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Abstract. Let Iν(x) and Kν(x) be the first and second kind modified
Bessel functions. It is shown that the nullclines of the Riccati equa-
tion satisfied by xαΦi,ν(x), i = 1, 2, with Φ1,ν = Iν−1(x)/Iν(x) and
Φ2,ν(x) = −Kν−1(x)/Kν(x), are bounds for xαΦi,ν(x), which are solu-
tions with unique monotonicity properties; these bounds hold at least for
±α /∈ (0, 1) and ν ≥ 1/2. Properties for the product Pν(x) = Iν(x)Kν(x)
can be obtained as a consequence; for instance, it is shown that Pν(x) is
decreasing if ν ≥ −1 (extending the known range of this result) and that
xPν(x) is increasing for ν ≥ 1/2. We also show that the double ratios
Wi,ν(x) = Φi,ν+1(x)/Φi,ν(x) are monotonic and that these monotonic-
ity properties are exclusive of the first and second kind modified Bessel
functions. Sharp trigonometric bounds can be extracted from the mono-
tonicity of the double ratios. The trigonometric bounds for the ratios and
the product are very accurate as x → 0+, x → +∞ and ν → +∞ in
the sense that the first two terms in the power series expansions in these
limits are exact.

Mathematics Subject Classification. 33C10, 26D07, 34C11.

1. Introduction

Modified Bessel function, and in particular their ratios, are important spe-
cial functions appearing in countless applications. Bounds for these ratios are
needed in a huge number of different scientific and engineering fields, like finite
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elasticity [15], telecommunications [1], statistics [8], heat transfer [5], informa-
tion theory [6] and many others. Not surprisingly, this is an active topic of
study; see for instance [2,3,7,9,12,13,16,17].

In this paper we obtain new monotonicity properties and bounds for
ratios and products of modified Bessel functions, some of them displaying a
remarkable accuracy in all three directions as x → 0+, x → +∞ and ν → +∞;
we also extend previous results, in particular for the product of first and second
kind modified Bessel functions.

We analyze the monotonicity of the functions xαΦi,ν(x), with Φ1,ν(x) =
Iν−1(x)/Iν(x) and Φ2,ν(x) = −Kν−1(x)/Kν(x), by considering the Riccati
equation satisfied by these functions. It is shown that the nullclines of the
Riccati equation are bounds for xαΦi,ν(x), at least when ±α /∈ (0, 1) and
ν ≥ 1/2. We show that these monotonicity properties are unique for the first
and second kind Bessel functions and no other solution of the Riccati equation
is both regular and monotonic when ν ≥ 1. The bounds for the ratios of Bessel
functions that can be obtained as a consequence of this analysis are described
and then applied to the study of the monotonicity and bounds for the product
Iν(x)Kν(x). We prove that Iν(x)Kν(x) is decreasing if ν ≥ −1 (enlarging the
range of validity considered so far) while xIν(x)Kν(x) is increasing for ν ≥ 1/2.
Upper and lower bounds for the product are also made available.

In a similar way, the monotonicity properties of the double ratios Wi,ν(x)
= Φi,ν+1(x)/Φi,ν(x) are established and proved to be unique for the first and
second kind modified Bessel functions. New sharp trigonometric bounds for
both the first and second kind modified Bessel functions ratios are obtained
from this analysis. These bounds, both for the ratios and the products, are
shown to be very accurate in the three limits x → 0+, x → +∞ and ν → +∞,
in the sense that at least the first two terms of the power series expansions
of the ratios and products, in any of these limits, is given exactly by our new
bounds.

The main tool for proving these results is the analysis of the qualitative
properties of the first order differential equations satisfied by the ratios and
double ratios of Bessel functions. For the case of the single ratios, this analysis
is similar to that of [12,13]; we summarize some of these results in Sect. 2, we
discuss how the monotonicity properties are unique for the first and second
kind functions (and therefore the bounds are sharp only for such functions)
and we prove the monotonicity properties for the product Pν(x) and the corre-
sponding bounds. In Sect. 3 we study the monotonicity of the double ratio by
considering the first order differential equation satisfied by this ratio. In this
analysis, the nullclines of the differential equation satisfied by the double ratio,
which are solutions of an algebraic cubic equation, will be shown to provide
very sharp bounds for the simple ratios Φi,ν(x) (similarly as happened in [14]
for Parabolic Cylinder functions) and then, as a consequence, for the double
ratio Wi,ν(x) and the product Pν(x).
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2. Bounds from the Riccati Equation

The starting point in the analysis is the difference-differential system [10,
10.29.2]

I ′
ν(x) = Iν−1(x) − ν

xIν(x)

I ′
ν−1(x) = Iν(x) + ν − 1

x Iν−1(x),
(1)

which is satisfied by Iν(x) and eiπνKν(x) 1, which as a consequence also satisfy

Iν+1(x) +
2ν

x
Iν(x) − Iν−1(x) = 0. (2)

Iν(x) = I−ν(x) is also a solution of (1), but it is not independent of Iν(x) for
integer ν.

For proving the results in this paper, the only information which will be
needed as input is the difference-differential system (1) together with infor-
mation on the sign of the function ratios and first derivatives as x → 0+ and
x → +∞; this information will single out two of the solutions of the system
(1), specifically the regular solution at x = 0 (Iν(x) = Iν(x)) and the recessive
solution as x → +∞ (Iν(x) = eiπνKν(x)).

We first briefly review how bounds for the ratios of first and second kind
modified Bessel functions can be obtained by analyzing the nullclines of the
Riccati equations satisfied by these ratios (Theorem 1), as done in [12,13]. The
analysis of the bounds for the first and second kind Bessel functions will be
done simultaneously using a same Riccati equation, which differs slightly from
the approach in [12,13]. Later in this section we consider the more general
case of the general solution of the system (1) and we study the monotonicity
properties and bounds for the product Pν(x) = Iν(x)Kν(x).

Starting from the DDE (1) we can obtain the Riccati equation for

Φν(x) =
Iν−1(x)
Iν(x)

, (3)

giving

Φ′
ν(x) = 1 +

2ν − 1
x

Φν(x) − Φν(x)2. (4)

Using {Iν(x), (−1)�ν�Kν(x)} as a pair of independent solutions of the
DDE (1), we can write the solutions Φν(x) as

Φν(x) ≡ Φt,ν(x) =
cos

(π

2
t
)

Iν−1(x) − sin
(π

2
t
)

Kν−1(x)

cos
(π

2
t
)

Iν(x) + sin
(π

2
t
)

Kν(x)
, t ∈ (−1, 1], (5)

1The complex notation is not substantial and we could have also defined a second solution
for real ν as (−1)�ν�Kν(x)
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Φt,ν(x) is the general solution of (4). That it is a solution is obvious by
construction and that any solution can be written in this form is also clear: for
any ν and for each (x, y) there is one and only one solution of (4) such that
Φν(x) = y and there exists a unique value of t ∈ (−1, 1] such that Φt,ν(x) = y,
and Φt,ν(x) is precisely this unique solution.

As in [12], we consider a more general Riccati equation by taking

γt,a,ν(x) = x−aΦt,ν(x). (6)

We have

γ′
t,a,ν(x) = −xaγt,a,ν(x)2 + 2ν − 1 − a

x γt,a,ν(x) + x−a

= −xa(γt,a,ν(x) − γ̂+
a,ν(x))(γt,a,ν(x) − γ̂−

a,ν(x))
(7)

where

γ̂+
a,ν(x) = x−aλ+

a,ν(x), γ̂−
a,ν(x) = −x−a/λ+

a,ν(x) (8)

with

λ+
a,ν(x) =

1
x

⎧
⎨
⎩ν − a + 1

2
+

√(
ν − a + 1

2

)2

+ x2

⎫
⎬
⎭ . (9)

As we will see, for establishing the bounds on the function ratios it is
important that the functions γ̂±

a,ν(x) determining the nullclines γt,a,ν(x) =
γ̂±

a,ν(x) are monotonic. It is easy to prove that:

Lemma 1. The following monotonicity properties hold:
γ̂+

a,ν(x) is strictly increasing if a ≤ −1 and strictly decreasing if a ≥ 1.
γ̂−

a,ν(x) is strictly decreasing if a ≤ −1 and strictly increasing if a ≥ 1.
γ̂±
0,ν(x) is strictly decreasing if ν > 1/2, strictly increasing if ν < 1/2 and

constant if ν = 1/2.
For a ∈ (−1, 0) ∪ (0, 1), let

xe = −
√

1 − a2

a

(
ν − a + 1

2

)
.

If xe > 0 (respectively xe < 0) then γ̂+
a,ν(x) (respectively γ̂−

a,ν(x)) has a rel-
ative extremum at xe (respectively −xe), and it is a minimum (respectively
maximum) if a < 0 and a maximum (respectively minimum) if a > 0.

We consider next the particular and more important cases t = 0 and t = 1
(that is, γ0,a,ν(x) = xaIν−1(x)/Iν(x) and γ1,a,ν(x) = −xaKν−1(x)/Kν(x)) and
prove the monotonicity of both functions; later we consider the general case
t ∈ (−1, 1].

Theorem 1. The following monotonicity properties and bounds hold:
1. Properties of γ0,a,ν(x):
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(a) If |a| > 1 and ν ≥ 0, aγ0,a,ν(x) is decreasing and

a(Φ0,ν(x) − λ+
a,ν(x)) > 0

.
(b) If ν ≥ 1/2, γ0,0,ν(x) is decreasing and Φ0,ν(x) > λ+

0,ν(x).
2. Properties of γ1,a,ν(x):

(a) If |a| > 1 then for all ν ∈ R, aγ1,a,ν(x) is increasing and

a(Φ1,ν(x) + 1/λ+
a,ν(x)) > 0

.
(b) If ν > 1/2, γ1,0,ν(x) is decreasing and Φ1,ν(x) < −1/λ+

0,ν(x).
Φ1,1/2(x) = −1/λ+

0,1/2(x) = −1.

Proof. We don’t give a detailed proof for all the cases, but all the results follow
from similar arguments.

For t = 0 (modified Bessel function of the first kind), the monotonicity
property as x → 0+ of γ0,a,ν(x) (unique for this solutions) is the main input.
Then, for instance, in the case a ≤ −1, γ̂+

a,ν(x) > 0 is increasing and γ0,a,ν(x)
is such that γ′

0,a,ν(0+) > 0 for ν ≥ 0 (see Appendix, Eq. (39); then necessarily
0 < γt,a,ν(0+) < γ̂+

a,ν(0+) (see (7)) and the fact that γ̂+
a,ν(x) is increasing

implies that 0 < γ0,a,ν(x) < γ̂+
a,ν(x) for all x > 0. This would prove the result

1.a for a ≤ −1. Similarly for the rest of 1.
For t = 1 (modified Bessel function of the second kind), the monotonicity

property as x → +∞ of γ1,a,ν(x) (unique for this solutions) is the main input.
Take for instance the case a ≤ −1, when have that γ′

1,a,ν(+∞) < 0, which
implies, because γ1,a,ν(x) < 0 (see (7)) that γ1,a,ν(+∞) < γ̂−

a,ν(+∞) and the
fact that γ̂−

a,ν(x) is decreasing implies that γ1,a,ν(x) < γ̂−
a,ν(x) < 0 for all x > 0.

For more detailed proofs, in particular for the cases a = 0,±1, we refer
to [12,13]. �

Remark 1. The bounds for |a| > 1 are weaker than those for |a| = 1 in its
range of validity.

Remark 2. The range of validity of the previous theorem for the case 1.a ex-
tends to ν ≥ −1 when a = −1 because for this particular case γ′

0,a,ν(0+) > 0
for ν ≥ −1 (see Appendix, Eq. (38)).

Remark 3. The bound Φ0,ν(x) > λ+
0,ν(x) for ν > 1/2 implies, because λ+

a,ν(x)
decreases as a function of a, that φ0,ν(x) > λ+

a,ν(x) for all a ≥ 0 and ν > 1/2
(which implies that γ0,a,ν(x) is monotonically decreasing for a ∈ (0, 1) too).
In fact, the range of validity as a function of ν increases as a increases from
a = 0 (ν > 1/2) to a = 1 (ν > 0).

Similarly, we have that if ν ≥ 1/2 then Φ1,ν(x) < −1/λ+
a,ν(x), a ≤ 0,

with the range of validity increasing as a decreases. This implies that γ1,a,ν(x)
is also monotonically decreasing for a ∈ (−1, 0).
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Now we turn to the general case t ∈ (−1, 1]. We notice that, because
as x → +∞ the function Iν(x) is exponentially increasing while Kν(x) is
exponentially decreasing we have that, for all real ν and t 	= 1,

Φt,ν(x) ∼ Iν−1(x)
Iν(x)

, x → +∞. (10)

On the other hand, if ν ≥ 0 then Iν(x) is regular at the origin, while Kν(0+) =
+∞ , and therefore, for t 	= 0 and ν ≥ 1,

Φt,ν(x) ∼ −Kν−1(x)
Kν(x)

, x → 0+ (11)

In other words, the behaviour of the solution Φ1,ν(x) = −Kν−1(x)/Kν(x)
is unique as x → +∞ while as x → 0 it is the behavior of Φ0,ν(x) =
Iν−1(x)/Iν(x) which is unique. From this information the next result follows,
which will be used to prove that the monotonicity properties for first and
second kind Bessel functions are unique (Theorem 2).

Lemma 2. Let ν ≥ 0 and D = {(x, y) : x > 0, γ1,a,ν(x) < y < γ0,a,ν(x)}.
Then γt,a,ν(x) for t ∈ (0, 1) correspond to regular solutions which are inside
D, while for t ∈ (−1, 0) they have a vertical asymptote at x∗ > 0 and their
graph is outside D.

Proof. In the first place we notice that the existence and unicity conditions
for the solutions of the Riccati equation are fulfilled and that, therefore, given
a point (x, y), x > 0, there is only one value of t such that γt,a,ν(x) = y.
Therefore, the integral lines can not cross.

Now, taking into account (10) we know the graph of γt,a,ν(x) approaches
the graph of γ0,a,ν(x) as x → +∞ and, on the other hand, it is easy to check
that γt,a,ν(0+) < γ0,a,ν(0+), t 	= 0 (see (11)) for ν ≥ 1, and use the series given
in the Appendix for 0 ≤ ν < 1).

For the case t ∈ (−1, 0), and because Iν(x)/Kν(x) increases monoton-
ically from 0 to +∞ in (0,+∞), there exists a single x∞ > 0 such that
Iν(x∞)/Kν(x∞) = − tan(πt/2). Therefore the denominator of (5) is zero at
x∞, where the function has a vertical asymptote. Because the solution tends
to γ0,a,ν(x) > 0 as x → +∞, then γt,a,ν(x) > γ0,a,ν(x) for x > x∞ and
γt,a,ν(x) < γ1,a,ν(x) for 0 < x < x∞, and therefore the graph of the solution
is outside D.

On the other hand, if t ∈ (0, 1) the denominator of (5) is always positive
and γt,a,ν(x) is continuous and its graph lies below the graph of γ0,a,ν(x), and
therefore is inside the region D. �

Theorem 2. If ν ≥ 1, there are no other regular and strictly monotonic solu-
tions of (7) other than γ0,a,ν(x) and γ1,a,ν(x).

γ0,a,ν(x) is strictly monotonic except when a ∈ (−1, 0).
γ1,a,ν(x) is strictly monotonic except when a ∈ (0, 1).
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Proof. As discussed before, the solutions with t ∈ (−1, 0) have a discontinuity
and therefore, the only thing left to prove is that the solutions with t ∈ (0, 1)
are not monotonic and the particular cases for t = 0 and t = 1 give monotonic
solutions if a /∈ (0, 1) and a /∈ (−1, 0) respectively.

We first observe that Theorem 1 implies that one or two of the nullclines
are inside the region D, namely, the graph of γ̂+

a,ν(x) is inside D if a ≥ 0 while
γ̂−

a,ν(x) is inside D if a ≤ 0.
Now, because of (10) and (11) the graph of γt,a,ν(x), for any t ∈ (0, 1)

tends to the upper boundary of D as x → +∞ and to the lower boundary as
x → 0+. Therefore, it crosses the nullcline(s) inside D. More specifically, there
is a local maximum if a ≥ 0 because γ̂+

a,ν(x) is inside D and a minimum if
a ≥ 0 because γ̂−

a,ν(x) is inside D.
For a ∈ (0, 1) the solution γ0,a,ν(x) keeps being monotonic (see Re-

mark 3), but not γ1,a,ν(x) because the derivative changes sign as can be checked
by considering the expansions as x → 0+ and x → +∞ of the Appendix;
γ0,a,ν(x) has a maximum in this case. The rest of solutions, can not be regu-
lar and monotonic, by the same arguments as before. The same can be said
for a ∈ (−1, 0), changing the roles of γ0,a,ν(x) and γ1,a,ν(x); γ0,a,ν(x) has a
minimum in this case. �

From the bounds from the Riccati equations and the use of the recur-
rence relation, most of the know Amos-type inequalities of the form (α +√

β2 + x2)/x can be established (see [12,13]), with the exception of the Simpson-
Spector bound [15], which follows from arguments similar but not identical to
the ones considered here for the Riccati equations. We will not be exhaustive
in the description of these bounds, and we refer to [7] for a systematic anal-
ysis of Amos-type bounds. Here we concentrate on the bounds that can be
extracted from the qualitative analysis of first order differential equations. A
way to extend the analysis was considered in [12] by iteration of the Riccati
equations, and we explore an in Sect. 3 alternative possibility by considering
the differential equation satisfied by double ratios, similar to that described in
[14] for Parabolic Cylinder functions.

We end this section with an analysis of the monotonicity properties and
bounds for the ratio the monotonicity properties discussed so far.

2.1. Properties for the Product Iν (x)Kν (x)
We notice that, using the Wronskian relation [10, 10.28.2]

Kν+1(z)Iν(z) + Kν(z)Iν+1(z) = 1/z, (12)

and the recurrence relation (2) we have

Kν−1(z)Iν(z) + Kν(z)Iν−1(z) = 1/z,
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and then we obtain the following relation with the product Iν(x)Kν(x): 2

Iν−1(x)
Iν(x)

+
Kν−1(x)
Kν(x)

=
1

xKν(x)Iν(x)
.

Then, using our previous notation

Kν(x)Iν(x) =
1

x(Φ0,ν(x) − Φ1,ν(x))
=

1
γ0,−1,ν(x) − γ1,−1,ν(x)

. (13)

Now we notice that Theorem 1 and Remark 2 estate that both γ0,−1,ν(x)
and −γ1,−1,ν(x) are increasing functions if ν ≥ −1, and that this proves that
Iν(x)Kν(x) is decreasing for ν ≥ −1. This enlarges the range of validity of the
result proved in [11], which was later extended to ν ≥ −1/2 in [2]. Here we
have just proved this result in a very straightforward way and in the larger
range ν ≥ −1. We also prove next that xIν(x)Kν(x) is increasing for ν ≥ 1/2.
We collect both results in a single theorem:

Theorem 3. Let fλ,ν(x) = xλIν(x)Kν(x), then

1. If λ ≤ 0 and ν ≥ −1 fλ,ν(x) is strictly decreasing for x > 0.
2. If λ ≥ 1 and ν ≥ 1/2 fλ,ν(x) is strictly increasing for x > 0.

Proof. We only need to prove this result for λ = 0, 1; for the rest of values it
follows immediately.

For λ = 0, as commented before, the relation (13) and the fact that both
γ0,−1,ν(x) and −γ1,−1,ν(x) are strictly increasing functions proves the result.

For λ = 1 we have

f1,ν(x) = xIν(x)Kν(x) =
1

Φ0,ν(x) − Φ1,ν(x)
,

and we need to prove that Φ′
0,ν(x) − Φ′

1,ν(x) < 0 if ν ≥ 1/2.
Using (4), which is satisfied by Φ0,ν(x) and Φ1,ν(x), we have

Φ′
0,ν(x) − Φ′

1,ν(x) = (Φ0,ν(x) − Φ1,ν(x))
[
2ν − 1

x
− (Φ0,ν(x) + Φ1,ν(x))

]
,

and because Φ0,ν(x) > 0 and Φ1,ν(x) < 0 we only need to prove that Φ0,ν(x)+
Φ1,ν(x) > 2ν − 1

x if ν ≥ 1/2, which is easy to check by using some of the
bounds of Theorem 1. Namely, we use that Φ0,ν(x) > λ+

0,ν(x) if ν ≥ 1/2 and
that Φ1,ν(x) > −1/λ+

1,ν(x) for all real ν. Then, for ν ≥ 1/2:

2Considering the difference-differential relation (1) we have that
Iν−1(x)
Iν(x)

+
Kν−1(x)
Kν(x)

=

d
dx

log

(
Iν(x)
Kν(x)

)
and therefore the properties we will establish for the product have a direct

counterpart for the logarithmic derivative of the ratio.
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Φ0,ν(x) + Φ1,ν(x) > ν +
√

ν2 + x2

x − x
ν − 1 +

√
(ν − 1)2 + x2

= 2ν − 1
x +

√
ν2 + x2 − √

(ν − 1)2 + x2 ≥ 2ν − 1
x

�
Remark 4. For λ ∈ (0, 1) and ν > 0, fλ,ν(x) is not monotonic, as can be easily
checked using (44) and (45).

For λ > 1 the range for which fλ,ν(x) increases becomes larger as λ
increases; for λ = 2 Theorem 1 guarantees that the result is valid at least for
ν ≥ 0. We don’t analyze here these further details.

Using (13) and the bounds for the ratios of Bessel functions, sharp bounds
for the product can be established. We will not be exhaustive in this discussion,
as the bounds can be straightforwardly derived. We just give two of these
bounds, which are obtained from Theorem 1 (more bounds are available from
this same theorem).

Theorem 4. The following two bounds hold:

Iν(x)Kν(x) <
1

2
√

(ν − 1/2)2 + x2
, ν ≥ 1/2,

Iν(x)Kν(x) >
1

1 +
√

ν2 + x2 +
√

(ν − 1)2 + x2
, ν ≥ −1

Proof. For the upper bound use (13) and that Φ0,ν(x) > λ+
0,ν(x) and Φ1,ν(x) <

−1/λ+
0,ν(x), ν ≥ 1/2. For the lower bound use Φ0,ν(x) < λ+

−1,ν(x), ν ≥ −1,
and Φ1,ν(x) > −1/λ+

1,ν(x), ν ∈ R. �
These two bounds (as all the bounds that can be extracted from Theo-

rem 1) are sharp as x → +∞. They are not sharp, however, as x → 0+. This
is in contrast with the bounds in [4, Thm. 2], which are sharp as x → 0+ and
ν > 0 but not as x → +∞. This is as expected, because we are using bounds for
the ratios which are sharp as x → +∞ but not as x → 0+; however, upper and
lower bounds for the ratios which are sharp in both limits are available (see for
instance [12]), and from there it is straightforward to obtain sharp bounds for
the product. In particular, the bounds from the iteration of the Riccati equa-
tion given in [12] are sharp in both limits. We don’t give here such bounds
for the product explicitly, which are straightforward applications of previous
results, but we will obtain later a new very sharp trigonometric bound which
is very accurate in the three limits x → 0+, x → +∞ and ν → +∞.

3. Very Sharp Trigonometric Bounds

As in [14], we will study the monotonicity properties of the double ratios

Wν(x) = Φν(x)/Φν+1(x), (14)
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and we will establish very sharp trigonometric bounds from these monotonicity
properties.

That the double ratios are monotonic both for the first and second kind
modified Bessel functions, has been separately shown in two different papers
by different methods [16,17]. First, in [16] it was proved that Ku(x)Kv(x)/
K(u+v)/2(x)2 is strictly decreasing for x > 0 and real u, v; integral represen-
tation for the product and ratios of modified Bessel functions of the second
kind were considered in this analysis. Later, in [17] it was shown that the ratio
Iu(x)Iv(x)/I(u+v)/2(x)2, min{u, v} > −2, u + v > −2, u, v 	= −1 is strictly
increasing for x > 0, using the Frobenius series for the Bessel functions. Here,
we give a more restricted version of these properties (|u − v| = 2), but we do
this in a single analysis for the first and second kind functions, we prove that
such monotonicity properties are unique for these two solutions and we obtain
bounds for the ratios and products that are sharper and of a different type to
those obtained with previous analysis.

Using (2) we have

Wν(x) = Φν(x)
(

Φν(x) − 2ν

x

)
(15)

And in terms of

ψν(x) = xΦν(x) − ν = x
I ′

ν(x)
Iν(x)

,

which satisfies

xψ′
ν(x) = ν2 + x2 − ψν(x)2, (16)

we have that

Wν(x) =
ψν(x)2 − ν2

x2 , (17)

and differentiating (17)

W ′
ν(x) = − 2

x3

(
ψν(x)3 + ψν(x)2 − (ν2 + x2)ψν(x) − ν2

)
. (18)

Next we will analyze the qualitative properties of the solutions of the sys-
tem of equations (18)–(17), and from these we will obtain very sharp trigono-
metric bounds. Notice that (18) has been obtained by differentiating (17) and
using (16) and that, conversely, differentiating (17) and using (18) we obtain
that the possible differentiable ψν-solutions of the system (18)–(17) are the
trivial solution ψν(x) = 0 and the solutions of (16), with general solution
given by (5). For obvious reasons (the objective is to find properties for mod-
ified Bessel functions) we are only considering the latter solutions, in which
case the solutions Wν(x) are
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Wν(x) ≡ Wt,ν(x) = Φt,ν(x)/Φt,ν+1(x)

= (cos αIν−1(x) − sin αKν−1(x))(cos αIν+1(x) − sin αKν+1(x))
(cos αIν(x) + sin αKν(x))2

,

(19)

where α = πt/2, t ∈ (−1, 1].

Remark 5. We notice that, because of (17), Wt,ν(x) > −ν2

x2 for any real t.

From now on, we will drop the notation Wt,ν(x) in favor or Wν(x). We
will recover it in Theorem 7.

For analyzing the qualitative properties of the solutions of the system
(18)–(17) we need to analyze the nullclines of (18), which determine the mono-
tonicity properties of the solutions.

3.1. Properties of the Nullclines

For proving the monotonicity properties and bounds for the double ratio
Wν(x), we need to analyze the nullclines in terms of the values of ψν(x) which
make the right-hand of Eq. (18) zero and then to study the corresponding
values of Wν(x) and their monotonicity. We first analyze in Lemma 3 the
nullclines in terms of the values of ψν(x); after this, the properties for the
corresponding values of Wν(x) are analyzed in Lemmas 4 and 5. Once these
lemmas are proved, the main results can be estated.

Lemma 3. The cubic equation

λν(x)3 + λν(x)2 − (ν2 + x2)λν(x) − ν2 = 0, x 	= 0, ν 	= 0 (20)

has three distinct real roots

λ(K)
ν (x) < λ(O)

ν (x) < λ(I)
ν (x)

such that λ
(K)
ν (x) < −|ν|, λ

(O)
ν (x) ∈ (−|ν|, 0) and λ

(I)
ν (x) > |ν|.

These solutions can be written

λν(x) =
2
3
gν(x) cos

(
1
3

arccos
(

18ν2 − 9x2 − 2
2gν(x)3

)
+ α

)
− 1

3
, (21)

where

gν(x) =
√

3(ν2 + x2) + 1.

α = 0 for λ
(I)
ν (x), α = 2π/3 for λ

(K)
ν (x) and α = −2π/3 for λ

(O)
ν (x).

The three solutions are even functions of x. For x > 0 λ
(I)
ν (x) and λ

(O)
ν (x)

are strictly increasing and λ
(K)
ν (x) strictly decreasing.

Proof. Let f(λ) = λ3 + λ2 − (ν2 + x2)λ − ν2, we have that f(−∞) = −∞,
f(−|ν|) = x2|ν| > 0, f(0) = −ν2 < 0, f(ν) = −x2|ν| > 0, f(+∞) = +∞.
Therefore, by Bolzano’s theorem, there is for any x 	= 0 one root in (−∞,−|ν|)
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(λ(K)
ν (x)), a second root in (−|ν|, 0) (λ(O)

ν (x)) and finally a root in (|ν|,+∞)
(λ(I)

ν (x)).
For solving the equation, we transform the cubic f(λ) = 0 to depressed

form with the change λ = μ− 1
3 and we have μ3−pμ−q = 0 with p = ν2+x2+ 1

3

and q = 2
3ν2 − 1

3x2 − 2
27 and using the well know trigonometric formula for the

solution of a depressed cubic:

μ = 2
√

p/3 cos

(
1
3

arccos

(
3q

2p
√

p/3

)
+ α

)
, α = 0,±2π/3,

from where we have that the solutions have the form (21). The solutions are
differentiable when the absolute value of the argument of the arccos is smaller
than 1, which is equivalent to saying that the discriminant Δ = −(4p3 +27q2)
is positive, and we have

Δ = 4x6 + (12ν2 + 1)x4 + (12ν4 + 20ν2)x2 + 4ν2(ν2 − 1)2,

which is positive for x 	= 0 (see remark 8).
Now we expand as x → +∞ for the three values α = 0,±2π/3 and we

get

α = 0, λ
(I)
ν (x) = x − 1

2 + ν2 + 1/2
2x + ν2

2x2 + O(x−3),

α = 2π/3, λ
(K)
ν (x) = −x − 1

2 − ν2 + 1/2
2x + ν2

2x2 + O(x−3),

α = −2π/3, λ
(O)
ν (x) = −ν2

x2 + ν4

x4 + O(x−6),

(22)

which shows that the ordering λ
(K)
ν (x) < λ

(O)
ν (x) < λ

(I)
ν (x) is correct.

That the solutions are even functions is immediate given the symmetries
of the equation and the monotonicity follows by taking the derivative of (20),
from where

λ′
ν(x) =

2xλν(x)
3λν(x)2 + 2λν(x) − (ν2 + x2)

. (23)

Consider now x > 0. The numerator does not change sign and neither
does the denominator, because if the denominator was zero for some x > 0
then λν(x) would not be differentiable for this x, which can not be true. Then,
the sign of the denominator for x > 0 is equal to its sign as x → +∞ which,
using (22), is positive for λν(x) = λ

(I)
ν (x) and λν(x) = λ

(K)
ν (x), while it is

negative for λν(x) = λ
(O)
ν (x). Now, because λ

(I)
ν (x) > 0 and the other two

solutions are negative the monotonicity properties follow. �

Remark 6. The notation λ
(I)
ν (x) is used because this solution will be related

to a bound for Iν−1(x)/Iν(x). Similarly, λ
(K)
ν (x) is related to Kν−1(x)/Kν(x).

Remark 7. For ν = 0 the solutions are, trivially, λ
(I)
0 (x) = (−1+

√
1 + 4x2)/2,

λ
(O)
0 (x) = 0 and λ

(I)
0 (x) = (−1 − √

1 + 4x2)/2.
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Remark 8. As explained in the previous proof, the solutions λν(x) are simple
if x 	= 0. We will be interested in the case x > 0. For x = 0, the solutions
are trivially λν(x) = −1,±ν. The identification with the previous notation is
given by λ

(I)
ν (0) = |ν|, λ

(K)
ν (0) = min{−1,−|ν|}, λ

(O)
ν (0) = max{−1,−|ν|}

(which implies quite curious trigonometric identities)

Lemma 4. We define

w
(I)
ν (x) = (λ(I)

ν (x)2 − ν2)/x2,

w
(K)
ν (x) = (λ(K)

ν (x)2 − ν2)/x2,

w
(O)
ν (x) = (λ(O)

ν (x)2 − ν2)/x2.

(24)

Then, for all x > 0, w
(K)
ν (x) > w

(I)
ν (x) > 0, w

(O)
ν (x) < 0.

Proof. First we observe that the fact that w
(I)
ν (x) > 0 and w

(K)
ν (x) > 0 while

w
(O)
ν (x) < 0 is a consequence of the fact that (see Lemma 3), |λ(I)

ν (x)| > |ν|
and |λ(K)

ν (x)| < |ν| while |λ(I)
ν (x)| > |ν|.

To prove that w
(K)
ν (x) > w

(I)
ν (x) for x > 0 we check that w

(I)
ν (x) 	=

w
(I)
ν (x) for all x > 0 and that w

(K)
ν (x) > w

(I)
ν (x) for large x.

Indeed, if we had w
(I)
ν (x) = w

(I)
ν (x) this would imply that for such x > 0

λ
(I)
ν (x) = −λ

(K)
ν (x). Then, for this value of x we have that both λν(x) =

λ
(I)
ν (x) and −λν(x) are solutions of (20). Then:

λν(x)3 + λν(x)2 − (ν2 + x2)λν(x) − ν2 = 0,
−λν(x)3 + λν(x)2 + (ν2 + x2)λν(x) − ν2 = 0,

and adding both equations λn(x)2 = λ
(I)
ν (x)2 = ν2, which does not hold for

x > 0. Therefore w
(I)
ν (x) 	= w

(I)
ν (x) for all x > 0.

Now, expanding as x → +∞:

w
(I)
ν (x) = 1 − 1

x + 1
2x2 + ν2 − 1/4

2x3 + O(x−4),

w
(K)
ν (x) = 1 + 1

x + 1
2x2 − ν2 − 1/4

2x3 + O(x−4),
(25)

and the first two terms suffice to see that w
(K)
ν (x) > w

(I)
ν (x) for large x and

therefore that this holds for all x > 0. �

Lemma 5. For all real ν and for x > 0 we have w
(K)′
ν (x) < 0, w

(I)′
ν (x) > 0

and w
(O)′
ν (x) > 0, except that w

(O)
0 (x) = 0.

Proof. We take the derivative in wν(x) = (λν(x) − ν2)/x2, where λν(x) is any
of the solutions of (20)

w′
ν(x) =

2
x3

(
ν2 − λν(x)2 + xλν(x)λ′

ν(x)
)
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and using (23) we have

x3

2
fν(x)w′

ν(x) = −3λν(x)4 − 2λν(x)3 + (4ν2 + 4x2)λν(x)2

+2ν2λν(x) − ν2(ν2 + x2)

where fν(x) = 3λν(x)2 + 2λν(x) − (ν2 + x2) which, as discussed at the end
of the proof of lemma 4, is negative for λν(x) = λ

(O)
ν (x) and positive for the

other two roots.
Now writing −λν(x)4 = −λν(x)λν(x)3 and using (20) to eliminate λν(x)3

we arrive at
x3

2 fν(x)w′
ν(x) = hν(x),

hν(x) = λν(x)3 + ν2λν(x)2 − ν2λν(x) − ν2(ν2 + x2)
(26)

Now, we are proving that none of the solutions of (20) are such that
w′

ν(x) = 0 for any x > 0. After we have proved this, we will only need to
analyze the sign of w′

ν(x) as x → +∞ in order to prove the lemma. In other
words, what we need to prove first is that for any x > 0 no λν(x) exists such
both right-hand sides of (20) and (26) vanish, that is, that no λν(x) exists such
that

hν(x) = λν(x)3 + ν2λν(x)2 − ν2λν(x) − ν2(ν2 + x2) = 0,
λν(x)3 + λν(x)2 − (ν2 + x2)λν(x) − ν2 = 0 (27)

for no x > 0.
We subtract both equations and then

(ν2 − 1)λν(x)2 + x2λν(x) − ν2(ν2 + x2 − 1) = 0.

For ν2 = 1 the solution is λν(x) = −1 for which hν(x) = x2 	= 0. For ν2 	= 1
we solve the quadratic equation and substitute the solutions in the expression
of hν(x), yielding

hν(x) = x4

2(ν2 − 1)3
(
B ± √

Δ
)

,

B = x2 + 2ν2(ν2 − 1), Δ = x4 + 4ν2(ν2 − 1)(ν2 + x2 − 1),

(28)

which should be zero. However, this is only possible if x = 0 (and we are not
considering this case) or if ν = 0, in which case (27) implies λν(x) = 0 =
λ
(O)
ν (x) (see remark 7). Indeed, for hν(x) to be zero we need first that Δ ≥ 0

and then also that Δ − B2 = 0, but

Δ − B2 = 4ν2(ν2 − 1)3

which is different from zero unless ν2 = 1 (case already considered) and ν = 0,
which is the trivial case λν(x) = 0 = λ

(O)
ν (x).

With this, we have demonstrated that w
(A)′
ν (x), A = I,K,O do not

change sign for x > 0 and ν 	= 0. Now, from (25) we see that w
(I)′
ν (x) > 0,
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w
(K)′
ν (x) < 0. On the other hand, computing the expansion for w

(O)
ν (x) as

x → ∞:

w(O)
ν (x) = −ν2

x2 + O(x−6),

and therefore w
(O)′
ν (x) > 0 �

3.2. Main Results

Theorem 5. Let us consider the differential equation

W ′
ν(x) = − 2

x3

(
ψν(x)3 + ψν(x)2 − (ν2 + x2)ψν(x) − ν2

)
, (29)

with

Wν(x) = (ψν(x)2 − ν2)/x2, (30)

and x > 0. Let λ
(A)
ν (x) and w

(A)
ν (x), A = I,O,K, be as defined in Lemmas 3

and 4.
The following holds:

1. If ψν(0+) > 0, Wν(0+) > 0 and W ′
ν(0+) > 0 then W ′

ν(x) > 0, ψ′
ν(x) > 0,

|ν| < ψν(x) < λ
(I)
ν (x) and 0 < Wν(x) < w

(I)
ν (x) for all x > 0.

2. If ψν(+∞) < 0, Wν(+∞) > 0 and W ′
ν(+∞) < 0 then W ′

ν(x) < 0,
ψ′

ν(x) < 0, λ
(K)
ν (x) < ψν(x) < −|ν| and 0 < Wν(x) < w

(K)
ν (x) for all

x > 0.

Proof. In both cases we have to take into account that

W ′
ν(x) = − 2

x3 (ψν(x) − λ(I)
ν (x))(ψν(x) − λ(O)

ν (x))(ψν(x) − λ(K)
ν (x))

where λ
(I)
ν (x) > λ

(O)
ν (x) > λ

(K)
ν (x) and only λ

(I)
ν (x) is positive (Lemma 3).

For proving this result we will let the solution of the differential equation
evolve from x = 0+ to +∞ in the first case and from +∞ to 0+ in the second
case, checking that none of the nullclines (curves where W ′

ν(x) = 0) is reached
by the solution and therefore the monotonicity does not change, which in turn
implies the bounds for ψν(x) and Wν(x). We prove in detail the first case; the
second case can be proved in an analogous way.

1. Since λ
(I)
ν (x) > 0 while λ

(K)
ν (x) < λ

(O)
ν (x) < 0, and because ψν(0+) >

0 and W ′
ν(0+) > 0, then 0 < ψν(0+) < λ

(I)
ν (0+). In addition Wν(0+) > 0 which

means, using (30) ψν(0+) > |ν| and differentiating (30), that also ψ′
ν(0+) > 0.

As a first step, we prove that if there exists xν such that ψν(xν) = |ν|,
ψν(xν) > ν in (0, xν), there there exists a value 0 < xe < xν such that
ψν(xe) = λ

(I)
ν (xe). Indeed, because ψν(0+) > |ν| by Rolle’s theorem there

exists 0 < xm < xν such that ψ′
ν(xm) = 0, and because differentiating (30)

2ψν(x)ψ′
ν(x) = x2W ′

ν(x) + 2xWν(x), then Wν(xm)W ′
ν(xm) < 0 which means,

because Wν(0+) > 0 and W ′
ν(0+) > 0, that there must exist 0 < xe < xm such

that W ′
ν(xe) = 0; now, since ψν(xe) > |ν| necessarily ψν(xe) = λ

(I)
ν (xe). This
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proves that ψν(x) > |ν| and therefore Wν(x) > 0 as long as x < xe and that
if the solution crosses a nullcline, the first nullcline which is crossed must be
the one corresponding to λ

(I)
ν (x).

Now, we consider the potential interval (0, xe), where φν(x) > ν, Wν(x) >

0, and prove that such value xe for which ψν(xe) = λ
(I)
ν (xe) does not exist.

Because ψν(0+) < λ
(I)
ν (0+) we have that Wν(0+) < w

(I)
ν (0+) and there-

fore the curve y = Wν(x) lies below the curve y = w
(I)
ν (x) for x = 0+. But then

it is not possible that the curve y = Wν(x) interesects the curve y = w
(I)
ν (x),

because at the possible intersection point Wν(xe) = w
(I)
ν (xe), and because

ψν(x) > |ν| in (0, xe), we then have ψν(x) = λ
(I)
ν (x) and therefore W ′

ν(xe) = 0.
This is contradictory with the facts that w

(I)
ν (x) is increasing (see Lemma 5)

and that the curve y = Wν(x) lies below the curve y = w
(I)
ν (x).

Then, because the crossing point xe does not exist we have proved that
ν < ψν(x) < λ

(I)
ν (x) for all x, from where the rest of results follow. �

We now establish the bounds for first and second kind modified Bessel
function ratios

Theorem 6. The following results hold for ν ≥ 0, x > 0:

1. Ψ(I)
ν (x) = x

I ′
ν(x)

Iν(x) and W
(I)
ν (x) = Iν−1(x)Iν+1(x)

Iν(x)2
are strictly increasing

functions.
2. ν < Ψ(I)

ν (x) < λ
(I)
ν (x) and 0 < W

(I)
ν (x) < w

(I)
ν (x).

3. Ψ(K)
ν (x) = x

K ′
ν(x)

Kν(x) and W
(K)
ν (x) = Kν−1(x)Kν+1(x)

Kν(x)2
are strictly de-

creasing functions.
4. λ

(K)
ν (x) < Ψ(K)

ν (x) < −ν and 0 < W
(K)
ν (x) < w

(K)
ν (x).

Proof. Let ν ≥ 0 and x > 0. Choosing ψν(x) as

ψν(x) = x
Iν−1(x)
Iν(x)

− ν = x
I ′
ν(x)

Iν(x)
the hypothesis (1) of Lemma 5 are fulfilled, and choosing

ψν(x) = −x
Kν−1(x)
Kν(x)

− ν = x
K ′

ν(x)
Kν(x)

the hypothesis (2) of the same lemma are satisfied. �
Corollary 1. For x > 0 and ν ≥ 0 the following holds:

Iν−1(x)
Iν(x) <

2gν(x)
3x cos

(
1
3 arccos

(
hν(x)
gν(x)3

))
+ ν − 1/3

x ,

Kν−1(x)
Kν(x) <

2gν(x)
3x cos

(
1
3 arccos

(
hν(x)
gν(x)3

)
− π

3

)
− ν − 1/3

x ,
(31)

where gν(x) =
√

3(ν2 + x2) + 1, hν(x) = 9ν2 − 9
2x2 − 1.
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Same as happened in Sect. 2, it turns out that the first and second kind
modified Bessel functions have unique monotonicity properties, and that the
only regular and monotonic solutions for the system (18)–(17) are those cor-
responding to these two particular cases, as we prove next.

Theorem 7. Let ν ≥ 1, then the function

Wt,ν(x) =
(cos αIν−1(x) − sin αKν−1(x))(cos αIν+1(x) − sin αKν+1(x))

(cos αIν(x) + sinαKν(x))2
,

α = πt/2, t ∈ (−1, 1], is regular and monotonic if and only if t = 0, 1.

Proof. The monotonicity for α = 0, π/2 has already been proven, and we have
to prove that no other selection of α gives regular and monotonic solutions.

For the case α ∈ (−π/2, π/2)\{0}, for the reasons discussed in Lemma 2,
we have that if α ∈ (−π/2, 0) the denominator has exactly one zero at the
value of x = xd for which tanα = −Iν(x(d))/Kν(x(d)) while if α ∈ (0, π/2) the
numerator has two zeros, one at x = x

(n)
1 , with tanα = Iν−1(x

(n)
1 )/Kν−1(x

(n)
1 )

and the other one x = x
(n)
2 such that tanα = Iν+1(x

(n)
2 )/Kν+1(x

(n)
2 ).

We notice that necessarily x
(n)
1 	= x

(n)
2 because

Kν+1(z)Iν−1(z) − Kν−1(z)Iν+1(z) = 2ν/z2, (32)

as can be checked by considering the Wronskian relation [10, 10.28.2]

Kν+1(z)Iν(z) + Kν(z)Iν+1(z) = 1/z, (33)

and using the recurrence relation (2) to eliminate Kν(z) and Iν(z). On the
other hand (33) also shows that

Iν−1(z)/Kν−1(z) > Iν+1(z)/Kν+1(z),

which together with the fact that these ratios of Bessel functions are increasing
implies that x

(n)
1 < x

(n)
2 .

We note that for x > x
(n)
2 , Wt,ν(x) > 0, because as x → +∞, Wt,ν(x) ∼

W0,ν(x) > 0 for all t. Therefore Wt,ν(x) < 0 in (x(n)
1 , x

(n)
2 ) and Wt,ν(x(n)

1 ) =
Wt,ν(x(n)

2 ) = 0. Then, by Rolle’s theorem there exist xm ∈ (x(n)
1 , x

(n)
2 ) where

W ′
tν(xm) = 0, and in addition Wt,ν(xm) < 0; then, necessarily xm must be such

that Wt,ν(xm) = w(O)(xm) < 0, and Wt,ν(x) reaches its absolute minimum at
xm, and of course it is not monotonic. �

Remark 9. That only two monotonic and regular solutions exists is no longer
true for smaller values of ν. For instance, it is easy to check that for ν ∈ (0, 1)
the solutions satisfying tan α ≤ 2

π sin(πν) are monotonic.

We end this section by obtaining some inequalities for the product of
Bessel functions which are a direct consequence of the previous trigonometric
bounds, and we propose a conjecture.
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Theorem 8. The following bound holds for ν ≥ 0:

Iν(x)Kν(x) >

√
3

2gν(x) sin
(

1
3

arccos
(

hν(x)
gν(x)3

)
+

π

3

) (34)

where gν(x) =
√

3(ν2 + x2) + 1, hν(x) = 9ν2 − 9
2x2 − 1.

Proof. Adding the bounds of Corollary 1

Iν−1(x)
Iν(x)

+
Kν−1(x)
Kν(x)

<
2gν(x)√

3x
cos

(
1
3

arccos
(

hν(x)
gν(x)3

)
− π

6

)
.

This sum is positive because both summands are. Now, using (13) the result
follows. �

As we later check, this is a bound which is very sharp in the three limits
x → 0+, x → +∞ and ν → +∞. Of course, a simpler but less sharp bound
can be established by bounding the sine function by 1. Then, we have:

Corollary 2. For ν ≥ 0 the following holds

Iν(x)Kν(x) >
1

2

√
x2 + ν2 +

1
3

The previous bound is sharp as x → +∞ (see (44)) but not as x →
0+. The factor 2 in the denominator can not be changed without losing the
sharpness, and it is the best possible constant in this sense. However, the
summand 1/3 inside the root can be lowered. We have checked numerically
the validity of the following result, for which we have no proof so far:

Conjecture 1. For x > 0 and ν ≥ −1 the following bound holds:

Iν(x)Kν(x) >
1

2

√
x2 + ν2 +

1
5

,

and this is the best possible bound of the form a/
√

x2 + ν2 + b.

3.3. Sharpness of the Bounds

For analyzing the sharpness of these bounds we denote by U
(I)
ν (x) the up-

per bound for Iν−1(x)/Iν(x) of the previous corollary, and by U
(K)
ν (x) the

corresponding bound for Kν−1(x)/Kν(x) and define the relative accuracy

ε(I)ν (x) =
U (I)

ν (x)Iν(x)
Iν−1(x)

− 1

and similarly for the second kind Bessel function. Considering the expansions
detailed in the Appendix we have the following results:
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Corollary 3. The upper bound for the ratio of modified Bessel functions of the
first kind, U

(I)
ν (x), is very sharp as x → +∞, x → 0+ and ν → +∞ in the

sense that

ε(I)ν (x) =
1

4x2 + O(x−3), x → +∞

ε(I)ν (x) =
x4

8ν2(ν + 1)3(ν + 2)
+ O(x6), x → 0+

ε(I)ν (x) =
x4

8ν6 + O(ν−7), ν → +∞

Corollary 4. The relative accuracy for the upper bound for the modified Bessel
function of the second kind verifies:

ε(K)
ν (x) =

1
4x2 + O(x−3), x → +∞

ε(K)
ν (x) = O(xp), p = min{2(ν − 1), 2}, ν > 1, ν /∈ N, x → 0+

ε(K)
ν (x) = O(x−2ν), 0 ≤ ν < 1, x → 0+

ε(K)
ν (x) =

x2

2ν4 + O(ν−5), ν → +∞

Corollary 5. The relative accuracy for the product Iν(x)Kν(x) verifies:

ε(P )
ν (x) =

1
4x2 + O(x−3), x → +∞

ε(P )
ν (x) = O(xp), p = min{2ν, 4}, ν > 0, , ν /∈ N, x → 0+

ε(K)
ν (x) =

x4

4ν6 + O(ν−7), ν → +∞

Remark 10. The errors for the expansions as x → 0+ in Corollaries 4 and 5
must be multiplied by log x when ν ∈ N. See the Appendix.
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Appendix

The ratios and double ratios

Φν(x) =
Iν−1(x)
Iν(x)

, Wν(x) =
Φν(x)

Φν+1(x)
(35)

have, using [10, 10.4.1-2], the following expansions as x → +∞:

±Iν−1(x)
Iν(x)

= 1 ± ν − 1/2
x

+
ν2 − 1/4

2x2 + O(x−3) (36)

Iν−1(x)Iν+1(x)
Iν(x)2

= 1 ∓ 1
x

± ν2 − 1/4
2x3 + O(x−4) (37)

where the upper sign corresponds to Iν(x) = Iν(x) and the lower sign to
Iν(x) = eiıνKν(x).

Using [10, 10.25.2], the Maclaurin series for the regular solution at x = 0,
Iν(x), are, for ν ≥ 0:

x
Iν−1(x)
Iν(x)

= 2ν +
x2

2(ν + 1)
− x4

8(ν + 1)2(ν + 2)
+ O(x6) (38)

Iν−1(x)Iν+1(x)
Iν(x)2

=
ν

ν + 1
+

x2

2(ν + 1)3
+ O(x4) (39)

With respect to the modified Bessel function of the second kind as x →
0+, because

Kν(x) =
π

2
I−ν(x) − Iν(x)

sin(νπ)
, (40)

we have that for ν > 1, ν /∈ N

x
Kν−1(x)
Kν(x)

= −x
I1−ν(x)
I−ν(x)

(1 + O(x2(ν−1))) (41)

and

− x
I1−ν(x)
I−ν(x)

=
x2

2(ν − 1)
− 1

8(ν − 1)2(ν − 2)
x4 + O(x8) (42)

while for 0 < ν < 1

x
Kν−1(x)
Kν(x)

= O(x2ν). (43)

For integer ν a logarithmic term enters the expansions for xKν−1(x)/
Kν(x) and for instance we have xK0(x)/K1(x) = O(x log x), xK2(x)/K1(x) =
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x2/2(1 + O(x2 log(x))). For ν = n ∈ N, the first terms in the expansion of
xKν−1(x)/Kν(x) are given by the first n − 1 terms in (42), which are well
defined, and a logarithmic factor must be added to the error term in (41).

Using [10, 10.41.3-4] we get that as ν → +∞ for x fixed:

x
Iν−1(x)
Iν(x)

= 2ν +
x2

2ν
− x2

2ν2 − x4 − 4x2

8ν3 +
x4 − x2

2ν4 + O(ν−5),

x
Kν−1(x)
Kν(x)

=
x2

2ν
+

x2

2ν2 − x4 − 4x2

8ν3 − x4 − x2

2ν4 + O(ν−5)

As for the product Iν(x)Kν(x) we have

Iν(x)Kν(x) =
1
2x

− ν2 − 1/4
4x3 + O(x−5), x → +∞, (44)

Iν(x)Kν(x) =
(

π
2 sin(πν)Iν(x)I−ν(x)

)
(1 + O(x2ν))

=
(

1
2ν − 1

4
x2

ν(ν2 − 1)
+ . . .

)
(1 + O(x2ν)), x → 0+, ν /∈ N

(45)

Iν(x)Kν(x) =
1
2ν

− x2

4ν3 + O(ν−5), (46)

where in the limit x → 0+ and ν ∈ N similar modifications as that considered
after (42) should be taken into account.
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