for three-planet ESIP a) 3600 Nm CCW b) 3600 Nm 
CW (Conf. 2) 

 

a)

b)
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From this point on, the results refer to the transmission with sequential 

phasing. At first, in Figure 69 & Figure 70, it is visible the increment in both 

the maximum and minimum values due to the sequence in the mesh phasing. 

Furthermore, it is relevant to address the fact that the radial error impact 

increases significantly under in this new configuration. This proves what was 

stated previously that the radial error effect is not negligible. In addition, it is 

necessary to acknowledge the fact that the maximum and minimum values are 

not directly related, opposite to what happened with the in-phase results. 

Sequential mesh phasing includes delay amongst teeth meshings and maximum 

and minimum values are asynchronous. Therefore, the summation of the 

maximum and the N-1 minimum values is not equal to the total input load. 
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Figure 69. Max. and min. in the LSR for three-planet ESSP a) 1200 Nm CCW b) 1200 Nm 
CW (Conf. 1) 

 

a)

b)
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Figure 70. Max. and min. in the LSR for three-planet ESSP a) 1200 Nm CCW b) 1200 Nm 
CW (Conf. 2) 

Despite the raise in the working load, in Figure 71 & Figure 72  the increase 

in the imbalances stays due to the effect of the sequential phasing. However, 

a)

b)
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there exists still a reduction due to the higher working load. As it can be seen 

for case 4. 

 

 

Figure 71. Max. and min. in the LSR for five-planet ESIP a) 3600Nm CCW b) 3600Nm CW 
(Conf. 1) 

a)

b)
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Figure 72. Max. and min. in the LSR for three-planet ESIP a) 3600Nm CCW b) 3600Nm CW 
(Conf. 2) 

 

a)

b)
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The increment in the number of planets augments the sensitivity of the 

transmission to the presence of errors, as shown in (Bodas & Kahraman, 2004). 

On these grounds, the inclusion of the same error on a transmission with 5 

planets instead of 3 will lead to bigger imbalances in relative terms.  

In this new 5-planet planetary transmission, the scenarios simulated are the 

same as for the 3-planet configuration.  For starters, in Figure 73 & Figure 74 

the results for a configuration as commented under 1200Nm load are gathered. 

Something that stands out is the increase in the impact of the radial error, 

just by increasing the number of planets. For this configuration, what was 

stated previously about the relevance of the radial error becomes even more a 

reality. 

Apart from the radial error (Case 2) it is significant the decrease on the impact 

of the tooth thickness error (Case 3), even more in comparison to the 

tangential error (Case 1). For a 3-planet configuration, these errors had similar 

impacts, this does not continue for 5-planet transmissions. Because of this, the 

summation of the tangential and tooth thickness errors (Case 5) does not 

provide a null effect for any of the load directions. Finally, for in-phase 

scenarios the imbalances observed in Figure 73 & Figure 74 are significantly 

higher than the ones in the in-phase transmission with 3 planets. This confirms 

what was expected beforehand. The parallelism between the configurations is 

also visible and having just the change in the size of the imbalance as stated 

before for the 3-planet transmissions. 
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Figure 73. Max. and min. in the LSR for five-planet ESIP a) 1200Nm CCW b) 1200Nm CW 
(Conf. 1) 

 

a)

b)
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Figure 74. Max. and min. in the LSR for five-planet ESIP a) 1200Nm CCW b) 1200Nm CW 
(Conf. 2) 

 

a)

b)
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In the following, the load is increased to 3600 Nm. Thus, as seen in Figure 75 

& Figure 76 the expected decrease in the imbalances appears as it happened 

in the analogous 3-plant configuration. For the cases that were highlighted in 

the scenarios under 1200 Nm, the decrease in the imbalances due to the higher 

load is notable. Furthermore, under this load the impact of the radial error 

and the tooth thickness error become almost identical. With this reduction in 

the impact of every other kind of error, the influence of the tangential error 

dominates the behaviour of the transmissions and their load sharing. 
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Figure 75. Max. and min. in the LSR for five-planet ESIP a) 3600Nm CCW b) 3600Nm CW 
(Conf. 1) 

 

 

a)

b)
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Figure 76. Max. and min. in the LSR for five-planet ESIP a) 3600Nm CCW b) 3600Nm CW 
(Conf. 2) 

 

a)

b)
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Finally, last but not least, the 5-planet transmissions with sequential phasing. 

In these last simulations, the joint effect of the sequential phasing and the 

increment of the planets will expectedly lead to a notable increase in the 

imbalances. Firstly, in Figure 77 & Figure 78 it is visible that the similitude 

between the radial and the tooth thickness errors continues. Due to the 

sequential phasing, their impact grows, but it does equally for both. Although 

their influence is higher, the impact of the tangential error continues to be 

significantly higher. Consequently, in the last three, where the tangential error 

joints with others, the imbalance is similar to the one in the Case 1, where 

there is just tangential error. 
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Figure 77. Max. and min. in the LSR for five-planet ESSP a) 1200Nm CCW b) 1200Nm CW 
(Conf. 1) 

 

 

a)

b)
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Figure 78. Max. and min. in the LSR for five-planet ESSP a) 1200Nm CCW b) 1200Nm CW 
(Conf. 2) 

Finally, whenever the load level is increased, as seen in Figure 79 & Figure 80, 

the impact of the errors lowers. The decrease in the Case 1 should be 

highlighted, given the fact that it is notably higher than for Cases 2 & 3. This 

a)

b)
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proves the importance of the geometry of the errors in the impact they have 

on the transmission and its load sharing. 

 

 

Figure 79. Max. and min. in the LSR for five-planet ESSP a) 3600Nm CCW b) 3600Nm CW 
(Conf. 1) 

a)

b)
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Figure 80. Max. and min. in the LSR for five-planet ESSP a) 3600Nm CCW b) 3600Nm CW 
(Conf. 2) 

 

 

a)

b)
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5.5.2 Imbalance created in the LSR: Configuration 1 

After all the cases presented, it is even more interesting to present the 

imbalances generated in relative terms to the ideal load level. However, given 

the similarities in the functioning of both configurations, this analysis is going 

to be performed only for the configuration 1 in look for conciseness.  

By using this procedure, the results for transmissions with different number of 

planets can be compared at the same level. To such comparison the magnitude 

ΔLSR. This magnitude is analytically expressed in (27). 

 
𝛥𝐿𝑆𝑅 =

(𝐿𝑆𝑅𝑖 − (
1
𝑁
))

1/𝑁
 

(27) 

By this comparison, it is possible to observe the imbalances generated in each 

transmission by the maximum/minimum load values.  

In Figure 81, the maximum and minimum values for the ΔLSR in the ESIP 

configurations are presented. Firstly, the decrease in the imbalances with the 

raise in the load is notable for any case and it can reach up to 40% for some 

of the considered scenarios. Normally, the imbalances in a 3-planet 

configuration are lower than in a 5-planet one, except for the tooth thickness 

error where the results prove the opposite behaviour. Furthermore, the 

increase of the number of planets raises the imbalances in the maximum 

values, compared to the analogous 3-planet transmission, but decreases or 

maintains the minimum values for CCW load. This translates on an increment 

of the overload, but a maintenance of the underloads. This is due to the 

decrease in the ideal load level as the number of planets augments. 
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a)

b)
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Figure 81. ΔLSR ESIP configurations: a) 1200Nm CCW b) 1200Nm CW            

c) 1200Nm CCW d) 1200Nm CW 

For ESSP configurations, there are many similarities in the results with the 

previous, as seen in Figure 82. For every error but the tooth thickness error, 

the imbalance in the maximum value is bigger for the configurations with 5 

planets. For the scenarios where the load is CCW, there exists an increment 

of the imbalance in the minimum values due to the sequential phasing, even 

though the imbalance in the maximum value stays similar to the one in ESIP 

transmissions. 

c)

d)
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a)

b)
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Figure 82. ΔLSR ESSP configurations: a) 1200Nm CCW b) 1200Nm CW          

c) 1200Nm CCW d) 1200Nm CW 

For every case, as stated before, the imbalance created by the radial error is 

neither negligible nor small. Actually, it reaches levels close to the ones 

generated by the tooth thickness error. The existence of uniformity in the 

results obtained in Figure 82 d is quite significant, showing how the working 

conditions can equalize the impact of various errors with different sizes. 

Finally, the increment in the load decreases the impact of the errors, but the 

c)

d)



156 Chapter 5: Error presence in planetary transmissions 

 

sequential phasing makes this decrease less significant than in the ESIP 

configurations.
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Chapter 6: Load sharing calculation by 

measuring root strains  

6.1. INTRODUCTION 

Gear transmissions are a recurrent solution in different ambits of life. These 

transmissions provide a wide variety of advantages that makes them the most 

appropriate solution for various applications.  

The research and industry fields in gears have experienced a still ongoing 

development in the virtual world. Therefore, as years passed by, more and 

more models to recreate planetary gear transmissions have been presented, as 

presented in section 2.3. Despite its reduced cost and outstanding 

development, virtual modelling has not completely substituted experimental 

works in gears. There still exist numerous research works in gears from the 

experimental point of view that prove to facilitate more accurate results in 

relation to the real performance of the transmission. In this scope, the study 

of the load sharing in planetary transmissions plays an important role, given 

the importance of the study of the component resistance and durability.  

In spite of all the studies presented in Chapter 2:, there seems to be a lack of 

numerical approaches to analyse the implications of both mesh phasing and 

tangential errors in the calculation of the load sharing by experimentally 

measuring the strains in planetary transmissions. The measuring of strains in 

gearboxes is a procedure employed to certify gearboxes in wind turbines 
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(“IEC61400 – 4: Design Requirements for wind turbine gearboxes,” n.d.), 

which gives the magnitude of the importance of an accurate measuring 

procedure. In this case, these strains will be measured in the root of the teeth 

in the sun gear, following the observation made by Hidaka, as commented in 

section 2.7. Besides, given the lack of flexibility in the body of the ring gear 

and the big size of the sun gear, which enables placing the strain gauges and 

the telemetry module, this location seems appropriate. Therefore, this chapter 

is oriented to mimic the behaviour of a strain gauge located in the root of one 

tooth in the sun gear and its behaviour due to the contact between the sun 

and the planets. Later, the strain data is employed to calculate the load 

sharing in the transmission and these results will be compared with the ones 

obtained from the LSR, which provides the real load sharing in the 

transmission. This comparison has been proved to be inaccurate in a previous 

work presented by Aurrekoetxea & Ruiz de Ocenda in (Aurrekoetxea et al., 

n.d.), therefore, this section if aimed to clarify the nature of these 

discrepancies. 

6.2. METHODS 

6.2.1 Finite-element models 

As mentioned before in section 3.3.1, the contact problem in the model 

employs a hybrid point of view. The FE models employed in this approach 

consist of a global and a local FE models shown in section 3.3.1.1. For this 

work, the information is extracted from the global model, presented in Figure 

83a.  The measuring of strains in the sun gear root is a technique employed in 

some cases (Aurrekoetxea et al., n.d.; Dai et al., 2016), this is the preferred 

procedure whenever the sun gear is big enough to dispose the gauges and 

necessary telemetry module. In addition, these measurements are necessary in 

order to certify the gearbox, at least in the wind generator business. However, 

this represents one possibility, another possible technique consists in 
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measuring the strains in the ring gear, at least for flexible rings such as the 

ones presented in (Ligata et al., 2008; Singh et al., 2008) . 

In order to evaluate numerically the accuracy of the experimental 

measurements, the focus for virtually mimicking the measurement is on the 

FE models. These models are described in section 3.3.1.1. Amongst all the 

defined finite-element models, the sun gear global model will be the target in 

this section. 

As a reminder from section 3.3.1.1, the mentioned model consist of a definition 

of a Z number of teeth and the body of the sun gear. In terms of boundary 

conditions, the nodes along the inner circle, where the gear is mounted on the 

shaft, are embedded. The rest of nodes are free in the plane. 

 

 

a) 

b) 
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Figure 83. Global FE models for the configuration 2: a) Sun, b) planet, and c) ring  

The Z number of teeth in every global FE model is obtained by using (28). 

This Z number considers all the possible contacts given the contact ratio 

(Figure 85), with the possibility of high contact ratio spur gears and the teeth 

that suffer strains due to the contact in adjacent teeth. 

 𝑍 = 2 · 𝑐𝑒𝑖𝑙ሺ휀 + 1) (28) 

In equation (28) the function ceil rounds the contact ratio ε+1 to the next 

integer in the positive direction. For the simulations performed in this work, 

Z will be equal to 6, given the contact ratios specified in Table 8. 

Table 8. Theoretical contact ratios in the studied configurations 

Configuration Parameter Value 

ESIP 
Contact ratio (sun-planet) 

Contact ratio (planet ring) 

1.294 

1.395 

ESSP 
Contact ratio (sun-planet) 

Contact ratio (planet ring) 

1.295 

1.397 

 

c) 
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Figure 84. 3-planet transmission after mounting 

 

Figure 85. Detail of the possible contacts in the marked section in Figure 84  

6.2.2 Definition of the virtual strain gauges 

In the following, the modelling of the virtual strain gauges is described. This 

approach obtains the strains in the root of the sun gear teeth by processing 

the already existing information in the global FE model. Thus, the change in 
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the distance between adjacent nodes in different sections will be obtained. The 

first step to take consists in identifying in the FE model the relevant nodes, 

select them, and gather the coordinates of their initial position. For this, three 

conditions are established: 

- The nodes have to belong to the root circumference. 

- They must be in the arc that connects the trochoids of consecutive 

teeth, but avoiding the nodes along the trochoid. 

- At the first and last teeth this number of nodes just have to be on 

the root circumference. 

Avoiding the trochoid of the teeth profile, the stress concentration effect that 

appears in this zone with the load would be avoided. Therefore, the strain 

gauge data will not be distorted by such effect. Taking all the previous into 

account, the nodes selected appear in Figure 86 and their coordinates are 

stored. Thus, the initial position of the nodes of interest is monitored. In this 

initial configuration, no load is applied in any of the Z teeth. By this procedure, 

the number of noded sections where the strains are measured will be Z+1, 

always. 

 

Figure 86. Detail of the noded sections in the global FE model. 

Secondly, in order to establish the initial length of the strain gauge each section 

of nodes is analysed separately. In every section, the distance between each 

pair of consecutive nodes is calculated by using (29). This equation 

approximates the distance as a straight line, a good enough approximation 

given the reduced length and therefore the negligible curvature. 
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𝑁𝑜𝑗,𝑖𝑁𝑜𝑗,ሺ𝑖+1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = √(𝑁𝑜𝑗,ሺ𝑖+1)𝑥 − 𝑁𝑜𝑗,𝑖𝑥)

2
+ (𝑁𝑜𝑗,ሺ𝑖+1)𝑦 − 𝑁𝑜𝑗,𝑖𝑦)

2
 (29) 

Noj,i refers to the node i in the j section of nodes. The subindexes x and y 

identify the horizontal and vertical components of the nodes Cartesian 

coordinates. 

The summation of the distances between the nodes that belong to each of the 

sections provides the length of the strain gauge. Equation (30) provides the 

reference value of that length, whenever there is no load in the model. 

 
𝐿𝑜𝑗 = ∑ 𝑁𝑜𝑗,𝑖𝑁𝑜𝑗,𝑖+1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑤𝑘ሺ𝑗)−1

𝑖=1

 (30) 

Then, equation (31) provides the results for the same calculation when load is 

applied in the model. The lack of the subindex o in the equation identifies this 

detail. 

 
𝐿𝑗 = ∑ 𝑁𝑗,𝑖𝑁𝑗,𝑖+1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑤𝑘ሺ𝑗)−1

𝑖=1

 (31) 

Once these values are known, the strain in each of the monitored sections will 

correspond to the difference in length of each section between the unloaded 

and the loaded configuration (32). 

 ∆𝐿𝑗 = 𝐿𝑗 − 𝐿𝑜𝑗 (32) 

With the previous steps, the strains in a supposed strain gauge could be 

modelled, and the strain gauge positioned in any of the monitored sections. 

However, in order to obtain the measurements of a strain gauge placed in one 

of the sections of nodes monitored, it is important to define the acquisition 

sequence, and to take into account the effect of any contact on such strain 

gauge. In the following section, all of these points are explained. 
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6.2.3 Contact sequence 

In order to manage the information acquired by the strain gauge, its location 

is greatly relevant. The strain gauge is considered to be positioned in the 

(Z/2)+1 section, which is the midst of the model. Thus, the initial single 

contact in the first tooth will have a small, but notable influence on the gauge. 

As commented before, the number Z of teeth show all the teeth that are 

notably influenced by a contact on the middle tooth. Consequently, the gauge 

placement assures the measuring of the strains produced by any contact in 

any of the considered teeth. 

Thus, the contact sequence starts with a single contact in the first tooth, which 

will produce a small strain in the gauge. After this, the contact will continue 

to the point that there will appear a double contact both in the first and 

second tooth. In such scenario, firstly, the strains due to the first contact will 

be monitored and then the ones due to the second. Finally, the superposition 

principle will sum up the effects of both contacts. This strategy will be applied 

continuously during the Z meshing cycles in the Z teeth, considering every 

possible contact that affect the strain gauge. 

In Figure 87, the contact sequence for the cases considered in this section is 

presented. The snapshots for simple and double contacts are represented. 

Every snapshot includes the strain gauge representation by a thick red line 

between teeth 3 and 4. 

In order to recreate virtually what is presented in Figure 87, the strains in 

every section between teeth are calculated in every contact position, by using 

equations (29)-(32). Then, due to the employed model, the relative position of 

the contact has to be taken into consideration to obtain the strain in the gauge. 

For starters, the position of the contact in the middle tooth in the FE model 

has to be taken into account. In any case, the contact appears in the middle 

tooth in the FE model, as shown in Figure 88. Thus, it is important to consider 

the sequence in the contacts to be able to allocate the relative position of the 

strain gauge with respect to the contact. Therefore, whenever the contact is 
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on the first tooth, in the FE model this tooth is the (Z/2)+1 tooth. Then, the 

strain in the gauge corresponds to the last measured section. Continuing with 

the sequence previously commented a double contact would appear. For both 

contacts, in the FE model, they will happen in the (Z/2)+1 tooth. For the 

contact in the tooth number 1, the previously explained still stands. Then, for 

the contact in the second tooth, the strains belonging to the gauge will be 

found in the strains the Z noded section. 

 

Figure 87. Snapshots of the contact sequence 
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Figure 88. Detail of the global FE model a) under no load b) under one of the load cases. 

For the example illustrated in Figure 87, the procedure commented above 

would start with a contact in the tooth 1, this in FE model will be the 4th 

tooth, as seen in Figure 88b. Thus, the strains in the gauge would be the ones 

in section S7. Then, the double contact would add to that the contact in the 

2nd tooth. This contact also in the FE model happens in the 4th tooth. By the 

relative positioning of the gauge to the contact and the FE model, the strains 

in the gauges due to this contact are the ones in the section S6 in the FE 

model. By this procedure and following the sequence in the contacts, the 

strains in the gauge can be recreated for any of the contact cases. The matrix 

gathered in (33) determines the section whose strains have to be considered 

for each contact case. For each meshing cycle, the row changes to the next 

one. In this matrix only the 8 meshing cycles considered for the simulations 

are studied. Whenever there is a single contact only the 4th column has to be 

considered, but whenever there is a double contact then the 5th column sets 

the section to consider. There are more columns to consider in case of high 

spur contact ratio. 

a) 

b) 
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𝑺𝒊 =

[
 
 
 
 
 
 
 
0 0 0 0 7 6 5
0 0 0 7 6 5 4
0 0 7 6 5 4 3
0 7 6 5 4 3 2
7 6 5 4 3 2 1
6 5 4 3 2 1 0
5 4 3 2 1 0 0
4 3 2 1 0 0 0]

 
 
 
 
 
 
 

 (33) 

This procedure leads to the mimicking of the measurements by an ideal strain 

gauge located in the arc along the root of the sun teeth. In the section 6.5 the 

results of these virtual measurements are presented, showing how the gauge 

first is under compression and, whenever the contact overtakes it, it gets under 

traction.  

6.3. LOAD SHARING CALCULATION 

In this work, the load sharing amongst planets will be calculated employing 

different definitions.  

Firstly, for the immediate calculation of the load sharing, the Load Sharing 

Ratio (LSR) is the magnitude chosen. This was employed previously in 

Chapter 3: & Chapter 4: as well as in publications (M. Iglesias et al., 2017; 

Miguel Iglesias et al., 2013; Sanchez-Espiga et al., 2020), also referred as Load 

Sharing Factor (LSF) in (Boguski et al., 2012; Ahmet Kahraman, 1999; Ahmet 

Kahraman & Vijayakar, 2001). This LSR allows to observe the amount of load 

in each planet, compared to the inlet torque at any moment of the simulation. 

The analytical definition of the LSR is reminded in equation (34) given its 

importance for the following analysis. 

 𝐿𝑆𝑅𝑠 =
𝐹𝑠

∑ 𝐹𝑡
𝑁
𝑡=1

 (34) 

In order to address the differences between the calculation of the load sharing 

by using the LSR, which represents the actual load sharing, and the strain 

measurements Figure 89 & Figure 90 are included. These represent ideal 

scenarios of the behaviour of both ESIP and ESSP transmissions without any 

1st contact 

2nd contact 
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tangential error in the pinhole of the planets. A sketch of the LSR and the 

strains in the gauges shows this behaviour. In both figures, the LSR is a 

continuous calculation. On the contrary, the strains in the contact with each 

planet are measured during a period of time. In each of the measurements of 

strains, the peak-to-peak value in the strains is obtained. 

 

Figure 89. Comparison of the LSR and the strain measurements in the ESIP transmissions 



Part III  169 

 

 

 

Figure 90. Comparison of the LSR and the strain measurements in the ESSP transmissions 

As seen in Fig.7, there exists a synchronicity between the peaks in the LSR 

and the strains. The maximum level of load, signalled by the maximum in the 

LSR, coincides with the peak of peak-to-peak value in the strains. After this, 

the calculation of the load sharing from the strains, which will be referred in 

the following as SGLR, is calculated. This magnitude refers to the size of each 

peak-to-peak value compared to the total of summation of every peak-to-peak 

value. Thus, the peak-to-peak value corresponding to each planet will be the 

same and will lead to a uniform result in the SGLR. On the contrary, a 

transmission with a sequential mesh phasing will have a fluctuant LSR, 

different to the SGLR as seen in Fig.6. Thus, the SGLR will only coincide with 

the real load sharing in the transmission in the ideal scenario of an ESIP 

transmission without any error, as seen in Fig.6. In order to obtain the SGLR 

(7) is used. 

 
𝑆𝐺𝐿𝑅𝑝𝑒 =

𝑋𝑝−𝑝
𝑝𝑒

∑ 𝑋𝑝−𝑝
𝑝𝑓𝑁

𝑓=1

 (35) 
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In equations (34) & (35) the N refers to the total number of planets. 

Furthermore, the subindex t is used as an auxiliary subindex to sum up the 

contributions of every planet in the transmission.   

6.4. CASES OF STUDY 

Firstly, for the measurements of the strains two cases of mesh phasing are 

considered. In the same manner as in the previous sections 4.6 & 5.4.  

The strain measurements are performed in the sun gear. By the definition of 

this technique, it is expected that the results obtained will be crucially affected 

by the mesh phasing in the transmission. Not only will phasing influence but 

also the manufacturing errors will play a crucial role. Thus, after the results 

observed for the manufacturing errors considered in section 5.5, the tangential 

pinhole position errors prove to have the highest impact. Therefore, these will 

be considered also for this new approach, however, with a wider scope of cases. 

The various cases considered, in terms of errors and mesh phasing are gathered 

in Table 9. The two configurations considered in the dimension of the teeth 

and the shaft mounting correspond to the ones presented in 5.4.  

Table 9. Pinhole position errors considered to study for both configurations. 

Configuration Tangential error 

ESIP 0 μm 1.25 μm 2.5 μm 3.75 μm 5 μm 6.25 μm 7.5 μm 

ESSP 0 μm 1.25 μm 2.5 μm 3.75 μm 5 μm 6.25 μm 7.5 μm 

None of the mentioned configurations includes flexibility in the shafts that 

support the wheels. This decision is due to the need of observing the pure 

effect of the load in the transmission and in the strain measurements, to which 

aim, the lack of floatability is a great asset. Nonetheless, in a future further 

step, the focus should be on the inclusion of floatability in the gear supports, 

increasing the realism of the simulations. However, it is important to highlight 

the importance of this consideration knowing that a more rigid system is more 
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sensitive to any error, as it can be seen in (Bodas & Kahraman, 2004) where 

the stiffness is increased by augmenting the N. This effect will probably be 

seen whenever the radius of the shaft mounting is modified, or the geometry 

of the teeth, or even the number of teeth. Thus, leading to a more rigid system 

more sensitive to errors, which translate in higher imbalances for a given error.  

6.5. RESULTS 

Hereinafter, the results to the cases of study are summarised. As a first step 

to comprehend the obtained results, Figure 91 & Figure 92 present the detail 

of sun-planet contacts, where the contacts are highlighted by a red circle and 

numbered as presented in Figure 85. In the in-phase configuration, only one 

figure is presented given the fact that every contact is at the same situation 

for any of the planets. These figures prove the differences in the contacts due 

to the mesh phasing. Both configurations are ideally perfect; therefore, the 

difference in the pairs of teeth in contact is caused by the mesh phasing. 

 

Figure 91. Detail of the contacts between sun and planets for 3-planet ESIP transmission. 

On the contrary, in a sequentially phased transmission every contact is at a 

different point along the meshing line, as seen in Figure 92 Thus, the number 

of teeth pairs in contact varies from one planet to the other. Likewise, the 
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meshing stiffness varies in each of the contacts, and this will influence the load 

sharing and the strains. 

 

 

 

Figure 92. Detail of the contacts between sun and planets for 3-planet ESSP transmission. 

As a consequence of those differences in the contacts, in Figure 93 a series of 

mechanical scenarios are plotted in order to introduce the physical explanation 

for the obtained results. Thus, the figure shows snapshots of 3 instants 

throughout the simulations. In every instant, a blue dotted box shows the 
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stiffness observed in the contact on each planet. This stiffness is related 

directly with the contact forces and the strains suffered by the strain gauge. 

Besides, this stiffness is affected by the mesh phasing. Then, given the data in 

each of these instants, considering the peak-to-peak value proportional to that 

stiffness, the SGLR is induced. 

As shown in Figure 93, the springs present differences in stiffness due to the 

mesh phasing in the sequentially phased scenario. For the strains experienced 

by the strain gauge, the differences due to the mesh phasing are not visible 

given the fact that the same cycle is repeated for every contact at different 

moments along the simulation. Although the cycles in the strains are not 

affected by the mesh phasing, it is notable for the LSR in each of the instants. 

Given that, discrepancies are expected between the results obtained by using 

each of the proposed techniques. This is a consequence of the fact that the 

strain gauge only observes what happens in each planet, and not on the rest, 

for a period of time, but whenever the sun will reach every different planet 

will observe analogous conditions. However, the LSR observes the 

circumstances in every planet at the same time, and therefore, it is affected 

directly by the conditions in the whole transmission and not only in one of the 

planets as it happens with the SGLR. 
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Figure 93. Mechanical analogy for the load sharing calculation discrepancies. 

In order to observe in detail the magnitudes mentioned in section 2.4, the LSR 

is presented, together with the strain measurements. This is presented for the 

case where there is a tangential position error of 1.25 μm. These magnitudes 

are shown both for the in-phase (Figure 94) and sequentially phased (Figure 

99) transmissions. By using this scenario, all the effects can be analysed. 

Looking for conciseness and given the parallelisms in the behaviour of both 

configurations, this detailed analysis has been limited to the configuration 2. 

However, the numerical data is extracted and analysed for every case in both 

configurations.  

Later, the results for all the other cases studied are presented together in order 

to show the tendencies that can be identified both in the LSR and the strains 

measurements. 
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Regarding the strains measured in the root of the teeth in the sun gear, these 

are shown in Figure 94 for the ESIP transmission with a 1.25 μm tangential 

error. Given the applied torque and the direction of the rotation in the sun 

gear, the contacts in the successive teeth start by compressing the gauge. The 

closer the contact gets to the gauge, the higher the measured compressing 

strain. However, whenever the contact becomes a double contact both in the 

tooth before and after the strain gauge, there is a combination of traction and 

compression that leads to the tipping point located right after the 4th meshing 

cycle in the sun. In the meshing cycles afterwards, the strains are tractions in 

the gauge whose amplitude diminishes as the meshing continues, given the fact 

that the contacts happen further from the gauge. As seen in the lower graph 

in Figure 94, due to the tangential error included in the mounting of the planet 

1, the amount of load in this planet is lower than in the other planets, as it 

can be expected in these conditions. For in-phase transmissions, this error 

affects equally the planet 2 & 3, therefore, the behaviour of the LSR and 

strains in planets 2 & 3 are identical, that is the reason why these lines overlap. 

Besides, the error in the planet 1 translates also in a lower peak-to-peak value 

in the strains, due to the contact with this planet. At the same time, the error 

narrows the width of the different strain sections in the strain graph in the 

planet 1. This narrowing is visible in the moment when the slope in the graph 

changes. This narrowing is due to the lower load in that planet together with 

the flexibility of the tooth, which leads to a lower effective contact ratio in 

that planet compared to the rest. 
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Figure 94. LSR and strains in the gauge in ESIP with 1.25 μm error (Conf. 2). 

Whenever the results in the strain measurements are observed together with 

the LSR results more effects can be identified. In Figure 94 some dotted lines 

are included in order to show the synchronicity in a relevant event such as the 

peak values in the strains and in the LSR. The changes in the LSR are related 

with the changes in the meshing stiffness, as well as the change of the pairs of 
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teeth in contact. The inexistence of mesh phasing makes these changes 

synchronous in each planet except for the small delay in the planet 1 due to 

the tangential error. In terms of the LSR, the variations in the planet 1 inside 

a meshing cycle are bigger than in the other planets. However, the average 

load in this planet is lower than in the rest of planets and, thus, the strains 

are smaller. 

These effects are studied in more depth varying the size of the tangential error 

in the mounting of the planet 1, as seen in Figure 95, Figure 96, Figure 97 & 

Figure 98. Thus, the variation of this error creates a tendency that continues 

along the simulations and prove the effects commented before. The higher the 

error, the bigger the imbalance in the LSR, and the lower the load in the 

planet with the error. 
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a) 0 μm b) 2.5 μm 

  

c) 3.75 μm d) 5 μm 

  

e) 6.25 μm f) 7.5 μm 

Figure 95. Strains in the gauge in ESIP with various errors for configuration 1. 
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a) 0 μm b) 2.5 μm 

  

c) 3.75 μm d) 5 μm 

  

e) 6.25 μm f) 7.5 μm 

Figure 96. LSR in ESIP with various errors in configuration 1. 
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a) 0 μm b) 2.5 μm 

  

c) 3.75 μm d) 5 μm 

  

e) 6.25 μm f) 7.5 μm 

Figure 97. Strains in the gauge in ESIP with various errors for configuration 2. 
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a) 0 μm b) 2.5 μm 

  

c) 3.75 μm d) 5 μm 

  

e) 6.25 μm f) 7.5 μm 

Figure 98. LSR in ESIP with various errors for configuration 2. 
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Because of that, the lower the strains in the contact with that planet. At the 

same time, the impact of the error in the width of the events in the strains 

and LSR becomes more visible the higher the error, proving what was 

commented but was difficult to spot for the case with 1.25 m error. 

In Table 10 & Table 11, the numerical results to the magnitudes of interest 

are gathered. In this case, the lack of mesh phasing uniforms the results in the 

maximum LSR (Max. LSR) and in the SGLR. This uniformity continues in 

the cases where there is tangential error in the planet 1. Even though there is 

an error, planets 2 & 3 conserve the uniformity in the mentioned results. Apart 

from that, the numerical results prove that the measuring of the strains to 

calculate the load sharing tend to minimise the impact of the tangential error. 

Thus, the SGLR in the planet 1 is higher than the average LSR, as well as the 

SGLR in planets 2 & 3 is lower than the average LSR. Therefore, the load 

sharing obtained in the SGLR is more uniform and diminishes the impact of 

the tangential error. 

Table 10. Numerical results for the ESIP configuration 1 in every case of study for 
configuration 1. 

 Planet 1 Planet 2 Planet 3 

et 

(μm) 

Avg. 

LSR 

Max. 

LSR 

SGLR Avg. 

LSR 

Max. 

LSR 

SGLR Avg. 

LSR 

Max. 

LSR 

SGLR 

0 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 

1.25 0.3047 0.3089 0.3060 0.3477 0.3498 0.3470 0.3477 0.3498 0.3470 

2.5 0.2761 0.2845 0.2787 0.3619 0.3662 0.3607 0.3619 0.3662 0.3607 

3.75 0.2477 0.2601 0.2523 0.3762 0.3826 0.3738 0.3762 0.3826 0.3738 

5 0.2193 0.2357 0.2276 0.3904 0.3990 0.3862 0.3904 0.3990 0.3862 

6.25 0.1910 0.2113 0.2031 0.4045 0.4153 0.3984 0.4045 0.4153 0.3984 

7.5 0.1628 0.1871 0.1788 0.4186 0.4316 0.4106 0.4186 0.4316 0.4106 
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Table 11. Numerical results for the ESIP configuration 2 in every case of study for 
configuration 2. 

 Planet 1 Planet 2 Planet 3 

et 

(μm) 

Avg. 

LSR 

Max. 

LSR 

SGLR Avg. 

LSR 

Max. 

LSR 

SGLR Avg. 

LSR 

Max. 

LSR 

SGLR 

0 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 

1.25 0.2829 0.2949 0.2872 0.3586 0.3651 0.3564 0.3586 0.3651 0.3564 

2.5 0.2328 0.2564 0.2465 0.3836 0.3967 0.3767 0.3836 0.3967 0.3767 

3.75 0.1834 0.2179 0.2076 0.4083 0.4281 0.3962 0.4083 0.4281 0.3962 

5 0.1346 0.1796 0.1688 0.4327 0.4592 0.4156 0.4327 0.4592 0.4156 

6.25 0.0869 0.1413 0.1309 0.4566 0.4897 0.4345 0.4566 0.4897 0.4345 

7.5 0.0516 0.1035 0.0935 0.4742 0.5 0.4533 0.4742 0.5 0.4533 

On the other hand, for ESSP configurations, as shown before in Figure 93 the 

contacts in each of the planets differ. Thus, the meshing stiffness is different 

and also will be the LSR and the strains, as shown in Figure 99. The mesh 

phasing provokes a delay between the peak values in the LSR. Then, the error 

adds a little difference in the behaviour of the planets, a tangential error equals 

to a small delay in the mesh phasing, thus, the peak values in the LSR are not 

equal to each other. However, in the configuration without error, the peak 

values are identical. Later, relating the strain measurements and the LSR, it 

is visible how there is a synchronicity between the peak values in the LSR and 

in the strains, and how these peaks are separated by the mesh phasing. Besides, 

the peak values of the strains in each planet are not identical either. Thus, the 

error modifies the geometry of the contact and the situation where the highest 

strain appears in any planet is not equal to the others. 
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Figure 99. LSR and strains in the gauge in ESSP with 1.25 μm error (Conf. 2). 

However, this difference is purely due to the tangential error. In Figure 100, 

Figure 101, Figure 102 & Figure 103 in the case without error every peak is 

identical to the rest, but the bigger the error, the bigger the difference between 

these peaks. This effect is due to the modification of the sequential phasing. 

The mesh phasing in a sequential configuration is uniformly divided in N parts. 
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A tangential error modified this division and, thus, each contact affects the 

rest but not equally, therefore, an imbalance is created and the load in each 

of the planets will not be the same. This stands also for the strains, given the 

fact that they are a direct consequence of the contact forces. The numerical 

values extracted from these results are gathered in Table 12 & Table 13. 

The numerical results gathered prove how these measurements tend to 

diminish the influence of both the mesh phasing and the tangential error. Thus, 

the results of the SGLR prove to be more uniform than the maximum values 

in the LSR. Thus, SGLR overestimates the uniformity in the load balance in 

the ESSP transmission studied. 

Table 12. Numerical results for the ESSP configuration 1 in every case of study for 
configuration 1. 

 Planet 1 Planet 2 Planet 3 

et 

(μm) 

Avg. 

LSR 

Max. 

LSR 

SGLR Avg. 

LSR 

Max. 

LSR 

SGLR Avg. 

LSR 

Max. 

LSR 

SGLR 

0 0.333 0.3506 0.333 0.333 0.3506 0.333 0.333 0.3506 0.333 

1.25 0.3053 0.3231 0.3070 0.3474 0.3649 0.3470 0.3473 0.3652 0.3460 

2.5 0.2774 0.2957 0.2810 0.3613 0.3796 0.3613 0.3613 0.3802 0.3577 

3.75 0.2495 0.2684 0.2544 0.3753 0.3942 0.3755 0.3753 0.3955 0.3700 

5 0.2218 0.2410 0.2281 0.3892 0.4089 0.3891 0.3891 0.4109 0.3828 

6.25 0.1941 0.2138 0.2015 0.4030 0.4235 0.4022 0.4029 0.4262 0.3963 

7.5 0.1665 0.1864 0.1749 0.4168 0.4381 0.4153 0.4167 0.4415 0.4098 
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Table 13. Numerical results for the ESSP configuration 2 in every case of study. 

 Planet 1 Planet 2 Planet 3 

et 

(μm) 

Avg. 

LSR 

Max. 

LSR 

SGLR Avg. 

LSR 

Max. 

LSR 

SGLR Avg. 

LSR 

Max. 

LSR 

SGLR 

0 0.333 0.363 0.333 0.333 0.363 0.333 0.333 0.363 0.333 

1.25 0.2844 0.3136 0.2888 0.3579 0.3893 0.3585 0.3578 0.3875 0.3527 

2.5 0.2358 0.266 0.2446 0.3822 0.4142 0.3833 0.3821 0.4179 0.372 

3.75 0.1877 0.2188 0.2011 0.4062 0.4407 0.4078 0.4062 0.4485 0.3911 

5 0.1401 0.1719 0.1562 0.4299 0.467 0.4303 0.43 0.4776 0.4135 

6.25 0.0933 0.1251 0.1106 0.4533 0.4931 0.453 0.4534 0.5061 0.4364 

7.5 0.0475 0.0769 0.0656 0.4761 0.517 0.4753 0.4764 0.5344 0.459 
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a) 0 μm b) 2.5 μm 

  

c) 3.75 μm d) 5 μm 

  

e) 6.25 μm f) 7.5 μm 

Figure 100. Strains in the gauge in ESSP with various errors for configuration 1. 
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a) 0 μm b) 2.5 μm 

  

c) 3.75 μm d) 5 μm 

  

e) 6.25 μm f) 7.5 μm 

Figure 101. LSR in ESSP with various errors for configuration 1. 
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a) 0 μm b) 2.5 μm 

  

c) 3.75 μm d) 5 μm 

  

e) 6.25 μm f) 7.5 μm 

Figure 102. Strains in the gauge in ESSP with various errors for configuration 2. 
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a) 0 μm b) 2.5 μm 

  

c) 3.75 μm d) 5 μm 

  

e) 6.25 μm f) 7.5 μm 

Figure 103. LSR in ESSP with various errors for configuration 2. 
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In a further step, the tendencies of the inaccuracies between the real maximum 

of the load sharing, obtained from the LSR, and the load sharing obtained by 

the SGLR are represented in Figure 104 & Figure 105. These figures gather 

the maximum value of these discrepancies. In this scenario, it is important to 

observe the fact that in the in-phase transmission without any error, the 

existing ideal balance leads to an accurate calculation of the load sharing with 

the SGLR. However, in the same scenario but with sequential phasing, there 

exists a discrepancy between the LSR and the SGLR. Thus, the accuracy of 

the load sharing calculated from the strain measurements is quantified. Then, 

the increment of the tangential error in the planet 1 mounting increases these 

inaccuracies. In terms of the growth of the inaccuracy in the calculation of the 

load sharing, in the ESIP configuration this pace seems to be uniform for any 

tangential error until the 7.5 m tangential error that produces moments where 

the contact in the planet 1 is lost, as seen in Fig.13f. On the contrary, in the 

ESSP transmission this pace varies with the tangential error and different 

slopes can be identified in the graph. The variation between the scenarios with 

0 error and 1.25 present a slight variation, however, in the scope from 1.25-5 

there is a higher slope, which changes from then on to a lower slope, even 

lower than the one in the ESIP transmission's results. Finally, in the last case, 

for the configuration 2, where there is loss of contact in the planet with error 

the development of the discrepancy is highly affected, losing any kind of linear 

proportion with any of the previous values. However, in configuration 1 the 

higher flexibility in the sun gear avoids the loss of contact. 
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Figure 104. Discrepancies between the maximum LSR and SGLR results for configuration 
1(Graph). 

 
Figure 105. Discrepancies between the maximum LSR and SGLR results for configuration 

2(Graph). 

In more depth, in Table 14 & Table 15 the numerical values of the mentioned 

discrepancies for every case of study in each planet are gathered. These values 

prove how the phasing creates a discrepancy in the results, but this 

discrepancy is uniform for the 3 planets. Then, the tangential error modifies 

this uniformity. In the ESIP configuration planet 1 behaves differently to 

planets 2 & 3, who have identical behaviour. On the contrary, in the ESSP 
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transmission the impact of the error is higher and modifies the behaviour of 

every planet, being the planet 3 the most affected. By this, this planet will be 

the one that provides the highest inaccuracy in the results obtained by this 

measuring technique. 

Table 14. Discrepancies between the maximum LSR and SGLR results for configuration 2 
(numerical results). 

Case Planet 1(%) Planet 2(%) Planet 3(%) 

ESIP@et[0] 0 0 0 

ESSP@et[0] 5.28 5.28 5.28 

ESIP@et[1.25] 0.87 0.84 0.84 

ESSP@et[1.25] 4.83 5.38 5.77 

ESIP@et[2.5] 1.74 1.65 1.65 

ESSP@et[2.5] 4.41 5.50 6.76 

ESIP@et[3.75] 2.34 2.64 2.64 

ESSP@et[3.75] 4.20 5.62 7.66 

ESIP@et[5] 2.43 3.84 3.84 

ESSP@et[5] 3.87 5.95 8.44 

ESIP@et[6.25] 2.46 5.08 5.08 

ESSP@et[6.25] 3.69 6.40 8.97 

ESIP@et[7.5] 2.49 6.31 6.31 

ESSP@et[7.5] 3.45 6.85 9.52 
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Table 15. Discrepancies between the maximum LSR and SGLR results for configuration 2 
(numerical results). 

Case Planet 1(%) Planet 2(%) Planet 3(%) 

ESIP@et[0] 0 0 0 

ESSP@et[0] 9 9 9 

ESIP@et[1.25] 2.31 2.61 2.61 

ESSP@et[1.25] 7.44 9.24 10.44 

ESIP@et[2.5] 2.97 6 6 

ESSP@et[2.5] 6.48 9.36 13.91 

ESIP@et[3.75] 3.09 9.57 9.57 

ESSP@et[3.75] 5.31 9.87 17.22 

ESIP@et[5] 3.24 13.08 13.08 

ESSP@et[5] 4.71 11.01 19.23 

ESIP@et[6.25] 3.12 16.56 16.56 

ESSP@et[6.25] 4.35 12.03 20.91 

ESIP@et[7.5] 3 14.01 14.01 

ESSP@et[7.5] 3.39 12.51 22.62 
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Chapter 7: Contributions, conclusions 

and future work 

7.1. CONTRIBUTIONS 

In the context of this Ph.D. work several topics have been analysed in the 

context of the planetary gear transmissions employed in industrial 

applications. In all these different topics the common factor relies on the 

impact of the transmission geometry in its behaviour under different working 

conditions. In this work, the transmission geometry refers to the planet spacing 

and the mesh phasing, and the study of its behaviour is focused on the load 

sharing. In more detail, the following points can be highlighted: 

- An analytical study of the conditions that classify the transmissions 

depending on their geometry has been performed in order to expand 

the previous conditions and understanding. 

- The influence of the geometry in the behaviour of the planetary 

transmissions has been studied for different numbers of planets. Thus, 

the direct relation between the geometry and the load sharing in the 

transmission has been studied in depth, determining the impact that 

the geometry has on the load sharing. 

- The impact that having floatability in the sun gear has in its 

behaviour was analysed either for the scenarios that are defined by 

the transmission geometry. 
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- Manufacturing errors in a context such as planetary transmissions are 

impossible to avoid, thus, this topic has been the subject of numerous 

studies. However, this work focuses on the impact of some of those 

errors in a variety of transmissions where the mesh phasing and the 

number of planets are modified.  

- Finally, this work analyses in depth the use of strains measured in the 

root of the teeth in the sun gear, which is a measuring technique 

suggested in (“IEC61400 – 4: Design Requirements for wind turbine 

gearboxes,” n.d.) in order to certify gearboxes for wind turbines. In 

this context, a numerical evaluation is made to establish the 

differences between the real load sharing, represented by the LSR, and 

the calculation of the load sharing from those strains. Consequently, 

the error made by such measuring technique with respect to the real 

load sharing were quantified in different scenarios. 

7.2. CONCLUSIONS 

After all the ideas presented in this work, several conclusions can be extracted 

in regards to the behaviour of planetary transmissions under different working 

conditions determined by its geometry. Also, the measuring techniques have 

been analysed and in view of the results obtained some conclusions are 

extracted in the following: 

- Infinitely rigid systems with fixed elements are affected by the mesh 

phasing but not by the planet spacing. Thus, the load sharing of non-

equally spaced transmissions is perfectly balanced for any in-phase 

transmission. On the contrary, the non-equal spacing modifies the 

sequence in the mesh phasing and makes a difference between the 

ESSP and NESSP transmissions. 
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- For any ESSP transmission with a floating sun, this will describe an 

orbit around the reference position with a number of closed loops equal 

to the number of planets. 

- The change in the number of planets in a planetary transmission 

affects the influence of the floatability included in the support of the 

sun gear. 

- Sequentially phased transmissions have a worse behaviour, in terms 

of load sharing, than the equal in-phase transmission, both for equally 

and non-equally spaced transmissions.  

- Whenever an error exists, sequentially phased transmissions are more 

influenced by an equal error than an in-phase transmission. Thus, the 

imbalance created by such error is bigger in the sequentially phased 

transmission than in the in-phase one.  

- Systems that are more rigid are more sensitive to any kind of error. 

This rigidity could be in the shape of a higher number of planets, 

higher stiffness in the wheels, or less load in the system given the fact 

that with a higher load the teeth will bend more and the load sharing 

becomes less abrupt. 

- The results obtained prove that the influence of the radial pinhole 

position error is neither null nor negligible. It even gains in importance 

with the inclusion of sequential mesh phasing and the raise in the 

number of planets. However, the magnitude of the radial error studied 

is significantly bigger than the rest, thus, the tolerance for this error 

can be higher than for the tangential one. 

- Higher loads provide a more uniform load sharing from the 

transmissions, due to the raise in the effective contact ratio, 

analogously to what happens with helical gears. 

- The role of the tangential error as an imbalance-creator factor gains 

in importance with the increase of the number of planets. On the 
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contrary, the higher the number of planets, the less important the 

tooth thickness error is. 

- For some errors size and a torque direction, there exists a nulling effect 

between tooth thickness and tangential errors for 3-planet planetary 

transmissions. This is just for in-phase configurations, whenever the 

error is small enough that the change in the mounting distance and 

pressure angle are negligible.  

- The use of strain gauges in the sun gear tooth root to measure the 

load sharing in planetary transmissions prove to be inaccurate 

compared to the real load sharing in the transmissions.  

- The accuracy of these measuring techniques is directly affected by the 

lack of continuous monitoring. This technique obtains a brief amount 

of the strains suffered on the teeth due to the contacts given the 

measuring during a time window. 

- The mesh phasing proves to play a crucial role in the measuring 

procedure given the lack of synchronicity. The synchronization 

between the strain gauge acquisition and the imbalance-creating factor 

is crucial. In case of lack of synchronization, the gauge would miss the 

effect of temporary flaw. 

- The error made by the measurements in the strain gauge raises with 

the growth of the tangential pinhole position error. The growth of this 

error proves to have different speeds depending on the size of the 

tangential error. 

- Under any working condition, there exists an error in the calculation 

of the load sharing of a planetary transmission from the strains in the 

root of the sun gear teeth, just with the exception of any ideal ESIP 

transmission. The change in the working conditions will change the 

magnitude of the errors, but will not make it disappear.    
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7.3. FUTURE WORKS 

Finally, this work is another step taken in a real complex topic that requires 

more study, both for its complexity and the interest that these transmissions 

have in the current society and in the near future. Thus, this work should be 

continued in order to understand better all the points made along this 

document and to enhance the understanding   

- Virtual modelling: Some of the approaches presented in this work are 

also interesting in a context of helical gears. To this end, the model 

presented should be extended to a 3-D formulation.  

- Study planetary transmissions with a number of planets higher than 

5. Thus, different possibilities appear in terms of the sequential mesh 

phasing with an even number of planets. 

- Geometrical influence: Analyse the impact of the planet spacing and 

mesh phasing in a dynamic model. Thus, the vibrational response of 

the transmission can be analysed. 

- Manufacturing errors: Extend the scope of errors and include errors 

whose influence changes in time, thus, every contact would be 

modified. 

- Inclusion of floatability in the gear supports to reduce the stiffness in 

the models and observe the influence of the orbits.   

- Experimental measuring: The numerical analysis of experimental 

procedures by measuring strains should be expanded to more 

approaches, such as gauges in the ring gear or in the planet pins. To 

this aim, the approach for the FE model of the ring gear has to be 

changed in order to modify the boundary conditions and study the 

deflections in the body of the gear. 

- Experimental measurements of strains in different locations along the 

planetary gearbox. 
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ANNEX: Numerical results 

A.I. GEOMETRY 

Geometrical verifications of the conditions for the classification of the 

transmissions.  

A.I.1. 3-planet transmissions 

Table 16. Numerical verification of the angular spacing (3-planet transmission). 

N=3 k1 k2 k3 

ESIP 0 80 160 

ESSP 0 80 160 

NESIP 0 80 176 

NESSP 0 82 182 

NESAP 0 84 162 

 

Table 17. Numerical results to the mesh phasing (3-planet transmission). 

N=3 n1 n2 n3 

ESIP 0 55 110 

ESSP 0 53.333 110.667 

NESIP 0 55 121 

NESSP 0 56.375 125.125 

NESAP 0 57.75 111.375 
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A.I.2. 5-planet transmissions 

Table 18. Numerical verification of the angular spacing (5-planet transmission). 

N=5 k1 k2 k3 k4 k5 

ESIP 0 48 96 144 192 

ESSP 0 48 96 144 192 

NESIP 0 48 80 144 208 

NESSP 0 35 79 148 202 

NESAP 0 46 97 145 204 

 

Table 19. Numerical results to the mesh phasing (5-planet transmission). 

N=5 n1 n2 n3 n4 n5 

ESIP 0 33 66 99 132 

ESSP 0 33.2 66.4 99.6 132.8 

NESIP 0 33 55 99 143 

NESSP 0 24.0625 54.3125 101.75 138.875 

NESAP 0 31.625 66.6875 99.6875 140.25 
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A.II. ERRORS 

Numerical values of the LSR results presented in section 5.5. 

A.II.1 Configuration 1: 

Table 20. LSR in 3-planet ESIP 1200 Nm CCW (Conf. 1). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.3937 0.3396 0.3937 0.4018 0.4541 0.4665 

Min LSR 0.3032 0.3302 0.3032 0.2991 0.273 0.2668 

 

Table 21. LSR in 3-planet ESIP 1200 Nm CW (Conf. 1). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.3629 0.3397 0.3927 0.3605 0.3333 0.3461 

Min LSR 0.2741 0.3301 0.3036 0.279 0.3333 0.3269 

 

Table 22. LSR in 3-planet ESIP 3600 Nm CCW (Conf. 1). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.3557 0.3363 0.3557 0.3587 0.378 0.3838 

Min LSR 0.3222 0.3318 0.3221 0.3207 0.311 0.3081 

 

Table 23. LSR in 3-planet ESIP 3600 Nm CW (Conf. 1). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.3437 0.3358 0.3542 0.3433 0.3333 0.3396 

Min LSR 0.3125 0.3321 0.3229 0.3134 0.3333 0.3302 
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Table 24. LSR in 3-planet ESSP 1200 Nm CCW (Conf. 1). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.4116 0.3616 0.4116 0.4166 0.4683 0.4782 

Min LSR 0.2664 0.2899 0.2664 0.2641 0.2402 0.2361 

 

Table 25. LSR in 3-planet ESSP 1200 Nm CW (Conf. 1). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.3865 0.362 0.413 0.3838 0.3571 0.367 

Min LSR 0.2419 0.2899 0.2661 0.2466 0.292 0.2877 

 

Table 26. LSR in 3-planet ESSP 3600 Nm CCW (Conf. 1). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.378 0.3596 0.378 0.3798 0.398 0.4016 

Min LSR 0.2872 0.2966 0.2872 0.2862 0.277 0.2751 

 

Table 27. LSR in 3-planet ESSP 3600 Nm CW (Conf. 1). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.3701 0.3615 0.3788 0.3692 0.3598 0.363 

Min LSR 0.2746 0.291 0.2831 0.2762 0.2918 0.2903 
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Table 28. LSR in 5-planet ESIP 1200 Nm CCW (Conf. 1). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.2717 0.2086 0.2121 0.2777 0.2892 0.2957 

Min LSR 0.1821 0.1978 0.197 0.1806 0.1777 0.1761 

 

Table 29. LSR in 5-planet ESIP 1200 Nm CW (Conf. 1). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.2175 0.2071 0.2151 0.2159 0.2167 0.215 

Min LSR 0.1298 0.1982 0.1962 0.1363 0.1332 0.1399 

 

Table 30. LSR in 5-planet ESIP 3600 Nm CCW (Conf. 1). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.2247 0.2029 0.2041 0.2271 0.2293 0.232 

Min LSR 0.1938 0.1993 0.199 0.1932 0.1927 0.192 

 

Table 31. LSR in 5-planet ESIP 3600 Nm CW (Conf. 1). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.2061 0.2028 0.2051 0.2057 0.2054 0.2049 

Min LSR 0.1755 0.1993 0.1987 0.1773 0.1783 0.1804 

 

  



226 ANNEX  

 

Table 32. LSR in 5-planet ESSP 1200 Nm CCW (Conf. 1). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.2299 0.2191 0.2203 0.2283 0.2305 0.2289 

Min LSR 0.1159 0.172 0.1711 0.1211 0.1229 0.1284 

 

Table 33. LSR in 5-planet ESSP 1200 Nm CW (Conf. 1). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.2802 0.2195 0.2211 0.2864 0.2934 0.3 

Min LSR 0.1579 0.1711 0.1708 0.1566 0.1552 0.1538 

 

Table 34. LSR in 5-planet ESSP 3600 Nm CCW (Conf. 1). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.2197 0.2157 0.2169 0.2191 0.2193 0.2187 

Min LSR 0.1523 0.1715 0.1713 0.1541 0.1546 0.1569 

 

Table 35. LSR in 5-planet ESSP 3600 Nm CW (Conf. 1). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.2357 0.2142 0.2154 0.2379 0.2398 0.242 

Min LSR 0.1665 0.1712 0.1709 0.1662 0.1656 0.1653 
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A.II.2 Configuration 2: 

Table 36. LSR in 3-planet ESIP 1200 Nm CCW (Conf. 2). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.3967 0.3592 0.4608 0.3851 0.3334 0.3592 

Min LSR 0.2067 0.3204 0.2696 0.2299 0.3333 0.3204 

 

Table 37. LSR in 3-planet ESIP 1200 Nm CW (Conf. 2). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.4605 0.3630 0.4605 0.4892 0.5882 0.6157 

Min LSR 0.2697 0.3185 0.2697 0.2554 0.2059 0.1921 

 

Table 38. LSR in 3-planet ESIP 3600 Nm CCW (Conf. 2). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.3553 0.3432 0.3774 0.3531 0.3334 0.3433 

Min LSR 0.2894 0.3284 0.3113 0.2937 0.3333 0.3284 

 

Table 39. LSR in 3-planet ESIP 3600 Nm CW (Conf. 2). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.3773 0.3478 0.3773 0.3922 0.4213 0.4348 

Min LSR 0.3114 0.3261 0.3114 0.3044 0.2893 0.2826 
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Table 40. LSR in 3-planet ESSP 1200 Nm CCW (Conf. 2). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.4179 0.3813 0.4681 0.4066 0.3638 0.3814 

Min LSR 0.1927 0.2712 0.2320 0.2097 0.2788 0.2711 

 

Table 41. LSR in 3-planet ESSP 1200 Nm CW (Conf. 2). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.5144 0.4226 0.5144 0.5326 0.6244 0.6425 

Min LSR 0.2128 0.2531 0.2128 0.2049 0.1646 0.1566 

 

Table 42. LSR in 3-planet ESSP 3600 Nm CCW (Conf. 2). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.3908 0.3748 0.4096 0.3859 0.3679 0.3749 

Min LSR 0.2872 0.2966 0.2872 0.2739 0.3036 0.3008 

 

Table 43. LSR in 3-planet ESSP 3600 Nm CW (Conf. 2). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.4445 0.4098 0.4445 0.4507 0.4838 0.4901 

Min LSR 0.2448 0.2636 0.2448 0.2418 0.2272 0.2245 
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Table 44. LSR in 5-planet ESIP 1200 Nm CCW (Conf. 2). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.2370 0.2295 0.2266 0.2303 0.2441 0.2363 

Min LSR 0.0520 0.1926 0.1934 0.0788 0.0237 0.0549 

 

Table 45. LSR in 5-planet ESIP 1200 Nm CW (Conf. 2). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.3507 0.2321 0.2268 0.3826 0.3876 0.4256 

Min LSR 0.1623 0.1920 0.1933 0.1543 0.1531 0.1436 

 

Table 46. LSR in 5-planet ESIP 3600 Nm CCW (Conf. 2). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.2129 0.2111 0.2076 0.2109 0.2136 0.2114 

Min LSR 0.1483 0.1972 0.1981 0.1564 0.1456 0.1542 

 

Table 47. LSR in 5-planet ESIP 3600 Nm CCW (Conf. 2). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.2519 0.2141 0.2078 0.2658 0.2563 0.2708 

Min LSR 0.1870 0.1965 0.1980 0.1835 0.1859 0.1823 
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Table 48. LSR in 5-planet ESSP 1200 Nm CCW (Conf. 2). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.2423 0.2394 0.2439 0.2427 0.2666 0.2601 

Min LSR 0.0688 0.1583 0.1391 0.0857 0.0249 0.0462 

 
Table 49. LSR in 5-planet ESSP 1200 Nm CW (Conf. 2). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.3759 0.2619 0.2484 0.3991 0.4030 0.4331 

Min LSR 0.1293 0.1535 0.1535 0.1245 0.1240 0.1174 

 

Table 50. LSR in 5-planet ESSP 3600 Nm CW (Conf. 2). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.2379 0.2339 0.2287 0.2358 0.2416 0.2393 

Min LSR 0.1255 0.1658 0.1642 0.1339 0.1200 0.1302 

 

Table 51. LSR in 5-planet ESSP 3600 Nm CW (Conf. 2). 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Max LSR 0.2955 0.2550 0.2506 0.3035 0.2973 0.3059 

Min LSR 0.1463 0.1547 0.1519 0.1446 0.1459 0.1441 
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A.III. DELTAS 

Numerical results of the ΔLSR generated by the errors studied in section 5.5. 

Table 52. ΔLSR in 3 & 5-planet ESIP 1200 Nm (Conf. 1). 

 3-planets 5-planets 

 CW CCW CW CCW 

 MAX 

(%) 

MIN 

(%) 

MAX 

(%) 

MIN 

(%) 

MAX 

(%) 

MIN 

(%) 

MAX 

(%) 

MIN 

(%) 

Case 1 8.9 -17.8 18.1 -9 8.7 -35.1 35.8 -9 

Case 2 1.9 -1 1.9 -1 3.5 -0.9 4.3 -1.1 

Case 3 17.8 -8.9 18.1 -9 7.6 -1.9 6.1 -1.5 

Case 4 8.2 -16.3 20.5 -10.3 7.9 -31.9 38.8 -9.7 

Case 5 0 0 36.2 -18.1 8.3 -33.4 44.6 -11.2 

Case 6 3.8 -1.9 40 -20 7.5 -30.1 47.9 -12 

 

  



232 ANNEX  

 

Table 53. ΔLSR in 3 & 5-planet ESIP 3600 Nm (Conf. 1). 

 3-planets 5-planets 

 CW CCW CW CCW 

 MAX 

(%) 

MIN 

(%) 

MAX 

(%) 

MIN 

(%) 

MAX 

(%) 

MIN 

(%) 

MAX 

(%) 

MIN 

(%) 

Case 1 3.1 -6.2 6.7 -9 3 -12.3 12.4 -3.1 

Case 2 0.7 -0.4 0.7 -1 1.4 -0.4 1.4 -0.4 

Case 3 6.3 -3.1 6.3 -9 2.5 -0.7 2 -0.5 

Case 4 3 -6 3 -10.3 2.8 -11.3 13.5 -3.4 

Case 5 0 0 0 -18.1 2.7 -10.9 14.6 -3.7 

Case 6 1.9 -1 1.9 -20 2.4 -9.8 26 -12 
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Table 54. ΔLSR in 3 & 5-planet ESSP 1200 Nm (Conf. 1). 

 3-planets 5-planets 

 CW CCW CW CCW 

 MAX 

(%) 

MIN 

(%) 

MAX 

(%) 

MIN 

(%) 

MAX 

(%) 

MIN 

(%) 

MAX 

(%) 

MIN 

(%) 

Case 1 16 -27.4 23.5 -20.1 14.9 -42.1 40.1 -21.1 

Case 2 8.6 -13 8.5 -13 9.5 -14 9.7 -14.5 

Case 3 23.9 -20.2 23.5 -20.1 10.1 -14.5 10.5 -14.6 

Case 4 15.1 -26 25 -20.8 14.1 -39.5 43.2 -21.7 

Case 5 7.1 -12.4 40.5 -27.9 15.3 -38.6 46.7 -22.4 

Case 6 10.1 -13.7 43.5 -29.2 14.4 -35.8 50 -23.1 
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Table 55. ΔLSR in 3 & 5-planet ESSP 3600 Nm (Conf. 1). 

 3-planets 5-planets 

 CW CCW CW CCW 

 MAX 

(%) 

MIN 

(%) 

MAX 

(%) 

MIN 

(%) 

MAX 

(%) 

MIN 

(%) 

MAX 

(%) 

MIN 

(%) 

Case 1 11 -17.6 13.4 -13.8 9.8 -23.9 17.8 -16.8 

Case 2 8.5 -12.7 7.9 -11 7.8 -14.3 7.1 -14.4 

Case 3 13.6 -15.1 13.4 -13.8 8.4 -14.4 7.7 -14.6 

Case 4 10.8 -17.1 13.9 -14.1 9.5 -23 18.9 -16.9 

Case 5 7.9 -12.5 19.4 -16.9 9.6 -22.7 19.9 -17.2 

Case 6 8.9 -12.9 20.5 -17.5 9.3 -21.6 21 -17.4 
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