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ARTICLE INFO ABSTRACT
Keywords: Adaptation requires planning strategies that consider the combined effect of climatic and non-
Coastal erosion climatic drivers, which are deeply uncertain. This uncertainty arises from many sources, cas-
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cades and accumulates in risk estimates. A prominent trend to incorporate this uncertainty in
adaptation planning is through adaptive approaches such as the dynamic adaptive policy path-
ways (DAPP). We present a quantitative DAPP application for coastal erosion management to
increase its utilisation in this field. We adopt an approach in which adaptation objectives and
actions have continuous quantitative metrics that evolve over time as conditions change. The
approach hinges on an adaptation information system that comprises hazard and impact
modelling and systematic monitoring to assess changing risks and adaptation signals in the light
of adaptation pathway choices. Using an elaborated case study, we force a shoreline evolution
model with waves and storm surges generated by means of stochastic modelling from 2010 to
2100, considering uncertainty in extreme weather events, climate variability and mean sea-level
rise. We produce a new type of adaptation pathways map showing a set of 90-year probabilistic
trajectories that link changing objectives (e.g., no adaptation, limit risk increase, avoid risk in-
crease) and nourishment placement over time. This DAPP approach could be applied to other
domains of climate change adaptation bringing a new perspective in adaptive planning under
deep uncertainty.

1. Introduction

Climate change is posing significant risks from rising temperatures, droughts, increasing flooding and storm damage, shoreline
recession, and saltwater intrusion (IPCC, 2014). Although there is a need to understand these risks and address them with adaptation
(Collins et al., 2019), this is challenged by the deep uncertainty in future climate change (Hallegatte, 2009; Lempert and Schlesinger,
2000; Wilby and Dessai, 2010). Thus, projections of impacts are highly influenced by uncertainties that arise from different sources
(scenarios, climate models, downscaling, and impact models), cascade through the modelling process and accumulate in the outcome,
as shown for coastal erosion for instance (Ranasinghe, 2016; Toimil et al., 2020, 2021).

In this context, it has been argued that the best way to incorporate uncertainty in adaptation decision making is through robust
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(Lempert, 2002; Kasprzyk et al., 2013; Hamarat et al., 2014; Trindade et al., 2017) and dynamic (Kwakkel et al., 2015, 2016; Zeff et al.,
2016; Garner and Keller, 2018; Trindade et al., 2019) planning. More specifically, dynamic planning, which can also be robust, aims at
identifying adaptation policies that respond to new observations over time (Herman et al., 2020), acknowledging that adaptation can
be rarely solved with a single action but is a dynamic process of adjusting changes as they unfold through multiple actions managed
over time (Barnett et al., 2014). This means to take the necessary actions now and monitor to see when further action is required to
address a new situation (Dewar et al., 1993; Haasnoot et al., 2018). Adaptation pathways (AP) (Haasnoot et al., 2012), and their
combination with adaptive policymaking (Kwakkel et al., 2010) that includes monitoring and contingency actions, namely dynamic
adaptive policy pathways (DAPP) (Haasnoot et al., 2013; Walker et al., 2013), are decision-making tools that implement this idea.

AP consist of sequences of actions (also called policies, options or alternatives) linked by transfer stations analogous to a Metro map
(Haasnoot et al., 2012). The shift from one action to another is triggered by adaptation tipping points (ATP), which are the points in
time when an action no longer meets its specified objective (Kwadijk et al., 2010). After reaching an ATP, a new action is required. ATP
can be triggered by changes in climate, biophysical and socio-economic conditions, with actions guided by the magnitude of change
rather than by the time itself (Wise et al., 2014; Brown et al., 2014). Such analysis results in an AP map showing all identified actions
together with their ATP and transfer stations to alternative actions. The map illustrates alternative actions and pathways as well as the
conditions under which they may succeed or fail (Haasnoot et al., 2012; Rosenzweig and Solecki, 2014). Two key features of AP maps
within the DAPP approach are adaptation signals and decision points (Haasnoot et al., 2018). The first signs that an ATP is
approaching; the second indicates when a decision is required before reaching the ATP, provided that an adaptation signal is identified.

AP and DAPP approaches are prominent in the climate change adaptation literature. Either independently or in combination with
other methods such as real options (Hertzler, 2007), risk-of-failure planning (Palmer and Characklis, 2009) or multi-objective opti-
misation (Hadka and Reed, 2015), they have proven potential in dynamic adaptation planning in flood risk and water resources
management (Haasnoot et al., 2012, 2013; Ranger et al., 2013; Barnett et al., 2014; Rosenzweig and Solecki, 2014, Zeff et al., 2016;
Kingsborough et al., 2016; Lawrence and Haasnoot, 2017; Manocha and Babovic, 2017; Bloemen et al., 2018; Ramm et al., 2018;
Trindade et al., 2019), forest resilience management (Petr et al., 2015), urban heat-risk management (Kingsborough et al., 2017), and
territorial archetypes adaptation to coastal hazards (Rocle et al., 2020). However, while there is a growing number of quantitative
applications of AP and DAPP approaches (e.g., Petr et al., 2015; Kingsborough et al., 2016, 2017; Zeff et al., 2016; Manocha and
Babovic, 2017; Trindade et al., 2019), considering monitoring and modelling systems and their ability to enable the timely detection of
adaptation is still in need of more attention (Walker et al., 2001; Haasnoot et al., 2015, 2018; Lempert and Groves, 2010; Stephens
et al., 2018; Raso et al., 2019)

In this paper, we present a quantitative DAPP application for coastal erosion management by means of an approach in which both
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Fig. 1. Nomenclature comparison between a traditional adaptation pathways map (Panel a) and our reshaped adaptation pathways map (Panel b).
Panel a shows a classical adaptation pathways (AP) map for an example similar to Haasnoot et al. (2020). In its ordinal scale, the map has generic
discrete actions such as “low adaptation”, “medium adaptation” and “high adaptation”. In this approach, new actions are linked by transfer stations.
Adaptation signals specify that an adaptation tipping point (ATP) is approaching and that an adaptation decision on adaptation actions needs to be
made. Panel b shows the new type of AP map that would emerge from the proposed dynamic adaptative policy pathways application. In its ordinal
scale, the AP map has risk levels, which is a continuous variable upon which adaptation objectives (AO) are formulated. AO can change over time,
and actions that meet different AO are linked through transfer stations. Adaptation signals specify that an ATP is approaching and that an adaptation
decision on AO and actions needs to be made. AP display information about actions and their intensity, but also about AO, which are measured
quantitatively and are expressed using risk terms. As can be observed in both panels, increasing climate change-modified hazards (e.g., mean sea-
level rise) lead to increasing action.
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adaptation objectives and actions have continuous quantitative metrics and vary in time as conditions change. The approach relies on
an adaptation information system that couple monitoring and modelling, allowing linking quantified risk analysis over time, timely
detection of adaption signals and AP. In order to illustrate an application of our approach, we model the shoreline evolution proba-
bilistically from 2010 to 2100, incorporating uncertainty in extreme weather events and climate variability (through exploring
different multivariate chronologies of waves and storm surges), and in mean sea-level rise (by means of considering the representative
concentration pathway of high radiative forcing, RCP8.5, and three alternative trajectories). As each simulation progresses, nour-
ishment actions are applied following distinct narratives governed by transient objectives and adaptation signals that hinge on beach
functions (i.e., flood protection and recreation), and additional considerations related to climate and environmental, resource and
financial constraints. We provide a new type of AP map showing a subset of probabilistic pathways of linked adaptation objectives and
actions of different intensity.

2. Methods
2.1. Dynamic adaptive policy pathways approach

The quantitative DAPP approach we apply herein revolve around three fundamental components. The first two primarily relate to
the way the AP map displays the results. On the one hand, the AP map itself shows the performance of a continuous variable on the Y-
axis; on the other, each pathway provides graphical information on the dynamic change of both adaptation objectives (AO) and actions
over time along the X-axis. The third component is an adaptation information system that combines monitoring and modelling to
facilitate the timely detection of adaptation needs.

Considering discrete actions in traditional AP maps has demonstrated to be well suited in many contexts, such as for the Thames
Estuary 2100 Project on flood risk management (e.g., over-rotate or improve the barrier, build a new barrier, build a new barrage, as
described in Ranger et al., 2013). However, adaptation domains where actions are better characterised by continuous variables (e.g.,
amount of sand nourished for fighting beach erosion) could benefit from representing these variables on a continuous scale. This has
been acknowledged in the literature of dynamic planning (e.g., as risk of failure in Zeff et al., 2016; volume of water saved or gained in
Kingsborough et al., 2016; and dike heightening in Garner and Keller, 2018) but, to our knowledge, has never been shown on an AP
map before. Hence, we replace the typical nominal or ordinal scale of the AP map diagram (i.e., the Y-axis that usually lists different
discrete actions, Fig. 1a, as for instance in Haasnoot et al., 2012, 2013; Buurman and Babovic, 2016) by a continuously scaled axis
representing an outcome variable. This variable can be expressed using quantitative risk levels associated with the implementation of
adaptation measures (Y-axis, Fig. 1b). Here, risk levels refer to the risk decision-makers are willing to take, also called acceptable or
tolerable risk level (Losada et al., 2019), and the residual risks that follow the implementation of an action, which are mainly given by
the intensity of the action (i.e., decision variable). In this DAPP application, decision and outcome variables are continuous.

AP approaches do not necessarily consider actions that include changing AO over time. Implicitly, each AP map has a static set of
underlying AO (e.g., Haasnoot et al., 2012, 2013; Kingsborough et al., 2016, 2017) and the AP approach aims to explore alternative
pathways of actions that meet these AO (the classical “all roads lead to Rome™) (Fig. 1a). While Haasnoot et al. (2013) include the idea
of changing AO within the iterative adaptive policy cycle, they do not represent nor analyse this possibility in the AP map. However,
under deep uncertainty, the AO may change if an ATP is reached (IPCC, 2019). Hence, an important policy question for adaptation
practitioners is whether and when to change AO. In the context of coastal erosion management, an increase in the frequency of ATP
derived from rising mean and extreme sea levels may require switching from hold the line to retreat, accepting the decline in beach
services due to unaffordable costs (Toimil et al., 2018). Thus, we allow AO to change over time as the future unfolds due to non-
stationarities in climate, biophysical, and socio-economic conditions. In this way, when an ATP is approaching and an adaptation
signal is identified, decisions on both actions and AO are needed, resulting in the choice between taking more action to achieve the
given AO (AP1, AP2 and AP3, Fig. 1b) or changing AO (AP4, AP5 and AP6, Fig. 1b). Here, our AP consist of actions meeting the same or
different AO over a given time period. Along an AP, ATP connect actions with the same AO, and transfer stations link actions with
distinct AO. AO can be fulfilled by applying different types of actions and different quantitative intensities of the same type of action.

The efficacy of adaptive policies depends on detecting on-going change and ensuring that actions are taken if and when necessary
(Raso et al., 2019). A fundamental component of DAPP is to identify and monitor strategic indicators of change (signposts, Dewar et al.,
1993) and to watch out for the exceedance of critical values (triggers, Walker et al., 2001) that may jeopardise the continued fulfilment
of the AO, and hence the success of the policy. In the broad literature of adaptive planning, the need to design monitoring systems
specific for the decision-making problem to be addressed has been long recognised (Lempert and Groves, 2010; Hamarat et al., 2014;
Zeff et al., 2016; Haasnoot et al., 2018). Additionally, models can support the analysis of signpost variables, provided that they are
capable of exploring beyond the present behaviour of the system and accounting for the uncertainty left after observations (Raso et al.,
2019). This can be of key importance in the context of climate change (Haasnoot et al., 2015; Stephens et al., 2018), as adaption
decisions solely triggered by observations may not suffice given the late emergence of mean sea-level rise signals (Haigh et al., 2014;
Lyu et al., 2014) and the long planning and implementation times for some adaptation measures (Lavery and Donovan, 2005). We set
out an adaptation information system that incorporates a monitoring system composed of relevant signposts and associated triggers,
and a coastal erosion modelling system that allows simulating potential shoreline evolutions whose forcing conditions are derived
stochastically.

Fig. 2 summarises the steps of the proposed approach. The first step involves selecting climate scenarios, climate-related hazard and
impact models, AO, adaptation measures, signposts to be tracked (Dewar et al., 1993) and quantitative critical values of the signposts
(triggers, Kwakkel et al., 2010) (orange boxes) that lead to adaptation signals. The modelling and monitoring systems (blue boxes) are
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the fundamental features of the adaptation information system, comprising climate hazard and impact models, and signposts and
triggers, respectively. The impact model is forced with probabilistic forcing conditions that incorporate the uncertainty associated with
extreme weather events, climate variability, and mean sea-level rise. When an adaptation signal indicates an ATP will be reached,
decisions on changing AO and/or implementing actions are needed (green box). All decisions translate into model constraints that
condition impact estimates over time (purple box).

2.2. Adaptation objectives

We model the future response of the shoreline to coupled short-term waves, storm surges and astronomical tides, and long-term
mean sea-level rise over 90 years. Short-term drivers make the shoreline oscillate around a mean position, shaping changes at time
scales from years to decades and leading to episodic storm erosion events, which usually persist over hours and days. However, large
erosion can accumulate and grow if clusters of storms reach the coast, slowing down or even hampering the process of beach self-
recovery (the natural recovery of beaches, without human intervention). Slow onset mean sea-level rise will increase the number
of storm erosion events and, at the same time, will cause chronic shoreline retreat.

We formulate acceptable risk levels (outcome variable) in terms of acceptable beach widths associated with flood protection and
recreation services, considering coastal extreme events and mean sea-level rise as key erosion drivers. For the sake of simplicity, we
consider the single adaptation measure of nourishment, which is a flexible option (Neufville and Stefan, 2011) that is widely applied
(de Schipper et al., 2021). Nourishment actions are herein expressed as placing variable amounts of sand (decision variable) on the
beach, resulting in shoreline advances seawards, and hence increasing beach width (Y-axis, Fig. 3). During the simulation, as erosion
forcing conditions evolve, changes in the shoreline position together with other factors may lead to changes in AO and actions intensity
needs. Table 1 describes five possible incremental strengthened AO that thoroughly sample the space of acceptable beach widths: (a)
no adaptation; (b) limit risk increase to maintain recreation services; (c) limit risk increase to maintain flood protection and recreation
services; (d) avoid risk increase reactively; and (e) avoid risk increase proactively. In a sense, there is a certain similarity with the idea
of water utilities’ risk of failure proposed by Zeff et al. (2016) in the Research Triangle region, where objectives and decision are
regulated using time-varying risk-related metrics and objectives that change across simulations. Hence, this idea had been used as a
decision support mechanism to identify optimal regional pathways in the literature but had not been yet incorporated into an AP map.

Besides, Table 1 presents the indicators and targets that we use to formulate the AO, which are about maintaining defined beach
widths associated with specific flood protection and recreation levels. The consequences of following the AO and the required
monitoring and modelling needs are also displayed. For instance, AO (a), (b) and (c) involve shoreline retreat, but only AO (b) and (c)
are managed retreat, which imply the strategic abandonment of land to address natural hazard risk (Hino et al., 2017). AO (d) means a
protection response and AO (e) represents coast advancement seawards (Oppenheimer et al., 2019). In terms of the monitoring and
modelling requirements, a key signpost is thus the beach width. The Y-axis in Fig. 3 shows the beach widths that constraint the
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Fig. 2. Flowchart summarising the steps of the proposed dynamic adaptive pathways application. Entry points are climate scenarios on which the
forcing conditions of the impact models are projected, climate hazard and impact models, adaptation objectives (AO), adaptation measures, and
signpost variables and triggers (orange boxes). Climate hazard and impact models, and signpost variables and triggers compose the modelling and
monitoring systems, respectively (blue boxes), as key features of the adaptation information system required. Using accurate but fast impact models
allows sampling the uncertainty associated with concentration scenarios, climate models ensembles and multiple realisations. Monitoring signpost
variables and modelling probabilistic impact estimates over time enable the timely identification of adaptation signals and decision points, and thus
adaptation tipping points (ATP). Once an ATP is reached, decisions either on changing AO or implementing new/additional actions are necessary
(green boxes). Finally, new actions and AO are implemented in the impact model (e.g., in the form of new boundary conditions or model con-
straints), which in turn are then applied to simulate the adaptation pathways considering uncertainty over the time period considered (purple box).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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proposed AO and the intensity of the actions required to fulfil the AO. By way of example, in AP3, if beach width is reduced up to self-
recovery width (third width in the Y-axis from the bottom) at least once during the monitoring period, an ATP is reached, and
nourishment is applied. The amount of sand nourished (namely nourishment intensity) is such that allows the shoreline to advance
until the current beach width is restored.

Fig. 3 illustrates seven examples from the large possible set of AP that can emerge from the proposed AO. The narratives underlying
them are as follows. If there is no adaptation (AP1), the shoreline will retreat with increasing coastal hazards. Nourishment action may
either anticipate CC impacts by advancing the shoreline seawards (AP2) or react to small changes by keeping beach width between
current width and the self-recovery width. The self-recovery width is defined by a shoreline landward position (recession) likely to be
recovered naturally (AP3). As mean sea-level rise-driven erosion becomes apparent, a new ATP may arise and a decision on changing
AO may be required. In AP6, shoreline retreat due to mean sea-level rise is accepted (e.g., due to a financial constraint) and nour-
ishment is meant to provide certain beach width for summer recreation. Beyond mid-century, mean sea-level rise is more uncertain and
it will almost certainly accelerate if emissions are not in accordance with the Paris Agreement to limit global warming below 2 °C
(Oppenheimer et al., 2019). This may lead to a new ATP in AP2 or AP3 triggered by harsh environmental effects, high nourishment
costs, or financial constraints. Alternative actions may include changing AO and accepting larger although limited shoreline retreat
(AP5) or allowing progressive width loss (AP7). Under beach decline, a new ATP may arise in case width is reduced beyond the
minimum width that guarantees flood protection. In that situation, changing AO and starting nourishment may avoid waterfront
property and infrastructure damage (AP4). Rather than optimising policy design, these AP seek to explore plausible sequences of both
AO and actions over time triggered by the dynamic interplays between the system and surrounding conditions.

2.3. Adaptation information system
We establish an adaptation information system with two complementary components: a monitoring system that identifies relevant
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Fig. 3. Conceptual representation of seven illustrative adaptation pathways (AP, 1-8) that use nourishment as action and combine the adaptation
objectives (AO, a-e). The AO described in Table 1 are formulated in terms of acceptable beach widths (“Y-axis™). Adaptation signals specify that an
adaptation tipping point (ATP) is approaching and that an adaptation decision will be required. Adaptation signals are triggered by critical values of
signpost variables that can be of climate, biophysical or socioeconomic nature. ATP may result in the choice between taking more action to achieve
the AO given (e.g., AP2, AP3) or changing the AO (e.g., AP4 to AP8). Actions that address different AO are linked by transfer stations. If no action is
implemented (e.g., AP1, AP4), the shoreline will continue to retreat. In this case, for illustrative purposes, we assume that coastal hazards increase
linearly, but they can follow any path. Another simplifying assumption is that nourishment occurs immediately after reaching an ATP. In reality,
nourishment is usually applied following the winter season, when extreme coastal events are rare. During the winter, the shoreline can reach or
exceed the thresholds more than once depending on local conditions.
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Table 1

Proposed adaptation objectives (AO), indicators and targets. AO are related to the beach services at risk and expressed in terms of acceptable beach
widths. Consequences of following the AO and required shoreline monitoring and modelling are also displayed. AO (b) pursues to guarantee the
minimum width for recreation, disregarding flood protection. AO (c), (d) and (e) seek to limit beach width over time between two acceptable beach
widths that guarantee flood protection or flood protection and recreation. AO (c) seeks to maintain beach width between the minimum width that
guarantees flood protection (i.e., if the shoreline recedes behind the minimum position for flood protection, inland flooding can occur) and the width
that provides recreation although not at a high level. AO (d) seeks to maintain beach width between the current width and the self-recovery width (i.
e., the self-recovery shoreline position is the maximum retreat that is likely to be naturally recovered). AO (e) pursues to maintain beach width
between the maximum width (i.e., the maximum feasible advance that the shoreline can experience) and the current width. (*) Here, we assume that
whenever there is dry beach, there can be certain level of recreation. Otherwise, target beach width >= max (minimum beach width for recreation,
minimum beach for flood protection). (**): note that hold the line with nourishment does maintain a fixed shoreline (unlike hard structures) due to
short-term variability (erosion and accretion due to varying wave, storm surge and tide conditions) and the same rationale applies to advance the line
or other shoreline responses associated with different AO.

Adaptation objective Indicator and target Consequences of following the adaptation

objectives

Required shoreline monitoring and modelling

None
Monitoring of shoreline evolution to identify
erosion thresholds.

None Shoreline retreat and risk increase over time.
target beach width
>minimum beach width

for recreation

(a) No adaptation

(b) Limit risk increase to
maintain recreation
services

Shoreline retreat and risk increase but less than in
(a), as nourishment against beach loss due to
coastal extreme events is conducted to maintain
certain level of recreation.

Shoreline retreat and risk increase but less than in

(c) Limit risk increase to target beach width

maintain flood
protection and
recreation services

(d) Avoid risk increase
reactively

(e) Avoid risk increase
proactively

>minimum beach width
for flood protection (*)

current beach width
>target beach width >
self-recovery beach width
maximum beach width
>target beach width >

(b), as additionally some nourishment against
beach loss due to sea-level rise is conducted to
maintain flood protection and guarantee
recreation.

The shoreline is held ("), and retreat is kept below
the beach self-recovery threshold, and risk
increases accordingly.

The shoreline advances, and risk is reduced
compared to the present following nourishment.

Monitoring of shoreline evolution and
modelling of short- and mid-term projected
shoreline evolution to design actions not
allowing retreat beyond a certain level during
the lifetime of the action.

current beach width

signpost variables and provides guidance on how to determine triggers; and a coastal erosion modelling system, which in turn
combines stochastic and exploratory features in the simulations.

The design of an effective monitoring system involves identifying the signposts or variables that should be tracked (Walker et al.,
2001), long robust and homogeneous time-series of these signposts, and sufficient spatial coverage and temporal resolution to un-
derstand the system analysed. We could extrapolate observed trends into the near future using simple statistic methods, but for time
spans no longer than the observation period. Instead, modelling allows extension of the number of observed parameters, the length of
time series, and the spatial coverage and time resolution of measurements, as well as to generate multiple scenarios to inform AP
analysis. An adaptation information system that combines these two components can thus help understand, manage and reduce un-
certainty (e.g., through assimilation, calibration and validation), enable early warning, and extend adaptation planning times.

As highlighted by Raso et al. (2019), stochastic and exploratory modelling are also complementary features. Exploratory models
such as coastal erosion models are used to explore potential coastline changes resulting from physical processes driven by forcing
conditions that are uncertain (Toimil et al., 2020). Stochastic models are statistical models that can provide random samples of the
forcing variables to account for their uncertainty. For example, since the chronology of extreme weather events highly influences the
timing and magnitude of storm erosion, a weather generator could be used to derive multiple possible chronologies of waves and storm
surges in order to consider climate variability uncertainty. The combination of these two features requires the exploratory or impact
model to be run multiple times with all possible combinations of forcing variables to sufficiently account for the associated uncertainty.
In this regard, it is important to distinguish between deeply uncertain factors (e.g., mean sea-level rise) that can be represented through
alternative scenarios without probability measure, and aleatory variables (e.g., waves and storm surges), which require stochastic
characterisation.

2.3.1. Coastal erosion modelling system

We propose simulating the set of seven AP illustrated in Fig. 3 following the probabilistic methodology developed by Toimil et al.
(2017) in San Lorenzo Beach (Supplementary Fig. S1), a urban pocket beach in Asturias (northern Spain), where the methodology has
already been validated. It integrates the explicit application of statistical models and multiple realisations of the coastal erosion model.
Climate uncertainty is considered by means of the stochastic characterisation of waves and storm surges combined with three deeply
uncertain mean sea-level rise trajectories for one radiative forcing scenario.

The shoreline evolution model proposed by Toimil et al. (2017) is forced with hourly time series of waves (DOW, Camus et al.,
2013) and storm surges (GOS, Cid et al., 2014), astronomical tides, and mean sea-level rise (Oppenheimer et al., 2019). Given that the
statistical projections of waves and storm surges developed by the authors using 40 global climate models show very little change, a
vector autoregressive model is applied to stochastically generate hundreds of synthetic multi-variate time series of waves and storm
surges from 2010 to 2100 based on DOW and GOS hindcasts. These time series are combined with three mean-sea level rise trajectories
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derived from the local mean and standard deviation of the RCP8.5 scenario and the reconstruction of the astronomical tide using the
harmonic constituents of the TPXO 7.2 global tides model (Egbert et al., 1994). Considering all the possible combinations of forcing
variables, the model is run 300 times for each AP. This dovetails well with the idea of using transient scenarios based on boundary
conditions to identify ATP proposed by Haasnoot et al. (2015) for a case on water management in the Netherlands.

This shoreline evolution model is particularly suitable for beaches where alongshore gradients in longshore sediment transport are
negligible and allows accounting for storm occurrence and grouping and beach recovery without the need of introducing additional
variables into the simulation. Since the model has been slightly modified for this DAPP analysis, we provide a brief summary of its
components as follows.

The model combines a cross-shore equilibrium shoreline evolution component that considers the effect of water level variations on
shoreline change (first term on the right side of Eq. (1)) and an alongshore sediment sink component. Herein, we have turned this
sediment sink into a sediment source representing nourishment actions (second term on the right side of Eq. (2)) according to:

ds(r)

7 = k(yrq(t) 7)’([) ) +

V(t
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where S(t) is the resulting shoreline position at time t; y(t) is the shoreline position in response to water level variations at time t; y.q(t)
is the equilibrium shoreline position determined by the forcing at time t; k is a constant governing the rate at which the shoreline
approaches the equilibrium; V(t) is the volume of sediment supply; B is the berm height; " is the depth of closure; and L is the length of
V(

the beach. Note that the term ﬁ represents a shoreline advance towards the sea when applicable, and that V(t) is a continuous

variable.

The cross-shore equilibrium shoreline evolution component follows a modified version of the Miller and Dean’s (2004) dynamic
equilibrium model, which assumes that the shoreline approaches the equilibrium position at an exponential rate when it is subject to
constant forcing conditions:

Yeq (1) = Ayo + Ayey (1) (2)

where Ay, is an empirical parameter; and Ay,,is the change in the equilibrium position due to wave setup, storm surges and astro-
nomical tides.

. {0.106H,(t) + SS(t) + AT(?)
Ay, (t) = —
yeq( ) Wb (t) ( B 4 sz(t) (3)
) ) 15
where W, is the active surf zone width determined from the break point by W~ = (%’) , in which A is the profile scale parameter

(Dean, 1991); Hj, is the breaking significant wave height obtained using y = 0.55 spectral breaking criteria; SS is the storm surge; AT is
the astronomical tide; and W is the active beach profile width.

Toimil et al. (2017) modified Eq. (3) to include the SLR-driven landward displacement of the coast using an equilibrium beach
profile change model based on Bruun-type conservation volume (Bruun, 1962). Herein, we incorporated an additional term that allow
adjusting the equilibrium position to sediment inputs (Ay,). Therefore, Eq. (2) can be rewritten as:

SLR(?)

Yegt) = Ayy+ Ay, () — W' (1) B T 0) Q)

2.3.2. Monitoring system

Table 2 provides a summary of the key features of the seven AP illustrated in Fig. 3. These features include the sequence of AO, the
associated signpost variables to be tracked, the triggers or threshold values of these signposts that activate an adaptation signal, and
hence a change in AO or additional action, and the intensity of the actions applied following these triggers in accordance with the
pursued AO. Dashes represent AO changes, which are the equivalent of transfer stations in the AP map (Fig. 3).

For the decision-making problem of coastal erosion management, and for this application, we identify five different signposts the
most relevant of which is the loss of beach width. We obtain this variable by applying the shoreline evolution model described in
Section 2.3.1. For each AP considered and, in every simulation, we track shoreline positions and compute the associated beach width
changes at each time step. If over the monitoring period (here, from November to March) the shoreline exceeds a predefined threshold
position, an adaptation signal is identified, resulting in AO change and/or nourishment placement. Nourishment actions are always
taken at the beginning of the bathing season (i.e., April 1), as in Spain nourishment is usually implemented in spring, when winter has
finished and extreme coastal events are rare, and summer has not started yet. These threshold positions are associated with the beach
widths represented in the Y-axis of Fig. 3, which limit actions intensity and the AO in place (Table 1) and can be set by coastal managers
according to different criteria. For this particular case, the maximum beach width (defined by the maximum shoreline position sea-
wards) is reached when current width increases by 50%; the self-recovery width is reached when current width decreases by 20%; and
the minimum beach width for high recreation and flood protection is reached when current width decreases by 30% and 35%,
respectively. In practical terms, any additional action to fulfil certain AO or to change to different AO, regardless of the trigger, always
results in an advance of the shoreline position, and hence in an increase in beach width. The magnitude of such advance is governed by
the intensity of the action (i.e., amount of sand nourished).
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Since actual policy decisions must be linked to monitoring of environmental and social tolerance indicators (Stephens et al., 2018),
we also consider social preferences in terms of unacceptable flood risks (translated into the minimum beach width to ensure flood
protection and thus avoid potential waterfront damages) and constraints based on environmental externalities, resources and financial
issues (translated into nourishment protocols that regulate nourishment frequency). In addition, we consider mean sea-level rise as a
signpost variable itself for its potential effect on shoreline change. Importantly, our identification of both signposts and triggers is
based on observations in San Lorenzo and on its potential policy context. For other beaches and coastal erosion management contexts,
the monitoring system could be designed using Supplementary Table S1, which provides further signposts and suggestions on how to
determine potential triggers.

3. Results

To reproduce in San Lorenzo the seven conceptual AP shown in Fig. 3, and following the steps illustrated in Fig. 2, we introduced
the restrictions on the shoreline evolution model considering the signpost variables and triggers described in Table 2. For each AP, we
obtained 300 possible shoreline evolutions in San Lorenzo from 2010 to 2100 on an hourly basis, which consider extreme weather
events, climate variability and mean sea-level rise uncertainty and that already incorporate nourishment actions in response to distinct
AO (Supplementary Fig. S2). We derived annual beach changes by subtracting the average position of the coastline during the bathing
season (from April to October, both inclusive) between two consecutive years (Toimil et al., 2018). The accumulation of these annual
changes over time results in cumulative annual beach changes. As a risk indicator we use the expected cumulative change in beach
surface (ECCBS), where positive and negative values are gains and losses relative to the present, respectively. ECCBS is directly related
to beach services such as protection and recreation (Toimil et al., 2018).

Fig. 4 shows the probability density functions of the ECCBS with respect to the present beach surface. The first three AP do not
change the AO. In AP1, inaction leads to a steady decrease in ECCB. In AP2, as the AO is to avoid risk increase proactively, nourishment
is applied to increase the present beach width by 50% (the maximum feasible widening allowing for San Lorenzo’s physical bound-
aries). The trigger activating additional action is reaching present beach width. AP3 shows the AO of avoiding risk increase reactively.
The trigger activating nourishment is the loss of 20% of beach width (based on San Lorenzo’s capacity of self-recovery) and action
intensity is such that current beach width is reached. We obtained San Lorenzo’s self-recovery capacity by looking at historical annual

Table 2
Summary of key features of the simulated adaptation pathways. (*): lost at least once during the monitoring period (herein from November to March,
both included). Note that during this period of time, erosions greater than the threshold can occur, as the shoreline evolves naturally in response to the
forcing conditions. (" ): see Fig. 3 for a conceptual illustration of the intensity of the actions associated with the adaptation objectives described in
Table 1.

Adaptation Actions Adaptation Signpost variables Triggers Intensity of the actions (**)

Pathway objectives (AO)

1 Red Nourishment  No adaptation - - -

2 Magenta Nourishment  Avoid risk increase Physical constraint (loss of beach ~ Nourishment is activated if Nourish up to increase 50%
proactively width). current beach width is reached. current beach width.

3 Green Nourishment  Avoid risk increase Physical constraint (loss of beach ~ Nourishment is activated if 20%  Nourish up to reach current
reactively width based on self-recovery of beach width is lost (*). beach width.

capacity).

4 Red-blue Nourishment  No adaptation - Social preferences in terms of AO changes when 35% of beach ~ Nourish up to increase 5%
Limit risk increase to unacceptable flood risks (flood width is lost*. In what follows, beach width (losses between
maintain flood protection to avoid damages to nourishment is activated if 35%  the 30% and 35% of current
protection and the waterfront). of beach width is lost (*). beach width are accepted).
recreation services

5 Magenta- Nourishment  Avoid risk increase Environmental externality Nourishment activates if current ~ Nourish up to increase 50%

green proactively - Avoid constraints (nourishment beach width is reached. AO current beach width. Once
risk increase protocol based on nourishment changes when nourishment is the AO has changed, nourish
reactively frequency) - physical constraint required for a third time. In up to reach current beach
(width loss that the beach is able =~ what follows, nourishment is width.
to self-recover). activated if 20% of beach width
is lost (*).
6 Green- Nourishment  Avoid risk increase Physical constraint (loss of beach ~ Nourishment activates if 20% of =~ Nourish up to reach current
yellow reactively - Limit width based on self-recovery beach width is lost*. AO changes  beach width. Once the AO
risk increase to capacity) - Changes in climate- when SLR reaches 15 cm. In has changed, nourish up to
maintain recreation related erosion drivers what follows, nourishment is reach current beach width
services (magnitude of SLR). activated if 20% of beach width ~ minus the magnitude of SLR
minus the SLR magnitude is lost ~ (losses due to SLR are
). accepted).
7 Green-red Nourishment  Avoid risk increase Physical constraint (loss of beach ~ Nourishment is activated if 20%  Nourish up to reach current

reactively — No
adaptation

width based on self-recovery
capacity) - Environmental
externality, resource and
financial constrains
(nourishment protocol)

of beach width is lost (¥). AO
changes when nourishment is
required for a second time. In
what follows, no more

nourishments are considered.

beach width. Once the AO
has changed, abandon the
beach.
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Fig. 4. Simulated probability density functions of expected cumulative change of beach surface (ECCBS in hectares, with positive and negative
values representing gains and losses, respectively). The seven panels correspond to the seven probabilistic pathways we developed based three
hundred potential hourly shoreline evolutions simulated from 2010 to 2100 that consider uncertainty in climate variability and extreme events
(stochastic characterisation), and mean sea-level rise (three deeply uncertain trajectories associated with the RCP8.5), which already incorporate
nourishment actions in response to distinct adaptation objectives (AO). Shaded bands represent the 95% confidence levels of ECCBS; big circles are
medians; small circles are mean values; and crosses are mean values plus/minus standard deviations. It is important to note that colour changes
when the mean value of the ECCBS considering all the simulations changes from one AO to the next. However, this does not mean that at such
moment in time, AO have changed in all the modelled shoreline evolutions.

recovery rates, which were computed by subtracting the average beach position during the non-bathing season (from November to
March, both inclusive) from the average beach position over the bathing season. Results indicated that San Lorenzo’s annual mean
recovery capacity is 14.3 & 6.8% of the current beach width, and that it is able to recover from the loss 20% of its width less than the
20% of the years.

In this context of coastal erosion and nourishment, avoid risk increase (reactively or proactively) means that actions are oriented to
maintain the shoreline between two positions, either near the current mean position or advanced seawards, respectively. The shoreline
may recede without reaching an ATP, and such recession accumulates over time. Since the shoreline shows variability to storms and
recovery, it does not necessarily imply that erosion risk does not increase at all. For example, AP3 shows that by 2100 the ECCBS mean
value loses 1 ha with respect to the present (i.e., 6% of current beach surface). This implies, however, that ECCBS mean value losses are
reduced by 80% with respect to AP1 for the same time slice.

The other panels in Fig. 4 show AP with changing the AO. In AP4, the AO switches from no adaptation to limit risk increase to
provide flood protection and recreation. The trigger for changing the AO and activating nourishment is the loss of 35% of beach width,
which is the minimum width that guarantees flood protection for waterfront building and infrastructure, based on historical large
erosion events (e.g., those that occurred in March 2014). In AP5, the AO switches from avoiding risk increase proactively to doing so
reactively in 2069, when increasingly frequent nourishments would be required to continue following the objective to proactively
avoiding risk (Supplementary Fig. S3). This implies reducing ECCBS mean value gains by 23% with respect to AP2 in 2100. In AP6,
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beach decline due to mean sea-level rise is accepted from 2034 onwards. The trigger to change the AO is a rise in mean sea level of 15
cm, assuming that induced recession becomes apparent and that there are relevant financial constraints. In AP7, the AO change to no
adaptation in 2063, when nourishment needs increase and sand is likely to be scarce and costly.

The loss of beach width (or ECCBS) is a relevant signpost that needs to be monitored through combining observations with
modelling. Although observations with sufficient spatial and temporal resolution could inform on the self-recovery capacity of bea-
ches, complementing such observations with future projections can provide coastal managers and decision makers with key infor-
mation for planning purposes (e.g., the probability of exceedance of a given beach width loss over the next 5 or 10 years).

Fig. 5 shows for this case study the practical implementation of Fig. 1. Fig. 5a illustrates the evolution of ECCBS mean values for the
seven AP from 2010 to 2100. Overall, the greater the difference in the AO, the sharper the change of the slope of the risk curve. One
notable result is that risk levels only differ slightly between AP4 and AP6 by 2100. This shows that, following the pathway of nour-
ishing beaches and allowing mean sea-level rise-driven recession (AP6 second phase) may maintain recreation over decades, but
ultimately lead to flood protection losses. In Fig. 5b the AP are represented based on the classical AP map, although with different
colours representing the different AO. As can be seen, the pathways themselves do not provide information about the intensity of
actions nor residual risk following adaptation.

Once built, the AP map provides an overview of sequences of actions aligned with their corresponding AO that could be used by
decisionmakers for the development and implementation of dynamic adaptive plans. These plans provide useful information on which
actions and decisions to take now, which can be deferred, and how the preferred AP can be followed (Haasnoot et al., 2013). While the
aim of this application is to illustrate the proposed DAPP approach rather than to design an adaptive plan, we acknowledge that the
best alternatives do not necessarily entail the lowest risk levels as cost and benefit streams vary between paths. By way of example,
Table S2 presents a qualitative multi-criteria analysis for the seven AP considering six criteria. In terms of dynamic robustness (that
attempts to adapt systems over time in order to maintain the required level of reliability; Babovic et al., 2018), AP2, AP3 and AP5
maintain or increase current ECCBS mean values irrespective of climate and other conditions. Since beach nourishment is per se a
flexible and low regret measure, the lowest flexibility could be given by the highest intensity of action needed to follow a pathway (i.e.,
AP2 and APS5). In the literature of coastal adaptation, dynamic robustness and flexibility have been related to the concept of anti-
fragility (Babovic et al., 2018), which is a property that results in systems become increasingly resistant to external shocks by being
exposed to them (Taleb, 2012). In our application, robustness contributes to preserving the shoreline behind its self-recovery (or
fragility) threshold from which there could be chronic coastal recession; and flexibility enhances the opportunity to learn from shocks

and the beach response.
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Fig. 5. Comparison between the new type of AP map (Panel a) and a traditional AP map (Panel b). Panel a shows the evolution of the expected
cumulative change in beach surface (ECCBS in hectares, with positive and negative values representing gains and losses, respectively) mean values
from 2010 to 2100 for the seven adaptation pathways (AP) considered. Grey circles represent transfer stations that link nourishment actions that
meet different adaptation objectives (AO, a-e). For simplicity, other statistical parameter such as 95% confidence levels, adaptation tipping points,
adaptation signals and decision points are not shown. Panel b shows the way in which the same seven AP would be depicted following the classical
AP approach. As can be observed, no information about the actions intensity nor residual risk is provided. A scoreboard with some indicators of the
performance of the AP developed is provided in Table S2.
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In order to rank AP based on costs and negative environmental impact we used as proxies the average amount of sand nourished and
the average number of times that nourishment is applied, respectively. Considering these two criteria, AP4 and AP7 are the best
positioned, followed by AP3 and AP6. AP2, AP3 and AP5 provides flood protection along the entire pathway, while AP4, AP6 and AP7
cannot guarantee it continuously over time. Finally, AP3 maintains current level of recreation, while AP2 and APS5 increase, and AP1,
AP4, AP6 and AP7 decrease recreational services, respectively. Although the overall picture may suggest that AP3 offers the best trade-
off between the criteria set, decisionmakers may have different views and risk perceptions, and hence their preferred AP may be
different.

4. Discussion and conclusion

The quantitative dynamic adaptive policy pathways application presented herein has demonstrated potential to support decisions
in the context of coastal erosion management under deep uncertainty. The approach we adopt considers changing objectives and
implementing actions over time within the erosion modelling itself, providing probabilistic shoreline evolutions over the twenty-first
century, which consider uncertainty in climate forcing conditions (i.e., waves, storm surges and mean sea-level rise) and incorporate
adaptation. We combine this modelling system with the systematic monitoring of signpost variables relevant for coastal erosion
management that allow the timely detection of adaptation signals, an essential feature given the late emergence of a low or high mean
sea-level rise pathway, and the long planning and implementation times for some adaptation measures (e.g., here, the interplay be-
tween the nourishment and the town to landward). As a result, we provide a new type of adaptation pathways map showing a
continuous outcome variable on the Y-axis (risk levels) and pathways composed of time-varying sequences of objectives and actions.
Our approach thus builds upon the traditional adaptation pathways within the dynamic adaptive policy pathways although raises some
methodological and presentational novelties that are summarised in Supplementary Table S3.

Another key contribution of the paper is the fully elaborated case study of coastal erosion, showing how contrasting adaptation
pathways developed by changing objectives and implementing actions characterised by a continuous decision variable over time
(amount of sand applied) lead to different evolution of residual risk, expressed through probability density functions. We set five
incremental strengthened adaptation objectives based on flood protection and beach recreation criteria and establish an illustrative
modelling system to support adaptive coastal management by combining the stochastic generation of relevant forcing conditions and
the exploratory modelling of shoreline changes. However, other geomorphic models could also have been used to consider uncertainty
and assess shoreline evolution and risk estimates. The robustness of our results would benefit from the application of models that
incorporate data assimilation in combination with long-term observations of human decisions and their effects on shoreline change.
We limit this application to beach nourishment, although new infrastructure, ecosystem-based solutions, and/or planned retreat could
be simultaneously incorporated to the analysis in future developments of this approach. The consideration of other adaptation
measures would change the timing and location of adaptation tipping points (e.g., following the construction of a groyne), for which it
could be appropriate to extend the study area to the scale required for decision making. Finally, while for the sake of simplicity we
consider a single radiative forcing scenario (RCP8.5), it is important to recognise that different emission scenarios could bring forward
or more likely delay decision points, but they would not affect the pathways themselves.

We argue that this quantitative dynamic adaptive policy pathways approach applied to coastal erosion could be extended to other
domains of climate change adaptation, especially where continuous decision variables and quantifiable objectives changing over time
are important aspects. By way of example, Supplementary Table S4 displays some recommendations on the way the criteria we applied
to define adaptation objectives for coastal erosion management could be brought to adaptation decisions concerning water scarcity,
food security and human health. These extensions would require establishing an adaptation information system with stochastic and
exploratory modelling that allow considering uncertainty and reproducing the physics of the decision-making problem while sys-
tematically monitoring relevant signpost variables. Representing these features in the new type of adaptation map that gives infor-
mation about actions and following residual risk could bring a new perspective in the field of adaptive planning in deep uncertain
environments.

As a next step to further this agenda, additional research on the quantitative analysis of the trade-off between costs and benefits in
this dynamic adaptive policy pathways approach would be useful for policy analysis (e.g., using real options). Besides, the approach
could be extended to situations where adaptation objectives incorporate multiple criteria and metrics (e.g., combining risk levels and
overall cost), allowing considering the economic and other dimensions relevant to decision making. The application of optimisation
algorithms to identify pathways according to stakeholders’ preferences is also worthy exploring.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.crm.2021.100342.
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