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Abstract

Climate variability, as an element of uncertainty in water management, affects

community, sectoral, and individual decision-making. Long-range prediction

models are tools that offer the potential for integration and joint analysis with the

hydrological, hydrodynamic, and management response of the socio-ecological

systems to which they are linked. The main objective of this article is to present a

seasonal climate prediction model, the open-source algorithm SIE-Climate, whose

application consists of three phases (exploration, development, and evaluation),

and to describe its application to the Lake Sochagota socio-ecological system

(Paipa, Boyac�a, Colombia). The K-nearest neighbours method is used when defin-

ing a target matrix that represents and integrates macro- and micro-climatic phe-

nomena (Oceanic Niño Index, local temperature, and local rainfall) to identify

periods of similar climatic behaviour. Considering a 1-year horizon and manage-

ment purposes the tool is calibrated and validated in periods with and without cli-

matic anomalies (2000–2018), giving reliable adjustment results (RSME:4.86; R2:

0.95; PBIAS: −8.89%; EFF: 0.85). SIE-Climate can be adapted to various contexts,

variables of interest, and temporal and spatial scales, with an appropriate techno-

logical and computational cost for regional water management.
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1 | INTRODUCTION

The management of socio-ecological systems linked to
water should always consider climate variability. The
concept of the socio-ecological system is useful to under-
stand the dynamic interrelation between environmental
and social changes, as well as the interdependence of
social and ecological subsystems (Fischer et al., 2015). In

water systems, human activities and climate variability
can be key factors affecting the natural flow regime in
river basins (Zolfagharpour et al., 2020). Consequently,
climate variability analysis and its prediction are a con-
nection point between socio-ecological dynamics, the
hydrological, and hydrodynamic responses of basins, and
water management in local or regional systems (Park
et al., 2014; Lee et al., 2018; Kim et al., 2019).
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General circulation models have become essential tools
for climate studies, but computer codes are heterogeneous,
and their optimisation is not simple (Mechoso and
Arakawa, 2015). Short- and medium-term meteorological
predictions (days or weeks) are used to estimate the climatic
variables of interest based on numerical models of atmo-
spheric circulation. In turn, seasonal prediction models are
used to establish average weather conditions over time hori-
zons of up to 1 year (Manzanas, 2016). This latter prediction
scale of time series offers management advantages over
short- and medium-term scenarios.

The effect of macroclimatic phenomena of the
atmosphere–ocean system on local climatic and hydrologi-
cal patterns can be assessed using interannual and inter-
decadal climate variability indices or statistical downscaling
algorithms (Poveda et al., 2011; Manzanas, 2016; Kim
et al., 2019; Kundzewicz et al., 2019). Intra-seasonal oscilla-
tions should also be incorporated into climate variability
analyses because their extreme phases affect the intensity of
hydroclimatic events, such as torrential rains, droughts, and
floods, which affect water and land management
(Contreras-Ju�arez et al., 2016).

Different models are available for predicting the behav-
iour of climatic variables. These models provide quantitative
estimates of the probability of future events (Contreras-
Ju�arez et al., 2016). The Holt-Winters method is a paramet-
ric exponential smoothing procedure based on updating, for
each period, three parameters of each variable: mean, trend,
and seasonality (Molina et al., 2006). The Bayesian model
analyses change points in the properties of time series
for climate prediction (Perreault et al., 2000; Karger
et al., 2017). A new, analogous approach is the
K-nearest neighbours (KNN) method, which offers an
alternative to statistical downscaling when deriving
climate data at a local scale (Gangopadhyay et al., 2005).

When regional time series data are available, different
methods must be used to incorporate the effect of
macroclimatic phenomena into seasonal climate predic-
tions for water management in socio-ecological systems.
These methods must be flexible enough to add climatic
variability elements to the analysis of the hydrological,
hydrodynamic, and management response of the system,
at a regionally affordable computational and technologi-
cal cost, without sacrificing sensitivity or representative-
ness in the intra-seasonal, inter-annual, and interdecadal
oscillations of the local climate.

Considering the above, the Socio-ecological Indicators
Evaluation (SIE) project developed a methodological and
technological solution for seasonal climate prediction
(SIE-Climate) that is applicable to hydrological, hydrody-
namic, and water resource management models. These
simulation tools are integrated through a platform and
are a resource for strengthening the resilience of socio-

ecological systems in climate variability scenarios. This
management tool can help the sectors and actors
involved in managing these systems by facilitating strate-
gic decision-making in a timely manner.

The main objective of this article is to present the sea-
sonal climate prediction method and open-source software
developed within the framework of the SIE project. This
study describes the usefulness of the tool for predicting
essential climatological variables (rainfall and temperature)
on daily and monthly scales over a 1-year horizon, as well
as their categorisation based on the probability of climatic
anomalies (El Niño, La Niña, and average-year phenom-
ena) in the Lake Sochagota socio-ecological system (Paipa,
Boyac�a, Colombia). Lastly, the benefits, flexibility, and limi-
tations of this climate prediction tool in different territorial
contexts are presented in the context of water management
challenges and needs considering climate variability.

2 | STUDY AREA AND LOCATE
CLIMATE

Lake Sochagota in Paipa, Boyac�a, Colombia, is part of a vol-
canic hydrothermal system located in the Andes mountain
range. It is a reservoir built on an old natural wetland that
forms a small endorheic basin in the lower course of the
Salitre River (Figure 1), a tributary of the Chicamocha River
(Cifuentes et al., 2020). The Salitre basin has a drainage area
of approximately 81.61 km2 and is the main Sochagota Lake
tributary. The elevation varies between 2,501 and 3,588 m.
In the area, there are two orobiomes, the middle and the
upper humid forest, with paramos, sub-paramos, high
Andean forest and wetlands in the lower part of the basin
(Corpoboyac�a, 2019). These systems coexist with agricul-
tural, agroforestry, subsistence crops and mining areas.

The local climate has a bimodal behaviour with high
rainfall from March to May and from September to
November and low rainfall from December to February
and from June to August. This dynamic is associated with
the double passage of the Intertropical Convergence Zone
(ITCZ), atmospheric circulation patterns in the Pacific
and the Caribbean, topographic gradients, and land-
atmosphere interactions (Poveda et al., 2011).

The El Niño Southern Oscillation (ENSO) is a signifi-
cant forcing mechanism in local short- and long-term cli-
mate variability (Poveda et al., 2011).

The variables of interest (rainfall and temperature)
do not show a normal daily distribution on a daily
scale. Historical records from the Tunguavita station
(13.7�C) show that the monthly average temperature
varies ±0.8�C, and the daily average temperature
ranges from 8.3 to 20.4�C, while the daily rainfall
(977.1 mm annual average) ranges from 0 to 77 mm�day−1.
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Rainfall is considered a critical variable because it
shows the greatest variability. Figure 2 displays rainfall
anomalies according to the following classification
(Montealegre, 2009): high deficit (<40%); deficit (40–
80%); normal (80–120%); excessive (120–160%); and
very excessive (>160%).

The percentage anomalies (PAiT) calculation was
made using as base period (m) the (i) years between 1985
and 2018 taking the moving average 3 (mm3T) of each
annual trimester (T) divided by the average multiannual
summation of each mm3 during a same trimester
(adapted from (Montealegre, 2009), see Equation (1).

PAiT=
mm3T ið ÞPi=m

i=1

mm3T ið Þ

m

2
6664

3
7775� ð1Þ

3 | METHODS

3.1 | General description

The SIE-Climate model is a methodological and techno-
logical tool for predicting, on a daily or monthly scale,

FIGURE 1 Geographical

location, topographic map, and

main hydrographic and weather

stations used in the study

[Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 2 Historical rainfall anomalies at the reference station for the Lake Sochagota system [Colour figure can be viewed at

wileyonlinelibrary.com]
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the annual behaviour of two climatic variables in a refer-
ence station or area. Climatic series are forecast from
local historical data and from the characterization of the
climatic variability on a global scale using an atmo-
spheric index. This method requires identifying meteoro-
logical events from before the forecast period. From these
events, three time series are estimated for each target cli-
matic variable in the period of interest and at the refer-
ence station. The methodological path (Figure 3) includes
the following phases: exploration, development, and eval-
uation of the climate prediction model.

The exploratory phase guides the process of selecting
the target climate variables and the reference meteorolog-
ical stations in the region of interest. This phase includes
meetings with local institutional actors to identify refer-
ence stations; setting up the technological infrastructure
for gathering, storing, and processing the available cli-
mate data; characterizing the developments and current
scope of the existing prediction models and their predic-
tion periods; and identifying the macro- and meso-scale
phenomena with the greatest impact in the region.

In studies on water management, the reference
station(s) is (are) selected by defining the limits of the
basin or micro-basin that contains the socio-ecological
system under study, which also makes it possible to select
the index or variable representative of the macro-climatic
phenomenon that has the strongest impact on a local
scale, based on previous studies, graphical analysis, and
spatiotemporal correlations between target variables and
variables that represent the dynamics on a global scale.

The exploratory phase requires setting up the histori-
cal database (DB) that contains the target climatic vari-
ables on a daily scale. This DB must be validated to
construct time series without data gaps and must be rep-
resentative of the climatic behaviour of the study area.
Similarly, the DB is transformed into quarterly anomalies
(DB0) to analyse the data together with the representative
index of the quarterly macro-climatic phenomenon.

Cross-correlation analysis makes it possible to deter-
mine the response time (m) of the local climate as a func-
tion of the phenomenon of macro-climatic variability and
to establish possible causal relationships or repercussions

FIGURE 3 Methodological path for the development of the SIE-climate prediction model [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 4 Graphical representation of the KNN method in the SIE-climate model [Colour figure can be viewed at

wileyonlinelibrary.com]
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(n) between variables. Using (synchronous and lagged)
cross-correlation is key to determining the response time
with which the explained (climatic) variables react to
fluctuations in explanatory variables (meso- and large-
scale indices). The response can be immediate (synchro-
nous) or delayed (lagged) by one or several periods
(Poveda et al., 2011).

The development phase starts with the selection of the
forecast period so as to defining the target matrix.
The target matrix corresponds to the dataset of the time
series of the climatic variables a and b and of the macro-
climate index c, which are found within consecutive
(m + n) periods before the forecast start date (Figure 4).

The KNN method is based on calculating the similar-
ity (neighbourhood) between the real value and the
predicted value (Xr) for each historical observation (Xt),
which is expressed through the Euclidean distance func-
tion (Drt) given in Equation (2).

Drt=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
t=1

wi Xir−Xitð Þ2
s

, t=1,2,…,n ð2Þ

wherein wi (i = 1, 2,:::, m) is the weight of the predictor,
all of which sum to 1; Xr= X1n,,X2n, X3n, :::,Xmrf g ;
and Xt= X1b,,X2b, X3b, :::,Xmrf g.

The KNN method is highly sensitive to Euclidean dis-
tances between data (Wu et al., 2008). However, the
distance-based weighting schemes for the KNN classifier
(Geler et al., 2016) make it possible to weight the results
by classifying the nearest neighbour with the number
1 and the farthest with the number N, which will depend
on the number of records in the DB. In contrast to most
linear regression models, which assume a Gaussian dis-
tribution of errors, KNN regression is a non-parametric
technique that estimates the prediction value locally,
making it possible to assess both linear and non-linear
relationships between predictor and predicted variables
(Grantz et al., 2005).

The SIE-Climate prediction model uses weighting
schemes to analyse the conditional probability that the
target variables will show alterations or anomalies if a
macro-climatic phenomenon occurs, characterized by the
corresponding index. The KNN method is used to find
the target matrix in the historical DB0 in order to identify
the three most similar matrices (classifications 1, 2, and
3 of the KNN). After finding the analogous matrices
(matrices close to the target), the time series of the vari-
ables a and b (365 days in each case) are extracted from
the validated DB. These time series correspond to the cli-
matic data in the period immediately after the time
period of the selected matrices. The data of the
time series can be represented on a daily or monthly

scale, as required. For this purpose, modules have been
developed to display and update the DB to move forwards
in the seasonal forecast period.

The reliability of the model is verified through cali-
bration and validation using past climatic events, in both
typical (years with normal conditions) and atypical
periods (years with climatic anomalies). The statistical
test used to compare the three climatic series found
through the model with the values recorded in the period
of interest is selected based on the nature of the probabil-
ity distribution of the data and prediction target.

The software development phase implemented the
method for constructing the backend and frontend of
the open-source software (SIE-Climate), according to the
following stages:

Analysis stage: functional and non-functional require-
ments are determined, establishing the refinement tree,
wherein three functional groups are identified:

• Basic Administration;
• Configuration;
• Management Data.

Design stage: The general use case diagram of the sys-
tem and the sequence diagram are established for each
component. The component diagram is developed, and
the entity-relationship model is developed.

Programming stage: The software SIE-Climate is con-
structed, implementing the previous analysis and design,
in the form of the following tools: BACKEND: API REST,
and Django (Python); DB: PostgreSQL; and FRONTEND:
Angular 8, HTML 5 and CSS 3.

Lastly, in the evaluation phase, internal (unit, integra-
tion) and external tests are performed to analyse the reli-
ability, efficiency, usability, maintainability, portability,
security, and relevance of the software and to identify
future challenges for its optimisation.

3.2 | Software development of the
SIE-Climate prediction model

The software development phase made it possible to
implement the method described above and to construct
the backend and frontend of the open-source software
(SIE-Climate) through the above-described analysis,
design, and programming stages.

As a result of the analysis stage, the climate predic-
tion software consists of three modules (Figure 5):
(a) Administration: user and role management for man-
aging the software and implementing security and
administration requirements. (b) Configuration (setting):
Through its options, the basic information is entered to
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operate the climate model, such as the types of variables,
the variables themselves, the units of measure, the enti-
ties, the technology used, the categories of stations, and
the names of the stations themselves. (c) Data manage-
ment: processing data, managing previously validated
data in Microsoft Excel, and running the SIE-Climate
prediction model.

In the design stage, the general use case diagram of the
system and the sequence diagram are established for each
component. The actors to target are identified (System and
IU SISE); the System is the application programming inter-
face (API), which is responsible for executing all business
logic operations, and the IU SISE is the API user, who is
responsible for making all requests to it. For each compo-
nent of the general use case, its use case and sequence dia-
gram are determined, which identifies the actions and
functions of each actor in the functional requirements.

The design includes the class diagram of the system
with the classes and their attributes, methods, and
relationships.

Lastly, the component diagram that contains the
functionalities of the system is designed, and the entity-
relationship model is elaborated, describing the tables,
attributes, and relationships needed to manage the soft-
ware data and to move on to the programming stage.

The software of the SIE-Climate prediction model can
forecast the behaviour of two climate variables simulta-
neously in a reference station or area, during a maximum
period of 1 year from the date of interest. This period is
selected in the interface of the climate model of the man-
agement data module.

The climate series are predicted from local historical
information and from the characterization of the climate
variability phenomenon on a global scale, which are
linked to the SIE-Climate model through the configura-
tion module. This method identifies in the DB, meteoro-
logical events before the prediction period, thereby
finding three data series of the climatic variables, which
represent their forecasts (behaviours) for the period of
interest and for the reference station.

The response of the climate prediction model is dis-
played graphically, both on a daily and on a monthly
scale, and offers an application for data searching. The
Oceanic Niño Index (ONI) and the local climate DB have
been parameterised to enable users to update them:
http://www.sie.org.co/sie/index.php/descargas

3.3 | SIE-Climate software evaluation

The agro-meteorological station closest to Lake Sochagota
(the Tunguavita station, operated by the Institute of Hydrol-
ogy, Meteorology, and Environmental Studies Instituto de
Hidrología, Meteorología y Estudios Ambientales—IDEAM)
was used as a reference for the methodology and software
evaluation. The DB was design combining records from the
conventional station (from 1 January 1985 to 14 December
2004) and from the DHIME platform (Instituto de
Hidrologia M. y E.A, 2019; up to December 31, 2018). Miss-
ing data was estimated on a daily scale using historical
records from 33 stations located in the study area and
applying the multiple imputation statistical method (Gao
et al., 2018) with Amelia II software (Honaker et al., 2011).
This method has been widely used and validated to com-
plete climatological series (Schneider, 2001). The results
were verified by over-imputation (Honaker et al., 2011).
The resulting DB provides a continuous series of daily cli-
matic records, which were validated using historical
regional and national records.

3.3.1 | Internal tests

Unit and integration tests were performed for each soft-
ware component. The API's Postman testing software

FIGURE 5 General diagram of the modules and use case of

the SIE-climate model [Colour figure can be viewed at

wileyonlinelibrary.com]
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was used in the tests to send HTTP REST requests
through a graphical interface. In this method, collections
are created in which all requests are stored in an orga-
nized way, and these collections can be shared for collab-
oration work. Postman can generate invocation codes for
different backend development languages, in this case,
Python.

The reliability of the model was evaluated for typical
years and extreme climatic anomalies as benchmark (see
Figure 2). The daily rainfall data recorded at the
Tunguavita station was compared with the predicted
series (three series for year) in each case. The
predicted and observed series comparison during calibra-
tion and validation process was carry out with percentile
analysis.

The percentiles (0.25, 0.5, 0.55, 0.65, 0.75, 0.85, 0.95,
0.975, 0.99, and 0.999) of daily rainfall data observed and
predicted were obtained. These percentiles were matched
to represent a linear regression model. This data set
(2000–2018) was evaluated using statistical metrics to
evaluate the SIE-Climate suitability for water manage-
ment purposes (Curve-fitting to the linear regression
model (R2); Root Mean squared error (RMSE); Percent
bias (PBIAS); and Nash–Sutcliffe efficiency coeffi-
cient (EFF)).

3.3.2 | External tests

The methodology and software for climate prediction
were tested and validated by 34 regional actors
(Corpoboyac�a Environmental Agency, IDEAM Institute
of Hydrology, Meteorology and Environmental Studies,
Paipa Department of Agriculture, engineering profes-
sionals, and related professionals).

The methodology for selecting the climatic stations,
the identification of missing data, the filling of the DB
(Multiple Imputation method) and the interpolation of
data between stations to consolidate the regional DB
were explained to the regional actors. Likewise, the cli-
mate prediction methodology and statistical analyses car-
ried out in the calibration stage were explained for the
evaluation.

The regional actors interacted with the software to
create new stations and variables as well as carried out
exercises to (a) obtain the temperature and precipitation
series for the Tunguavita station in historical periods
(2018, 2015, and 2011) and, (b) in the projected period
1 January 2020–31 December 31 2020.

The evaluation of the SIE-Climate prediction software
was carry out in order to inquire about the quality of the
information (accuracy, timeliness, complete, relevant,
and consistent), the quality of the system (reliability,

easiness, and response speed), the quality of the service
(response to user needs) and innovation degree. The
questionnaire was implemented in a Google form, using
five qualitative assessment categories (1—not satisfac-
tory, 2—not so satisfactory, 3—somewhat satisfactory,
4—satisfactory to 5—Very satisfactory). It also allowed to
give additional comments and suggestions.

4 | RESULTS

The SIE-Climate method and technological tool is illus-
trated by its application to the socio-ecological system of
Lake Sochagota, Paipa, Boyac�a, Colombia. The explora-
tion, development, and evaluation phases of the seasonal
prediction of time series for the variables temperature
and rainfall are presented below. These variables were
chosen for their association with hydrological and hydro-
dynamic dynamics, an association that is required for
managing the system of interest.

The meetings with local institutional and community
actors in the exploratory stage made it easier to identify
regional dynamics, reference stations, technological
infrastructure, and developments in and the current
scope of existing prediction models at the national scale
developed by IDEAM, along with their projection periods
(daily and semi-annual). The meetings also helped iden-
tify the macro- and mesoscale phenomena with the stron-
gest impacts on the region.

4.1 | Analysis of the macro-climate index

ENSO events have been related to rainfall, soil moisture,
and river flows in Colombia. Quarterly cross-correlation
studies have identified strong associations with rainfall
and streamflow for the December–January–February
(DJF) quarter and the weakest for the March–April–May
(MAM) period (Poveda et al., 2011; Enciso et al., 2016;
Kim et al., 2019; Canchala et al., 2020). These physical
processes reflect a well-defined degree of inertia between
the components of the local and global climate system
(ocean and atmosphere). The index selected to represent
the interannual macro-climatic variability in the study
area is the ONI (NOAA National Weather Service, 2020).

In the Boyac�a Department or Colombia, the climatic
variability with the strongest relationships with the vari-
ables of interest is the ONI. It has a direct relationship with
maximum temperature and an indirect relationship with
rainfall, mainly in the DJF and September–October–
November quarters (Díaz and Villegas, 2015). This index
represents ENSO (Poveda et al., 1998, 2002, 2011) and is cal-
culated as the quarterly moving average of the anomalies of
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the SST, measured by ERSST.v3b (NOAA PSL, 2020; 2020b)
in the region Niño 3.4, based on 30-year periods and
updated every 5 years. Values above 0.5 for five consecutive
months are linked to El Niño events and below −0.5 to La
Niña events (NOAA CPC, 2015).

The ONI is mainly directly correlated with temperature
and negatively correlated with rainfall anomalies (Table 1).
The synchronous (Figure 6) and lagged cross-correlation in
the study area showed that the most appropriate correlation
between the local variables of interest and the ONI occurred
with a lag of one to five quarters, therefore two quarters
was adopted for the present study (m = 2). The phenome-
non occurs first in the Pacific Ocean and, about two quar-
ters later, at the local level. The period of repercussion of

the phenomenon was set to five quarters (n = 5); conse-
quently, the total period over which to search for the target
matrix in the DB transformed on a quarterly scale is seven
quarters (m + n = 7). This time span considers the mini-
mum consecutive evaluation period to declare the existence
of the phenomena El Niño and La Niña, and it considers
previous studies in the South American context, in which
the lag, spread, and impact times are sometimes shorter
than or close to seven quarters, depending on the geograph-
ical location and proximity to the Pacific coast (Poveda
et al., 1998; Poveda et al., 2002; Hoyos et al., 2013; C�ordoba-
Machado et al., 2015; Díaz and Villegas, 2015; NOAA
CPC, 2015; Canchala et al., 2020; NOAA PSL, 2020a; NOAA
PSL, 2020b; NOAA PSL, 2020c).

TABLE 1 Pearson correlation between ONI, rainfall, and temperature anomalies

Lag period (month) N Rainfall anomaly and ONI Temperature anomaly and ONI

0 407 −.325** .216**

1 406 −.322** .247**

2 405 −.305** .276**

3 404 −.274** .303**

4 403 −.232** .320**

5 402 −.182** .325**

**The correlation is significant at the .01 level (bilateral), p-value <.001. Database 1985–2018.

FIGURE 6 Graphical relationship between ONI and the rainfall and temperature anomalies without lag time [Colour figure can be

viewed at wileyonlinelibrary.com]
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4.2 | Application of the KNN method to
the Lake Sochagota socio-ecological system

In the development phase, the KNN method is applied
for seasonal climate prediction by identifying the three
time-series (S1–S3) after the period in which the matrices
similar to the target are found. The calibration and vali-
dation processes included in the development phase are
performed in typical and atypical climatic prediction
periods (2000–2018).

Rainfall can be grouped into three categories: normal
range (typical years), deficit conditions associated with
the macroclimatic phenomenon El Niño (as shown in
1989, 1992, 1995, 1997, and 2015), and excessive rainfall
associated with La Niña phenomenon (in 1988, 2003,
2010, 2011, and 2017). The greatest rainfall excess and
deficit within the last 15 years occurred in 2011 (157%
anomaly) and 2015, respectively.

• Model calibration (typical-year and normal conditions)

The reliability of the model is evaluated for the typical
year 2018. The three climatic series found (KNN: 1, 2,
and 3) by applying the SIE-Climate method correspond
to 2014 (S1), 2002 (S2), and 1990 (S3).

The daily rainfall data recorded at the Tunguavita sta-
tion is compared with the predicted series (Figure 7).

The scatter plot between the percentiles (0.25, 0.5,
0.55, 0.65, 0.75, 0.85, 0.95, 0.975, 0.99, and 0.999) of daily
rainfall data predicted for S1–S3 and recorded in 2018
show that the SIE-Climate model accurately predicts the
data. Curve-fitting to the linear regression model indi-
cates R2 values of 0.9419, 0.9678, and 0.9824 (mean: 0.96)
for 2014, 2002, and 1990, respectively, showing a good
match between the predicted and recorded series in
terms of magnitude (maxima, average, and minima) and
in the distribution of the periods with the highest and
lowest rainfall in 2018.

• Model validation (years with climatic anomalies)

The extremely dry year 2015 (El Niño phenomenon)
and the high-rainfall year 2011 (La Niña phenomenon)
are used to illustrate the model validation process. The
three climatic series found (KNN: 1, 2, and 3) for the dry
year (2015) correspond to 1994 (S1), 1991 (S2), and
2013 (S3).

The daily rainfall data recorded at the Tunguavita sta-
tion is compared with the series predicted for 2015
(Figure 8).

The scatter plot between the percentiles (0.25, 0.5,
0.55, 0.65, 0.75, 0.85, 0.95, 0.975, 0.99, and 0.999) of daily
rainfall data predicted for S1–S3 and recorded in 2015

show that the SIE-Climate model accurately predicted
the data. Curve-fitting to the linear regression model
indicates R2 values of 0.8336, 0.8611, and 0.7248 (mean:
0.81) for 1994, 1991, and 2013, respectively, meaning
there was a good match between the predicted and
recorded series in terms of magnitude (minima and aver-
age and, to a lesser extent, maxima) and in the distribu-
tion of the periods with the highest and lowest rainfall
in 2015.

The daily rainfall data recorded at the Tunguavita sta-
tion is compared with the series predicted for 2011
(Figure 9).

The scatter plot between the percentiles (0.25, 0.5, 0.55,
0.65, 0.75, 0.85, 0.95, 0.975, 0.99, and 0.999) of daily rainfall
data predicted for S1–S3 and recorded in 2011 show that
the SIE-Climate model accurately predicts the data.
Curve-fitting to the linear regression model indicates R2

values of 0.9873, 0.9608, and 0.9967 (mean: 0.98) for 1989,
2000, and 2008, respectively, meaning there was a good
match between the predicted and recorded series in terms
of magnitude (minima, average and maxima) and in the
distribution of the periods with the highest and lowest
rainfall in 2011. The Comparison of climate series from
the SIE-Climate model with benchmark data (2000–2018)
is shown in Table 2 using as statistical metrics, root mean
squared error (RMSE), percent bias (PBIAS), and the
Nash-Sutcliffe efficiency coefficient (EFF).

4.3 | Results from the SIE-Climate
prediction software

The SIE-Climate software plots, on a monthly and daily
scale, the rainfall and temperature at the selected refer-
ence stations. The model is sensitive to the selection of the
simulation start date, with differences of up to 1 month
(before and after the simulation start). The predicted series
change, but they retain at least one of the series found in
the original simulation. To illustrate the application of the
software, the results of the typical year 2018 are presented
for two stations (Tunguavita and Surbat�a) in Figure 10
(rainfall) and Figure 10 (temperature).

Figure 11 (Tunguavita) and Figure 12 (Surbat�a) pre-
sent the rainfall results, on a daily and monthly scale, for
the stations of interest. The series predicted for the
Surbat�a station (2014, 2015, and 2002) match those found
for the Tunguavita station in 2018, except for the 2015
series, which indicates that the model is sensitive to the
specific location and records of each weather station.
The map shows that the total rainfall records of the sta-
tions range from 900 to 1,100 mm�year−1 and that the
predictions for Tunguavita (853.3–1,053.2 mm�year−1)
and Surbat�a (598.5–783.8 mm�year−1) on average differ
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(a)

(b)

FIGURE 7 (a) 2014 (S1), 2002 (S2), and 1990 (S3) series of rainfall recorded in the typical year 2018 and rainfall predicted by the KNN

method. (b) Scatter plot of the percentiles of rainfall recorded [Colour figure can be viewed at wileyonlinelibrary.com]
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from the measured values by 10 and 30%, respectively.
Figures 10–12 show that the annual average tempera-
tures range from 14 to 14.6�C at both stations, thus
highlighting a good match with the recorded values.

5 | DISCUSSION

The management of water systems requires planning
management decisions; therefore, seasonal climate

(b)

(a)

FIGURE 8 (a) The 1994 (S1), 1991 (S2), and 2013 (S3) series of rainfall recorded in the atypical year 2015 and rainfall predicted by the

KNN method. (b) Scatter plot of the percentiles of rainfall recorded [Colour figure can be viewed at wileyonlinelibrary.com]
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(a)

(b)

FIGURE 9 (a) The 1989 (S1), 2000 (S2), and 2008 (S3) series of rainfall recorded in the atypical year 2011 and rainfall predicted by the

KNN method. (b) Scatter plot of the percentiles of rainfall recorded [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 2 Mean statistical metrics for the SIE-climate model evaluation

Prediction periods Series Predicted year R2 RMSE PBIAS EFF

2000 S1 1989 0.96 5.05 −8.73% 0.88

S2 1999

S3 1996

2001 S1 1990 0.94 3.24 13.11% 0.91

S2 1997

S3 1986

2002 S1 1990 0.98 3.59 −10.19% 0.94

S2 1993

S3 1991

2003 S1 1991 0.97 6.82 −26.46% 0.80

S2 1992

S3 1988

2004 S1 1994 0.98 2.85 −9.47% 0.96

S2 1991

S3 2002

2005 S1 2004 0.97 7.01 −26.29% 0.81

S2 1992

S3 1991

2006 S1 1990 0.97 3.92 −20.18% 0.90

S2 1986

S3 1997

2007 S1 1991 0.91 7.69 −17.12% 0.82

S2 1994

S3 1993

2008 S1 1997 0.98 2.75 3.82% 0.91

S2 1996

S3 1986

2009 S1 1997 0.97 2.36 8.10% 0.92

S2 1986

S3 1990

2010 S1 1991 0.97 5.60 −20.83% 0.82

S2 1992

S3 2003

2011 S1 1989 0.98 5.20 −26.14% 0.84

S2 2000

S3 2008

2012 S1 1997 0.95 5.28 −22.27% 0.85

S2 2009

S3 1986

2013** S1 1991 0.91 6.38 29.37% 0.46

S2 1993

S3 2007
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prediction on an annual scale is a key link in the hydro-
logical and hydrodynamic response of a basin and to
water management for different activities in the socio-
ecological system.

In the context of global climate change and anthropo-
genic stresses, extreme weather events are expected to
increase in both frequency and intensity. Current cli-
matic dynamics more frequently present extreme events
(on a daily scale) and changes in the behaviour patterns
of key water management variables, such as rainfall and
temperature. This is a challenge for the development of
non-stationary tools and numerical models, which in
general do not simulate rainfall as well as they simulate
temperature (Odon et al., 2019) or which require a robust
and complex technological development for future pro-
jection (Towler et al., 2020). Satellite rainfall products
with high temporal and spatial resolution offer opportu-
nities to monitor extreme weather event intensities and
trends over large areas. Some satellite rainfall products
show little accuracy in capturing extreme rainfall and
drought events, both in low areas of basins and in the
high sections of mountainous areas. However, products
with an improved reversal rainfall algorithm have been
developed recently (Towler et al., 2020).

Climatic variability as an element of uncertainty in
water management affects community, sectoral, and indi-
vidual decision-making. There is a need to identify, through
applications that consider changes in local climatic

conditions, the best forecasting models for effective water
management and planning (Kim et al., 2019). The results of
the present study show that the methodological and techno-
logical tool SIE-Climate provides an alternative for local
seasonal climate prediction on a daily and monthly scale
for management purposes.

The application of the exploratory phase and the
configuration of the technological tool offer versatility
in the projection of different climatic variables and in
different regions on which macro-climatic phenomena
have a local effect. SIE-Climate is flexible and adapt-
able to different contexts in a simple way, considering
regional singularities and the joint probability of
macro- and micro-climate phenomena, without losing
sensitivity in the representation of intra-seasonal
oscillations.

The SIE prediction tool can be configured and
adapted to the dynamics of each basin or region. In the
case of regions with scattered or incomplete information,
the availability of reliable historical climatological data is
the main source of uncertainty. Therefore, in these situa-
tions the reconstruction of the climatic series can affect
the design and reliability of the final DB. The use of local
historical data requires efforts to record these data, con-
solidate DBs, fill in missing data, and validate predic-
tions, but it also brings together complex components
that are difficult to estimate or represent numerically that
affect climate variability. In this study, the data

TABLE 2 (Continued)

Prediction periods Series Predicted year R2 RMSE PBIAS EFF

2014 S1 2002 0.96 5.38 −16.26% 0.87

S2 1990

S3 1986

2015 S1 1994 0.81 8.58 −6.16% 0.75

S2 1991

S3 2013

2016 S1 1998 0.98 5.06 −8.72% 0.86

S2 2005

S3 1992

2017* S1 2005 0.99 1.97 −5.39% 0.98

S2 2004

S3 2014

2018 S1 2014 0.96 3.64 0.89% 0.92

S2 2002

S3 1990

Note: The statistical metrics are based on the percentiles (0.25, 0.5, 0.55, 0.65, 0.75, 0.85, 0.95, 0.975, 0.99, and 0.999) of daily rainfall (mm). Curve-fitting to the
linear regression model (R2); Root mean squared error (RMSE); Percent bias (PBIAS); Nash-Sutcliffe efficiency coefficient (EFF). The best (*) and the worst (**)
predicted period. For more details see supporting information. Bold values indicate Linear model (R2) with 95% confidence bounds.
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completion and interpolation methodology that was
used, recognizes this source of uncertainty and assigns a
greater weight to the information from the stations that
are closest to the region of interest.

The method is highly sensitive to monthly changes;
therefore, the prediction depends entirely on the ability to
update the local climate data and the indicators of climatic
phenomena used for such purposes. The missing data are
filled in considering regional time dynamics, giving greater
weight to the stations near the area of interest, which
favours the projection of the time series to annual cycles
(on a daily scale), without affecting their distribution or the

range of variation observed in the region, and which carries
an appropriate technological and computational time cost
for water management in the system.

The method reliably reflects the average conditions
and the distribution of the rainfall series in periods with-
out climatic anomalies and in atypical dry or wet years,
which is very useful when water management includes
the evaluation of conditions of water deficit or over-
supply in a socio-ecological system. In atypically humid
periods (extreme rainfall), the prediction results entail
high uncertainty, but the KNN method can be refined in
future research to include an additional factor that

FIGURE 10 (a) Annual total

rainfall in the Lake Sochagota

socioecological system, 2018 [Colour

figure can be viewed at

wileyonlinelibrary.com]
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represents the dynamics in the Atlantic Ocean and in the
Intertropical Convergence Zone, which are highly impor-
tant to South America (S�anchez et al., 2016), in addition
to ocean–atmosphere interaction processes in the Pacific.
Nevertheless, in regions where ENSO presents a strong
effect (tropical Pacific and Latin America, in general;
(Barnston et al., 2019; Oertel et al., 2020)), no other
macroclimatic index may be necessary for SIE-Climate to
provide useful forecasts.

However, other regions such as Europe, may require
the inclusion of additional indices such as NAO (Tyrrell
and Karpechko, 2020) to increase the skill of the model
predictions (Iles and Hegerl, 2017). Indeed, areas where

variability may not be strongly correlated with synoptic
atmospheric patterns may require more elaborate
schemes, where time series analysis of anomalies are
constructed to extrapolate the recent past and current
behaviour to the near future. Time series forecasting
methods are among the most commonly used methods
for long-range projections. The resulting climate data
can be used by water managers in different climate soft-
ware products, but the data must be relevant, under-
standable, and available to the various users and
sectors (i.e., for crop models and their probable yields
in a future season) (Organizaci�on Meteorol�ogica
Mundial, 2004).

FIGURE 10 (b) Annual average

temperature in the Lake Sochagota

socioecological system, 2018 [Colour

figure can be viewed at

wileyonlinelibrary.com]
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Representing the average or monthly climate behav-
iour may not suffice to assess permanent effects or
extreme events for management purposes. SIE-Climate
is an open-access software tool and is linked to the SIE
project, which aims to associate the climatic variability
of annual cycles on a daily scale with the hydrological,
hydraulic, and hydrodynamic responses of a water sys-
tem and to represent water deficit, salinization, and
eutrophication effects using socio-ecological indicators
and the overall susceptibility index (Perilla et al., 2012;
Usaquén-Perilla, 2017). These indices are publicly
available from the webpage (http://www.sie.org.co)
and after a process of capacity building and social
appropriation, the state of the socio-ecological system
is evaluated for management purposes at the institu-
tional, community, and individual levels by its
stakeholders.

Following the evaluation test of the methodological
and technological tool SIE-Climate, external users rem-
arked on the positive aspects of the tool, including its

simplicity, quality, and usefulness, not only in environ-
mental management, but also in disaster risk matters,
energy generation, agriculture, human consumption, and
guiding public and private investments. The evaluation
test also highlighted opportunities for improvement and
future challenges regarding its graphical interface, its
interactivity, its connection with other components and
environmental matrices, validation for other variables
and stations (in the region and in Latin America), and its
amenability to online collaborative work to facilitate real-
time data updates.

6 | CONCLUSIONS

This methodological and technological tool offers an
alternative for seasonal local climate prediction on a daily
and monthly scale. SIE-Climate is flexible and adaptable
to different regional contexts and considers macro-
climatic phenomena, regional weather dynamics, and

FIGURE 11 Graphical representation on a monthly and daily scale of the rainfall (a) and temperature (b) series at the Tunguavita

station. Output of the SIE-climate software for 2018 [Colour figure can be viewed at wileyonlinelibrary.com]
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interannual and interdecadal climate variability without
losing sensitivity in the representation of intra-seasonal
oscillations.

The SIE-Climate model was applied, calibrated, and
validated to predict, on a daily and/or monthly scale, cli-
matic variables (rainfall and temperature) over a 1-year
horizon, and it categorized these variables based on the
probability of occurrence of climatic anomalies (El Niño,
La Niña, normal year), all as part of the ultimate goal of
designing management measures for a socio-ecological
system (Lake Sochagota).

Seasonal climate prediction at the yearly time scale is
a key link in the hydrological and hydrodynamic
responses of basins and water management in socio-
ecological systems. The management of these water sys-
tems requires planning management decisions. Climate
variability, as an element of uncertainty, must be quanti-
fied and known to guide community, sectoral, and indi-
vidual decision-making. Current climate dynamic models
more frequently present extreme events on a daily scale.
Representing the average or monthly climate behaviour

may not suffice to assess permanent effects or extreme
events for management purposes. Macro-climatic dynam-
ics affect the local climate, so they must be considered in
predictions, as achieved by the SIE-Climate tool.

The use of local historical data requires efforts to
record, consolidate, fill in, and validate these data, but it
combines the complexity of macro- and micro-scale phe-
nomena and dynamics in the system. The configuration
of the methodological and technological tool SIE-Climate
has the flexibility to make projections for different vari-
ables and for different regions. The method is highly sen-
sitive to monthly changes, and the predictions depend
entirely on the ability to update local climate data and
the indicators of climatic phenomena used for such pur-
poses. The method for filling in data considers the
regional weather dynamics, giving greater weight to
the stations near the area of interest.

The method is reliable for seasonal climate prediction
in typical years, atypically dry and wet years are ade-
quately projected, and predictions of extreme rainfall
events show higher uncertainty in dry years. These

FIGURE 12 Graphical representation on a monthly and daily scale of the rainfall (a) and temperature (b) series at the Surbata station.

Output of the SIE-climate software for 2018 [Colour figure can be viewed at wileyonlinelibrary.com]
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results are adequate when gearing the prioritized man-
agement effects towards the evaluation of water deficit
conditions.

The KNN method can recreate the recorded climate
variability without affecting the observed distribution or
behaviour, whilst incorporating, through macro-climatic
indices, larger phenomena that affect the local climate at
a technological and computational cost appropriate for
regional water management. This methodological and
the technological tool can be adapted to other contexts
and temporal and spatial scales. It offers opportunities
for future research on improving the reliability of the
results in management cycles of atypical (wet) periods
and on ways to consider, via the KNN method, more than
three factors, reflecting not only Pacific Ocean processes,
but also the effect of Atlantic Ocean and Intertropical
Convergence Zone dynamics.

This technological solution is designed to facilitate
decision-making in a timely and strategic manner when
operating a socio-ecological system to anticipate the
response of the system to climate variability events and
to simulate the effects of the prioritized variables of
socio-ecological interest for management purposes.
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