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Abstract
The tensor rank decomposition, or canonical polyadic decomposition, is the decom-
position of a tensor into a sum of rank-1 tensors. The condition number of the tensor
rank decomposition measures the sensitivity of the rank-1 summands with respect
to structured perturbations. Those are perturbations preserving the rank of the tensor
that is decomposed. On the other hand, the angular condition number measures the
perturbations of the rank-1 summands up to scaling. We show for random rank-2 ten-
sors that the expected value of the condition number is infinite for a wide range of
choices of the density. Under a mild additional assumption, we show that the same
is true for most higher ranks r ≥ 3 as well. In fact, as the dimensions of the tensor
tend to infinity, asymptotically all ranks are covered by our analysis. On the contrary,
we show that rank-2 tensors have finite expected angular condition number. Based on
numerical experiments, we conjecture that this could also be true for higher ranks.
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Our results underline the high computational complexity of computing tensor rank
decompositions. We discuss consequences of our results for algorithm design and for
testing algorithms computing tensor rank decompositions.

Keywords Tensor decomposition · Condition number · Average analysis
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1 Introduction

1.1 The Condition Number of Tensor Rank Decomposition

In this article, a tensor is a multidimensional array filled with numbers:

A := (ai1,...,id )1≤i1≤n1,...,1≤id≤nd ∈ R
n1×···×nd .

The integer d is called the order of A . The tensor product of d vectors u1 ∈
R
n1 , . . . ,ud ∈ R

nd is defined to be the tensor u1 ⊗ · · · ⊗ ud ∈ R
n1×···×nd with

entries

(u1 ⊗ · · · ⊗ ud)i1,...,id := u(1)
i1
· · · u(d)

id
, where u j = [u( j)

i ]1≤i≤n j .

Any nonzero multidimensional array obeying this relation is called a rank-1 tensor.
Not every multidimensional array represents a rank-1 tensor, but every tensor A is a
finite linear combination of rank-1 tensors:

A =
r∑

i=1
Ai , where Ai = u1i ⊗ · · · ⊗ udi has rank one for each 1 ≤ i ≤ d. (1)

Hitchcock [50] coined the name polyadic decomposition for the decomposition Eq.
(1). The smallest number r for which A admits an expression as in Eq. (1) is called
the (real) rank of A . A corresponding minimal decomposition is called a canonical
polyadic decomposition (CPD).

For instance, in algebraic statistics [1,59], chemical sciences [67], machine learning
[4], psychometrics [54], signal processing [35,36,65], or theoretical computer science
[29], the input data have the structure of a tensor and the CPD of this tensor reveals
the information of interest. Usually, this data is subject to measurement errors, which
will cause the CPD computed from the measured data to differ from the CPD of the
true data. In numerical analysis, the sensitivity of the model parameters, such as the
rank-1 summands in the CPD, to perturbations of the data is often quantified by the
condition number [61].

When there are multiple CPDs of a tensor A , the condition number must be defined
at a decomposition {A1, . . . ,Ar }. However, in this article, we will restrict our analysis
to tensors A having a unique decomposition. Such tensors are called identifiable. In
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this case, the condition number of the tensor rank decomposition of a tensor A is well-
defined, and we denote it by κ(A). We will explain in Section 1.3 in greater detail
the notion of identifiability of tensors. At this point, the reader should mainly bear in
mind that the assumption of being identifiable is comparably weak as most tensors of
low rank satisfy it. However, note that matrices (d = 2) are never identifiable, so we
assume that the order of the tensor is d ≥ 3.

The condition number of tensor rank decomposition was characterized in [20],
and it is the condition number of the following computational problem: On input A ∈
R
n1×···×nd of rank r , compute the set of rank-1 terms {A1, . . . ,Ar } in the decomposition

Eq. (1). This condition numbermeasures the sensitivity of the rank-1 termswith respect
to perturbations of the tensor A . In other words, when the condition number κ(A) of
the rank-r identifiable tensor A =∑r

i=1 Ai in Eq. (1) is finite, it is the smallest value
κ(A) such that

min
π∈Sr

√√√√
r∑

i=1
‖Ai − A ′πi

‖2 ≤ κ(A)‖A − A ′‖ + o(‖A − A ′‖) (2)

holds for all rank-r tensors A ′ =∑r
i=1 A ′i (with A ′i of rank 1) sufficiently close to A .

Herein, the norm onRn1×···×nd is the usual Euclidean norm, andSr is the permutation
group on {1, . . . , r}. It was shown in [24, Corollary 5.5] that the same expression holds
if A ′ is any tensor close to A and

∑r
i=1 A ′i is the best rank-r approximation of A ′ in

the Euclidean norm.
As a general principle in numerical analysis, the condition number is an intrinsic

property of the computational problem that governs the forward error and attainable
precision of any method for solving the problem. Its study is also useful for other
purposes. For example, in [21,22] the local rate of convergence of Riemannian Gauss–
Newton optimization methods for computing the CPD was related to the condition
number κ(A).

A conventional wisdom in numerical analysis is that it is harder to compute the
condition number of a given problem instance than solving the problem itself [38,
39]. This viewpoint led Smale to initiate the study of the probability distribution of
condition numbers: If the condition number is small with high probability, then for
many practical purposes one can assume that any given input is well-conditioned; at
least the probability of failure necessarily will be small. Smale started studying the
probability that a polynomial is ill-conditioned [66]. This strategy was extended to
linear algebra condition numbers [26,31,41], to systems of polynomial equations in
diverse settings [42,62], to linear systems of inequalities [49], to linear and convex
programming [2,68], eigenvalue and eigenvectors in the classic and other settings
[7], to polynomial eigenvalue problems [6,8], and to other computational models [30],
among others. As there is a substantive bibliography on this setting, we refer the reader
to [28] for further details.

Tensor rank decomposition seems to be no exception to this wisdom: The charac-
terization of κ(A) for a given A in [20] requires the CPD of A itself. This forces us
to rely on probabilistic studies to establish reasonable a priori values of the condition
number. Settling this is the main purpose of this paper.
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1.2 Informal Version of Our Main Results and Discussion

The first probabilistic analyses of the condition number of CPDwere given in [11,23].
In those references, the expected value was computed for random rank-1 tensors; that
is, for random output of the computational problem of computing CPDs. This amounts
to choosing random uki in the notation above, constructing the corresponding tensor A
and studying κ(A). The probabilistic study is feasible, in principle, because one can
obtain a closed expression for κ(A) which is polynomial in terms of the uki , so that
the question boils down to an explicit but nontrivial integration problem.

This article is the first to investigate the condition number for random input. That
is, we assume that A is chosen at random within the set of rank-r tensors (see the
definition of random tensors in Definition 1 and the extension in Theorem 4) and
we wonder about the expected value of κ(A). The difficulty now is that even if we
assume that a decomposition (1) exists, we do not have it and hence we lack a closed
expression for κ(A).

One may wonder if these two different random procedures should give similar
distributions in this or other numerical problems. The answer is no. For example, say
that our problem is to compute the kernel of a given matrix A ∈ R

n×(n+1) and we want
to study the expected value of the associated condition number ‖A‖ ‖A†‖. Choosing A
at random produces E(‖A‖ ‖A†‖) <∞ but choosing the kernel at random and then A
at random within the matrices with that kernel is the same as computing the expected
value of the usual Turing’s condition number of a square real Gaussian matrix, which
is infinity; see [31] for precise estimations of these quantities. The situation is similar
in the study of systems of homogeneous polynomial equations: random inputs have
better condition number than inputs produced from random outputs; see for example
[9]. In both these examples, the condition number of input constructed from random
output is, on average, larger than the condition number of random input. This is a stroke
of luck since in general one expects instances from practical, real-life problems, to be
somehow random within the input space, not to have a random output!

In this paper, we show that computing the CPD is a rara avis: we prove in Theorems
1 and 2 that (under suitable hypotheses) the condition number of random input tensors
turns out to be infinity. On the contrary, by Beltrán et al. [11] and Breiding and
Vannieuwenhoven [23] it is presumed that the average condition number is finite
when choosing random output. This result reinforces the evidence that computing
CPDs is a very challenging computational problem.

The literature often cites the result of Håstad [53] to underline the high com-
putational complexity of computing CPDs. Håstad showed that the NP-complete
3-satisfiability problem (also called 3-SAT) can be reduced to computing the rank
of a tensor; hence, solving the tensor rank decomposition problem is NP-complete in
the Turing machine computational model. Our main result is different in two aspects:
First, Håstad showed the difficulty of only one particular instance of a CPD, whereas
we show that computing the CPD is difficult on average. Second, our evidence sup-
porting the hardness of the problem is not based on Turing machine complexity, but
given by analyzing the condition number, which is more appropriate for numerical
computations [16]. Linking complexity analyses to condition numbers is common in
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the literature; for instance, in the case of solving polynomial systems [9,27,56,63]. In
general, the book [28] provides a good overview. In this interpretation, we show that
computing CPDs numerically is hard on average.

On the other hand, in the literature, the main result of de Silva and Lim [37] is
often cited as a key reason why approximating a tensor by a low-rank CPD is such
a challenging problem: for some input tensors, a best low-rank approximation may
not exist! This is because the set of tensors of bounded rank is not closed: There are
tensors of rank strictly greater than r that can be approximated arbitrarily well by rank-
r tensors. It is shown in [37] that this ill-posedness of the approximation problem is not
rare in the sense that for every tensor spaceRn1×n2×n3 there exists an open set of input
tensors which do not admit a best rank-2 approximation. This result is stronger than
Håstad’s in the sense that it proves that instances with no solution to the tensor rank
approximation problem may occur on an open set, rather than in one particular set of
measure zero. Notwithstanding this key result, it does not tell us about the complexity
of solving the tensor rank decomposition problem, in which we are given a rank-r
tensor whose CPD we seek. In this setting, there are no ill-posed inputs in the sense
of de Silva and Lim [37]. It was already shown in [20] that the condition number
diverges as one moves toward the open part of the boundary of tensors of bounded
rank, entailing that there exist regions with arbitrarily high condition number. One of
the main result of this paper, Theorem 2, shows that such regions cannot be ignored:
They are sufficiently large to cause the integral of the condition number over the set
of rank-r tensors to diverge. In other words, one cannot neglect the regions where the
condition number is so high that a CPD computed from a floating-point representation
of a rank-r tensor in R

n1×···×nd , subject only to roundoff errors, is meaningless—a
result similar in spirit to de Silva and Lim [37].

One may conclude from the above that, at least from the point of view of average
stability of the problem, tensor rank decomposition is doomed to fail. However, if one
only cares about the directions of the rank-1 terms in the decomposition, then the situ-
ation changes dramatically. The condition number associated with the computational
problem “Given a rank-r identifiable tensor A =∑r

i=1 Ai as in Eq. (1), output the set
of normalized rank-1 tensors { Ai‖A1‖ , . . . ,

Ar‖Ar‖ }” will be called the angular condition
number κang(A). Analogously to the bound Eq. (2), one can show that when κang is
finite, it is the smallest number such that

min
π∈Sr

√√√√
r∑

i=1

∥∥∥∥∥
Ai

‖Ai‖ −
A ′πi

‖A ′πi
‖

∥∥∥∥∥

2

≤ κang(A)‖A − A ′‖ + o(‖A − A ′‖)

for all rank-r tensors A ′ = ∑r
i=1 A ′i (with A ′i rank-1 tensors) in a sufficiently small

open neighborhood of A . By Breiding and Vannieuwenhoven [24, Corollary 5.5], the
same expression holds for all tensors A ′ in a small open neighborhood of A if

∑r
i=1 A ′i

is the best rank-r approximation of A ′.
We will prove in Theorem 3 that at least in the case of rank-2 tensors, the angular

condition number κang for random inputs is finite, contrary to the classic condition
number κ; in fact, the numerical experiments in Sect. 7 suggest that this finite average
condition seems to extend to much higher ranks as well. In other words, on average
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we may expect to be able to recover the angular part of the CPD:

Ui = Ai

‖Ai‖ , for i = 1, . . . , r ,

where Ai is as in Eq. (1). One could conclude from this that a tensor decomposition
algorithm should aim to produce the normalized rank-1 termsUi from the tensor rank
decomposition

A =
r∑

i=1
λiUi

accurately. Once these terms are obtained, one can recover the λi ’s by solving a linear
system of equations. Since, as a general principle, the condition number of a composite
smooth map g ◦ f between manifolds satisfies [16,28]

κ[g ◦ f ](x) := ‖(d f (x)g)(dx f )‖ ≤ ‖d f (x)g‖‖dx f ‖ = κ[g]( f (x)) κ[ f ](x),

it follows that the condition number of tensor decomposition is bounded by the product
of the condition numbers of the problem of finding the angular part of the CPD and the
condition number of solving a linear least-squares problem. Our main results suggest
that precisely the last problem will on average be ill-conditioned.

The foregoing observation can have major implications for algorithm design.
Indeed, solving the tensor rank decomposition problem by first solving for the angular
part and then the linear least-squares problem decomposes the problem into a non-
linear and a linear part. Crucially, the latter least-squares problem can be solved by
directmethods, such as a QR-factorization combined with a linear system solver. Such
methods have a uniform computational cost regardless of the condition number of the
problem. By contrast, since no (provably) numerically stable direct algorithms for
tensor rank decomposition are currently known Beltrán et al. [11], iterative methods
are indispensable for this problem. We may expect their computational performance
to depend on the condition number of the problem instance. Indeed, our main results
combined with the main result of Breiding and Vannieuwenhoven [21] imply, for
example, that Riemannian Gauss–Newton optimization methods for solving the angu-
lar part of the CPD should, on average, require less iterations to reach convergence
than Riemannian Gauss–Newton methods for solving the tensor decomposition prob-
lem directly (such as the methods in [21,22]), because the angular condition number
κang appears to be finite on average, while the regular condition number κ is proved
to be∞ on average in most cases, as we show in this article.

Our main results also have consequences for researchers testing numerical algo-
rithms for computing the CPD. In the literature, a common way of generating input
data for testing algorithms is to sample the rank-1 termsAi = λiu1i ⊗u2i ⊗· · ·⊗udi ran-
domly, and then apply the algorithm to the associated tensor A =∑r

i=1 Ai . However,
our analysis in this paper and the analyses in [11,23] show that this procedure gener-
ates tensors that are heavily biased toward being numerically well-conditioned. Hence,
this way of testing algorithms probably does not correspond to a realistic distribution
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on the inputs. We acknowledge that it is currently not easy to sample rank-r tensors
uniformly even though some methods exist [18]. In part, this is because equations for
the algebraic variety containing the tensors of rank bounded by r are hard to obtain
[57]. Nevertheless, in Sect. 7, using the observation from Remark 2, we present an
acceptance–rejection method that can be applied to a few cases and yields uniformly
distributed rank-r tensors, relative to the Gaussian density in Definition 1. In any case
we strongly advocate that the (range of) condition numbers are reported when testing
the performance of iterative methods for solving the tensor rank decomposition prob-
lem, so that one can assess the difficulty of the problem instances. We believe it is
always recommended to include models that are known to lead to instances with high
condition numbers, such as those used in [20,22].

The formal presentation of our main results requires some extra notation that we
introduce in subsequent sections.

1.3 Identifiable Tensors and a Formula for the Condition Number

A particular feature of higher-order tensors that distinguishes them from matrices is
identifiability. This means that in many cases the CPD of tensors of order d ≥ 3 of
small rank is unique. A tensor A ∈ R

n1×···×nd is called r -identifiable if there is a
unique set {A1, . . . ,Ar } of cardinality r such that A = A1 + · · · + Ar and all Ai ’s are
rank-1 tensors. A celebrated criterion by Kruskal [55] gives a tool to decide if a given
tensor of order 3 satisfies this property.

Lemma 1 (Kruskal’s criterion [55,64]) Let F be R or C, A ∈ F
n1×n2×n3 a tensor of

order 3 and assume that A = ∑r
i=1 Ai , where Ai = λiu1i ⊗ u2i ⊗ u3i ∈ F

n1×n2×n3 .
Define the factor matrices U� = [u�

i ]1≤i≤r ∈ F
n�×r for � = 1, 2, 3, and let k� be the

largest integer k such that every subset of k columns of U� has rank equal to k. If
r ≤ 1

2 (k1+ k2+ k3− 2) and k1, k2, k3 > 1, then the tensor A is r-identifiable over F.

Since matrix rank does not change with a field extension from R to C, a real rank-r
tensor A ∈ R

n1×n2×n3 that satisfies the assumptions of Lemma 1 is r -identifiable over
R and also automatically r -identifiable over C. In other words, Kruskal’s criterion is
certifying complex r -identifiability of tensors, which is a strictly stronger notion than
r -identifiability over R [5].

Most order 3 tensors of low-rank satisfy Kruskal’s criterion [34]: There is an open
dense subset of the set of rank-r tensors in R

n1×n2×n3 , n1 ≥ n2 ≥ n3 ≥ 2, where
complex r -identifiability holds, provided r ≤ n1 + min{ 12δ, δ} with δ := n2 + n3 −
n1− 2. In fact, this phenomenon occurs much more generally than third-order tensors
of very small rank. Let us denote the set of complex tensors of complex rank bounded
by r by

σC

r;n1,...,nd := {A ∈ C
n1×···×nd | rankC(A) ≤ r}.

This constructible1 set turns out to be an open dense subset (in the Euclidean topol-

ogy) of its Zariski closure σC

r;n1,...,nd ; see [57]. One says that σ
C

r;n1,...,nd is generically

1 The elements of σC

r;n1,...,nd can be parameterized as in Eq. (1) changing R to C.
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complex r -identifiable if the subset of points of σC

r;n1,...,nd that are not complex r -
identifiable is contained in a proper closed subset in the Zariski topology on the

algebraic variety σC

r;n1,...,nd ; see [32]. It is known from dimensionality arguments [32]
that there is a maximum value of r for which generic r -identifiability of σr;n1,...,nd can
hold, namely

r ≤ r critn1,...,nd , where r critn1,...,nd :=
n1 · · · nd

1+∑d
k=1(nk − 1)

. (3)

In fact, it is conjectured that the inequality is strict in general; see [47] for details.
For all other values of r , generic r -identifiability does not hold. In [17,32,33,40], it is
proved that in the majority of choices for n1, . . . , nd , generic complex r -identifiability
holds for most ranks with r < rcrit; see [17, Theorem 7.2] for a result that is asymp-
totically optimal. For a summary of the conjecturally complete picture of complex
r -identifiability results, see [34, Section 3].

Assumption 1 In the rest of this article, we will assume that σC

r;n1,...,nr is generically
complex r -identifiable.

The reason why we make this assumption is because it greatly simplifies some of
the arguments. At the same time, Assumption 1 is (conjectured to be) extremely weak
and only limits the generality in the exceptional cases listed in [33, Theorem 1.1], and
even then generic r -identifiability only fails very close to the upper bound rcrit of the
permitted ranks.

An immediate benefit of Assumption 1 is that it allows for a nice expression of the
condition number of the tensor rank decomposition problem. Let us denote the set of
rank-1 tensors in Rn1×···×nd by

Sn1,...,nd = {a1 ⊗ · · · ⊗ ad | ak ∈ R
nk\{0}}.

It is a smooth manifold, called the Segre manifold [46,57]. The set of tensors of rank
bounded by r is the image of the addition map: σr;n1,...,nd = Φ(S×rn1,...,nd ), where

Φ : Sn1,...,nd × · · · × Sn1,...,nd → R
n1×···×nd , (A1, . . . ,Ar ) �→ A1 + · · · + Ar . (4)

Then, under Assumption 1, there exists an open dense subsetNr;n1,...,nd of σr;n1,...,nd
such that for all A ∈ Nr;n1,...,nd we have |Φ−1(A)| = r ! by Beltrán et al. [11, Propo-
sition 4.5–4.7].2 In particular, the points in the fiber are isolated, so there is a local
inverse map Φ−1a of Φ for each a ∈ Φ−1(A). Recall from [20] that the condition
number of the CPD at A ∈ Nr;n1,...,nd is then the condition number (in the classic
sense of Rice [61]; see also [28,69]) of any of these local inverses:

2 The preimage of an r -identifiable tensor under themapΦ consists of the r ! permutations of the summands.
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κ(A) := lim
ε→0

sup
‖ΔA‖<ε s.t. A+ΔA∈σr;n1,...,nd

‖Φ−1a (A)−Φ−1a (A +ΔA)‖
‖ΔA‖

= ‖dAΦ−1a ‖2, (5)

where a ∈ Φ−1(A) is arbitrary; it is a corollary of Breiding and Vannieuwenhoven
[20, Theorem 1.1] that the above definition does not depend on the choice of a. Herein,
‖ · ‖ in the denominator is the Euclidean norm induced by the ambientRn1×···×nd , and
the norm in the numerator is the product norm of the Euclidean norms inherited from
the ambient Rn1×···×nd ’s. The right-hand side ‖dAΦ−1a ‖2 is the spectral norm of the
derivative ofΦ−1a atA . See Sect. 2 formore details. ByBreiding andVannieuwenhoven
[20, Proposition 4.4], the condition number κ(A) does not depend on the norm of A:
κ(tA) = κ(A) for t ∈ R\{0}.

Remark 1 We did not specify the value of the condition number for
A ∈ σr;n1,...,nd\Nr;n1,...,nd . The main reason is that our analysis is independent of
the values that the condition number takes on this set of measure zero, so that for sim-
plicity we decided against including the more complicated general case where there
can be several distinct elements in the preimage.

1.4 Main Results

The goal of this paper is to study the average condition number relative to “reasonable”
density functions. By this, we mean probability distributions ρ̂ that are comparable
to the standard Gaussian density ρ: There exist positive constants c1, c2 such that
c1 ≤ ρ̂

ρ
≤ c2. The main result, Theorem 4, applies, among others, for all distributions

ρ̂ comparable to the following Gaussian density defined on the set of bounded rank
tensors σr;n1,...,nd .

Definition 1 (Gaussian identifiable tensors) We define a random variable A on
σr;n1,...,nd by specifying its density as

ρ(A) := (Cr;n1,...,nd )−1 e−
‖A‖2
2 , where Cr;n1,...,nd =

∫

σr;n1,...,nd

e−
‖A‖2
2 dA

is the normalization constant. Under Assumption 1, if A ∈ σr;n1,...,nd and A ∼ ρ, we
say that A is a Gaussian Identifiable Tensor (GIT) of rank r .

Remark 2 Suppose that r is a typical rank of tensors in R
n1×···×nd . This means that

σr;n1,...,nd contains a Euclidean open subset of Rn1×···×nd and is of maximum dimen-
sion n1 · · · nd . Then, the distribution defined inDefinition 1 is a conditional probability
distribution: A GIT A of rank r has the distribution A ∼ (B | rank(B) = r), where
B is a tensor with independent and identically distributed (i.i.d.) standard Gaussian
entries. We exploit this fact in our numerical experiments to sample GITs using an
acceptance–rejection method.
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We first state our results for the foregoing Gaussian density. At the end of this
subsection, in Theorem 4, we generalize these results to other densities, including all
densities comparable to the Gaussian density. Our first contribution is the following
result. We prove it in Sect. 3.

Theorem 1 Let A ∈ σ2;n1,...,nd be a GIT of rank r = 2. Then, E κ(A) = ∞.

It should be mentioned that in our analysis we consider a small subset of σ2;n1,...,nd
and show that on this subset the condition number integrates to infinity. In particular,
a weak average-case analysis as proposed in [3] would be of interest in this problem.

Under one additional assumption, we can extend the result from Theorem 1 to
higher ranks. We prove the following theorem in Sect. 4.

Theorem 2 Let n1, . . . , nd ≥ 3.On topofAssumption1, weassume thatσr−2,n1−2,...,nr−2
is generically complex identifiable. Then, for a GIT A ∈ σr;n1,...,nd , r ≥ 3, we have
E κ(A) = ∞.

By Bocci et al. [17, Theorem 7.2], the assumptions of Theorem 2 are satisfied in
a large number of cases. In fact, as the size of the tensor increases, the assumptions
become weaker: When n1 ≥ n2 ≥ · · · ≥ nd ≥ 2, the conditions in Theorem 2 are
satisfied for r ≤ min(s1, s2) with

s1 =n1n2 − (n1 + n2 + n3 − 2)

n1n2
r critn1,...,nd

s2 = (n1 − 2)(n2 − 2)− (n1 + n2 + n3 − 8)

(n1 − 2)(n2 − 2)
r critn1−2,...,nd−2 + 2.

Note that for large ni , the second piece s2 is the most restrictive. From Eq. (3), it
is implied that r critn1−2,...,nd−2 = (1 − δn1,...,nd )r

crit
n1,...,nd with δn1,...,nd = O(

∑d
k=1 1

nk
).

Therefore, we obtain the following asymptotically optimal result.

Corollary 1 Let d ≥ 3 be fixed, and n1 ≥ n2 ≥ · · · ≥ nd ≥ 2. If n1, . . . , nd → ∞,
then for a GIT A ∈ σr;n1,...,nd we have E κ(A) = ∞ for all

2 ≤ r < (1− εn1,...,nd ) r
crit
n1,...,nd ,

where limn1,...,nd→∞ εn1,...,nd → 0.

It follows from dimensionality arguments that if r > rcrit, then the addition map Φ

does not have a local inverse. In fact, in this case all of the connected components in the
fiber ofΦ atA ∈ σr;n1,...,nd have positive dimension [46]. It follows fromBreiding and
Vannieuwenhoven [20] that the condition number of the tensor rank decomposition
problem at each expression Eq. (1) of length r of such a tensor A is∞. In this case,
κ(A) = ∞, regardless of how the tensor decomposition problem is defined3 when A

3 This is exactly the concern of Remark 1: What computational problem are we interested in solving when
a tensor has several distinct CPDs? Are we interested in the CPD with the best sensitivity? Or the worst?
Or the expected condition number of one randomly chosen CPD in the fiber? This depends on the context.
The results of this paper are valid regardless of the particular variation of the problem one is interested in.
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has multiple distinct decompositions; see also the discussion in [28, Remark 14.14].
In this case the average condition number is infinite, as well.

Our results lead us to the conjecture that the expected condition number is infinite,
also without making the assumption from Theorem 2 and without any upper bound
on the rank.

Conjecture 1 Let A ∈ σr;n1,...,nd be a GIT of rank r ≥ 2. Then, E κ(A) = ∞.

Corollary 1 proves this conjecture asymptotically, in practice leaving only a small
range of ranks for which it might fail.

As mentioned above, it turns out that for GITs the expected angular condition num-
ber is not always infinite. Formally, the angular condition number is defined as follows:
Let the canonical projection onto the sphere be p : Rn1×···×nd → S(Rn1×···×nd ). Then,
the angular condition number of A ∈ Nr;n1,...,nd is

κang(A) := lim
ε→0

sup
‖ΔA‖<ε,

A+ΔA∈σr;n1,...,nd

‖(p×r ◦Φ−1a )(A)− (p×r ◦Φ−1a )(A +ΔA)‖
‖ΔA‖ ,(6)

where Φ−1a is an arbitrary local inverse of Φ with A = Φ(a). As before we do not
specify what happens on the measure-zero set σr;n1,...,nd\Nr;n1,...,nd , because it is not
relevant for this paper. The angular condition number only accounts for the angular
part of the CPD, i.e., the directions of the tensors, not for their magnitude, hence the
name.

To distinguish the condition numbers Eqs. (5) and (6), we will refer to the condition
number from Eq. 5 as the regular condition number. Oftentimes we even drop the
clarification “regular.”

Here is the result for κang(A) for tensors of rank two that we prove in Sect. 5.

Theorem 3 Let A ∈ σ2;n1,...,nd be a GIT of rank 2. Then, E κang(A) <∞.

Unfortunately, we do not know if this theorem can be extended to higher rank tensors.
However, based on our experiments in Sect. 7, we pose the following:

Conjecture 2 Let A ∈ σr;n1,...,nd be a GIT of rank r. Then, E κang(A) <∞.

We finally observe that the foregoing main results are not limited to GITs. They are
valid for a wide range of distributions of random tensors.

Theorem 4 Theorems 1, 2, Corollary 1 and Theorem 3 are still true if instead of GITs
we take random tensors defined by a wide range of other probability distributions,
including some of interest such as:

1. All probability distributions that are comparable to the standard Gaussian density
ρ. This means that the random tensor A has a density ρ̂ for which there exists
positive constants c1, c2 such that c1 ≤ ρ̂

ρ
≤ c2.

2. Uniformly randomly chosen A in the unit sphere S(σr ).
3. Uniformly randomly chosen A in the unit ball {A ∈ σr : ‖A‖ ≤ 1}.
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1.5 Organization of the Article

The rest of the article is organized as follows. In the next section, we give some
preliminary material. Thereafter, in Sects. 3–6, we successively prove Theorems 1–4.
In Sect. 7, we present numerical experiments supporting our main results. Finally, in
Appendices A–Cwe give proofs for several lemmata that we need in the other sections.

2 Notation and Preliminaries

2.1 Notation

Wewill use the following typographic conventions for convenience:Vectors are typeset
in a bold face (a,b), matrices in upper case (A, B), tensors in a calligraphic font (A ,
B), and manifolds and linear spaces in a different calligraphic font (A,B).

The positive integer d ≥ 2 is reserved for the order of a tensor, n1, . . . , nd ≥ 2 are
its dimensions, and r ≥ 1 is its rank. The following integers are used throughout the
paper:

Σ := 1+
d∑

k=1
(nk − 1) and Π :=

d∏

k=1
nk;

they correspond to the dimension of the Segre manifold Sn1,...,nd and the dimension
of the ambient space Rn1×···×nd , respectively. The symmetric group on r elements is
denoted by Sr .

We work exclusively with real vector spaces, for which 〈·, ·〉 denotes the Euclidean
inner product and ‖ · ‖ always denotes the associated norm. We will switch freely
between the finite-dimensional vector spaces Rn1···nd and Rn1×···×nd for representing
tensors in the abstract vector space Rn1 ⊗ · · · ⊗ R

nd . By the above choice of norms,
all of these finite-dimensional Hilbert spaces are isometric; specifically, if A ∈ R

n1 ⊗
· · · ⊗R

nd and a ∈ R
n1···nd is its coordinate array with respect to an orthogonal basis,

then ‖A‖ = ‖a‖. Similarly, if the coordinates a are reshaped into a multidimensional
array A ∈ R

n1×···×nd , then ‖A‖ = ‖A‖ = ‖a‖. It is important to note that this notation
can conflict with the usual meaning of ‖A‖ when d = 2; to distinguish the spectral
norm from the standard norm in this paper, we write ‖A‖2 for the former; see Eq. (7).

For matrices U1 ∈ R
m1×n1, . . . ,Ud ∈ R

md×nd , the tensor product U1 ⊗ · · · ⊗Ud

acts on rank-1 tensors as follows:

(U1 ⊗ · · · ⊗Ud)(u1 ⊗ · · · ⊗ ud) = (U1u1)⊗ · · · ⊗ (Udud).

By the universal property [44], this extends to a linear map R
n1 ⊗ · · · ⊗ R

nd →
R
m1⊗· · ·⊗R

md . Note that we can viewU1⊗· · ·⊗Ud as amatrix inR(m1···md )×(n1···nd ).
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For any subset U ⊂ V of a normed vector space V , we define the sphere over U
as

S(U ) :=
{

u
‖u‖ | u ∈ U\{0}

}
⊂ V .

In particular, the unit sphere in Rn is denoted by S(Rn).
Given an m × n matrix R or a linear operator R : Rn → R

m , we denote the
pseudo-inverse by R†. The spectral norm and smallest singular value of R are denoted
respectively by

‖R‖2 := max
v∈Rn

‖Rv‖
‖v‖ and ςmin(R) := min

v∈Rn

‖Rv‖
‖v‖ . (7)

A special role will be played in this paper by the product of all but the smallest singular
values of R, which we denote by q(R). In other words, if R is injective, then

q(R) := ς1(R) · · · ςn−1(R) =
√
det(RT R)

ςmin(R)
, (8)

where RT is the transposed matrix (operator) and ςi (R) is the i th largest singular
value of R.

2.2 Differential Geometry

In this article, we only consider submanifolds of Euclidean spaces; see, e.g., [58]
for the general definitions. A smooth (C∞) manifold is a topological manifold with
a smooth structure, in the sense of Lee [58]. The tangent space Tx M at x to an
embedded n-dimensional smooth submanifold M ⊂ R

N is the set

{
v ∈ R

N | ∃ a smooth curve γ (t) ⊂M with γ (0) = x : v = d

dt

∣∣∣
t=0 γ (t)

}
.

At every point x ∈ M, there exist open neighborhoods V ⊂ M and U ⊂ Tx M of
x , and a bijective smooth map φ : V→ U with smooth inverse. The tuple (V, φ) is a
coordinate chart ofM. A smooth map between manifolds F :M→ N is a map such
that for every x ∈M and coordinate chart (V, φ) containing x , and every coordinate
chart (W, ψ) containing F(x), we have that ψ ◦ F ◦ φ−1 : φ(U) → ψ(F(U)) is a
smooth map. The derivative of F can be defined as the linear map dx F : Tx M →
TF(x) N taking the tangent vector v ∈ Tx M to d

dt |t=0F(γ (t)) ∈ TF(x) N where
γ (t) ⊂M is a curve with γ (0) = x and γ ′(0) = v. If dimM = dimN and if dx F
has full rank, there is a neighborhoodW ⊂M on which F is invertible and its inverse
is also smooth; that is, F is a diffeomorphism between W and F(W). If this property
holds for all x ∈M, then F is called a local diffeomorphism.

A differentiable submanifoldM ⊂ R
N can be equipped with a Riemannian metric

g, turning it into a Riemannian manifold, allowing for the computation of integrals.
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The manifolds in this paper are all embedded submanifolds of Euclidean space, so the
Riemannian metric for us will always be the metric inherited from the ambient space.

2.3 TheManifold of r-Nice Tensors

As in the introduction, the Segre manifold is

Sn1,...,nd = {u1 ⊗ · · · ⊗ ud | uk ∈ R
nk\{0}}.

It is a smooth manifold of dimension Σ . Its tangent space is given by

Tu1⊗···⊗ud Sn1,...,nd = R
n1 ⊗ u2 ⊗ · · · ⊗ ud + · · · + u1 ⊗ · · · ⊗ ud−1 ⊗ R

nd ; (9)

note that this is not a direct sum.
The Euclidean inner product between rank-1 tensors is conveniently computed by

the following formula (see, e.g., [45]):

〈u1 ⊗ · · · ⊗ ud , v1 ⊗ · · · ⊗ vd〉 =
d∏

i=1
〈ui , vi 〉. (10)

The set of tensors of rank at most r is denoted by

σr;n1,...,nd = {A ∈ R
n1×···×nd | rank(A) ≤ r};

it is a semialgebraic set of dimension at most min{rΣ,Π}; see, e.g., [60]. Under
Assumption 1, the dimension of σr;n1,...,nd is exactly rΣ .

In [11, Section 4], we introduced an open dense subset of σr;n1,...,nd with favorable
differential-geometric properties. We called it the manifold of r -nice tensors in [11,
Definition 4.2]. Below, we present a slightly modified definition that is suitable for our
present purpose; it eliminates conditions (4) and (5) from Beltrán et al. [11, Definition
4.2].

In what follows, we denote the real closure in the Zariski topology of a subset

A ⊂ R
Π by A. This is the real algebraic variety A := A

C ∩ R
Π , where A

C
is the

closure of A in the Zariski topology in C
Π . By Whitney [70, Lemma 8], the real

dimension of A equals the complex dimension of A
C
.

Definition 2 Recall the addition map Φ defined in Eq. (4). Let Mr;n1,...,nd ⊂
(Sn1,...,nd )

×r be the subset of r -tuples a := (A1, . . . ,Ar ) of rank-1 tensors satisfy-
ing all of the following properties:

1. Φ(a) is a smooth point of the algebraic variety σr;n1,...,nd ;
2. Φ(a) is complex r -identifiable; and
3. κ(Φ(a)) <∞.

The set of r -nice tensors is Nr;n1,...,nd := Φ(Mr;n1,...,nd ).
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Remark that the third item in the definition is well defined because of the second item.

Proposition 1 If Assumption 1 holds, then the following statements are true:

1. Mr;n1,...,nd and Nr;n1,...,nd are smooth manifolds of dimension rΣ;
2. Mr;n1,...,nd is Zariski-open in (Sn1,...,nd )

×r ;
3. Nr;n1,...,nd is Zariski-open in σr;n1,...,nd ;
4. the addition map Φ|Mr;n1,...,nd

is a global diffeomorphism onto its image;
5. Nr;n1,...,nd is closed under multiplication by nonzero scalars; and
6. Mr;n1,...,nd ⊂ R

n1×···×nd × · · · × R
n1×···×nd and Nr;n1,...,nd ⊂ R

n1×···×nd are
embedded submanifolds.

Proof Items 1, 2, 3, and 6 are proved as follows. Let X1 and X2 be, respectively,
the set of tensors in σr;n1,...,nd which are not complex r -identifiable and which are not
smooth points of σr;n1,...,nd . Both are Zariski-closed in σr;n1,...,nd under Assumption 1,
and hence so are the preimages Φ−1(X1) and Φ−1(X2). Moreover, the third defining
condition of Mr;n1,...,nd is also Zariski-closed in (Sn1,...,nd )

×r from the explicit for-
mula for the condition number Eq. (12). Hence,Mr;n1,...,nd is Zariski-open. An open
subset of an embedded submanifold is itself an embedded submanifold so the claim
forMr;n1,...,nd is proved. Moreover, the dimension of the complement ofMr;n1,...,nd
is at most rΣ − 1 and so its image by the rational map Φ is contained in an algebraic
set of dimension at most rΣ − 1, thus proving that Nr;n1,...,nd is also Zariski-open
and indeed an embedded submanifold of the set of smooth points of σr;n1,...,nd , which
is itself an embedded submanifold of its affine ambient space, see [12, Proposition
3.2.9].

The fourth item is due to the definition of the condition number, the fact that it is
finite on Nr;n1,...,nd by Definition 2, and the injectivity of Φ|Mr;n1,...,nd

by Definition
2 (2).

The fifth item follows by noting that the three defining properties ofNr;n1,...,nd are
all true independent of a nonzero scaling. ��
Remark 3 The definition of r -nice tensors in [11, Definition 4.2] involves two more
requirements, but those are not needed here.

Since the tangent space ofNr;n1,...,nd at a point is the image of the derivative of the
local diffeomorphism Φ, we have the following characterization:

TA Nr ,n1,...,nd = TA1 Sn1,...,nd + · · · + TAr Sn1,...,nd , for A = A1 + · · · + Ar .(11)

2.4 Sensitivity of CPDs

The condition number of the problem of computing the rank-1 terms of a CPD of a
tensor was studied in a general setting in [20]; the following characterization of the
condition number is Theorem 1.1 of [20]. Let A = A1+· · ·+Ar ∈ Nr ,n1,...,nd , where
the Ai ∈ Sn1,...,nd are rank-1 tensors. For each i let Ui be a matrix whose columns
form an orthonormal basis of TAiSn1,...,nd . Then,

κ(A) = 1

ςmin([U1, . . . ,Ur ]) . (12)
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The matrixU = [U1, . . . ,Ur ] ∈ R
Π×rΣ is also called a Terracini matrix. An explicit

expression for the Ui ’s is given in [20, equation (5.1)].
Since A uniquely depends on a := (A1, . . . ,Ar ) ∈ S×rn1,...,nd , we can view the

condition number of A ∈ Nr ,n1,...,nd as a function of a:

κ(a) := 1

ςmin([U1, . . . ,Ur ]) , (13)

where the matrices Ui are as before. The benefit of Eq. (13) is that it is well-defined
for any tuple a ∈ S×rn1,...,nd (and not just those mapping into Nr ,n1,...,nd ).

2.5 Integrals

For fixed t ∈ (0, 1] and a point y ∈ S(Rn), the spherical cap of radius t around y is
defined as cap(y, t) := {x ∈ S(Rn) : 〈x, y〉 >

√
1− t2}. Its volume satisfies

c1(n)tn−1 ≤ vol(cap(y, t)) ≤ c2(n)tn−1 (14)

for some positive constants 0 < c1(n) < c2(n).
The following general lemma will be useful later.

Lemma 2 Let u, v > 0 be fixed. Then, 0 <
∫∞
0 tu e−

(t+v)2
2 dt <∞.

Proof It is clear that the integral is not zero. Furthermore, since (t + v)2 > t2+ v2 for

t, v > 0, we see that
∫∞
0 tu e−

(t+v)2
2 dt ≤ ∫∞0 tu e− t2+v2

2 dt = e− v2
2
√
2
u−1

Γ ( u+12 ),
which is finite. ��

2.6 The Coarea Formula

Let M and N be submanifolds of Rn of equal dimension, and let F :M→ N be a
smooth surjective map. A point y ∈ N is called a regular value of F if for all points
x ∈ F−1(y) the differential dx F is of full rank. The preimage F−1(y) of a regular
value y is a discrete set of points. Let |F−1(y)| be the number of elements in this
preimage. Then, the coarea formula [52] states that for every integrable function g we
have

∫

N
|F−1(y)| g(y) dy =

∫

M
Jac(F)(x) g(F(x)) dx, (15)

where Jac(F)(x) := | det dx F | is the Jacobian determinant of F at x . Note that
almost all y ∈ N are regular values of F by Sard’s theorem [58, Theorem 6.10].
Hence, integrating over N is the same as integrating over all regular values of F .

Remark 4 In [52], the coarea formula is given in themore general case when dimM ≥
dimN. In this article, we only need the case when the dimension of dimM and dimN
coincide. Moreover, if F is injective, then Eq. (15) reduces to the well-known change-
of-variables formula.
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3 The Average Condition Number of Gaussian Tensors of Rank Two

The goal of this section is to prove Theorem 1. We will proceed in three steps. First,
the 2-nice tensors are conveniently parameterized via elementary manifolds such as
one-dimensional intervals and spheres in Sect. 3.1. Second, the Jacobian determinant
of this map is computed in Sect. 3.2. Third, the integral can be bounded from below
with the help of a few technical auxiliary lemmas in Sect. 3.3. In the next section,
we will exploit Theorem 1 for generalizing the argument to most higher ranks. To
simplify notation, in this section we let

S := Sn1,...,nd , σ2 := σ2,n1,...,nd , N2 := N2,n1,...,nd and M2 :=M2,n1,...,nd .

3.1 Parameterizing 2-Nice Tensors

Let

P := S(Rn1)× · · · × S(Rnd ) (16)

and consider the next parameterization of the Segre manifold:

ψ : (0,∞)× P→ S, (λ,u1, . . . ,ud) �→ λ · u1 ⊗ · · · ⊗ ud . (17)

The preimage of A ∈ S has cardinality |ψ−1(A)| = 2d−1. By composingΨ := ψ×ψ

with the addition map from Eq. (4), we get the following alternative representation of
tensors of rank bounded by 2:

(Φ ◦ Ψ )((λ,u1, . . . ,ud), (μ, v1, . . . , vd)) = λ · u1 ⊗ · · · ⊗ ud + μ · v1 ⊗ · · · ⊗ vd .

We would like to apply the coarea formula Eq. (15) to pull back the integral of

κ(A)e−
‖A‖
2 over σ2 via the parameterization Φ ◦ Ψ . However, σ2 in general is not

a manifold, so the formula does not apply. Nevertheless, we can use the manifold N2
of 2-nice tensors instead. By Proposition 1(3), N2 is Zariski open in σ2, so that

E κ(A) = 1

C2

∫

σ2

κ(A)e−
‖A‖2
2 dA = 1

C2

∫

N2

κ(A)e−
‖A‖2
2 dA,

where C2 := C2;n1,...,nd is as in Definition 1. By applying the coarea formula Eq. (15)
to the smooth map Φ |M2 , we get

∫

N2

κ(A) e−
‖A‖2
2 dA = 1

2

∫

N2

|Φ−1(A)| κ(A) e−
‖A‖2
2 dA

= 1

2

∫

M2

Jac(Φ)(A1,A2) κ(A1 + A2) e
−‖A1+A2‖22 dA1dA2,
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where Jac(Φ)(A1,A1) is the Jacobian determinant ofΦ at (A1,A1). In the first equality,
we used |Φ−1(A)| = 2 for 2-identifiable tensors; indeed, we have that Φ(A1,A2) =
Φ(A2,A1) = A and A1 �= A2 because A ∈ N2 has rank equal to 2.

In the following, we switch to the notation from Eq. (13): κ(A1+A2) = κ(A1,A2).
Since M2 is also Zariski open in S × S by Proposition 1(2), we may replace the
integral over M2 by an integral over S× S, thus obtaining

E κ(A) = 1

2C2

∫

S×S
Jac(Φ)(A1,A1) κ(A1,A2) e

−‖A1+A2‖22 dA1dA2.

We use the coarea formula again, but this time for Ψ = ψ×ψ , whereψ is the param-
eterization from Eq. (17). Note that for (A1,A2) ∈ M2 we have |Ψ−1(A1,A2)| =
22d−2. We get

E κ(A) = 1

2C2

∫

S×S
Jac(Φ)(A1,A2) κ(A1,A2) e

−‖A1+A2‖22 dA1dA2

= 1

22d−1C2

∫

S×S
|Ψ−1(A1,A2)| Jac(Φ)(A1,A2) κ(A1,A2) e

−‖A1+A2‖22 dA1dA2

= 1

22d−1C2

∫

((0,∞)×P)×2
Jac(Φ ◦ Ψ )(a, b) κ(ψ(a), ψ(b)) e−

‖ψ(a)+ψ(b)‖2
2 dadb, (18)

where a = (λ,u1, . . . ,ud) and b = (μ, v1, . . . , vd) are both tuples in (0,∞) × P.
Next, we compute the Jacobian determinant Jac(Φ ◦ Ψ )(a, b).

3.2 Computing the Jacobian Determinant

Note that the dimension of the domain of Φ ◦ Ψ is equal to 2Σ . As above, let a =
(λ,u1, . . . ,ud) and b = (μ, v1, . . . , vd) be tuples in (0,∞) × P with P as in Eq.
(16). In the following, we write

U := u1 ⊗ · · · ⊗ ud and V := v1 ⊗ · · · ⊗ vd .

The Jacobian determinant of Φ ◦Ψ at (a, b) is, by definition, the absolute value of the
determinant of the linear map

d(a,b)(Φ ◦ Ψ ) : Tλ (0,∞)× Tμ (0,∞)× T(u1,...,ud ) P× T(v1,...,vd ) P→ TλU+μV N2.

Consider thematrix of partial derivatives ofΦ◦Ψ with respect to the standard orthonor-
mal basis of Rn1×···×nd :

Q := [L M
] ∈ R

Π×2Σ, (19)

where

L :=
[

∂(Φ◦Ψ )

∂u1
. . .

∂(Φ◦Ψ )

∂ud
∂(Φ◦Ψ )

∂v1
. . .

∂(Φ◦Ψ )

∂vd

]
and M :=

[
∂(Φ◦Ψ )

∂λ
∂(Φ◦Ψ )

∂μ

]
. (20)

123



Foundations of Computational Mathematics

Then, the Jacobian determinant of Φ ◦ Ψ at (a, b) is

Jac (Φ ◦ Ψ )(a, b) =
√
det(QT Q). (21)

The latter is the volume of the parallelepiped spanned by the columns of Q. We fix
notation in the next definition.

Definition 3 Let N ≥ n be positive integers and U ∈ R
N×n be a matrix with columns

u1, . . . ,un ∈ R
N . We denote by vol(U ) the volume of the parallelepiped spanned by

the ui :

vol(U ) :=
√
det(UTU ).

We can now rewrite Eq. (21) as

Jac (Φ ◦ Ψ )(a, b) = vol(Q).

The reason why we write the partial derivatives of Φ ◦Ψ with respect to the standard
basis of Rn1×···×nd is that we get the following convenient description:

M = [U V
]
. (22)

For describing L , let for each 1 ≤ k ≤ d,

U̇ k = [u̇k2 u̇k3 · · · u̇knk
] ∈ R

nk×(nk−1) and V̇ k = [v̇k2 v̇k3 · · · v̇knk
] ∈ R

nk×(nk−1)

be matrices containing as columns an ordered orthonormal basis of (uk)⊥ =
Tuk S(Rnk ) and (vk)⊥ = Tvk S(Rnk ), respectively. Then, by linearity and the product
rule of differentiation, we have that L = [λL1 μL2

]
is the block matrix consisting of

2 blocks of the form

L1 =
[
L1
1 · · · Ld

1

]
with Lk

1 = u1 ⊗ · · · ⊗ uk−1 ⊗ U̇ k ⊗ uk+1 ⊗ · · · ⊗ ud and
(23)

L2 =
[
L1
2 · · · Ld

2

]
with Lk

2 = v1 ⊗ · · · ⊗ vk−1 ⊗ V̇ k ⊗ vk+1 ⊗ · · · ⊗ vd .

Both L1 and L2 have
∑d

k=1(nk − 1) = Σ − 1 columns. Note that M depends only
on the uk’s and vk’s, whereas L also depends on the parameters λ and μ; we do not
emphasize these dependencies in the notation.

Comparing with Breiding and Vannieuwenhoven [20, equation (5.1)], we see that
the matrix L1 has as columns an orthonormal basis for the orthogonal complement
of U in TU S. Analogously, the columns of L2 form an orthonormal basis for the
orthogonal complement of V in TV S. Consequently, for Ψ (a, b), Terracini’s matrix
from Eq. (12) can be chosen as

U = [U L1 V L2
]
. (24)
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This entails that

Jac (Φ ◦ Ψ )(a, b) =
√
det
([

λL1 μL2 U V
]T [

λL1 μL2 U V
])

= λΣ−1μΣ−1
√
det
(
UTU

)
(25)

= λΣ−1μΣ−1vol(U ),

having used the notation fromDefinition 3 and the fact that singular values are invariant
under orthogonal transformations such as permutations of columns.

3.3 Bounding the Integral

We are now ready to conclude the proof of Theorem 1, by showing that the expected
value of the condition number of tensor rank decomposition is bounded from below
by infinity.

By Eq. (12), the condition number atA = A1+A2 = Φ(A1,A2) ∈ N2 is the inverse
of the smallest singular value of the Terracini’s matrix U from Eq. (24). Therefore, if
we plug Eqs. (24) and (25) into (18), then we get

Eκ(A) = 1

22d−1C2

∫

((0,∞)×P)×2
λΣ−1μΣ−1vol(U )

ςmin(U )
e−

‖λU+μV ‖2
2 dλ du dμ dv

= 1

22d−1C2

∫

((0,∞)×P)×2
λΣ−1 μΣ−1 q(U ) e−

‖λU+μV ‖2
2 dλ du dμ dv, (26)

where q(U ) = vol(U )
ςmin(U )

is as in Eq. (8), and

u = (u1, . . . ,ud ), v = (v1, . . . , vd ), U = u1 ⊗ · · · ⊗ ud , and V = v1 ⊗ · · · ⊗ vd . (27)

From Eq. (24), it is clear thatU is a function of u and v but is independent of λ and μ.
Therefore, if we integrate first over λ and μ, then we can ignore the factor q(U ). In
Appendix A.1, we compute this integral; the result is stated here as the next lemma.

Lemma 3 Let (u1, . . . ,ud), (v1, . . . , vd) ∈ P be fixed. Then,

∫

(0,∞)

∫

(0,∞)

λΣ−1 μΣ−1 e−
‖λU+μV ‖2

2 dλdμ

= 2Σ−1Γ (Σ)

∫ π
2

0

(cos(θ) sin(θ))Σ−1

‖ cos(θ)U + sin(θ)V ‖2Σ dθ,

where U = u1 ⊗ · · · ⊗ ud and V = v1 ⊗ · · · ⊗ vd .

The foregoing integral can be bounded from below by exploiting the next lemma,
which is proved in Appendix A.2.
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Lemma 4 Let x, y ∈ S(Rp) be two unit-norm vectors and s ≥ 1. Then, there exists a
constant k = k(p, s) independent of x, y such that

∫ π
2

0

(cos(θ) sin(θ))s−1

‖ cos(θ)x + sin(θ)y‖2s dθ ≥
k

‖x + y‖2s−1 .

Combining the foregoing lemmata and plugging the result into Eq. (26), we obtain

Eκ(A) ≥ 2Σ−1Γ (Σ) k

22d−1C2

∫

P×P
q(U )

‖U + V ‖2Σ−1 du dv .

Next, we exploit the symmetry of the domain S(Rn1) by flipping the sign of v1 and,
hence, of V = v1 ⊗ · · · ⊗ vd . This substitution transforms U into UD, where D is
a diagonal matrix with some pattern of ±1 on the diagonal. Since D is orthogonal,
q(U ) = q(UD), so that

Eκ(A) ≥ 2Σ−1Γ (Σ) k

22d−1C2

∫

P×P
q(U )

‖U − V ‖2Σ−1 du dv .

Denote this last integral by J , and then, it remains to show that J = ∞. Consider the
open set

D(ε) =
{
(u, v) ∈ P× P | 9

10 ‖u1 − v1‖ < ‖uk − vk‖ < ‖u1 − v1‖ < ε for 2 ≤ k ≤ d
}
.

Since D(ε) is open, we have

J ≥
∫

D(ε)

q(U )

‖U − V ‖2Σ−1 du dv . (28)

We now need two lemmata. The first one is straightforward.

Lemma 5 Let ε > 0 be sufficiently small. For all (u, v) ∈ D(ε)with u = (u1, . . . ,ud)
and v = (v1, . . . , vd), we have

‖u1 − v1‖ ≤ ‖U − V ‖ ≤ d ‖u1 − v1‖,

where U = u1 ⊗ · · · ⊗ ud and V = v1 ⊗ · · · ⊗ vd .

Proof For proving the upper bound, apply the triangle inequality to the telescoping
sum

d∑

i=1
v1 ⊗ · · · ⊗ vi−1 ⊗ (ui − vi )⊗ ui+1 ⊗ · · · ⊗ ud = U − V
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and exploit ‖uk − vk‖ ≤ ‖u1 − v1‖ for all k = 1, . . . , d. The lower bound follows
from

‖U − V ‖2 = 2− 2〈U,V 〉 = 2− 2
d∏

k=1
〈uk, vk〉 ≥ 2− 2〈u1, v1〉 = ‖u1 − v1‖2,

having used 0 < 〈uk, vk〉 ≤ 1 for sufficiently small ε. ��

The second one is the final piece of the puzzle. We prove it in Appendix A.3.

Lemma 6 For sufficiently small ε > 0, we have for all (u, v) ∈ D(ε) with u =
(u1, . . . ,ud) and v = (v1, . . . , vd) that

q(U ) ≥ 2−d/2
(‖u1 − v1‖

2

)Σ−1
,

where U is the matrix that depends on u and v as in Eq. (24) and q is as in Eq. (8).

Combining Lemmas 5 and 6 with Eq. (28), we find

J ≥ c
∫

D(ε)

1

‖u1 − v1‖Σ du dv,

where c > 0 is some constant. Note that the integrand in this equation only depends
on u1 and v1. By definition of D(ε), for each 2 ≤ k ≤ d, and if we fix uk , the domain
of integration of vk contains the difference of two spherical caps of respective affine
radii 9

10‖u1−v1‖ and ‖u1−v1‖. From Eq. (14), the volume of this difference of caps
is greater than a constant times ‖u1− v1‖n j−1. Therefore, if we keep u1, v1 ∈ S(Rn1)

constant and integrate over uk, vk ∈ S(Rnk ), k = 2, . . . , d, then we get

J ≥ c′
∫

u1,v1∈S(Rn1 ),

‖u1−v1‖≤ε

1

‖u1 − v1‖Σ−((n2−1)+···+(nd−1)) du
1 dv1,

where c′ > 0 is a constant. Recall that Σ = 1+∑d
k=1(nk − 1), so that

J ≥ c′
∫

u1∈S(Rn1 )

∫

v1∈S(Rn1 ),

‖u1−v1‖≤ε

1

‖u1 − v1‖n1 dv
1 du1.

By rotational invariance, the inner integral does not depend on u1 and moreover for
small ε projecting through the stereographic projection (which has a Jacobian bounded
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above and below by a positive constant close to its center) we conclude that, for some
other constant c′′,

J ≥ c′′
∫

x∈Rn1−1,
‖x‖≤ε/2

1

‖x‖n1 dx = c′′vol(S(Rn1−1))
∫ ε/2

0

rn1−2

rn1
dr = ∞.

This proves J = ∞, so thatE κ(A) = ∞ for tensors of rank boundedby2, constituting
a proof of Theorem 1.

4 The Average Condition Number: From Rank 2 to Higher Ranks

Having established that the average condition number of tensor rank decomposition
of rank 2 tensors is infinite, we extend this result to higher ranks. That is, we will
prove Theorem 2. As before, we abbreviate S := Sn1,...,nd , σr := σr ,n1,...,nd , Nr :=
Nr ,n1,...,nd , and Mr :=Mr ,n1,...,nd .

We proceed with an observation that is of independent interest.

Lemma 7 Let A = ∑r
i=1 Ai and B = ∑s

i=1 Bi be n1 × · · · × nd tensors, where the
Ai and Bi are rank-1 tensors. If A + B ∈ σr+s;n1,...,nd is (r + s)-identifiable, then we
have

κ(A + B) ≥ max{κ(A), κ(B)}.

Proof First, we observe that A is r -identifiable, and B is s-identifiable. Indeed, if the
tensor C = A + B is (r + s)-identifiable, then the unique set C of cardinality |C | ≤ r
consisting of rank-1 tensors summing to C is C = {A1, . . . ,Ar ,B1, . . . ,Bs}. If A had
an alternative decomposition {A ′1, . . . ,A ′r ′ }, potentially of a shorter length r ′ ≤ r ,
then {A ′1, . . . ,A ′r ′ ,B1, . . . ,Bs} would be an alternative decomposition of C . Hence,
{A ′1, . . . ,A ′r ′ } needs to equal {A1, . . . ,Ar }, so that A is r -identifiable. By symmetry,
the result for B follows. For all i , let Ui be a matrix with orthonormal columns that
span TAiSn1,...,nd , and Vi be amatrix with orthonormal columns that span TBiSn1,...,nd .
Consider thematricesU = [U1, . . . ,Ur ] and V = [V1, . . . , Vs]. By Eq. (12), we have

κ(A) = 1

ςmin(U )
, κ(B) = 1

ςmin(V )
, and κ(A + B) = κ(A,B) = 1

ςmin(
[
U V

]
)
.

The claim follows from standard interlacing properties of singular values; see [51,
Chapter 3]. ��

The next simple lemma is immediate.

Lemma 8 Consider the map φ : σ2 × S×(r−2) → σr , (B,A1, . . . ,Ar−2) �→ B +∑r−2
i=1 Ai . The following holds.

1. For r > 2, we have φ(σ2 × S×(r−2)) = σr .
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2. Let A ∈ σr be r-identifiable. Then, |φ−1(A)| = (r − 2)! · (r2
)
.

Finally, the next lemma is the key to Theorem 2, providing a lower bound for the
Jacobian determinant of φ in a special open subset of σ2 × S×(r−2). We postpone its
proof to Appendix B.

Lemma 9 On top of Assumption 1 we assume that σr−2;n1−2,...,nd−2 is generically
complex identifiable. Then, there are constants μ, ε, ν1, . . . , νr−2 > 0 depending
only on r , n1, . . . , nd with the following property: For all B ∈ N2 there exists a tuple
(A1, . . . ,Ar−2) ∈ S×(r−2) with ‖Ai‖ = νi and

inf
(A ′1,...,A ′r−2)∈S×(r−2),

‖Ai−A ′i‖<ε

Jac (φ)(B,A ′1, . . . ,A ′r−2) > μ,

where φ is as in Lemma 8.

Remark 5 Given any B ∈ σ2, by taking a sequence B(i) ⊆ N2 converging to B one
can generate the corresponding sequences A(i)

1 , . . . ,A(i)
r−2 ∈ S from Lemma 9. Now,

by compactness we can find an accumulation point A1, . . . ,Ar−2 ∈ S. Since Jac(φ)

is continuous and hence uniformly continuous when restricted to a compact set, by
choosing small enough ε we can assure that for all B ′, ‖B − B ′‖ ≤ ε and for all A ′i ,‖Ai −A ′i‖ ≤ ε, we have Jac (φ)(B ′,A ′1, . . . ,A ′r−2) >

μ
2 , where ε andμ do not depend

on B.

Now, we prove Theorem 2.

Proof of Theorem 2 Recall the surjective map φ : σ2×S×(r−2) → σr from Lemma 8.
From Theorem 1 and the fact that κ(B) = κ(tB) for t > 0, there exists a tensor B ∈ σ2
such that for every δ > 0 we have

∫

‖B ′−B‖<δ,B ′∈N2

κ(B ′) dB ′ = ∞.

From Lemma 9 and Remark 5, there exist tensors A1, . . . ,Ar−2 ∈ S such that

Jac (φ)(B ′,A ′1, . . . ,A ′r−2) >
μ

2

for all B ′,A ′1, . . . ,A ′r−2 such that ‖B ′ − B‖ < ε, ‖A ′i − Ai‖ < ε, and B ′ ∈ N2. Let
U ⊆ N2×S×r−2 be the set of all B ′,A ′1, . . . ,A ′r−2 satisfying the foregoing conditions.
From Lemma 7, we have

∫

U
Jac (φ)(B ′,A ′1, . . . ,A ′r−2)κ(B ′ + A ′1 + · · · + A ′r−2) dB ′dA ′1 · · · dA ′r−2

≥
∫

U
Jac (φ)(B ′,A ′1, . . . ,A ′r−2)κ(B ′) dB ′dA ′1 · · · dA ′r−2 = ∞.
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Moreover, by Lemma 9 and the inverse function theorem, by taking small enough ε

and δ we can assume that φ|U is a diffeomorphism onto its image4 and hence φ(U) is
open. The coarea formula Eq. (15) thus applies yielding

∫

A∈φ(U)

κ(A) dA

=
∫

U
Jac (φ)(B ′,A ′1, . . . ,A ′r−2)κ(B ′ + A ′1, . . . ,A ′r−2) dB ′dA ′1 · · · dA ′r−2 = ∞.

The theorem follows since φ(U) ⊆ σr . ��

5 The Angular Condition Number of Tensor Rank Decomposition

In this section, we prove Theorem 3. As in the previous section, to ease notation,
we abbreviate M2 := M2;n1,...,nd , N2 := N2;n1,...,nd , S2 := S2;n1,...,nd , and σ2 :=
σ2;n1,...,nd .

5.1 A Characterization of the Angular Condition Number as a Singular Value

We first derive a formula for the angular condition number in terms of singular values,
similar to the one from Eq. (12). Recall from Eq. (6) that the angular condition number
for rank r = 2 is

κang(A) := lim
ε→0

sup
‖ΔA‖<ε,
A+ΔA∈σ2

‖((p × p) ◦Φ−1a )(A)− ((p × p) ◦Φ−1a )(A +ΔA)‖
‖ΔA‖ ,

where p : Rn1×···×nd → S(Rn1×···×nd ) is the canonical projection onto the sphere
and where Φ−1a is a local inverse of Φ : S × S → σ2 at a ∈ S×2 with A = Φ(a).
As before, the value of κang on σ2\N2 is not relevant for our analysis, so we do not
specify it.

Proposition 2 Under Assumption 1, let A = λu1⊗· · ·⊗ud +μ v1⊗· · ·⊗ vd ∈ N2,
where for 1 ≤ k ≤ d we have uk, vk ∈ S(Rnk ). Recall from Eq. (20) the definitions of
the matrices M and L, associated to A . The following equality holds:

κang(A) = 1

ςmin((I− MM†)L)
,

as far as the right–hand term is finite.

Proof By Proposition 1, any local inverse Φ−1a is differentiable at A = Φ(a) ∈ N2.
The projection p is also differentiable, so that

κang(A) = ‖dA(p×2 ◦Φ−1a )‖2,
4 This is different fromφ|φ−1(φ(U)) being a diffeomorphism. Indeed, thatmapping is in general finite-to-one
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where ‖ · ‖2 is the spectral norm from Eq. (7). We compute this norm.
Let Ȧ ∈ TA N2 and (Ȧ1, Ȧ2) = dAΦ−1a (Ȧ). Then, by linearity of the derivative,

we have Ȧ = Ȧ1 + Ȧ2. Furthermore, for i = 1, 2, the derivative dAi p is the orthog-
onal projection onto the orthogonal complement of Ai in R

Π . According to this, we
decompose Ȧ1 and Ȧ2 as

Ȧ1 = Ȧ⊥1 + λ̇U, where U = A1

‖A1‖ and Ȧ⊥1 ∈ (A1)
⊥,

Ȧ2 = Ȧ⊥2 + μ̇V , where V = A2

‖A2‖ and Ȧ⊥2 ∈ (A2)
⊥.

Then, we have dA(p×2 ◦Φ−1a )(Ȧ) = (Ȧ⊥1 /‖A1‖, Ȧ⊥2 /‖A2‖) and, consequently,

‖dA(p×2 ◦Φ−1a )(Ȧ)‖ =
√
‖Ȧ⊥1 ‖2
‖A1‖2 +

‖Ȧ⊥2 ‖2
‖A2‖2 . (29)

Recall from Eq. (20) the matrices L = [λL1 μL2
]
and M = [U V

]
. We can find

vectors x1, x2 ∈ R
Σ−1 with Ȧ⊥1 = λL1x1 and Ȧ⊥2 = μL2x2, and such that ‖Ȧ⊥1 ‖ =

λ‖x1‖ and ‖Ȧ⊥2 ‖ = μ‖x2‖. Observe that λ = ‖A1‖ and μ = ‖A2‖. This yields

‖dA(p×2 ◦Φ−1a )(Ȧ)‖ =
√
‖x1‖2 + ‖x2‖2. (30)

Writing

Ȧ = Ȧ1 + Ȧ2 = L

[
x1
x2

]
+ M

[
λ̇

μ̇

]
, we get (I− MM†)Ȧ = (I − MM†)L

[
x1
x2

]
.

Since we are assuming that (I − MM†)L is injective (for ςmin((I − MM†)L) �= 0),
it has a left inverse and we can write

(
(I− MM†)L

)†
(I − MM†)Ȧ =

[
x1
x2

]
. (31)

Combining Eqs. (30) and (31), we see that

κang(A) =‖
(
(I− MM†)L

)†
(I − MM†)‖2

=‖
(
(I− MM†)L

)† ‖2
=ςmin((I− MM†)L)−1,

the second equality from (PL)† P = (PL)†, which is a basic property of the Moore–
Penrose pseudo-inverse holding for any orthogonal projector P . This finishes the
proof. ��
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5.2 Proof of Theorem 3

Now comes the actual proof of Theorem 3. Proceeding in exactly the same way as in
Sect. 3.1 and using Proposition 2, we get

E κang(A) = 1

22d−1C2

∫

((0,∞)×P)×2
vol(Q) e−

‖λU+μV ‖2
2

ςmin((I − MM†)L)
dλ du dμ dv, (32)

where C2 = C2;n1,...,nd is as in Definition 1, P is as in Eq. (16), Q = [L M
]
is as in

Eq. (19), the volume vol is as in Definition 3, and

u = (u1, . . . ,ud), v = (v1, . . . , vd), U = u1 ⊗ · · · ⊗ ud , and V = v1 ⊗ · · · ⊗ vd ,

is as in Eq. (27), so that A = λU + μV . Next, we relate vol(Q) to the volume of
(I − MM†)L .

Lemma 10 We have vol(Q) = vol(M) vol((I − MM†)L).

Proof Let Q⊥ be amatrix whose columns contain an orthonormal basis for the orthog-
onal complement of the column span of Q. Then, from the definition,

vol(Q) = vol
([
Q Q⊥

]) = ∣∣det([M L Q⊥
])∣∣ =

∣∣∣∣∣∣
det

⎛

⎝[M L Q⊥
]
⎡

⎣
I −M†L 0
0 I 0
0 0 I

⎤

⎦

⎞

⎠

∣∣∣∣∣∣
,

where in the last stepwe justmultiplied by amatrixwhose determinant is 1. Performing
the inner multiplication, we then get

vol(Q) = ∣∣det([M (I − MM†)L Q⊥
])∣∣ = vol

([
M (I − MM†)L

])
.

These two blocks are mutually orthogonal, since (I − MM†) is the projection on the
orthogonal complement of the span of M , and hence, the volume is the product of the
volumes corresponding to each block. The assertion follows. ��

We use Lemma 10 to rewrite Eq. (32) as

E κang(A) = 1

22d−1C2

∫

((0,∞)×P)×2
vol(M) vol((I − MM†)L)

ςmin((I − MM†)L)
e−

‖λU+μV ‖2
2 dλ du dμ dv

= 1

22d−1C2

∫

((0,∞)×P)×2
vol(M) q((I − MM†)L) e−

‖λU+μV ‖2
2 dλ du dμ dv, (33)

where q is as in Eq. (8). Recall from Eq. (22) that M is independent of λ and μ. We
first compute the integral over λ,μ using the next lemma. We prove the lemma in
Appendix C.1.

Lemma 11 Let L1, L2 be the matrices defined as in Eq. (23), such that L =[
λL1 μL2

]
. Let

Jinner =
∫

(0,∞)2
q((I − MM†)L) e−

‖λU+μV ‖2
2 dλ dμ .
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Then,

Jinner = 2
2Σ−3

2 Γ

(
2Σ − 1

2

)∫ π
2

0

q
(
(I− MM†)

[
cos(θ)L1 sin(θ)L2

])

‖ cos(θ)U + sin(θ)V ‖2Σ−1 dθ.

Inserting the results from this lemma into Eq. (33), we get

E κang(A) = 2
2Σ−1

2 −2dΓ
( 2Σ−1

2

)

C2
Jouter,

where

Jouter :=
∫

P×2

∫ π
2

0

vol(M) q
(
(I− MM†)

[
cos(θ)L1 sin(θ)L2

])

‖ cos(θ)U + sin(θ)V ‖2Σ−1 dθ du dv .

In the remaining part of this section, we show that Jouter is bounded by a constant,
which would conclude the proof. We do this by giving a sequence of upper bounds.
We have no hope of providing sharp bounds, so rather than keeping track of all the
constants, we will exploit the following definition for streamlining the proof.

Definition 4 For A, B ∈ [0,∞], we will write A � B if B ∈ R implies A ∈ R. That
is, A � B is an equivalent statement to “B <∞⇒ A <∞.”

First, note that vol(M) = √1− 〈U,V 〉2, so that

Jouter =
∫

P×2

∫ π
2

0

√
1− 〈U,V 〉2 q ((I − MM†)

[
cos(θ)L1 sin(θ)L2

])

‖ cos(θ)U + sin(θ)V ‖2Σ−1 dθdu dv .

Next, we exploit the symmetry of S(Rn1) and transform v1 �→ −v1. This transforma-
tion flips the sign of V , but the value of q is not affected. Indeed, the matrix I−MM†

still projects onto span(U,V )⊥ = span(U,−V )⊥, and L2 is transformed into L2D,
where D is a diagonal matrix with some pattern of ±1 on the diagonal. Since

[
I
D

]

is an orthogonal transformation, the singular values do not change. Thus, we obtain

Jouter =
∫

P×2

∫ π
2

0

√
1− 〈U,V 〉2 q ((I− MM†)

[
cos(θ)L1 sin(θ)L2

])

‖ cos(θ)U − sin(θ)V ‖2Σ−1 dθ du dv .

The next lemma is proved in Appendix C.2.

Lemma 12 Let θ ∈ [0, π
2 ] and fix θ, u and v . There is a constant K > 0, depending

only on n1, . . . , nd and d, such that

q
(
(I− MM†)

[
cos(θ)L1 sin(θ)L2

]) ≤ K‖U − V ‖Σ−1. (34)
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The lemma implies

Jouter �
∫

P×2

∫ π
2

0

√
1− 〈U,V 〉2 ‖U − V ‖Σ−1
‖ cos(θ)U − sin(θ)V ‖2Σ−1 dθ du dv . (35)

For bounding the integral over θ , we need the next lemma, which we prove in
Appendix C.3.

Lemma 13 Let a > 1, p ≥ 1. There exists a constant K > 0, depending only on a,
such that for any unit vectors x, y ∈ S(Rp), x �= y, we have

∫ π
2

0

1

‖ cos(θ)x − sin(θ)y‖a dθ ≤
K

‖x − y‖a−1 .

Applying this lemma to Eq. (35), we obtain

Jouter �
∫

P×2

√
1− 〈U,V 〉2
‖U − V ‖Σ−1 du dv =

∫

P×2

√
1− 〈U,V 〉√1+ 〈U,V 〉

‖U − V ‖Σ−1 du dv .

Writing ‖U − V ‖ = √2
√
1− 〈U,V 〉, we arrive at

Jouter �
∫

P×2

√
1+ 〈U,V 〉

√
1− 〈U,V 〉Σ−2

du dv �
∫

P×2
1

√
1− 〈U,V 〉Σ−2

du dv .

By orthogonal invariance, we may fix uk ∈ S(Rnk ) to be uk = (1, 0, . . . , 0), and
integrate the constant function 1 over one copy of S(Rn1) × · · · × S(Rnd ). Ignoring
the product of volumes

∏d
k=1 vol(S(Rnk )) we have

Jouter �
∫

S(Rn1 )×···×S(Rnd )

1
√
1− (v1)1 · · · (vd)1 Σ−2 dv .

Now, this spherical integral is particularly simple because the integrand depends
uniquely on one of the components of each vector. One can thus transform each
integral in a sphere into an integral in an interval (see, for example, [10, Lemma 1])
getting:

Jouter �
∫

t1,...,td∈[−1,1]
(1− t21 )

n1−1
2 −1 · · · (1− t2d )

nd−1
2 −1

√
1− t1 · · · tdΣ−2 dt1 · · · dtd .

For this last integral, we consider the partition of the cube [−1, 1]d into 2d pieces
corresponding to the different signs of the coordinates. In the pieces where the number
of negative coordinates is odd, the denominator of the integrand is bounded below by
1 and thus the whole integrand is also bounded above by 1. Hence, it suffices to check
that the integral in the rest of the pieces is bounded. Assume now that ti1 , . . . , tik with
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k ≥ 2 even are the negative coordinates in some particular piece of the partition.
The mapping that leaves all coordinates fixed but maps tik−1 �→ −tik−1 and tik �→ −tik
preserves the integrand andmoves the domain to another piece of the partitionwith k−2
negative coordinates. This process can then be repeated until none of the coordinates
is negative. All in one, we have

Jouter �
∫

t1,...,td∈[0,1]
(1− t21 )

n1−1
2 −1 · · · (1− t2d )

nd−1
2 −1

√
1− t1 · · · tdΣ−2 dt1 · · · dtd .

The change of variables tk = cos(θk) for 1 ≤ k ≤ d converts this last integral into

∫

θ1,...,θd∈[0, π
2 ]

sin(θ1)n1−2 · · · sin(θd)nd−2√
1− cos(θ1) · · · cos(θd)Σ−2

dθ1 · · · dθd . (36)

The next lemma is proved in Appendix C.4.

Lemma 14 Let d ≥ 1 and θ1, . . . , θd ∈ [0, π
2 ]. Then, cos(θ1) · · · cos(θd) ≤ 1 −

θ21+···+θ2d
7d .

Using the lemma and the inequality sin(θ) < θ on 0 ≤ θ ≤ π
2 , we find that the integral

in Eq. (36) is bounded by a constant times the following integral:

∫

θ1,...,θd∈[0, π
2 ]

θ
n1−2
1 · · · θnd−2d√

θ21 + · · · + θ2d

Σ−2 dθ1 · · · dθd .

Changing the name of the variables to x1, . . . , xd and integrating over the d-
dimensional ball of radius π

2

√
d, which contains the domain [0, π

2 ]d , we get a new
upper bound for the last integral, which implies

Jouter �
∫

x21+···+x2d≤ π2d
4

xn1−21 · · · xnd−2d√
x21 + · · · + x2d

Σ−2 dx1 · · · dxd .

Recall that Σ = 1+∑d
j=1(n j − 1). By passing to polar coordinates, we get

Jouter �
∫

x∈S(Rd )

xn1−21 · · · xnd−2d

∫ π
√
d

2

0

ρ
d−1+∑d

j=1(n j−2)

ρ
−1+∑d

j=1(n j−1)
dρ dx1 · · · dxd

≤ vol(S(Rd))

∫ π
√
d

2

0
1 = vol(S(Rd))

π
√
d

2
<∞.

This shows Jouter < ∞ implying E κang(A) < ∞, finishing the proof of Theorem 3.
��
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6 Other Random Tensors: Proof of Theorem 4

We demonstrate how our main results can be extended to many other distributions as
well.

Consider the first item of Theorem 4.We assume thatA ∈ σr;n1,...,nd has the density
ρ̂ and that there exists positive constants c1, c2 such that c1 ≤ ρ̂

ρ
≤ c2, where ρ is the

density of a GIT. Then, for any measurable function f (A) we have

EA∼ρ̂ f (A) =
∫

σr;n1,...,nd

f (A) ρ̂(A) dA ≥ c1

∫

σr;n1,...,nd

f (A) ρ(A) dA = c1 EA∼ρ f (A)

and

EA∼ρ̂ f (A) =
∫

σr;n1,...,nd

f (A) ρ̂(A) dA ≤ c2

∫

σr;n1,...,nd

f (A) ρ(A) dA = c2 EA∼ρ f (A)

Thus, EA∼ρ̂ f (A) = ∞ if and only if EA∼ρ f (A) = ∞. Replacing f by κ and κang
proves the first part of Theorem 4.

By Breiding and Vannieuwenhoven [20, Proposition 4.4], κ is invariant under mul-
tiplication ofA by a scalar. Therefore, the expected value of κ for the Gaussian is equal
to the expected value when A is chosen uniformly in the unit ball, and also when A
is chosen uniformly in the unit sphere of the space of tensors. Namely, we have (see,
e.g., [28, Section 2.2.4])

EA∈σr;n1,...,nd :‖A‖≤1 κ(A) = EA∈σr;n1,...,nd :‖A‖=1 κ(A) = EA a GIT in σr;n1,...,nd
κ(A).

This proves the second and third item of Theorem 4 for κ .
For κang, we need the following lemma.

Lemma 15 If A ∈ σr;n1,...,nd is an r-nice tensor, then κang(tA) = κang(A)/t for all
t > 0.

Proof Since A is r -nice, we have κang(A) = ‖dA(p×r ◦ Φ−1a )‖. Similar as for

Eq. (29), we can show ‖dA(p×r ◦ Φ−1a )(Ȧ)‖ =
√∑r

i=1 ‖Ai‖−2 ‖dAi p Ȧi‖2, where
A = A1+· · ·+Ar is the CPD of A and Ȧ = Ȧ1+· · ·+Ȧr is the corresponding decom-
position the tangent vector. The derivative dAi p is the orthogonal projection onto A⊥i
and independent of scaling. Moreover, σr;n1,...,nd is a cone and so TA σ r;n1,...,nd can
be identified with TtA σ r;n1,...,nd . This shows that after scaling the tensor A we get
‖dtA(p×r ◦Φ−1a )(Ȧ)‖ = t−1‖dA(p×r ◦Φ−1a )(Ȧ)‖ and hence κang(tA) = κang(A)/t .

��
Now, we can prove the rest of Theorem 4. Recall from Definition 1 that the den-

sity of a GIT on σr;n1,...,nd is ρ(A) := (Cr;n1,...,nd )−1 e−
‖A‖2
2 , where Cr;n1,...,nd =∫

σr;n1,...,nd
e−

‖A‖2
2 dA . Since our results for κang are for rank-2 tensors, we put r = 2 in

the following. We also abbreviate σ2 := σ2;n1,...,nd and C2 := C2;n1,...,nd . Then, using
Lemma 15 we can integrate in polar coordinates to obtain
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EA a GIT in σ2 κang(A) = 1

C2

∫

A∈σ2

κang(A)e−
‖A‖2
2 dA

= 1

C2

∫ ∞

0
e−

t2
2

∫

A∈σ2:‖A‖=t
κang(A)dA dt

= 1

C2

∫ ∞

0
e−

t2
2

∫

A∈S(σ2)

t2Σ−1κang(tA)dA dt

= 1

Cr

∫ ∞

0
t2Σ−2e−

t2
2 dt

∫

A∈S(σ2)

κang(A)dA.

It follows immediately that the last integral is finite, proving that a randomly chosen
A ∈ S(σ2) has finite expected κang. Finally, if A is chosen randomly in the unit ball in
σ2, the same argument shows that the expected value is again finite:

∫

A∈σr;n1,...,nd :‖A‖≤1
κang(A)dA =

∫ 1

0
t2Σ−2

∫

A∈S(σ2)

κang(A)dA dt <∞.

This finishes the proof of Theorem 4.

7 Numerical Experiments

Having proved that the expected value of the condition number is infinite in most
cases, we provide further computational evidence in support of Conjecture 1. To this
end, a natural idea is to perform Monte Carlo experiments in a few of the unknown
cases as in [23].

SamplingGITs is hard in practice, as the defining polynomial equalities and inequal-
ities of the semialgebraic set σr = σr;n1,...,nd of tensors of rank bounded by r are not
known in the literature.5 Nevertheless, there are a few cases that we can treat numer-
ically. If r = Π

Σ
and the algebraic closure σr (C) has dim σr (C) = Π , a so-called

perfect tensor space, then σr is an open subset of the ambient Rn1×···×nd ; see, e.g.,
[15,57].

FromRemark 2,we can sample from the densityρ onσr via an acceptance–rejection

method: Randomly sample tensors A from the density e−
‖A‖2
2 on R

n1×···×nd until we
findone that belongs toσr .While this schemewill yield tensors distributed according to
the densityρ onσr , it does not yieldGaussian identifiable tensors in general. The reason
is that most perfect tensor spaces are not (expected to be) generically r -identifiable
[47]. Fortunately, there are a few known exceptions: matrix pencils (Rn×n×2 for all
n ≥ 2),R5×4×3 andR3×2×2×2 are proved to be generically complex r -identifiable for
r = Π

Σ
. By applying the acceptance–rejection method to these spaces, every sampled

tensor is a GIT with probability 1.
For numerically checking, if a random tensor A ∈ R

n1×···×nd in a perfect tensor
space lies in σr with r = Π

Σ
, we apply a homotopy continuation method to the square

5 See [57, Chapter 7] and the references therein for some results on equations of the algebraic closure of
σr .
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system of Π equations

A −
r∑

i=1
a1i ⊗

[
1
a2i

]
⊗ · · · ⊗

[
1
adi

]
= 0,

where the Π = rΣ entries of the aki ’s are treated as variables, and the n1 × · · · × nd
tensor A is the tensor to decompose. We generate a start system with one solution to
track by randomly sampling the entries of the vectors aki i.i.d. from a real standard
Gaussian distribution and then constructing the corresponding tensorA0. Since r = Π

Σ
is the so-called generic rank of tensors in perfect tensor spaces Cn1×···×nd , the above
system has at least one complex solution with probability 1 as well. If we consider
complex r -identifiable perfect tensor spaces at the generic rank, we can thus determine
if A ∈ σr by solving the square system and checking whether the unique solution is
real. Assuming that we use a certified homotopy method such as alphaCertified [48],
this approachwill correctly classifyA with probability 1, thus not impacting the overall
distribution produced by the acceptance–rejection scheme.

We implemented the above scheme in Julia 1.0.3 using version 0.4.3 of the package
HomotopyContinuation.jl [19], employing thesolve functionwith default parameter
settings. We deem a solution real if the norm of the imaginary part is less than 10−8.
Note that this package does not offer certified tracking; however, the failure rate
observed in our experiments was very low, namely 0.0512498%—see Table 1. For this
reason, we are convinced that the distribution produced by the acceptance–rejection
scheme is very close to the true distribution.

We performed the following experiment for estimating the distribution of the con-
dition numbers of GITs of generically complex r -identifiable tensors in perfect tensor
spaces with r = Π

Σ
, the complex generic rank. As explained above, we randomly sam-

pled an element A of Rn1×···×nd from the density e−
‖A‖2
2 by choosing its entries i.i.d.

standard normally distributed. Then, we generated one random starting system and
applied the solve function from HomotopyContinuation.jl for tracking the starting
solution A0 to the target A . If the final solution of the square system was real, we
recorded both the regular and angular condition numbers at the CPD of A computed
via homotopy continuation. These computations were performed in parallel using 20
computational threads until 100,000 finite, nonsingular, real solutions and correspond-
ing condition numbers were obtained. This experiment was performed on a computer
system consisting of 2 Intel Xeon E5-2697 v3 CPUs with 12 cores clocked at 2.6GHz
and 128GBmainmemory. Information about the sampling process via the acceptance–
rejection method is summarized in Table 1, and Fig. 1 visualizes the complementary
cumulative distribution functions of the regular and angular condition numbers.

In Table 1, the total fractions of solutions that are real when sampling random
Gaussian tensors (with i.i.d. standard normally distributed entries) seem to agree very
well with the known theoretical results by Bergqvist and Forrester [13]; they showed
that for random Gaussian n× n× 2 tensors the rank is n = Π

Σ
with probability pn :=

Γ
( n+1

2

)n(
G(n+1)

)−1, where Γ is the gamma function and G the Barnes G-function
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Table 1 Results of sampling GITs in σr;n1,n2,n3 ⊂ R
n1×n2×n3 via an acceptance–rejection method

n1 × n2 × n3 r Samples Fraction in R Time (min)
R C failed

2× 2× 2 2 100, 000 27, 335 41 0.7853 . . . ≈ π
4 1.3

3× 3× 2 3 100, 000 101, 345 185 0.4966 . . . ≈ 1
2 2.8

4× 4× 2 4 100, 000 288, 770 325 0.2572 . . . ≈ 27π2

1024 14.9

5× 4× 3 6 100, 000 1, 237, 912 643 0.0747 . . . 420.6

5× 5× 2 5 100, 000 810, 254 509 0.1098 . . . ≈ 1
9 99.3

Columns three to five list the number of samples where the final tracked solution of the homotopy was real,
complex or failed, respectively. The next column shows the fraction of successful samples that were real;
in the case of n × n × 2 the analytical solution from Bergqvist and Forrester [13] is also stated and the
correct digits from the empirical estimate are underlined. The final column indicates the total wall-clock
time required to perform the Monte Carlo experiments

Fig. 1 Empirical complementary cumulative distribution function of the regular and angular condition
numbers for the tensor spaces from Table 1. Both plots are on the same scale

(or double gamma function). The correct digits in the numerical approximation are
underlined in the penultimate column of Table 1.

The empirical complementary cumulative distribution functions of the regular and
angular condition numbers are shown in Fig. 1. The full lines correspond to the empir-
ical data and the thinner dashed lines correspond to an exponential model fitted to
the data. From the figure, it is namely reasonable to postulate that the complementary
cumulative distribution function c(x) for large x has the form

c(x) = 1−
∫ x

0
p(t) dt = ax−b, (37)

which corresponds to a straight line in the log–log plot in Fig. 1. We fitted the
parameters a and b of the postulated model to the data restricted to the range
10−1 ≤ c(x) ≤ 10−3. The reason for restricting the data set is that for small condition
numbers it is visually evident in Fig. 1 that the model is incorrect and for large condi-
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Table 2 Estimated parameters of the exponential model Eq. (37) fitted to the complementary cumulative
distribution functions from Fig. 1

n1 × n2 × n3 Regular Angular
a b R2 a b R2

2× 2× 2 0.6624 0.6904 0.9999 1.7288 1.8624 0.9995

3× 3× 2 2.2348 0.6636 0.9999 5.5496 1.8856 0.9998

4× 4× 2 4.7318 0.6388 0.9997 11.4165 1.8455 0.9994

5× 4× 3 22.3141 0.6461 0.9998 102.4887 1.6337 0.9992

5× 5× 2 9.8634 0.6436 0.9997 23.6951 1.8662 0.9996

The coefficient of determination R2 between the log-transformed data and log-transformed model predic-
tions is also indicated

tion numbers the data contain few samples, which negatively impacts the robustness
of the fit. The parameters were fitted using fminsearch from MATLAB R2017b
with starting point (1, 1) and default settings. In all cases, the algorithm terminated
because the relative change of the parameters fell below 10−4. The obtained param-
eters are shown in Table 2, along with the coefficient of determination R2 between
the log-transformed data and log-transformed model predictions; 1 indicates perfect
correlation.

We may estimate the expected values of the regular and angular condition numbers
based on their empirical distributions. If p(x) denotes the probability density function
of the regular condition number, then

E κ(A) =
∫ ∞

0
xp(x) dx .

From the postulated model of c(x), we find that p(x) = abx−b−1 for large x , so that
we postulate that the expected value will be well approximated by

E κ(A) ≈
∫ κ0

0
xp(x) dx + ab

∫ ∞

κ0

x−b dx

for some finite κ0. The expression on the right is finite only if b > 1. The same
discussion applies to the angular condition number as well. Regarding the estimated
parameters in Table 2, our empirical data strongly suggest that the expected value of
the condition number is infinite for r = Π

Σ
in the tested cases, as b ≈ 0.6 < 1. On

the other hand, the expected angular condition number seems finite in all cases, as
b ≈ 1.8 > 1. This suggests that both Theorems 2 and 3 might hold for higher ranks
as well.
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A Proof of the lemmata from Section 3

A.1 Proof of Lemma 3

Integrating in polar coordinates, we have

∫

(0,∞)

∫

(0,∞)

λΣ−1 μΣ−1 e−
‖λU+μV ‖2

2 dλ dμ

=
∫ π

2

0

∫ ∞

0
(cos(θ) sin(θ))Σ−1ρ2Σ−1 e−ρ2 ‖ cos(θ)U+sin(θ)V ‖2

2 dρ dθ.

The change of variables t := ρ‖ cos(θ)U + sin(θ)V ‖ transforms the integral for ρ

into

1

‖ cos(θ)U + sin(θ)V ‖2Σ
∫ ∞

0
t2Σ−1 e−

t2
2 dt .

The last integral is 2Σ−1Γ (Σ). Plugging this into the equation above shows the asser-
tion. ��

A.2 Proof of Lemma 4

Expanding the denominator and taking a change of variables by ϕ = 2θ , the lemma
reduces to proving that

∫ π/2

0

coss−1 ϕ

(1± a cosϕ)s
dϕ =

∫ π/2

0

sins−1 ϕ

(1± a sin ϕ)s
dϕ ≥ k(s)

(1± a)s−1/2
,

(for the first equality, make the change of variables ϕ → π/2 − ϕ) where we are
denoting a = |〈x, y〉| ∈ [0, 1]. With the + sign the inequality is clear (choosing an
appropriate k(s)). For the other case, we have, up to a constant k(s), the lower bound

∫ π/4

0

dϕ

(1− a cosϕ)s
≥
∫ π/4

0

dϕ
(
1− a

(
1− ϕ2/2

))s =
1

(1− a)s

∫ π/4

0

dϕ
(
1+ a

1−a
ϕ2

2

)s .
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Thus, it suffices to check that

∫ π/4

0

1
(
1+ a

1−a
ϕ2

2

)s dϕ ≥ k(s)
√
1− a,

but this is easily checked taking the change of variables ϕ2 = (1− a)t . ��

A.3 Proof of Lemma 6

Recall from the definition of D(ε) that ‖u1 − v1‖ < ε, and that 9
10‖u1 − v1‖ <

‖uk − vk‖ < ‖u1 − v1‖ for 2 ≤ k ≤ d. If ε > 0 is sufficiently small, we can assume

δk := 〈uk, vk〉 ≥ 9

10
, 1 ≤ k ≤ d. (38)

To prove the lemma, it suffices to show that

q(U )2 ≥ 2−d
(‖u1 − v1‖2

4

)Σ−1
= 2−d

(
1− δ1

2

)Σ−1

for sufficiently small ε.
For convenience, we will first introduce a few auxiliary variables. Consider the next

picture:

vk

uk

εkζk

θ

Then, for small θ > 0, we have the following elementary trigonometric relations:

δk := cos θ = 〈uk , vk〉 =
√

1
ε2k+1

, (39)

ζk := sin θ =
√
1− δ2k = δkεk , and

εk := tan θ =
√

1
δ2k
− 1.

It follows from the definition of D(ε) that

δ1 = min {δ1, . . . , δd} and ε1 = max {ε1, . . . , εd}.
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From the previous figure, it is also clear that

ζk = δkεk ≤ ‖uk − vk‖ ≤ εk , and so

(
9

10

)2
ε1 ≤ 9

10
‖u1 − v1‖ ≤ ‖uk − vk‖ ≤ εk , (40)

having used in the right sequence of inequalities that Eq. (38) implies 9
10δ1ε1 ≥( 9

10

)2
ε1. Then,

1− ε21

2
≤ 1− ε2k

2
≤ δk =

√
1

ε2k+1
≤ 1− ε2k

4
≤ 1− 1

4

(
9

10

)4

ε21 . (41)

Finally, we will also use

z := δ1 · · · δd . (42)

Transforming q(U)

For computing q(U ), wewill first make a convenient orthogonal transformation ofU ’s
columns. Recall from Eq. (24) thatU = [U L1 V L2

]
. As in Eq. (22), we write M =[

U V
]
. Then, q(U ) = q(

[
M L1 L2

]
). The block structure of L1, L2 ∈ R

Π×(Σ−1)
was given in Eq. (23): L1 is made up of the d blocks

Lk
1 = u1 ⊗ · · · ⊗ uk−1 ⊗ U̇ k ⊗ uk+1 ⊗ · · · ⊗ ud , 1 ≤ k ≤ d,

and L2 is analogously made up of the d blocks

Lk
2 = v1 ⊗ · · · ⊗ vk−1 ⊗ V̇ k ⊗ vk+1 ⊗ · · · ⊗ vd , 1 ≤ k ≤ d,

where U̇ k = [
u̇k2 u̇k3 · · · u̇knk

] ∈ R
nk×nk−1 and V̇ k = [

v̇k2 v̇k3 · · · v̇knk
] ∈ R

nk×nk−1
are matrices whose columns form an orthonormal basis of (uk)⊥ := Tuk S(Rnk ) and
(vk)⊥ := Tvk S(Rnk ), respectively.

The columns of M are rotated into

a↑ := 1√
2
(U − V ) and a↓ := 1√

2
(U + V ), (43)

while the columns of L1 and L2 are rotated as follows. We define the Π × (Σ − 1)-

matrices R↓ :=
[
R1↓ . . . Rd↓

]
and R↑ :=

[
R1↑ . . . Rd↑

]
, where

Rk↓ =
1√
2
(Lk

1 − Lk
2) and Rk↑ =

1√
2
(Lk

1 + Lk
2). (44)

The reason for using ↓ and ↑ will become clear from the computations below: Inner
products of two quantities with arrows pointing in opposite directions are zero, and
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swapping the directions of both arrows flips a sign in the expression of the inner
product.

Now, instead of considering the matrix U we work with the matrix

N := [a↓ R↓ a↑ R↑
]
.

By construction,
[
M L1 L2

] = NQ for some orthogonal matrix Q, so that

q(U ) = q(
[
a↓ R↓ a↑ R↑

]
) = q(N ) and q(U )2 = q(NT N ).

Note that the choice of U̇ k and V̇ k does not affect the value of q. In particular, we may
choose the matrices as follows. Let H be the plane in R

nk spanned by uk and vk . By
definition of D(ε), uk �= ±vk . Let O be the rotation that sends uk to vk , but leaves the
orthogonal complement H⊥ of H fixed. Take u̇k2 ∈ H with u̇k2 ⊥ uk as the unit norm
vector making the smallest angle with vk , as follows:

ukvk

u̇k2
v̇k2

We also take v̇k2 := Ou̇k2, as in the illustration above. If h3, . . . ,hnk is any orthogonal
basis of H⊥, then our choice of bases is

u̇k2 and v̇k2 = Ou̇k2 as above, and for 3 ≤ j ≤ nk : u̇kj = v̇kj = h j . (45)

In other words, we can assume that all but the first columns of U̇ k and V̇ k are equal.
Moreover, as can be seen from the foregoing figure, the following properties hold:

〈u̇k2, v̇k2〉 = 〈Quk, Qvk〉 = 〈uk, vk〉 = δk, (46)

〈u̇k2, vk〉 = cos
(π

2
− arccos(δk)

)
=
√
1− δ2k = δkεk,

〈v̇k2,uk〉 = cos
(π

2
+ arccos(δk)

)
= −

√
1− δ2k = −δkεk,

where Q is a rotation by π
2 radians in same direction as the rotation O . In particular,

we have

(U̇ k)T vk = δkεkek and (V̇ k)Tuk = −δkεkek, where ek := (1, 0, . . . , 0)T ∈ R
nk−1.
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Consider then theGrammatrixG = NT N for this particular choice of tangent vectors:

G =

⎡

⎢⎢⎢⎢⎢⎣

aT↓ a↓ aT↓ R↓ aT↓ a↑ aT↓ R↑
RT↓ a↓ RT↓ R↓ RT↓ a↑ RT↓ R↑
aT↑ a↓ aT↑ R↓ aT↑ a↑ aT↑ R↑
RT↑ a↓ RT↑ R↓ RT↑ a↑ RT↑ R↑.

⎤

⎥⎥⎥⎥⎥⎦
.

We continue by computing its entries.

Inner Products Involving Only a

Using Eq. (10) for computing inner products of rank-1 tensors, we see that

aT↓ a↓ = 1+ 〈U,V 〉 = 1+ z, aT↓ a↑ = aT↑ a↓ = 0, and aT↑ a↑ = 1− 〈U,V 〉 = 1− z. (47)

Inner Products Involving both a and R

For each k, we have (Lk
1)

TU = (Lk
2)

TV = 0,

(Lk
1)

TV = (
∏

i �=k
δi
)
(U̇ k)T vk = zεkek and (Lk

2)
TU = (

∏

i �=k
δi
)
(V̇ k)T uk = −zεkek .

This implies

(Rk↓)T a↓ =
1

2
(Lk

1 − Lk
2)

T (U + V ) = zεkek .

(Rk↓)T a↑ =
1

2
(Lk

1 − Lk
2)

T (U − V ) = 0,

(Rk↑)T a↓ =
1

2
(Lk

1 + Lk
2)

T (U + V ) = 0,

(Rk↑)T a↑ =
1

2
(Lk

1 + Lk
2)

T (U − V ) = −zεkek,

having used Eqs. (46) and (10). Combining the above, we obtain

RT↑ a↓ = RT↓ a↑ = 0, RT↓ a↓ = zf, and RT↑ a↑ = −zf, where f =
⎡

⎢⎣
ε1e1

...

εded

⎤

⎥⎦ .(48)

Inner Products Involving only R

By construction, we have (U̇ k)T U̇ k = (V̇ k)T V̇ k = Ink−1, where Ink−1 is the (nk −
1)× (nk−1) identity matrix. Furthermore, by our choice of tangent vectors from Eqs.
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(45) and (46), we have (U̇ k)T V̇ k = diag(〈u̇kj , v̇kj 〉)nkj=2 = diag(δk, 1, . . . , 1). This
implies

(Lk
1)

T Lk
1 = (Lk

2)
T Lk

2 = Ink−1, (Lk
1)

T Lk
2 =

(∏

i �=k
δi
)
(U̇ k)T V̇ k = z · diag(1, δ−1k , . . . , δ−1k ).

Moreover, for j �= k we have

(L j
1)

T Lk
1 = (L j

2)
T Lk

2 = 0,

(L j
1)

T Lk
2 =

( ∏

i /∈{k, j}
δi

)
·
{(

(U̇ j )T v j
)⊗ ((uk)T V̇ k

)
, j < k,(

(uk)T V̇ k
)⊗ ((U̇ j )T v j

)
, j > k

= −zε jεke j (ek)T .

From this, we get

(R j
↓)

T Rk↓ =
1

2
(L j

1 − L j
2)

T (Lk
1 − Lk

2) =
{
Ink−1 − z · diag(1, δ−1k , . . . , δ−1k ), j = k

zε jεk e j (ek)T , j �= k
,

(R j
↓)

T Rk↑ =
1

2
(L j

1 − L j
2)

T (Lk
1 + Lk

2) = 0,

(R j
↑)

T Rk↑ =
1

2
(L j

1 + L j
2)

T (Lk
1 + Lk

2) =
{
Ink−1 + z · diag(1, δ−1k , . . . , δ−1k ), j = k

−zε jεk e j (ek)T , j �= k
.

Note that

Ink−1 − z · diag(1, δ−1k , . . . , δ−1k ) = Ink−1 − z · diag(1+ ε2k , δ
−1
k , . . . , δ−1k )+ zε2k e

k(ek)T ,

and

Ink−1 + z · diag(1, δ−1k , . . . , δ−1k ) = Ink−1 + z · diag(1+ ε2k , δ
−1
k , . . . , δ−1k )− zε2k e

k(ek)T .

Exploiting the definition of the vector f in Eq. (48), the foregoing can be expressed
concisely as

RT↓ R↓ = D↓ + zffT , RT↓ R↑ = 0, and RT↑ R↑ = D↑ − zffT ,

where we introduced

D↓ = IΣ−1 − z · diag
⎛

⎜⎝1+ ε21 , δ
−1
1 , . . . , δ−11︸ ︷︷ ︸
(n1−2)-times

, . . . , 1+ ε2d , δ
−1
d , . . . , δ−1d︸ ︷︷ ︸
(nd−2)-times

⎞

⎟⎠ , and

D↑ = IΣ−1 + z · diag
⎛

⎜⎝1+ ε21 , δ
−1
1 , . . . , δ−11︸ ︷︷ ︸
(n1−2)-times

, . . . , 1+ ε2d , δ
−1
d , . . . , δ−1d︸ ︷︷ ︸
(nd−2)-times

⎞

⎟⎠ .
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Putting Everything Together

From the definition of the vector f in Eq. (48), it is clear that we can construct a
permutation matrix P that moves the nonzero elements of f to the first d positions:

Pf =
[
g
0

]
, where g = [ε1 · · · εd

]T

and 0 is a vector of zeros of length Σ − 1 − d. Applying PT on the right of the R’s
yields

R↓PT := [T↓ S↓
]

and R↑PT := [T↑ S↑
]
, (49)

where the T matrices are, respectively, given by

√
2T↓ = [u1 ⊗ · · · ⊗ uk−1 ⊗ u̇k2 ⊗ uk+1 ⊗ · · · ⊗ ud − v1⊗

· · · ⊗ vk−1 ⊗ v̇k2 ⊗ vk+1 ⊗ · · · ⊗ vd ]dk=1,

and analogously for T↑ replacing the subtraction by an addition; the matrices S↓ and
S↑ contain the remainder of the columns of R↓ and R↑, respectively. Then, we have

P(D↓ + zffT )PT =
[
E↓ 0
0 F↓

]
+ z

[
g
0

] [
gT 0T

] =
[
E↓ + zggT 0

0 F↓

]
=
[
T T↓ T↓ T T↓ S↓
ST↓ T↓ ST↓ S↓

]
, and

P(D↑ − zffT )PT =
[
E↑ 0
0 F↑

]
− z

[
g
0

] [
gT 0T

] =
[
E↑ − zggT 0

0 F↑

]
=
[
T T↑ T↑ T T↑ S↑
ST↑ T↑ ST↑ S↑

]
,

where

E↓ := Id − z · diag(1+ ε21 , 1+ ε22 , . . . , 1+ ε2d),

E↑ := Id + z · diag(1+ ε21 , 1+ ε22 , . . . , 1+ ε2d),

F↓ := IΣ−1−d − z · diag(δ−11 , . . . , δ−11︸ ︷︷ ︸
(n1−2)-times

, . . . , δ−1d , . . . , δ−1d︸ ︷︷ ︸
(nd−2)-times

), and

F↑ := IΣ−1−d + z · diag(δ−11 , . . . , δ−11︸ ︷︷ ︸
(n1−2)-times

, . . . , δ−1d , . . . , δ−1d︸ ︷︷ ︸
(nd−2)-times

). (50)
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Hence, by swapping rows and columns of G, which leaves the value of q unchanged
because they are orthogonal operations, we find that q(G) = q(G ′) with

G ′ :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

aT↓ a↓ aT↓ T↓ aT↓ S↓ aT↓ a↑ aT↓ T↑ aT↓ S↑
T T↓ a↓ T T↓ T↓ T T↓ S↓ T T↓ a↑ T T↓ T↑ T T↓ S↑
ST↓ a↓ ST↓ T↓ ST↓ S↓ ST↓ a↑ ST↓ T↑ ST↓ S↑
aT↑ a↓ aT↑ T↓ aT↑ S↓ aT↑ a↑ aT↑ T↑ aT↑ S↑
T T↑ a↓ T T↑ T↓ T T↑ S↓ T T↑ a↑ T T↑ T↑ T T↑ S↑
ST↑ a↓ ST↑ T↓ ST↑ S↓ ST↑ a↑ ST↑ T↑ ST↑ S↑

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎣

1+ z zgT 0 0 0 0
zg E↓ + zggT 0 0 0 0
0 0 F↓ 0 0 0
0 0 0 1− z −zgT 0
0 0 0 −zg E↑ − zggT 0
0 0 0 0 0 F↑

⎤

⎥⎥⎥⎥⎥⎥⎦
. (51)

Bounding q(G)

To simplify more, we write

G↓ :=
[
1 0
0 E↓

]
, G↑ :=

[
1 0
0 E↑

]
, and h :=

[
1
g

]
,

so that

q(G) = q(G ′) = q

⎛

⎜⎜⎝

⎡

⎢⎢⎣

G↓ + zhhT 0 0 0
0 G↑ − zhhT 0 0
0 0 F↓ 0
0 0 0 F↑

⎤

⎥⎥⎦

⎞

⎟⎟⎠ ,

where we swapped some rows and columns again. Because the smallest singular value
of the matrix G↑ − zhhT is larger than or equal to the smallest singular value of the
positive semidefinite matrix G ′, we obtain the bound

q(G) ≥ q(G↑ − zhhT ) det(G↓ + zhhT ) det(F↓) det(F↑). (52)

We now obtain bounds on the individual factors on the right-hand side of Eq. (52).
First, we compute the determinants of the diagonal matrices:

det(F↓) det(F↑) =
d∏

i=1

(
(1− zδ−1i )(1+ zδ−1i )

)ni−2 ≥
d∏

i=1
(1− zδ−1i )ni−2,
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having used 0 < z = δ1 · · · δd ≤ 1. Next, we see that

1− zδ−1i ≥ 1− δd−1max ≥ 1− δmax >

(
9

10

)2

(1− δ1), where δmax := max{δ1, . . . , δd}.

Note that we used 2
( 9
10

)2
(1 − δ1) =

( 9
10

)2 ‖u1 − v1‖2 < ‖uk − vk‖2 = 2(1 − δk)

in the last inequality. As a result, we obtain

det(F↓) det(F↑) >

(
81

100

)Σ−d−1
(1− δ1)

Σ−d−1 ≥
(
1− δ1

2

)Σ−d−1
. (53)

The final determinant in Eq. (52) can be computed as follows. Note that zhhT

is a symmetric matrix with one positive eigenvalue and all others zero. Hence, it
follows fromWeyl’s inequalities [51, Theorem4.3.7] that the eigenvalues ofG↓ cannot
decrease by adding zhhT . Hence,

det(G↓ + zhhT ) ≥ det(G↓) = det(E↓) =
d∏

i=1
(1− z(1+ ε2i )).

Next, we bound 1− z(1+ ε2i ) from below and above. From (40) and (41), we have
for some universal constant C > 0:

1− z(1+ ε2i ) ≤ 1− (1− Cε21)
d+1 (54)

= (1− (1− Cε21))(1+ (1− Cε21)+ · · · + (1− Cε21)
d)

≤ C(d + 1)ε21 .

For obtaining the lower bound, note that

z = δ1 · · · δd ≤
√

1

(1+ ε21)(1+ ε22)(1+ ε23)
≤
√

1

1+ ε21

1

(1+ (9/10)4ε21)
2

= 1

1+ (9/10)4ε21

√
1

1+ ε21
,

so that

1− z(1+ ε2i ) ≥ 1−
√
1+ ε21

1+ (9/10)4ε21
≥ ε21

8
. (55)

By Eq. (40), ε21 ≥ 2(1− δ1), so that

det(G↓ + zhhT ) ≥
(
2

8

)d

(1− δ1)
d = 2−d

(
1− δ1

2

)d

. (56)
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The proof can be completed by a fortunate application of Geršgorin’s theorem [43,
Satz III]. According to this theorem, the eigenvalues of

G↑ − zhhT =

⎡

⎢⎢⎢⎢⎢⎢⎣

1− z −zε1 −zε2 · · · −zεd
−zε1 1+ z −zε1ε2 · · · −zε1εd
−zε2 −zε1ε2 . . .

...
...

... 1+ z −zεd−1εd
−zεd −zε1εd · · · −zεd−1εd 1+ z

⎤

⎥⎥⎥⎥⎥⎥⎦

are contained in the following Geršgorin disks

disk0 :=
{
x ∈ C | |(1− z)− x | ≤ z

d∑

k=1
εk

}
, and

diski :=
{
x ∈ C | |(1+ z)− x | ≤ zεk + zεk

∑

j �=k
ε j

}
, i = 1, . . . , d.

Recall fromEq. (42) that z = δ1 · · · δd and fromEq. (39) that δk =
√

1
1+ε2k

. By choosing

ε = ε1 small enough, we can get z as close to 1 and εk ≤ ε1 as close to 0 as we want.
Therefore, if we choose ε small enough, disk0 is a small disk near zero, and diskk
are small, pairwise overlapping disks near two. When ε is sufficiently small, disk0 is
disjoint from the other disks, so that disk0 contains exactly 1 eigenvalue close to 0,
and

⋃d
i=1 diski contains d eigenvalues close to 2. Furthermore, since we are dealing

with symmetric matrices, all the eigenvalues are real. Therefore, for sufficiently small
ε,

q(G↑ − zhhT ) ≥ (1+ z − dε1)
d ≥ 1. (57)

Finally, plugging Eqs. (53)–(57) into Eq. (52), we find

q(G) ≥ 2−d
(
1− δ1

2

)Σ−1
.

This finishes the proof.

B Proof of Lemma 9

For the proof of Lemma 9, we need the following two simple results. The first one is
a well-known result.

Lemma 16 For 1 ≤ k ≤ d, letAk ⊂ R
nk be a linear subspace of dimension mk and let

A⊥k be its orthogonal complement. Put V := A1⊗· · ·⊗Ad andW := A⊥1 ⊗· · ·⊗A⊥d
and let A ∈ Sn1,...,nd ∩V and B ∈ Sn1,...,nd ∩W. Then, the tangent spaces TA Sn1,...,nd
and TB Sn1,...,nd are orthogonal to each other.
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Proof Let us write A = a1 ⊗ · · · ⊗ ad and B = b1 ⊗ · · · ⊗ bd . By Eq. (9), all
vectors of the form a1 ⊗ · · · ⊗ ak−1 ⊗ v ⊗ ak+1 ⊗ · · · ⊗ ad for 1 ≤ k ≤ d and
where v ∈ R

nk constitute a generating set of TA Sn1,...,nd . A similar statement holds
for TB Sn1,...,nd . Then, by Eq. (10), the inner product between two such generators
t := a1⊗· · ·⊗ak−1⊗v⊗ak+1⊗· · ·⊗ad and s := b1⊗· · ·⊗b�−1⊗w⊗b�+1⊗· · ·⊗bd

is

〈t, s〉 =
{
〈v,w〉 ∏ j �=k〈a j ,b j 〉, if k = �

〈a�,w〉 〈v,bk〉 ∏ j �=k,�〈a j ,b j 〉, if k �= �
= 0,

because d ≥ 3 and 〈a j ,b j 〉 = 0 for all 1 ≤ j ≤ d. This completes the proof. ��
Lemma 17 For all 1 ≤ k ≤ d, let Ak ⊂ R

nk be a linear subspace of dimension mi ,
and define the tensor space V := A1 ⊗ · · · ⊗Ad . Then, the following holds.

1. Sn1,...,nd ∩ V is a manifold.
2. For 1 ≤ k ≤ d, let Uk ∈ R

nk×mk be a matrix whose columns form an orthonormal
basis for Ak . The map

Sm1,...,md → Sn1,...,nd ∩ V, a1 ⊗ · · · ⊗ ad �→ (U1a1)⊗ · · · ⊗ (Udad)

is an isometry.

Proof Let us write U1 ⊗ · · · ⊗ Ud for the map from (2). It extends to a linear map
R
m1 ⊗ · · · ⊗R

md → R
n1 ⊗ · · · ⊗R

nd because of the universal property [44, Chapter
1]. By definition, we have (U1⊗· · ·⊗Ud)(Sm1,...,md ) = Sn1,...,nd ∩V and (UT

1 ⊗· · ·⊗
UT
d )(Sn1,...,nd∩V) = Sm1,...,md .Hence,Sn1,...,nd∩V is the imageof amanifold under an

invertible linearmap. This implies thatSn1,...,nd∩V itself is amanifold. Furthermore,U
preserves the Euclidean inner product, and so themanifolds Sn1,...,nd ∩V and Sm1,...,md

are isometric. ��
We are now ready to prove Lemma 9.

Proof of Lemma 9 Weassumed that σr−2;n1−2,...,nd−2 ⊂ R
n1−2⊗· · ·⊗R

nd−2 is gener-
ically complex identifiable. Then, Proposition 1(2) tells us that Mr−2;n1−2,...,nd−2 is
Zariski-open in (Sn1−2,...,nd−2)×(r−2). Fix any tuple (X1, . . . ,Xr−2) ∈Mr−2;n1−2,...,nd−2.
By definition of Mr−2;n1−2,...,nd−2, the least singular value of the derivative
d(X1,...,Xr−2)Φ of the addition map Φ : (Sn1−2,...,nd−2)×(r−2) → Nr−2;n1−2,...,nd−2
is positive. This implies that | det d(X1,...,Xr−2)Φ| > 0. Hence, if Xi is a matrix whose
columns form an orthonormal basis for TSn1−2,...,nd−2 Xi , we have

| det d(X1,...,Xr−2)Φ| = vol(
[
X1 . . . Xr−2

]
) > 0.

Moreover, if we write Xi = νix1i ⊗ · · · ⊗ xdi with ‖xki ‖ = 1 and νi = ‖Xi‖, then we
have

vol
[
xh11 ⊗ · · · ⊗ xhd−11 · · · xh1r−2 ⊗ · · · ⊗ xhd−1r−2

]
> 0
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for all subsets {h1, . . . , hd−1} ⊂ {1, . . . , d} of cardinality d−1. Indeed, suppose to the
contrary that the foregoing matrix would have linearly dependent columns for some
subset; w.l.o.g., we can assume hi = i for i = 1, . . . , d−1. Then, there are nonzero λi
such that

∑r−2
i=1 λix1i ⊗· · ·⊗ xd−1i = 0. Tensoring with an arbitrary vector v ∈ R

nd−2
yields

∑r−2
i=1 λix1i ⊗ · · · ⊗ xd−1i ⊗ v = 0 ⊗ v = 0, having exploited multilinearity.

Note that the i th term in the last sum lives in TXi Sn1−2,...,nd−2 and can be obtained
as a linear combination of the columns of the i-th block of Terracini’s matrix, so
that Eq. (12) implies that κ(X1, . . . ,Xr−2) = ∞, which contradicts (X1, . . . ,Xr−2) ∈
Mr−2;n1−2,...,nd−2. We define the following constant, which will play an important
role in this proof:

μ := vol
([
X1 · · · Xr−2

])

2

∏

1≤h1<···<hd−1≤d
vol
[
xh11 ⊗ · · · ⊗ xhd−11 · · · xh1r−2 ⊗ · · · ⊗ xhd−1r−2

]
.

It is important to note thatμ > 0 is only defined through the choice of (X1, . . . ,Xr−2).
The key observation is that we can choose μ independently of what follows.

Recall that the restriction of φ to N2;n1,...,nd × (Sn1,...,nd )
×(r−2) is

φ : N2;n1,...,nd × (Sn1,...,nd )
×r−2 → N∗r , (B,A1, . . . ,Ar−2) �→ B +

r−2∑

i=1
Ai .

In the terminology ofBreiding andVannieuwenhoven [20],N∗r is the join ofN2;n1,...,nd
and r − 2 copies of Sn1,...,nd .

Let B ∈ N2;n1,...,nd . By construction, the tensor B has multilinear rank bounded
by (2, . . . , 2), meaning that there exists a tensor subspace V = A1 ⊗ · · · ⊗ Ad ⊂
R
n1 ⊗ · · · ⊗ R

nd where the linear subspace Ak ⊂ R
nk has dimAk = 2 and such that

A ∈ V. For each 1 ≤ k ≤ d, we denote the orthogonal complement of Ak in R
nk by

A⊥k . Let us define W := A⊥1 ⊗ · · · ⊗A⊥d .
Now,wemake the following choice of rank-1 tensorsA1, . . . ,Ar−2 ∈ Sn1,...,nd∩W:

for 1 ≤ k ≤ d let Uk ∈ R
Π×nk−2 be a matrix whose columns form an orthonormal

basis of A⊥k . Then, by Lemma 17, the map

U : Sn1−2,...,nd−2 → Sn1,...,nd ∩W, a1 ⊗ · · · ⊗ ad �→ (U1a1)⊗ · · · ⊗ (Udad)

is an isometry of manifolds. For 1 ≤ i ≤ r − 2, we define Ai := U (Xi ), where Xi
are the rank-1 tensors from above. We write Ai = νia1i ⊗ · · · ⊗ adi . Because U is an
isometry, ‖Xi‖ = ‖Ai‖ = νi , so we can choose ‖a1i ‖ = · · · = ‖adi ‖ = 1. The plan for
the rest of the proof is to show that Jac(φ)(B,A1, . . . ,Ar−2) is a finite value which
does not depend on B, and that there is a neighborhood around (A1, . . . ,Ar−2), whose
size is also independent of B, on which the Jacobian does not deviate too much.

For showing this,wefirst compute thederivative ofφ at the point (B,A1, . . . ,Ar−2):

d(B,A1,...,Ar−2)φ : TB N2;n1,...,nd × TA1 Sn1,...,nd × · · · × TAr−2 Sn1,...,nd → TA N∗r ,
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(Ḃ, Ȧ1, . . . , Ȧr−2) �→ Ḃ +
r−2∑

i=1
Ȧi ,

where A = B +∑r−2
i=1 Ai . Let V ∈ R

Π×2Σ be a matrix whose columns form an
orthonormal basis of TB N2;n1,...,nd , and for 1 ≤ i ≤ r − 2 let Wi ∈ R

Π×Σ be a
matrix whose columns form an orthonormal basis of TAi Sn1,...,nd . Then, we have

Jac(φ)(B,A1, . . . ,Ar−2) = vol(
[
V W1 · · · Wr−2

]
). (58)

Let us write B = B1+B2 with B1,B2 ∈ Sn1,...,nd . From [25, Corollary 2.2], we know
that B1,B2 ∈ V. Moreover, by Eq. (11), TB N2 = TB1 Sn1,...,nd + TB2 Sn1,...,nd . Since
A1, . . . ,Ar−2 are, by assumption, elements of W, Lemma 16 implies that TB N2 is
orthogonal to TA Sn1,...,nd for all 1 ≤ i ≤ r − 2. Therefore, we get the following
equation for Eq. (58):

vol(
[
V W1 · · · Wr−2

]
) = vol(V ) vol(

[
W1 · · · Wr−2

]
) = vol(

[
W1 · · · Wr−2

]
),

the last equality because V has orthonormal columns. Let us further investigate the
Wi .

By Eq. (9), the tangent space of Sn1,...,nd at Ai = a1i ⊗ · · · ⊗ adi is

TAi Sn1,...,nd = R
n1 ⊗ a2i ⊗ · · · ⊗ adi + · · · + a1i ⊗ · · · ⊗ ad−1i ⊗ R

nd .

Moreover, by Lemma 17, Sn1,...,nd ∩W is a manifold, and its tangent space at Ai is

TAi (Sn1,...,nd ∩W) = A⊥1 ⊗ a2i ⊗ · · · ⊗ adi + · · · + a1i ⊗ · · · ⊗ ad−1i ⊗A⊥d .

For all 1 ≤ k ≤ d, let {tk, sk} be an orthonormal basis of Ak , and let us write

Ki := span{t1 ⊗ a2i ⊗ · · · ⊗ adi , . . . , a1i ⊗ · · · ⊗ ad−1i ⊗ td}, and

Li := span{s1 ⊗ a2i ⊗ · · · ⊗ adi , . . . , a1i ⊗ · · · ⊗ ad−1i ⊗ sd}.

Because aki ∈ A⊥k for 1 ≤ i ≤ r − 2, and because ‖a j
i ‖ = 1, the tensors listed even

form orthogonal bases for Ki and Li , respectively. Furthermore, we have for all pairs
of indices i, j that

TAi (Sn1,...,nd ∩W) ⊥ K j , TAi (Sn1,...,nd ∩W) ⊥ L j , and Ki ⊥ L j .

Therefore, we have the following orthogonal decomposition:

TAi Sn1,...,nd = TAi (Sn1,...,nd ∩W)⊕Ki ⊕ Li , for 1 ≤ i ≤ r − 2.

The columns of UXi form an orthonormal basis of TAi (Sn1,...,nd ∩W). Altogether,
we have

vol
([
W1 · · · Wr−2

])
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= vol
([
UX1 · · · UXr−2

])∏
vol
([

ah11 ⊗ · · · ⊗ a
hd−1
1 · · · ah1r−2 ⊗ · · · ⊗ a

hd−1
r−2

])2

= vol
([
X1 · · · Xr−2

])∏
vol
([

xh11 ⊗ · · · ⊗ x
hd−1
1 · · · xh1r−2 ⊗ · · · ⊗ x

hd−1
r−2

])2
,

where both products range for 1 ≤ h1 < · · · < hd−1 ≤ d. This implies that

vol(
[
W1 · · · Wr−2

]
) = 2μ

is independent of B.
The rest of the proof is a variational argument: Let us denote by Gr(Σ,Π) the

Grassmann manifold of Σ-dimensional linear spaces in R
Π . We endow Gr(Σ,Π)

with the standard Riemannian metric, such that the distance between two spaces is the
Euclidean length of the vector of principal angles [14]. Let us denote this distance by
d(·, ·). Furthermore, let G : Sn1,...,nd → Gr(Σ,Π),A �→ TA Sn1,...,nd be the Gauss
map.

From Breiding and Vannieuwenhoven [23, Proposition 4.3], we get for each
1 ≤ i ≤ r − 2 that ‖dAi G‖ ≤

√
Σ . This means, that for ε > 0 and any tuple

(A ′1, . . . ,A ′r−2) ∈ Sn1,...,nd satisfying ‖Ai − A ′i‖ < ε for 1 ≤ i ≤ r − 2, we have

d(TAi Sn1,...,nd ,TA ′i Sn1,...,nd ) < 2ε
√

Σ for sufficiently small ε. Let W ′
i ∈ R

Π×Σ be
a matrix with orthonormal columns that span TA ′i Sn1,...,nd . Consequently, there is a

constant K > 0, which depends only on n1, . . . , nd , such that ‖Wi −W ′
i ‖ < εK

√
Σ .

Recall that the columns of [W1 ··· Wr−2 ] are orthogonal to the columns of V .
Moreover, rΣ ≤ Π , since we have assumed that σr;n1,...,nd is generically complex
identifiable. Hence, there is a matrix M ∈ R

Π×Π with MV = V and MWi = W ′
i for

1 ≤ i ≤ r − 2 that leaves the orthogonal complement of V +W1+ · · · +Wr−2 fixed.
This implies

‖IΠ − M‖2 = ‖(IΠ − M) [W1 ··· Wr−2 ] ‖2 ≤
r−2∑

i=1
‖Wi −W ′

i ‖ < εr K
√

Σ,

where IΠ is the Π ×Π identity matrix. Therefore, if we choose ε small enough, we
may assume det M > 1

2 . Note that such a choice of ε is independent of B.
Altogether, we have shown that for all tuples (A ′1, . . . ,A ′r−2) ∈ Sn1,...,nd satisfying

‖Ai − A ′i‖ < ε we have that

Jac(φ)(B,A ′1, . . . ,A ′r−2) = vol(
[
V W ′

1 · · · W ′
r−2
]
)

= vol(
[
MV MW1 · · · MWr−2

]
)

= | det(M)| vol([V W1 · · · Wr−2
]
)

>
1

2
vol(

[
V W1 · · · Wr−2

]
)

= μ,

and both ε and μ have been chosen independent of B. This concludes the proof. ��
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C Proofs of the lemmata in Section 5

C.1 Proof of Lemma 11

The proof is similar to the proof of Lemma 3. Integrating in polar coordinates, we
have

Jinner =
∫ π

2

0

∫ ∞

0
ρ q
(
(I − MM†)

[
ρ cos(θ)L1 ρ sin(θ)L2

])
e−

ρ2‖ cos(θ)U+sin(θ)V ‖2
2 dρ dθ.

Note that the argument of q is aΠ×(2Σ−2)matrix. Since q(A) = ς1(A) · · · ςn−1(A)

for A ∈ R
m×n with n ≤ m, we have

q
(
(I− MM†)

[
ρ cos(θ)L1 ρ sin(θ)L2

]) = ρ2Σ−3 q
(
(I− MM†)

[
cos(θ)L1 sin(θ)L2

])
.

This yields

Jinner =
∫ π

2

0
q
(
(I − MM†)

[
cos(θ)L1 sin(θ)L2

]) ∫ ∞

0
ρ2Σ−2 e−

ρ2‖ cos(θ)U+sin(θ)V ‖2
2 dρdθ.

The change of variables t = ρ‖ cos(θ)U + sin(θ)V ‖ transforms the integral for ρ

into

1

‖ cos(θ)U + sin(θ)V ‖2Σ−1
∫ ∞

0
t2Σ−2 e−

t2
2 dt = 2

2Σ−3
2 Γ

( 2Σ−1
2

)

‖ cos(θ)U + sin(θ)V ‖2Σ−1 .

Plugging the foregoing into the expression for Jinner concludes the proof. ��

C.2 Proof of Lemma 12

First, note that the left-hand term in (34) is bounded above by a constant depending
on n1, . . . , nd , d. Thus, by choosing an appropriate constant K in (34) we can assume
that ‖U − V ‖ is smaller than any predefined quantity. We thus assume from now on
that ‖U−V ‖ ≤ ε for some ε > 0 that can be chosen as small as desired. Furthermore,
as in Eq. (39), we write

δk := 〈uk, vk〉 =
√

1
ε2k+1

, εk := ‖uk − vk‖ =
√

1
δ2k
− 1, and z := δ1 · · · δd .

We also assume that δ1 = min{δ1, . . . , δd}, or, equivalently, ε1 = max{ε1, . . . , εd}.
Note that if ε ≈ 0, then one can assume εk ≈ 0 and δk ≈ 1 for all 1 ≤ k ≤ d. In
particular, all inequalities from the proof of Lemma 6 in Appendix A.3 are still valid
here.
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Dropping the Scaling

For simplifying notation, we abbreviate

A = (I − MM†)
[
L1 L2

]
and B = diag(cos(θ), . . . , cos(θ)︸ ︷︷ ︸

(Σ−1) times

, sin(θ), . . . , sin(θ)︸ ︷︷ ︸
(Σ−1) times

),

so that AB = (I − MM†)
[
cos(θ)L1 sin(θ)L2

]
. Observe that, by definition, A ulti-

mately depends on u and v ; that is, A = A(u, v).
Recall fromEq. (8) that q(·) is the product of all but the smallest singular value of its

argument. We first show that q(AB) ≤ q(A). To see this, let ς1 ≥ · · · ≥ ς2(Σ−1) ≥ 0
be the singular values of A. Then,

det((AB)T (AB)) = det(BBT ) det(AT A) = (ς1 · · · ς2(Σ−1))2(cos(θ) sin(θ))2(Σ−1).

This shows

q(AB) = ς1 · · · ς2(Σ−1) · (cos(θ) sin(θ))Σ−1

ςmin(AB)
,

where ςmin(·) denotes the smallest singular value; see Eq. (7). Next, we have

ςmin(AB) = min
x∈S(R2(Σ−1))

‖ABx‖ ≥ min
x∈S(R2(Σ−1))

‖Ax‖ · min
x∈S(R2(Σ−1))

‖Bx‖
= ς2(Σ−1) ·min{| cos(θ)|, | sin(θ)|}.

Moreover, for 0 ≤ θ ≤ π
2 we have 0 ≤ cos(θ) ≤ 1 and 0 ≤ sin(θ) ≤ 1. Altogether,

this implies q(AB) ≤ ς1 · · · ς2(Σ−1)−1 = q(A). In the rest of the proof, we bound
the ςi ’s.

Simplifying the Matrix by Orthogonal Transformations

Recall from the proof of Lemma 6 that applying the orthogonal transformation in Eq.
(44) on the right, we have

ςi = ςi
(
(I − MM†)

[
L1 L2

]) = ςi
(
(I − MM†)

[
R↑ R↓

])
, i = 1, . . . , 2(Σ − 1),

where ςi (A) denotes the i th largest singular value of the matrix A. Recalling Eq. (49),
we have

ςi = ςi
(
(I − P)

[
S↑ S↓ T↑ T↓

])
,

where P = MM†. Let a↑ and a↓ be as in Eq. (43). The matrix MM† projects orthog-
onally onto the span of U and V , which coincides with the span of the orthonormal
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vectors a↑
‖a↑‖ and

a↓
‖a↓‖ . Moreover, by Eq. (47) we have aT↓ a↓ = 1+z and aT↑ a↑ = 1−z.

This shows that

P = 1

1+ z
a↓aT↓ +

1

1− z
a↑aT↑ .

Next, it follows from Eq. (51) that PS↑ = 0 and PS↓ = 0, so that ςi = ςi (Ñ ), where

Ñ := [S↑ S↓ (I − P)T↑ (I − P)T↓
]
.

Computing the GramMatrix

Next, we compute the Gram matrix of Ñ . Consider again Eq. (51), from which all of
the following computations follow. We have

[
ST↑ S↑ ST↑ S↓
ST↓ S↑ ST↓ S↓

]
=
[
F↑ 0
0 F↓

]
,

where the F’s are the diagonal matrices from Eq. (50). From the symmetry of P , we
obtain ST↓ P = 0 and ST↑ P = 0, so that

ST↑ (I − P)T↑ = ST↑ T↑ − 0 = 0, ST↓ (I − P)T↑ = ST↓ T↑ − 0 = 0,

ST↑ (I − P)T↓ = ST↑ T↓ − 0 = 0, ST↓ (I − P)T↓ = ST↓ T↓ − 0 = 0.

We also find

T T↑ (I − P)T↓ =T T↑ T↓ − T T↑
(

1

1+ z
a↓aT↓ +

1

1− z
a↑aT↑

)
T↓

=0−
(
0+ 1

1− z
T T↑ a↑aT↑

)
T↓

=0.

We observe

T T↑ (I − P)T↑ = T T↑ T↑ − T T↑
(

1

1+ z
a↓aT↓ +

1

1− z
a↑aT↑

)
T↑

= (E↑ − zggT )− 0− 1

1− z
(−zg)(−zg)T

= E↑ − z

1− z
ggT .

Analogously, we find

T T↓ (I − P)T↓ = (E↓ + zggT )− 1

1+ z
(zg)(zg)T = E↓ + z

1+ z
ggT .
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Combining all of the foregoing observations results in

Ñ T Ñ =

⎡

⎢⎢⎣

F↑ 0 0 0
0 F↓ 0 0
0 0 E↑ − z

1−z gg
T 0

0 0 0 E↓ + z
1+z gg

T

⎤

⎥⎥⎦ ,

so that the singular values of Ñ are given by the square roots of the eigenvalues of the
matrices on the block diagonal.

Bounding the Singular Values

In the remainder, let λi (A) denote the i th largest eigenvalue of the positive semidefinite
matrix A. Since 0 < δk ≤ 1 for all 1 ≤ k ≤ d, the eigenvalues 1+zδ−1k = 1+∏ j �=k δ j
for 1 ≤ k ≤ d, of the diagonal matrix F↑ satisfy

λi (F↑) ≤ 2, i = 1, . . . , Σ − d − 1. (59)

An upper bound for the eigenvalues of F↓ is given by

1− zδ−1k = 1−
∏

1≤ j �=k≤d
δ j ≤ 1− δd−11 = (1− δ1)(1+ δ1 + · · · + δd−21 ) ≤ d(1− δ1),

since 0 < δ1 ≤ 1 for sufficiently small ε. Hence, we obtain the bound

λi (F↓) ≤ d(1− δ1), i = 1, . . . , Σ − d − 1. (60)

The eigenvalues of E↓ + z
1+z gg

T can be bounded by using that the spectral norm

of the rank-1 term is bounded by ‖g‖2 =∑d
k=1 ε2k ≤ dε21 . It follows fromWeyl’s per-

turbation inequality; see, e.g., [51, Corollary 7.3.8], and the positive semidefiniteness
of E↓ + z

1+z gg
T that

λi

(
E↓ + z

1+ z
ggT

)
≤ λi (E↓)+ dε21 .

From the definition of δ1 and ε1, we have

ε21 ≤
3

2
‖u1 − v1‖2 ≤ 3(1− δ1), (61)

provided that ε is sufficiently small. The eigenvalues of the diagonal matrix E↓ are
bounded from above by C(d + 1)ε21 due to Eq. (54). Putting all of these together and
using d ≥ 1, we find

λi

(
E↓ + z

1+ z
ggT

)
≤ C ′d(1− δ1), i = 1, . . . , d, (62)
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for some universal constant C ′ > 0.
For computing an upper bound on the eigenvalues of E↑ − z

1−z gg
T , we start by

noting that

E↑ − z

1− z
ggT = − z

1− z
ggT + 2Id + diag

(
z(1+ ε21)− 1, . . . , z(1+ ε2d)− 1

);

the spectral norm of the last diagonal matrix is bounded by C(d+1)ε21 because of Eq.
(54). Adding the matrix 2Id causes all eigenvalues to be shifted by 2; hence, it suffices
to compute the nonzero eigenvalue of the rank-1 matrix. Its eigenvalues are

0, . . . , 0︸ ︷︷ ︸
d−1 times

,
−z
1− z

‖g‖2;

the eigenvector corresponding to the last eigenvalue is g
‖g‖ . In order to bound that

eigenvalue, note that from (55) and (54) we have for some constant c = c(d) > 0:

−z ‖g‖
2

1− z
=

∑d
k=1 ε2k

1−∏d
k=1
√

ε2k + 1
≤ −2+ cε21 ,

where the last inequality is proved as follows. Note that
√
1+ t2 ≤ 1+ t2

2 , which can
be verified by squaring the terms and comparing. Then,

∑d
k=1 ε2k

−1+∏d
k=1
√

ε2k + 1
≥

∑d
k=1 ε2k

−1+∏d
k=1
(
1+ ε2k

2

) =
∑d

k=1 ε2k
1
2

∑d
k=1 ε2k + p

,

where p = p(ε1, . . . , εd) is a polynomial expression in the εi of degree and coefficients
bounded by a constant depending only on d, with all its monomials of degree at least
4 in ε1, . . . , εd . Hence, for some constant c = c(d) we have |p| ≤ c(d)ε41 and we
conclude that

∑d
k=1 ε2k

−1+∏d
k=1
√

ε2k + 1
≥ 2

1+ 2c(d)ε41∑d
k=1 ε2k

≥ 2− 4c(d)ε41∑d
k=1 ε2k

≥ 2− ĉ(d)ε21 ,

for some new constant ĉ(d); the last step follows from Eq. (40).
Putting all of the foregoing together with Eq. (61), we have thus shown that E↑ −

z
1−z gg

T has eigenvalues satisfying

λd

(
E↑ − z

1− z
ggT

)
≤ c′(d)(1− δ1), and

λi

(
E↑ − z

1− z
ggT

)
≤ 2+ c′(d)(1− δ1), i = 1, . . . , d − 1, (63)
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where c′(d) is again a constant depending only on d.
In Eqs. (59), (60), (62) and (63), we have shown that preciselyΣ−d−1+d+1 =

Σ eigenvalues are smaller than some constant times 1 − δ1, while the remaining
eigenvalues are clustered near 2. It follows that there exists a constant K , depending
only on n1, . . . , nd and d, such that

q
(
(I − MM†)

[
cos(θ)L1 sin(θ)L2

]) ≤ q
(
(I − MM†)

[
L1 L2

]) ≤ K (1− δ1)
Σ−1
2

= K

(‖u1 − v1‖√
2

)Σ−1
≤ K

(‖U − V ‖√
2

)Σ−1
,

where the last step is by lemma 5. This finishes the proof. ��

C.3 Proof of Lemma 13

Let J be the integral in question; i.e.,

J =
∫ π

2

0

1

‖ cos(θ)x − sin(θ)y‖a dθ.

Writing ‖ cos(θ)x − sin(θ)y‖ = √1− sin(2θ)〈x, y〉 and exploiting the symmetry of
sin(θ) around π

4 , we have

J = 2
∫ π

4

0

1√
1− sin(2θ)〈x, y〉 a dθ ≤

∫ 1

0

1√
1− (1− t)〈x, y〉 a√t

dt;

the inequality is due to the change of variables sin(2θ) = 1 − t and
√
2t − t2 ≥ √t

for |t | ≤ 1. Let us write h := 〈x, y〉. We distinguish between two cases. In the case
h ≤ 1

2 , we can bound

J ≤ √2
a
∫ 1

0
t−

1
2 dt = √2

a+2 ≤
√
2
3a

√
2
a−1√

1− h
a−1 =

√
2
3a+1

‖x − y‖ a−1 .

The second case is h > 1
2 : A new change of variables t = 1−h

h u yields

J ≤
√
1− h

h

∫ h
1−h

0

1√
1− h + (1− h)u

a√
u
du

= 1√
h

1√
1− h

a−1

∫ h
1−h

0

1√
1+ u

a√
u
du

≤ 1√
h

1√
1− h

a−1

(∫ 1

0

1√
1+ u

√
u
du +

∫ ∞

1

1

u(a+1)/2 du

)
.
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The last integrals add to at most 2+ 2(a− 1)−1, and we thus have proved for h > 1
2 :

J ≤ 2(1+ (a − 1)−1)√
h
√
1− h

a−1 ≤
√
2
3
(1+ (a − 1)−1)√
1− 〈x, y〉 a−1

=
√
2
a+2

(1+ (a − 1)−1)
‖x − y‖a−1 .

The lemma is proved. ��

C.4 Proof of Lemma 14

We prove the lemma by induction. The first case d = 1 reads cos(θ1) ≤ 1− θ21
7 . In fact,

in this case we have the stronger inequality cos(θ) ≤ 1− θ2

4 as the following argument

shows: Consider the map f : [0, π
2 ] → R, θ �→ 1− θ2

4 − cos(θ). We have f (0) = 0

and f (π
2 ) = 1 − π2

16 > 0. Moreover, f ′(θ) = sin(θ) − θ
2 > 0 for 0 ≤ θ ≤ π

2 . This
implies that we have f ≥ 0 proving the case d = 1. For general d, note that by the
induction hypothesis

cos(θ1) · · · cos(θd) = cos(θ1) · · · cos(θd−1) cos(θd)

≤
(
1− θ21 + · · · + θ2d−1

7(d − 1)

)
cos(θd)

≤
(
1− θ21 + · · · + θ2d−1

7d

)(
1− θ2d

4

)

= 1− θ21 + · · · + θ2d

7d
+ θ21 + · · · + θ2d−1 − 7d + 4

28d
θ2d .

Since θ21 + · · · + θ2d − 7d + 4 ≤ d π2

4 − 7d + 4 ≤ 0 for d ≥ 2, we conclude the proof
of the lemma. ��
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