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Abstract
Parabolic cylinder functions are classical special
functions with applications in many different fields.
However, there is little information available regarding
simple uniform approximations and bounds for these
functions. We obtain very sharp bounds for the ratio
Φ𝑛(𝑥) = 𝑈(𝑛 − 1, 𝑥)∕𝑈(𝑛, 𝑥) and the double ratio
Φ𝑛(𝑥)∕Φ𝑛+1(𝑥) in terms of elementary functions (alge-
braic or trigonometric) and prove the monotonicity of
these ratios; bounds for 𝑈(𝑛, 𝑧)∕𝑈(𝑛, 𝑦) are also made
available. The bounds are very sharp as 𝑥 → ±∞ and
𝑛 → +∞, and this simultaneous sharpness in three
different directions explains their remarkable global
accuracy. Upper and lower elementary bounds are
obtained which are able to produce several digits of
accuracy for moderately large |𝑥| and/or 𝑛.
KEYWORDS
approximations and bounds, asymptotic analysis, numerical
methods, parabolic cylinder functions, special functions

1 INTRODUCTION

Parabolic cylinder functions (PCFs), solutions of the second-order ODE

𝑦′′(𝑥) −

(
𝑥2

4
+ 𝑛

)
𝑦(𝑥) = 0, (1)
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are classical special functions (with Hermite functions as a particular case) which find appli-
cations in many scientific fields. In particular, the ratios of the recessive solution as 𝑥 → +∞,
𝑈(𝑛, 𝑥), appear in probabilistic contexts, for example, as moments of certain distributions (see
Ref. [1] for an application in crystallography) and in the analysis of Ornstein–Uhlenbeck and
Lévy processes2,3 and their applications in finance,4 neurobiology,5 and statistical physics,6 among
other examples.
Despite their relevance, little is known regarding simple functional uniform approximations

and bounds,7,8 which is in contrast to the vast information available on other functions like, for
instance, modified Bessel functions (see Refs. [9–12] and references cited therein). Recently, one
newmonotonicity property was discovered for ratios of the PCFs from stochastic considerations7
that had not been proved by purely analytical methods before; this fact illustrates that there is a
clear deficit in the amount of analytical information on these functions.
Herewe propose to invert the process and to advance new properties, which supersede previous

knowledge, using only basic analytical information, without recourse tomore indirect arguments.
We will not only prove the monotonicity property described in Ref. [7], but we will obtain from
this analysis new and very sharp bounds for ratios of the PCFs.
In particular, we will obtain lower and upper bounds for the ratioΦ𝑛(𝑥) = 𝑈(𝑛 − 1, 𝑥)∕𝑈(𝑛, 𝑥)

that are very sharp in three different directions: 𝑥 → ±∞ and 𝑛 → +∞. They are so sharp that,
for instance, some of the bounds will display relative accuracies of order (𝑥−6) as 𝑥 → +∞,
(𝑥−4) as 𝑥 → −∞, and (𝑛−2) as 𝑛 → +∞1. The bounds are, in fact, tight enough to give an
accurate estimation ofΦ𝑛(𝑥) for moderate |𝑥| and 𝑛 by using a very simple expression in terms of
elementary functions (trigonometric or algebraic). It is expected that these approximations will
play a role in future numerical algorithms for computing these special functions, in particular for
improving the performance of the evaluation of 𝑈(𝑛, 𝑥) by backward recurrence and continued
fraction evaluations.13,14
The techniques employed will be related to those considered for modified Bessel functions in

Ref. [12] and later generalized in Ref. [8] (with application to the PCFs), but theywill go far beyond
the possibilities of the analysis of Riccati equations presented in those papers, and they offer a new
method for obtaining accurate information on the ratios of a large number of special functions.
The structure of the paper is as follows: In Section 2, we give the basic analytical informationwe

will need of the PCF𝑈(𝑛, 𝑥). In Section 3, we briefly summarize the results in Ref. [8]; this will set
the starting point and it will provide some necessary information for the next step. In addition, the
results of this section will suggest a very sharp bound for the double ratio Φ𝑛(𝑥)∕Φ𝑛+1(𝑥) which
we will be able to prove in Section 4. In Section 4, we discuss the new method and we will prove
that the new results (of trigonometric or algebraic form) supersede previous results in all aspects.
We prove the monotonicity of the ratio Φ𝑛(𝑥) and the double ratio Φ𝑛(𝑥)∕Φ𝑛+1(𝑥) and obtain
very sharp bounds for both ratios, from where bounds for the ratios 𝑈(𝑛, 𝑧)∕𝑈(𝑛, 𝑦) can also be
obtained (and then bounds on 𝑈(𝑛, 𝑧) become available because 𝑈(𝑛, 0) is known). Finally, we
illustrate numerically the sharpness of these bounds in Section 5.

2 PROPERTIES OF THE FUNCTION𝑼(𝒏, 𝒙)

To prove all themonotonicity properties and bounds in this paper, wewill only need the following
three pieces of information:

1 If the bound had relative error (𝑥−1) we would already say that it is sharp; then, we can say that our bounds are very
sharp in three different directions, and even extremely sharp as |𝑥| → +∞.
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1. The PCF 𝑈(𝑛, 𝑥) satisfies the following difference-differential system (see 12.8.2 and 12.8.3 of
Ref. [15]):

𝑈′(𝑛, 𝑥) =
𝑥

2
𝑈(𝑛, 𝑥) − 𝑈(𝑛 − 1, 𝑥),

𝑈′(𝑛 − 1, 𝑥) = −
𝑥

2
𝑈(𝑛 − 1, 𝑥) − (𝑛 − 1∕2)𝑈(𝑛, 𝑥), (2)

and, as a consequence, they satisfy the three-term recurrence relation

(𝑛 + 1∕2)𝑈(𝑛 + 1, 𝑥) + 𝑥𝑈(𝑛, 𝑥) − 𝑈(𝑛 − 1, 𝑥) = 0. (3)

2. As 𝑥 → +∞, the function

Φ𝑛(𝑥) =
𝑈(𝑛 − 1, 𝑥)

𝑈(𝑛, 𝑥)
(4)

is positive and increasing when 𝑛 > 1∕2.
3. As 𝑥 → +∞, the function

𝑊𝑛(𝑥) =

(
𝑛 +

1

2

)
Φ𝑛(𝑥)

Φ𝑛+1(𝑥)
=

(
𝑛 +

1

2

)
𝑈(𝑛 + 1, 𝑥)𝑈(𝑛 − 1, 𝑥)

𝑈(𝑛, 𝑥)2
(5)

is positive and increasing when 𝑛 > 1∕2 (the factor 𝑛 + 1∕2 is introduced for later conve-
nience).

As we see, the required properties are very few, and the ideas should be easily applicable to
a wide range of functions described in Ref. [8], that is, for solutions of monotonic difference-
differential linear systems. We will explore this in future papers.
The properties as 𝑥 → +∞ are easy to check from the asymptotic expansions of 𝑈(𝑛, 𝑥)

[Ref. 15, 12.9.1]:

𝑈(𝑛, 𝑥) ∼ e−𝑥2∕4𝑥−𝑛−1∕2
∞∑
𝑠=0

(−1)𝑠

(
1

2
+ 𝑛

)
2𝑠

𝑠!(2𝑥2)𝑠
, 𝑥 → +∞. (6)

This expansionwill also be useful for analyzing the sharpness of the bounds as𝑥 → +∞. Similarly,
for analyzing the sharpness of the bounds as 𝑥 → −∞ we use the expansion [Ref. 16, 11.2.23]:

𝑈(𝑛, 𝑥) ∼

√
2𝜋e𝑥2∕4(−𝑥)𝑛−1∕2

Γ
(
1

2
+ 𝑎

) ∞∑
𝑠=0

(
1

2
− 𝑛

)
2𝑠

𝑠!(2𝑥2)𝑠
, 𝑥 → −∞. (7)

Using (6), we see that as 𝑥 → +∞,

Φ𝑛(𝑥) ∼ 𝑥[1 + (𝑛 + 1∕2)𝑥−2 − (𝑛 + 1∕2)(𝑛 + 3∕2)𝑥4 + (𝑥−6)], (8)

and the first term is enough to see that, indeed, Φ𝑛(𝑥) is positive and increasing as 𝑥 → +∞.
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Now from (7) we have, as 𝑥 → −∞,

Φ𝑛(𝑥) ∼ −
𝑛 − 1∕2

𝑥
[1 − (𝑛 − 3∕2)𝑥−2 + 2(𝑛 − 3∕2)(𝑛 − 2)𝑥4 + (𝑥−6)]. (9)

Also, combining (6) and (7)

𝑊𝑛(𝑥) ∼ (𝑛 ± 1∕2)

(
1 ∓ 𝑥−2 +

(
9

2
± 3𝑛

)
𝑥−4 + (𝑥−6)

)
, 𝑥 → ±∞, (10)

and therefore𝑊𝑛(𝑥) is increasing and positive as 𝑥 → +∞, as announced.

3 BOUNDS FROM THE RICCATI EQUATION AND THE
RECURRENCE RELATION

We start this section by briefly summarizing some of the bounds that were obtained in Ref. [8],
two of them rediscovered in Ref. 7. We prove them in a more straightforward way than in Ref.
[8], and we use this to motivate the more accurate methods to be described later. In addition, we
provide information on the sharpness of the bounds, to be compared with the new and tighter
bounds of Section 4. Finally, a new (very sharp) bound is motivated by the bounds in this section,
which we will be able to prove true in Section 4.
From (2), we deduce that Φ𝑛(𝑥) = 𝑈(𝑛 − 1, 𝑥)∕𝑈(𝑛, 𝑥) satisfies

Φ′
𝑛(𝑥) = Φ𝑛(𝑥)

2 − 𝑥Φ𝑛(𝑥) − (𝑛 − 1∕2). (11)

Therefore, Φ𝑛(𝑥) is one of the solutions of the Ricatti equation

𝑦′(𝑥) = 𝑦(𝑥)2 − 𝑥𝑦(𝑥) − (𝑛 − 1∕2).

In our analysis, the nullclines of the differential equations play amajor role; these are the curves
where 𝑦′(𝑥) = 0. We will use the following lemma, which is immediate to prove with graphical
arguments.

Lemma 1. Let 𝑦(𝑥) be a solution of 𝑦′(𝑥) = 𝑦(𝑥)2 − 𝑥𝑦(𝑥) − 𝑎, 𝑎 > 0, such that 𝑦(+∞) > 0 and
𝑦′(+∞) > 0, then 𝑦′(𝑥) > 0 and 𝑦(𝑥) > 𝜆+(𝑥) for all 𝑥 ∈ ℝ, where 𝜆+(𝑥) = (𝑥 +

√
𝑥2 + 4𝑎)∕2 is

the positive nullcline of the Riccati equation.

Proof. The nullclines of the Riccati equation are 𝜆±(𝑥), with 𝜆+(𝑥) = (𝑥 +
√
𝑥2 + 4𝑎)∕2 and

𝜆−(𝑥) = −𝜆+(−𝑥) and then 𝑦′(𝑥) = (𝑦(𝑥) − 𝜆+(𝑥))(𝑦(𝑥) − 𝜆−(𝑥)); and because 𝑦(+∞) > 0 and
𝑦′(+∞) > 0 necessarily 𝑦(𝑥) > 𝜆+(𝑥) for large enough 𝑥.
However then, because 𝜆′+(𝑥) > 0 for all 𝑥, we have that 𝑦(𝑥) > 𝜆+(𝑥) for all real 𝑥. In other to

see this, we can follow the graph of 𝑦(𝑥) starting from a large enough value of 𝑥, 𝑥∞, such that
𝑦(𝑥∞) > 𝜆+(𝑥∞) and following the curve in the direction of decreasing 𝑥 as described next.
In the first place, it is not possible that a value 𝑥𝑐 < 𝑥∞ exists such that 𝑦(𝑥𝑐) = 𝜆+(𝑥𝑐) (and

then 𝑦′(𝑥𝑐) = 0) starting from 𝑦(𝑥∞) > 𝜆+(𝑥∞), because we would be approaching the nullcline
from above and then 𝑦′(𝑥𝑐) should be larger than 𝜆′+(𝑥𝑐) > 0, and there is a contradiction. On the
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other hand 𝑦(𝑥) stays finite for all real 𝑥 (and continuous and differentiable): as said it cannot
cross the nullcline and the only possibility would be to go to+∞ for some 𝑥𝑝 < 𝑥∞ but this is not
possible because as long as 𝑦(𝑥) > 𝜆+(𝑥) we have that 𝑦′(𝑥) > 0 and therefore the values of 𝑦(𝑥)
decrease as 𝑥 decreases. ■

Theorem 1. For all real 𝑥 and 𝑛 > 1∕2, the ratio Φ𝑛(𝑥) = 𝑈(𝑛 − 1, 𝑥)∕𝑈(𝑛, 𝑥) is increasing as a
function of 𝑥 and

Φ𝑛(𝑥) >
1

2

(
𝑥 +

√
𝑥2 + 4𝑛 − 2

)
. (12)

Proof. Considering (6) we have thatΦ𝑛(𝑥) = 𝑥(1 + (𝑥−2)) as 𝑥 → +∞. Therefore, 𝜙𝑛(𝑥) satisfies
the hypotheses of Lemma 1 with 𝑎 = 𝑛 − 1∕2. ■

Remark 1. Considering (8) and (9), we conclude that the bound is sharp both as 𝑥 → ±∞, as
the first term in the expansion as 𝑥 → ±∞ coincides. It is, in fact, the only bound of the type
𝛼𝑥 +

√
𝛽𝑥2 + 𝛾 satisfying these conditions, and in this sense it is the best possible lower bound.

Remark 2. All the bounds in this paper are sharp as 𝑛 → +∞. See Section 5 for details.

Nowwe obtain two upper bounds combining the previous result with the use of the recurrence
relation (3)

Corollary 1. For 𝑛 > −1∕2 and all real 𝑥,

Φ𝑛(𝑥) <
1

2

(
𝑥 +

√
𝑥2 + 4𝑛 + 2

)
. (13)

Proof. We write the recurrence relation (3) in terms of Φ𝑛(𝑥) as follows (backward recurrence):

Φ𝑛(𝑥) = 𝑥 + (𝑛 + 1∕2)∕Φ𝑛+1(𝑥). (14)

Now using Theorem 1 for Φ𝑛+1(𝑥) we obtain the bound. ■

Remark 3. Care must be taken when using this to write a lower bound for Φ𝑛(𝑥)
−1 =

𝑈(𝑛, 𝑥)∕𝑈(𝑛 − 1, 𝑥), for 𝑛 ∈ (−1∕2, 1∕2) because in this case Φ𝑛(𝑥) becomes negative for neg-
ative 𝑥.

Remark 4. The bound (13) is sharp as 𝑥 → +∞ and the first two terms in the expansion (6) are
reproduced. Contrarily, the bound is not sharp as 𝑥 → −∞, as it gives −(𝑛 + 1∕2)∕𝑥 + (𝑥−3).
It is, however, the bound of the form 𝛼𝑥 +

√
𝛽𝑥2 + 𝛾 with the highest order of approximation as

𝑥 → +∞ and such that it is (𝑥−1) as 𝑥 → −∞.

Corollary 2. For 𝑛 > 3∕2 and all real 𝑥,

Φ𝑛(𝑥) <
1

2

𝑛 − 1∕2

𝑛 − 3∕2

(
𝑥 +

√
𝑥2 + 4𝑛 − 6

)
. (15)
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Proof. We rewrite the three-term recurrence relation as (forward recurrence)

Φ𝑛(𝑥) =
𝑛 − 1∕2

−𝑥 + Φ𝑛−1(𝑥)
, (16)

and apply Theorem 1 to Φ𝑛−1(𝑥). ■

Remark 5. The bound (13) is sharp as 𝑥 → −∞ and the first two terms in the expansion (6) are
reproduced. Contrarily, the bound is not sharp as 𝑥 → +∞, as it gives 𝑥(𝑛 − 1∕2)∕(𝑛 + 3∕2) +

(𝑥−1). It is, however, the bound of the form 𝛼𝑥 +
√
𝛽𝑥2 + 𝛾 with the highest order of approxi-

mation as 𝑥 → −∞ and such than it is (𝑥) as 𝑥 → +∞.

The previous inequalities can be combined to obtain bounds for the double ratio𝑊𝑛(𝑥) = (𝑛 +

1∕2)Φ𝑛(𝑥)∕Φ𝑛+1(𝑥). It is convenient to define

ℎ𝛼,𝛽(𝑥) = (𝑛 − 𝛽)
𝑥 +

√
4(𝑛 − 𝛼) + 𝑥2

𝑥 +
√
4(𝑛 − 𝛽) + 𝑥2

,

which satisfies ℎ𝛼,𝛽(𝑥) = ℎ𝛽,𝛼(−𝑥) and

ℎ𝛼,𝛽(𝑥) = (𝑛 − 𝛽)

[
1 +

𝛼 − 𝛽

𝑥2

(
1 −

3𝑛 − 𝛼 − 2𝛽

𝑥2

)]
+ (𝑥−6) (17)

as 𝑥 → +∞ and the same expansion with 𝛼 interchanged with 𝛽 as 𝑥 → −∞.
We have

Theorem 2. The following holds for all real 𝑥 and 𝑛 > 1∕2, except that the last inequality only holds
for 𝑛 > 3∕2:

1

𝑛 + 3∕2
ℎ1

2
,−

3

2

(𝑥) <
1

𝑛 + 1∕2
𝑊𝑛(𝑥) < 1 <

1

𝑛 − 1∕2
𝑊𝑛(𝑥) <

1

𝑛 − 3∕2
ℎ3

2
,−

1

2

(𝑥).

Remark 6. The central inequalities 1

𝑛+1∕2
𝑊𝑛(𝑥) < 1 <

1

𝑛−1∕2
𝑊𝑛(𝑥) reappeared in Ref. [7], but

they were already proved in Ref. [8]. The first and last inequalities in this chain of inequalities
were not correctly stated in Ref. [8, theorem 11]: the value 𝑥 = 0 was erroneously set.

Remark 7. The first two inequalities in Theorem 2 (at the left) are sharp as 𝑥 → +∞while the two
bounds at the right are sharp as 𝑥 → −∞. The extreme bounds are sharper as two terms of the
corresponding asymptotic expansions coincide, while for the central bounds only the dominant
term is given. None of these bounds is simultaneously sharp as 𝑥 → ±∞, differently from the
bounds we describe in the next section.

We notice that the function𝑊𝑛(𝑥) has a sigmoidal shape similar to the functions ℎ𝛼,𝛽(𝑥), 𝛼 > 𝛽

and that the selection 𝛼 = 1∕2, 𝛽 = −1∕2 gives the exact limit values as 𝑥 → ±∞. We propose the
following result valid for real 𝑥 and 𝑛 > 1∕2 which we will be able to prove in Section 4:

𝑊𝑛(𝑥) > ℎ1

2
,−

1

2

(𝑥). (18)



822 SEGURA

Remark 8. The bound ℎ1

2
,−

1

2

(𝑥) is the best possible upper bound of the form ℎ𝛼,𝛽(𝑥), because it is

sharp both as 𝑥 → ±∞; in fact, the first two terms in the expansions are correct.

4 BEYOND THE RICCATI BOUNDS

The previous analysis clearly suggests that 𝑊𝑛(𝑥) should be an increasing function of 𝑥. How-
ever, from the previous inequalities alone it does not seem possible to prove this result, which is
known to be true and has been proved by indirect arguments.7 Here, we give a direct proof of this
result and, as a by-product of this analysis, we obtain the tightest available bounds for the ratios
and double ratios of the PCFs. We expect that the same ideas can be applied to other monotonic
special functions.
The idea is to construct a differential equation involving𝑊𝑛(𝑥) and to analyze the nullclines,

as done before. The analysis is not so straightforward as before, but it will be rewarding.
The starting point is the recurrence relation (3), which we multiply by 𝑈(𝑛 − 1, 𝑥)∕𝑈(𝑛, 𝑥)2

yielding

(𝑛 + 1∕2)
𝑈(𝑛 + 1, 𝑥)𝑈(𝑛 − 1, 𝑥)

𝑈(𝑛, 𝑥)2
+ 𝑥

𝑈(𝑛 − 1, 𝑥)

𝑈(𝑛, 𝑥)
−

(
𝑈(𝑛 − 1, 𝑥)

𝑈(𝑛, 𝑥)

)2

= 0,

which in our notation is

𝑊𝑛(𝑥) = Φ𝑛(𝑥)(Φ𝑛(𝑥) − 𝑥). (19)

We can simplify the Riccati equation (11) by substituting

Φ𝑛(𝑥) =
𝑥

2
+ 𝜙𝑛(𝑥) (20)

and we get:

𝜙′
𝑛(𝑥) = 𝜙𝑛(𝑥)

2 − 𝑉𝑛(𝑥), 𝑉𝑛(𝑥) =
𝑥2

4
+ 𝑛. (21)

Now we have

𝑊𝑛(𝑥) = 𝜙𝑛(𝑥)
2 −

𝑥2

4
, (22)

and, because 𝜙𝑛(𝑥) > 0 for all real 𝑥 and 𝑛 > 1∕2 (Theorem 1),

𝜙𝑛(𝑥) = +

√
𝑥2

4
+𝑊𝑛(𝑥). (23)

Taking the derivative of (22):

𝑊′
𝑛(𝑥) = 2𝜙𝑛(𝑥)𝜙

′
𝑛(𝑥) − 𝑥∕2 = 2

(
𝜙𝑛(𝑥)

3 − 𝑉𝑛(𝑥)𝜙𝑛(𝑥) −
𝑥

4

)
. (24)
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We can now substitute 𝜙𝑛(𝑥) =
√
𝑥2∕2 +𝑊𝑛(𝑥) and we would have a differential equation

relating 𝑊′
𝑛(𝑥) with 𝑊𝑛(𝑥), and the analysis of the nullclines of the equation together with the

asymptotic properties of the function 𝑊𝑛(𝑥) could be investigated to prove the monotonicity of
the function and to obtain a bound. The analysis would be similar to the one considered before for
Φ𝑛(𝑥) in Section 3 with the difference that we do not have a Riccati equation now. It is however
simpler to study the sign of (24) in terms of the values of 𝜙𝑛(𝑥) and to map the resulting results to
the 𝑥 −𝑊𝑛 plane. For this idea, the first step is to solve for the values of 𝜙𝑛(𝑥) that make𝑊′

𝑛(𝑥) =

0. The structure of these solutions is discussed next.

4.1 Properties of the nullclines

In this subsection, we prove five lemmas in relation with Equation (24) and its nullclines that are
needed for proving the main result of this paper (Theorem 3).

Lemma 2. The cubic equation

𝜆(𝑥)3 − 𝑉𝑛(𝑥)𝜆𝑛(𝑥) −
𝑥

4
= 0 (25)

has, for all real 𝑥 and 𝑛 > 1∕2, three distinct real solutions.

Proof. We recall that given a cubic equation 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0, the equation has three dif-
ferent real solutions if the discriminant, given by

Δ = 18𝑎𝑏𝑐𝑑 − 4𝑏3𝑑 + 𝑏2𝑐2 − 4𝑎𝑐3 − 27𝑎2𝑑2

is positive, while it has only one real solution (and two complex conjugate solutions) if Δ < 0.
Now with 𝑎 = 1, 𝑏 = −𝑉𝑛(𝑥), and 𝑐 = −𝑥∕4 we have

16Δ(𝑥) = 16

{
−4(−𝑉𝑛(𝑥))

3 − 27
𝑥2

16

}
= 𝑥6 + 12𝑥4𝑛 + (48𝑛2 − 27)𝑥2 + 64𝑛3. (26)

That Δ(𝑥) > 0 for all real 𝑥 is obvious for |𝑛| > 3∕4 because all the coefficients are positive in this
case, but this is also true for all |𝑛| > 1∕2 as can be easily checked by computing the discriminant
of the cubic equation 𝑓(𝑧) = 16Δ(

√
𝑧) = 0. We have now 𝑎 = 1, 𝑏 = 12𝑛, 𝑐 = 48𝑛2 − 27, 𝑑 = 64,

and the discriminant of the third-degree polynomial 𝑓(𝑧) is Δ̃ = 314928(−𝑛2 +
1

4
), which is neg-

ative if |𝑛| > 1∕2, meaning that 𝑓(𝑧) = Δ(
√
𝑧) has only one real root for 𝑧; such root must be

negative, because on account of Descartes’ rule of signs, 𝑓(𝑧) has exactly one negative real root
if |𝑛| < 3∕4, which gives 𝑥 purely imaginary. This proves that Δ(𝑥) has no real roots if |𝑛| > 1∕2

and therefore Δ(𝑥) > 0 for all real 𝑥. ■

Lemma 3. Denoting the three (real) solutions of (25) by 𝜆−𝑛 (𝑥) < 𝜆0𝑛(𝑥) < 𝜆+𝑛 (𝑥), we have, for all real
𝑥 and 𝑛 > 1∕2, 𝜆+𝑛 (𝑥) > 0, 𝜆−𝑛 (𝑥) = −𝜆+𝑛 (−𝑥), and 𝜆0𝑛(𝑥) = −𝜆0𝑛(−𝑥), with sign(𝜆0𝑛(𝑥)) = sign(−𝑥).
The positive solution can be written:

𝜆+𝑛 (𝑥) = 𝑓𝑛(𝑥) cos

(
1

3
arccos

(
𝑥

𝑓𝑛(𝑥)3

))
, 𝑓𝑛(𝑥) =

√
𝑥2 + 4𝑛

3
.
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Proof. We start giving an explicit expression for the roots using the well-known formula in terms
of trigonometric functions, which is

𝜆(𝑥) =
2√
3

√
𝑉𝑛(𝑥) cos

(
1

3
arccos

(
3
√
3𝑥

8𝑉𝑛(𝑥)
3∕2

)
+ 𝜓

)
, (27)

with the three values 𝜓 = 0,±2𝜋∕3. Of course, the solutions are continuous and differentiable
whenever the argument of the arc-cosine is smaller than 1 in absolute value, and this condition is
equivalent to the positivity of the discriminant, which we have already proved for all real 𝑥 and
𝑛 > 1∕2.
Now, because all the three roots are real and simple, and considering Descartes’ rule of signs,

we conclude that there is only one possible positive solution for 𝑥 > 0, which is 𝜆+𝑛 (𝑥), while the
other two must be negative; similarly, for 𝑥 < 0 there is only one negative solution and therefore
two positive solutions.
Then 𝜆+𝑛 (𝑥) must be positive for all real 𝑥. Now, because the cubic equation is invariant

under the simultaneous changes 𝑥 → −𝑥 and 𝜆(𝑥) → −𝜆(𝑥), if 𝜆(𝑥) solves the equation also does
−𝜆(−𝑥). Therefore,−𝜆+𝑛 (−𝑥) is a second solution. And there is a third solutionwhichmust satisfy
𝜆(𝑥) = −𝜆(−𝑥), and therefore changes sign (and is zero at𝑥 = 0). Thenwehave 𝜆0𝑛(𝑥) = −𝜆0𝑛(−𝑥),
while 𝜆−𝑛 (𝑥) = −𝜆+𝑛 (−𝑥). There is only one solution which is positive at 𝑥 = 0, which is 𝜆+𝑛 (𝑥),
given by (27) with 𝜓 = 0. ■

Lemma 4. For all real 𝑥 and 𝑛 > 1∕2, 𝜆+𝑛 (𝑥)2 > 𝑥2∕4, 𝜆−𝑛 (𝑥)2 > 𝑥2∕4, and 𝜆0𝑛(𝑥)2 < 𝑥2∕4.

Proof. We make the substitution 𝜆(𝑥) = 𝜇(𝑥) − 𝑥∕2 in (25) and we have

2𝜇(𝑥)3 − 3𝑥𝜇(𝑥)2 + (𝑥2 − 2𝑛)𝜇(𝑥) + 𝑥(𝑛 − 1∕2) = 0,

which for 𝑥 < 0 has only one positive root, on account of Descartes’ rule of signs; this solution has
to be 𝜇(𝑥) = 𝜆+𝑛 (𝑥) + 𝑥∕2. Therefore, 𝜆0𝑛(𝑥) + 𝑥∕2 < 0 for 𝑥 < 0 and, because 𝜆0𝑛(𝑥) is positive for
𝑥 < 0, we have |𝜆0𝑛(𝑥)| < |𝑥|∕2 if 𝑥 < 0; and since 𝜆0𝑛(𝑥) = −𝜆0𝑛(−𝑥) this inequality is true for all
real 𝑥.
Finally, with the substitution 𝜆(𝑥) = 𝜇(𝑥) + 𝑥∕2 in (25) and with the same analysis using

Descartes’ rule of signs we conclude that 𝜆+𝑛 (𝑥) − 𝑥∕2 > 0 for 𝑥 > 0, which together with the pre-
vious condition for 𝑥 < 0 (𝜆+𝑛 (𝑥) + 𝑥∕2 > 0) gives 𝜆+𝑛 (𝑥) > |𝑥|∕2. And because 𝜆−𝑛 (𝑥) = −𝜆+𝑛 (−𝑥)

we also have that 𝜆−𝑛 (𝑥) > |𝑥|∕2. ■

There is only one additional lemma that we will need in the analysis of the nullclines for (24),
namely:

Lemma 5. 𝑤𝑛(𝑥) = 𝜆+𝑛 (𝑥)
2 −

𝑥2

4
is increasing as a function of 𝑥.

Proof. We have

𝜔′
𝑛(𝑥) = 2𝜆+𝑛 (𝑥)𝜆

+′
𝑛 (𝑥) −

𝑥

2
. (28)
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Now differentiating

𝜆+𝑛 (𝑥)
3 − 𝑉𝑛(𝑥)𝜆

+
𝑛 (𝑥) −

𝑥

4
= 0, (29)

we obtain

−
𝑥

2
𝜆+𝑛 (𝑥) −

1

4
+ 𝜆+′𝑛 (𝑥)(3𝜆+𝑛 (𝑥)

2 − 𝑉𝑛(𝑥)) = 0

and then

𝜆+′𝑛 (𝑥) =
1 + 2𝑥𝜆+𝑛 (𝑥)

4(3𝜆+𝑛 (𝑥)
2 − 𝑉(𝑥))

. (30)

Now, inserting this in (28)

𝜔′
𝑛(𝑥) =

𝜆+𝑛 (𝑥)(1 + 2𝑥𝜆+𝑛 (𝑥))

2(3𝜆+𝑛 (𝑥)
2 − 𝑉(𝑥))

−
𝑥

2
=

1

2

𝜆+𝑛 (𝑥) + 𝑥(𝑉(𝑥) − 𝜆+𝑛 (𝑥)
2)

3𝜆+𝑛 (𝑥)
2 − 𝑉(𝑥)

,

and using (29) 𝑉(𝑥) − 𝜆+𝑛 (𝑥)
2 = −𝑥∕(4𝜆+𝑛 (𝑥)), and so

𝜔′
𝑛(𝑥) =

1

2

𝜆+𝑛 (𝑥)
2 − 𝑥2∕4

𝜆+𝑛 (𝑥)(3𝜆
+
𝑛 (𝑥)

2 − 𝑉(𝑥))
.

The numerator is positive because 𝜆+𝑛 (𝑥)2 − 𝑥2∕4 > 0. With respect to the denominator

3𝜆+𝑛 (𝑥)
2 − 𝑉(𝑥) >

3

4
𝑥2 −

𝑥2

4
− 𝑛 =

𝑥2

2
− 𝑛,

which is certainly positive for large enough |𝑥|. A possible change of sign would be caused by a
singularity in 𝜆+𝑛 (𝑥) (see Equation 30) but this does not occur for 𝑛 > 1∕2, because 𝜆+𝑛 (𝑥) is well
defined and differentiable, as we saw. ■

From the study of the nullclines, and in particular of the only active nullcline for our problem,
we can prove the next result, that will be used in establishing our main result.

Lemma 6. Let 𝑦(𝑥) satisfy the differential equation

𝑦′(𝑥) = 2

(
𝑧(𝑥)3 −

(
𝑥2

4
+ 𝑛

)
𝑧(𝑥) −

𝑥

4

)
, 𝑛 > 1∕2, (31)

where

𝑧(𝑥) = +

√
𝑥2

4
+ 𝑦(𝑥). (32)
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If 𝑦(𝑥) is positive and increasing as 𝑥 → +∞ then

𝑧(𝑥) > 𝜆+𝑛 (𝑥) = 𝑓𝑛(𝑥) cos

(
1

3
arccos

(
𝑥

𝑓𝑛(𝑥)3

))
, 𝑓𝑛(𝑥) =

√
𝑥2 + 4𝑛

3
,

𝑦(𝑥) > 𝜆+𝑛 (𝑥)
2 −

𝑥2

4

and 𝑦′(𝑥) > 0 for all real 𝑥.

Proof. Because 𝑦(+∞) > 0 we have that 𝑧(𝑥) > 𝑥∕2 for large 𝑥. Then, denoting as before by
𝜆−𝑛 (𝑥) < 𝜆0𝑛(𝑥) < 𝜆+(𝑥) the roots of 𝜆(𝑥)3 − (

𝑥2

4
+ 𝑛)𝜆(𝑥) −

𝑥

4
= 0, by Lemma 4 we have that

𝑧(+∞) > 𝜆0𝑛(𝑥) because 𝑧(𝑥) > |𝑥|∕2.
We are left with two possibilities, that 𝑧(+∞) > 𝜆+𝑛 (+∞) or the contrary, but because

𝑦′(𝑧) = 2(𝑧(𝑥) − 𝜆+𝑛 (𝑥))(𝑧(𝑥) − 𝜆0𝑛(𝑥))(𝑧(𝑥) − 𝜆−𝑛 (𝑥))

and by hypotheses 𝑦′(+∞) > 0 then necessarily 𝑧(+∞) > 𝜆+𝑛 (+∞).
However, this implies that 𝑦(+∞) = 𝑧(+∞)2 −

𝑥2

4
> 𝑤𝑛(+∞) where 𝑤𝑛(𝑥) = 𝜆+𝑛 (𝑥)

2 − 𝑥2∕4.
In other words, the function 𝑦(𝑥) lies above the curve 𝑦 = 𝑤𝑛(𝑥), which is the active null-

cline of the differential equation (𝜆0𝑛(𝑥) and 𝜆−𝑛 (𝑥) play no role because 𝑧(𝑥) =
√
𝑥2∕4 + 𝑦(𝑥) >|𝑥|∕2). However, from Lemma 5 we know that 𝑤′

𝑛(𝑥) > 0, and therefore the fact that 𝑦(+∞) >

𝑤𝑛(+∞) and that 𝑦′(𝑥) > 0 for values of 𝑦(𝑥) > 𝑤𝑛(𝑥) implies, by the same arguments used
in Lemma 1, that 𝑦(𝑥) > 𝑤𝑛(𝑥) for all real 𝑥 and therefore that 𝑦′(𝑥) > 0 for all 𝑥 and, finally,
𝑧(𝑥) =

√
𝑥2∕4 + 𝑦(𝑥) >

√
𝑥2∕4 + 𝑤𝑛(𝑥) = 𝜆+𝑛 (𝑥). ■

4.2 Main results: Trigonometric and algebraic uniform lower bounds

Weare now in the position to prove themain result of the paper, which provides very sharp bounds
for the ratios and double ratios of the PCFs.

Theorem 3. Let Φ𝑛(𝑥) =
𝑈(𝑛−1,𝑥)

𝑈(𝑛,𝑥)
and𝑊𝑛(𝑥) = (𝑛 + 1∕2)

Φ𝑛(𝑥)

Φ𝑛+1(𝑥)
then the following holds for all

real 𝑥 and 𝑛 > 1∕2:

1. Φ𝑛(𝑥) > 0, Φ′
𝑛(𝑥) > 0, Φ′′

𝑛 (𝑥) = 𝑊′
𝑛(𝑥) > 0.

2. Φ𝑛(𝑥) > 𝜑𝑛(𝑥) =
𝑥

2
+ 𝜆+𝑛 (𝑥).

3. 𝑊𝑛(𝑥) = (𝑛 − 1∕2) + Φ′
𝑛(𝑥) > 𝑤𝑛(𝑥) = 𝜆+𝑛 (𝑥)

2 − 𝑥2∕4.

Proof. ThatΦ𝑛(𝑥) > 0,Φ′
𝑛(𝑥) > 0was proved in Theorem 1. The rest is a consequence of Lemma 6

because, on account of (10), we have that𝑊𝑛(+∞) > 0 and𝑊′
𝑛(+∞) > 0.𝑊𝑛(𝑥) plays the role of

𝑦(𝑥) in the lemma, and 𝜙𝑛(𝑥) = Φ𝑛(𝑥) −
𝑥

2
plays the role of 𝑧(𝑥). ■
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Remark 9. The new bounds in Theorem 3 are sharp as 𝑛 → +∞ (as all the bounds in this paper)
and extremely sharp as |𝑥| → +∞, particularly as 𝑥 → +∞.
All the terms shown in (8) coincide with the expansion of the bound 𝜑𝑛(𝑥) of the previous

theorem, and we have that as 𝑥 → +∞.

Φ𝑛(𝑥)

𝜑𝑛(𝑥)
− 1 =

2𝑛 + 1

𝑥6
+ (𝑥−8),

which is amazingly sharp, while as 𝑥 → −∞

Φ𝑛(𝑥)

𝜑𝑛(𝑥)
− 1 =

2

𝑥4
+ (𝑥−6),

which is not so sharp, but very sharp in any case.
Similarly, the bound for𝑊𝑛(𝑥) is also very sharp as 𝑥 → ±∞ and we have that

𝑤𝑛(𝑥) = (𝑛 ± 1∕2)(1 − 𝑥−2) +
(
±3𝑛2 + 4𝑛 ±

5

4

)
𝑥−4 + (𝑥−6)

and then𝑊𝑛∕𝑤𝑛(𝑥) − 1 = (2𝑛 ± 1)𝑥−4 + (𝑥−6).
Next, we are proving that these lower bounds are tighter for all 𝑥 than the upper bounds that

were proved in the previous section, and even than the bound (18), which we will prove later.

Theorem 4. The lower bound forΦ𝑛(𝑥) of Theorem 3 is sharper than the bound of Theorem 1, that
is:

𝜆+𝑛 (𝑥) >
1

2

√
𝑥2 + 4𝑛 − 2, 𝑛 > 1∕2, 𝑥 ∈ ℝ.

Proof. We prove that the bound (12) corresponds to a curve which lies below the nullcline 𝑦 =

𝑤𝑛(𝑥) of (31), which in the 𝑧(𝑥) variable is 𝑧 = 𝜆+𝑛 (𝑥). To see this, we substitute 𝑧(𝑥) in (31) by the
corresponding bound of 𝜙𝑛(𝑥) = Φ𝑛(𝑥) − 𝑥∕2 =

√
𝑥2 + 4𝑛 − 2∕2 and we check that 𝑦′(𝑥) < 0.

Indeed, setting 𝑧(𝑥) =
√
𝑥2 + 4𝑛 − 2∕2 in (24) we have

1

2
𝑦′(𝑥) = −

1

2
𝑧(𝑥) −

𝑥

4
< 0,

which completes the proof. ■

Next, we prove that the previously conjectured lower bound of (18) is smaller than 𝑤𝑛(𝑥), and
therefore it is indeed a lower bound for𝑊𝑛(𝑥).

Theorem 5. For all real 𝑥 and 𝑛 > 1∕2,

𝑊𝑛(𝑥) > 𝑤𝑛(𝑥) > 𝑤
(𝑎)
𝑛 (𝑥) = ℎ1

2
,−

1

2

(𝑥),

and 𝑤(𝑎)
𝑛 (𝑥) is the best possible bound of the form ℎ𝛼,𝛽(𝑥).
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Proof. To see this, we check that if we take 𝑦(𝑥) = 𝑤
(𝑎)
𝑛 (𝑥) in (32) then we have 𝑦′(𝑥) < 0 in

(31), which means that the curve 𝑦 = 𝑤
(𝑎)
𝑛 (𝑥) lies below the nullcline 𝑦 = 𝑤𝑛(𝑥), and there-

fore 𝑤(𝑎)
𝑛 (𝑥) < 𝑤𝑛(𝑥); and because we have proved that 𝑊𝑛(𝑥) > 𝑤𝑛(𝑥) then 𝑊𝑛(𝑥) > 𝑤𝑛(𝑥) >

𝑤
(𝑎)
𝑛 (𝑥).

Indeed, taking 𝑧(𝑥) = ℎ1∕2,−1∕2(𝑥) we have 𝑦(𝑥) =

√
ℎ1

2
,−

1

2

(𝑥) +
𝑥2

4
and from this and using

(31) we will have that 𝑦′(𝑥) < 0 if

√
ℎ1

2
,−

1

2

(𝑥) + 𝑥2∕4

(
ℎ1

2
,−

1

2

(𝑥) − 𝑛

)
−

𝑥

4
< 0. (33)

Now, we substitute ℎ1

2
,−

1

2

(𝑥) inside the square root by its supremum inℝ, which is (𝑛 + 1∕2), and

denoting

𝑔𝑛(𝑥) =
1

2

√
𝑥2 + 4𝑛 + 2

[
(𝑛 + 1∕2)

𝑥 +
√
𝑥2 + 4𝑛 − 2

𝑥 +
√
𝑥2 + 4𝑛 + 2

− 𝑛

]
−

𝑥

4
,

if we prove that 𝑔𝑛(𝑥) < 0 then inequality (33) is proved. And after some elementary algebra

𝑔𝑛(𝑥) = −
(𝑛 + 1∕2)(𝑥2 + 4𝑛 −

√
𝑥2 + 4𝑛 + 2

√
𝑥2 + 4𝑛 − 2)

2(𝑥 +
√
𝑥2 + 4𝑛 + 2)

,

from where is it obvious that 𝑔𝑛(𝑥) < 0 for all real 𝑥 and 𝑛 > 1∕2. ■

Remark 10. The algebraic bound𝑤(𝑎)
𝑛 (𝑥) is nearly as sharp as𝑤𝑛(𝑥), because𝑤𝑛(𝑥)∕𝑤

(𝑎)
𝑛 (𝑥) − 1 =

(2𝑛 ± 1)𝑥−4 + (𝑥−6).
Using the very sharp algebraic bound in Theorem 5 we can obtain easily a very sharp algebraic

bound for Φ𝑛(𝑥):

Corollary 3. For all real 𝑥 and 𝑛 > 1∕2, the following holds:

Φ𝑛(𝑥) > 𝜑
(𝑎)
𝑛 (𝑥) =

𝑥

2
+

√
𝑥2

4
+ 𝑤

(𝑎)
𝑛 (𝑥) =

𝑥

2
+

√√√√𝑥2

4
+

(
𝑛 +

1

2

)
𝑥 +

√
𝑥2 + 4𝑛 − 2

𝑥 +
√
𝑥2 + 4𝑛 + 2

.

Remark 11. The bound of Corollary 3 has similar sharpness as the bound of Theorem 3 (but the
relative difference with the value of Φ𝑛(𝑥) is approximately two times bigger). Indeed, we have
that as 𝑥 → +∞

Φ𝑛(𝑥)

𝜑
(𝑎)
𝑛 (𝑥)

− 1 = 2
2𝑛 + 1

𝑥6
+ (𝑥−8),

while as 𝑥 → −∞

Φ𝑛(𝑥)

𝜑
(𝑎)
𝑛 (𝑥)

− 1 =
4

𝑥4
+ (𝑥−6).
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Corollary 4. For 𝑛 > 1∕2 and 𝑧 > 𝑦, we have:

𝑈(𝑛, 𝑧)

𝑈(𝑛, 𝑦)
< exp

(
−∫

𝑧

𝑦

𝜆+𝑛 (𝑥) 𝑑𝑥

)
(34)

and

𝑈(𝑛, 𝑧)

𝑈(𝑛, 𝑦)
< exp

(
−∫

𝑧

𝑦

√
𝑥2

4
+ 𝑤

(𝑎)
𝑛 (𝑥) 𝑑𝑥

)
. (35)

Proof. Using (2), we have that Φ𝑛(𝑥) −
𝑥

2
= −𝑈′(𝑛, 𝑥)∕𝑈(𝑛, 𝑥). Therefore, from the bound of

Corollary 3 we have

−
𝑈′(𝑛, 𝑥)

𝑈(𝑛, 𝑥)
>

√
𝑥2

4
+ 𝑤

(𝑎)
𝑛 (𝑥),

and the same can be written for the trigonometric bounds, changing𝑤(𝑎)
𝑛 (𝑥) by𝑤𝑛(𝑥) = 𝜆+𝑛 (𝑥)

2 −

𝑥2∕4. Now the results follow after integration. ■

Remark 12. The bounds in Corollary 4 are given in terms of integrals of elementary functions,
but the integrals cannot be expressed in terms of elementary functions. Still, explicit bounds in
terms of elementary functions can be extracted by taking into account that 𝑤𝑛(𝑥) and 𝑤

(𝑎)
𝑛 (𝑥) are

increasing functions. Then, for instance, considering 𝑧 > 𝑦 and using the trigonometric bound

𝑈(𝑛, 𝑧)

𝑈(𝑛, 𝑦)
< exp

(
−∫

𝑧

𝑦

√
𝑥2

4
+ 𝑤𝑛(𝑥) 𝑑𝑥

)
< exp

(
−∫

𝑧

𝑦

√
𝑥2

4
+ 𝑤𝑛(𝑦) 𝑑𝑥

)
.

And the last bound, though no so sharp, can be expressed in terms of elementary functions and
is certainly sharper than the bound that can be extracted from Theorem 1, which is equivalent to
replacing 𝑤𝑛(𝑦) with 𝑤𝑛(−∞) = 𝑛 − 1∕2.
Using the known value of 𝑈(𝑛, 0)[15, 12.2.6] and taking 𝑦 = 0, bounds for 𝑈(𝑛, 𝑧) are made

available (which are not so sharp as the bounds for the ratios as 𝑧 → ±∞).

4.3 Upper bounds

In the analysis, we have obtained very sharp lower bounds as 𝑥 → ±∞ forΦ𝑛(𝑥), both of trigono-
metric (𝜑𝑛(𝑥), Theorem 3) and algebraic form (𝜑(𝑎)

𝑛 (𝑥), Corollary 3) and similarly very sharp
bounds 𝑤𝑛(𝑥) (Theorem 3) and 𝑤

(𝑎)
𝑛 (𝑥) (Theorem 5) for the double ratio 𝑊𝑛(𝑥), which drasti-

cally improve the bounds known so far. As done in Section 3, we can obtain upper bounds for
Φ𝑛(𝑥) from the lower bound by applying the recurrence relation both in the forward (16) and the
backward (14) direction, and then from these upper bounds we can obtain also upper bounds for
𝑊𝑛(𝑥) using that𝑊𝑛(𝑥) = Φ𝑛(𝑥) − 𝑥2∕4.
We do not discuss these eight additional bounds in detail (for Φ𝑛(𝑥) and 𝑊𝑛(𝑥) and starting

from the bounds 𝜑𝑛(𝑥) or 𝜑
(𝑎)
𝑛 and with two different recursion directions), but only mention
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that the sharpness is preserved differently for the forward and the backward application of the
recurrence (as also described in Section 3).
In the first place, we consider the bound from the backward recurrence, starting from 𝜑𝑛(𝑥),

and we have:

Corollary 5. For all real 𝑥 and 𝑛 > −1∕2, the following holds:

Φ𝑛(𝑥) < 𝜑̄𝑛(𝑥) = 𝑥 +
𝑛 + 1∕2

𝜑𝑛+1(𝑥)
.

As 𝑥 → +∞

Φ𝑛(𝑥)

𝜑̄𝑛(𝑥)
− 1 = (𝑥−8),

and as 𝑥 → −∞

Φ𝑛(𝑥)

𝜑̄𝑛(𝑥)
− 1 = (𝑥−2).

We conclude that 𝜑̄𝑛(𝑥) is sharper than 𝜑𝑛(𝑥) as 𝑥 → +∞ but less sharp for 𝑥 → −∞. Dif-
ferently from the backward recurrence, for the forward recurrence the sharpness as 𝑥 → +∞ is
maintained and improved as 𝑥 → −∞, although the range of validity is restricted to 𝑛 > 3∕2:

Corollary 6. For all real 𝑥 and 𝑛 > 3∕2, the following holds:

Φ𝑛(𝑥) < 𝜑̃𝑛(𝑥) =
𝑛 − 1∕2

−𝑥 + 𝜑𝑛−1(𝑥)
.

As 𝑥 → +∞

Φ𝑛(𝑥)

𝜑̃𝑛(𝑥)
= (𝑥−4),

and as 𝑥 → −∞

Φ𝑛(𝑥)

𝜑̃𝑛(𝑥)
− 1 = (𝑥−8).

Remark 13. Bounds for the ratio 𝑈(𝑛, 𝑦)∕𝑈(𝑛, 𝑧) can also be established from the bounds in this
section, similarly as done in Corollary 4. We skip the details for such bounds.

5 NUMERICAL ILLUSTRATION OF THE SHARPNESS OF THE
BOUNDS

To end the description of the new bounds, we estimate as a function of 𝑛 the maximum errors for
the bounds for all 𝑥 in ℝ. This will give information on the global accuracy of the bounds. For
this, we are estimating the errors as 𝑛 becomes large using a simplification: we estimate that the
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maximum error takes place at 𝑥 = 0. Let us recall that we are considering bounds which are very
sharp as 𝑥 → ±∞. A more detailed analysis is possible using uniform asymptotics for the PCFs
(see Ref. [15, 12.10.25]), but for our purpose it is enough with this simple analysis and we will see
how this simplification is in fact quite reasonable for estimating these errors.
Because𝑊𝑛(0) = Φ𝑛(0)

2, the analysis for the errors for the bounds for𝑊𝑛(𝑥) follow easily from
those for Φ𝑛(0), and the relative accuracy of these bounds will be approximately twice the error
for the bounds of Φ(𝑥).
The values at 𝑥 = 0 (see Ref. [15, 12.2.6]) are:

Φ𝑛(0) =
√
2
Γ
(
3

4
+

𝑛

4

)
Γ
(
1

4
+

𝑛

2

)
and

𝜑
(0)
𝑛 (0) =

√
𝑛 − 1∕2, 𝜑𝑛(0) =

√
𝑛, 𝜑

(𝑎)
𝑛 (0) = (𝑛2 − 1∕4)1∕4,

where𝜑(0)
𝑛 (𝑥)denotes the not so sharp boundof Theorem 1.Now,we estimate the relative accuracy

as 𝑛 becomes large by expanding in powers of 𝑛−1.
We have

Φ𝑛(0)

𝜑
(0)
𝑛 (0)

− 1 =
1

4𝑛
+ (𝑛−2),

Φ𝑛(0)

𝜑𝑛(0)
− 1 =

1

16𝑛2
+ (𝑛−4).

Φ𝑛(0)

𝜑
(𝑎)
𝑛 (0)

− 1 =
1

8𝑛2
+ (𝑛−4).

Weobserve that the newbounds are also sharper than the previous bounds𝜑(0)
𝑛 (𝑥) as 𝑛 becomes

large, with a relative deviation decreasing quadratically. This means that, for instance, for 𝑛 > 10

𝜑𝑛(𝑥) is an estimation for Φ𝑛(𝑥) with at least two correct digits for all real 𝑥, and decreasing at
least as (𝑥−4) as |𝑥| becomes large. As 𝑛 becomes larger the situation of course improves and,
for instance, for 𝑛 > 2500 eight digits accuracy is attained for all real 𝑥. To our knowledge, such
degree of uniformity and accuracy is without precedent in the estimation of nontrivial special
functions depending on two parameters. The reason for this good behavior is the fact that the
bounds are (very) sharp in three different directions: 𝑥 → ±∞ and 𝑛 → +∞.
For the upper bounds 𝜑̄𝑛(𝑥) and 𝜑̃𝑛(𝑥), the errors also decrease quadratically (they are roughly

twice as large). Notice also that because we have upper and lower bounds which are similarly
sharp as 𝑥 → ±∞ and 𝑛 → +∞, it is possible to estimate the accuracy of the estimation by com-
paring the upper with the lower bound.
To illustrate this, we show in Figure 1 the plot of the curves

𝜖 =
𝜑̃𝑛(𝑥)

𝜑𝑛(𝑥)
− 1 (36)
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F IGURE 1 Curves 𝜖 = 𝜑̃𝑛(𝑥)

𝜑𝑛(𝑥)
− 1 for

three different values of 𝜖

in the (𝑥, 𝑛) plane and for three different values of 𝜖 which approximately correspond to three,
four, and five correct digits. Notice that 𝜑̃𝑛(𝑥)∕𝜑𝑛(𝑥) − 1 < 𝜖 in the unbounded region outside the
curve (36).
We conclude by commenting that bounding a function in terms of more elementary functions

can be useful for extracting information from expressions which involve such functions without
the need to compute them. This is maybe the most typical use of function bounds. However, in
this case the bounds are so accurate that they can provide by themselves fairly accurate approxi-
mations for even moderate values of the variables. Because of the good accuracy of these bounds
in unbounded domains in the (𝑥, 𝑛)-plane, they will be useful in numerical algorithms for com-
puting the PCFs. For instance, the bounds for𝑈(𝑛 − 1, 𝑥)∕𝑈(𝑛, 𝑥) can be used for estimating the
tail of the continued fraction representation for this ratio when 𝑥 > 0, accelerating in this way the
convergence. A similar procedure was described in Ref. [12] for modified Bessel functions, and in
the present case the new bounds are sharper and accurate in larger domains.
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