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We show that the minimum weight of a weighted blowup of Ad with "–log canon-
ical singularities is bounded by a constant depending only on " and d . This was
conjectured by Birkar.

Using the recent classification of 4–dimensional empty simplices by Iglesias-Valiño
and Santos, we work out an explicit bound for blowups of A4 with terminal singular-
ities: the smallest weight is always at most 32 , and at most 6 in all but finitely many
cases.

14B05; 14E99, 14M25, 52B20

1 Introduction

At a meeting of the COW seminar at City, University of London on 7th February 2018,
Caucher Birkar asked the following question.

Question 1.1 Denote by A4n the weighted blowup of A4 at 0 2 A4 with coprime
weights nD .n1; n2; n3; n4/ 2N4. If A4n has terminal singularities , is the smallest of
the weights bounded?

By “coprime” we mean only that n is primitive: we do not require the weights to be
pairwise coprime.

This is a simplified version of a more ambitious conjecture.

Conjecture 1.2 (Birkar) Denote by Adn the weighted blowup of Ad at 0 2Ad with
coprime weights nD .n1; : : : ; nd /2Nd. If Adn has "–log canonical singularities , then
the smallest of the weights is bounded by a constant depending only on d and ".

Our main result, Theorem 1.3, is a proof of Conjecture 1.2.

Theorem 1.3 In each fixed dimension d and for each " 2 .0; 1�, there is an integer
`";d 2N such that if nD .n1; : : : ; nd / 2Nd is primitive and the weighted blowup Adn
has only "–log canonical singularities , then nmin WDminfn1; : : : ; nd g � `";d .
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2146 Gregory Sankaran and Francisco Santos

Our proof relies on a general result about subgroups of Rn that miss a given open set,
due to Lawrence [11], which we state here as Theorem 3.1. The connection of that
result to terminal and canonical singularities, and to hollow and empty simplices, was
first noticed by A Borisov [6]. Independently of us, and by somewhat different methods,
Y Chen [7] has proved Conjecture 1.2 for the case d D 3.

We also give a precise answer to Question 1.1.

Theorem 1.4 If the weighted blowup A4n has terminal singularities , then nmin � 32.
Moreover , with finitely many exceptions , nmin � 6.

The proof of this statement relies on the complete classification of empty simplices in
dimension four due to Iglesias-Valiño and Santos [9]. The bound of 6 is attained by the
infinite family of blowups with nD .6; 10; 15; n/, which have terminal singularities
whenever n is coprime with 30; see Remark 4.10. The bound of 32 is attained only by
the blowup with nD .32; 41; 71; 102/. There are a total of 1784 blowups of A4 with
nmin > 6; the number of them for each value of nmin is listed in Proposition 4.11.

These results extend a theorem of Kawakita [10, Theorem 3.5], which says that a
weighted blowup A3n is terminal if and only if the weights are .1; a; b/ with a and b
coprime. Kawakita’s result also follows from our methods: see Corollary 4.4 below.

The context of [10] is the Sarkisov program, in particular birational rigidity. To
investigate Sarkisov links involving a Fano 3–fold F of Picard rank 1 requires in
principle an understanding of all possible divisorial contractions in the Mori program
with target F . The main outcome of [10] is that any divisorial contraction in the Mori
program with centre a smooth point is a weighted blowup, and [10, Theorem 3.5] says
that the weights must then be .1; a; b/.

This is important because, at least in dimension 3, we understand divisorial contractions
well if we know their sources, but not so well if we know their targets. So [10]
provides a description of all possible baskets of singularities in a terminal 3–fold with
a divisorial contraction whose centre is a smooth point. This may be thought of as a
relative boundedness result, showing that exceptional divisors are weighted projective
planes of the form P .1; a; b/.

Birkar’s Conjecture 1.2 arises analogously in his work [3] on boundedness of log
Calabi–Yau fibrations. One way to view it is as a local version of the BAB conjecture,
in a quite special case.

Geometry & Topology, Volume 25 (2021)
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2 Singularities and simplices

Geometrically, our approach is to use toric geometry to rephrase the problem in terms of
polytopes. We shall be working in Rd with its standard basis e1D .1; 0; : : : ; 0/; : : : ; ed .
We shall frequently need to add up the coordinates of a vector, so we write

P
xi to

abbreviate
Pd
iD1 xi .

Definition 2.1 Let ƒ � Rd be a lattice: that is, a finitely generated free abelian
subgroup of rank d such that Rd D ƒ˝ R. A polytope … in Rd is a bounded
intersection of finitely many closed half-spaces. A point v2… is a vertex if …\HDfvg
for some affine hyperplane H �Rd : we denote the set of vertices of … by Vx.…/.
The convex hull of a set X �Rd is denoted by Conv.X/: a polytope … is always equal
to the convex hull Conv.Vx.…// of its vertices. … is a lattice polytope if Vx.…/�ƒ.

The next definition is usually made only for the case where � is a lattice and … is a
lattice polytope, but we need it in a more general setting.

Definition 2.2 Fix a subgroup � of Rd. We say that a polytope … is hollow with
respect to � if …\ � � @…, and empty with respect to � if …\ � � Vx.…/. We
omit “with respect to � ” when � is understood.

Let � D
P

R�0wr be a nondegenerate closed rational polyhedral cone in Rd, where
wr 2 ƒ are primitive generators of the rays of � . We denote by �.�/ the lattice
polytope Conv.f0g [ fwig/, and let X� be the affine variety Spec CŒ�_ \ƒ_�, as

Geometry & Topology, Volume 25 (2021)



2148 Gregory Sankaran and Francisco Santos

usual in toric geometry. With this notation, X� is Q–Gorenstein if and only if all
the wi lie in an affine hyperplane, and is Q–factorial if and only if � is simplicial;
that is, if �.�/ is a simplex.

The following fundamental fact is well known.

Lemma 2.3 Let " 2 .0; 1�. Then:

(a) X� is "–log terminal if and only if "�.�/ is an empty polytope.

(b) X� is "–log canonical if and only if "�.�/ is hollow and all nonzero lattice
points in it lie in facets not containing the origin.

Proof X� is "–log canonical if and only if for some (hence any) birational morphism
f W Y !X� with Y smooth, the discrepancies ej defined by KY �f �KX D

P
j ejEj

(with Ej being f –exceptional prime divisors) satisfy ej � �1C ". To check this,
consider a toric resolution f W Y D Y†!X� obtained by subdividing � into a regular
fan †. The exceptional divisors are given by some rays �j spanned by primitive
rj 2ƒ. The Q–divisors KY and f �KX� are given by support functions hY and hX�
as in [14, Proposition 2.1(v)]. The function hY satisfies hY .rj /D hY .wi /D 1, while
hX� is linear and is determined by hX� .wi /D 0. Therefore ej D�1C hX� .rj /, so
in part (b) we have hX� .r/ � " for all r 2 ƒ. The result follows at once from this:
part (a) is identical, replacing ej � �1C " by ej > �1C ".

In particular, since canonical is the same as 1–log canonical, X� has Q–factorial
canonical singularities if and only if �.�/ is a hollow simplex with �.�/\ƒ n f0g
contained in the facet opposite to the origin.

Any nonnegative primitive integer vector nD .n1; : : : ; nd / 2Nd induces a weighted
blowup Adn , which is the toric variety associated with the fan in Rd (and the lattice Zd )
that consists of all the faces of the cones �jn D R�0nC

P
i¤j R�0ei . Note that all

such faces are contained in Rd
�0, and that the �jn are simplicial so Adn always has

Q–factorial singularities.

The standard simplex in Rd is � WD�.Rd
�0/D Conv.f0; e1; : : : ; ed g/ and its interior

is denoted by �ı . That is,

�ı D
˚
x 2Rd j

P
xi < 1 and for all i; xi > 0

	
:

The facet of � opposite to the origin, which is Conv.fe1; : : : ; ed g/, is denoted by �1 .

For any nonzero n 2Nd we set �n D Conv.fe1; : : : ; ed ;ng/.

Geometry & Topology, Volume 25 (2021)
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Proposition 2.4 For " 2 .0; 1�:

(1) Adn has "–log terminal singularities if and only if "�n is empty.

(2) Adn has "–log canonical singularities if and only if "�n is hollow.

Proof (a) The singularities of Adn are "–log terminal if and only if all the polytopes
"�.�

j
n / are empty: that is, if

Sd
jD1 "�.�

j
n / is empty. But

n[
iD1

"�� in
D "Conv.f0; e1; : : : ; ed ;ng/

D "Conv.f0; e1; : : : ; ed g/[ "Conv.fe1; : : : ; ed ;ng/

D "�[ "�n;

and "Conv.f0; e1; : : : ; ed g/ is empty anyway.

(b) All lattice points of
Sn
iD1 "�.�

i
n/ other than the origin lie in "�n by construction.

Hence they all lie in facets not containing the origin if and only if they do not lie in the
interior of "�n or in "�n \ "�D "Conv.fe1; : : : ; ed g/D "�1 . The latter is empty,
and except for the trivial case "D 1 has no lattice points among its vertices either.

The following change of coordinates sends the simplex �n of Proposition 2.4 to the
standard simplex �, which will be useful for us.

Lemma 2.5 Let n D .n1; : : : ; nd / 2 Rd
�0 be a nonnegative vector with

P
ni > 1.

Then the unique affine-linear transformation sending n to the origin and fixing all of
e1; : : : ; ed sends the origin to n=

�
�1C

P
ni
�
.

Proof The unique (modulo multiplication by a scalar) affine dependences among
f0; e1; : : : ; ed ;ng and among

˚
n=
�
�1C

P
ni
�
; e1; : : : ; ed ; 0

	
are the same one: its

coefficients are
�
1�

P
ni ; n1; : : : ; nd ;�1

�
.

Corollary 2.6 Let n 2 Nd. Define V D �1 C
P
ni and p D 1

V
n 2 Qd. Let

ƒp D Zd CZp be the lattice generated by p and Zd. Then , for any " 2 .0; 1�:

(a) Adn has "–log terminal singularities if and only if �p;"DpC".��p/ is empty
with respect to the lattice ƒp .

(b) Adn has "–log canonical singularities if and only if �p;" is hollow with respect
to the lattice ƒp .

Proof This is Proposition 2.4, rephrased via the change of coordinates of Lemma 2.5.
The notation here will be used more widely: see Definition 3.2 below.

Geometry & Topology, Volume 25 (2021)
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3 "–log canonical singularities

This section is devoted to the proof of Theorem 1.3.

3.1 Lawrence’s theorem and hollow points

Apart from the relation between "–log canonical singularities and hollow simplices de-
scribed in Corollary 2.6, our main technical tool is the following result of Jim Lawrence;
see also [6].

Theorem 3.1 (Lawrence [11, Theorem 1]) Fix d 2N and an open subset U �Rd,
and let G be a closed subgroup of Rd containing Zd. Then there are only finitely
many maximal subgroups G <G such that Zd �G and G \U D¿.

In other words, any subgroup of G that contains Zd and misses U is contained in
(at least) one of finitely many such subgroups of G .

These maximal subgroups G are automatically closed. Hence G is a Lie subgroup
of Rd, and its identity component, which we call L, is a linear subspace of dimension
equal to dimG . Some of the groups containing Zd that we consider below are not
closed, however.

The relation to our problem comes from the fact that the lattice ƒp in Corollary 2.6 is
a subgroup of Rd containing Zd. This implies, for example, that taking U D�ı, we
may interpret the case "D 1 of Corollary 2.6(b) as saying that if Adn has only canonical
singularities, then p lies in one of finitely many subgroups of Rd containing Zd and
not intersecting �ı.

Our aim is to extend this approach to any value of " 2 .0; 1�. We first extend the
notation introduced in Corollary 2.6, using Definition 2.2.

Definition 3.2 We define

� WDRd�0 n�D
n
x 2Rd

ˇ̌ X
xi > 1 and for all i; xi � 0

o
:

For each point p 2�:

(a) We call the number V WD 1=
�
�1C

P
pi
�
2R�0 the index of p . The entries of

the vector n WD Vp 2Rd
�0 are called the weights of p , and the smallest of them

is called the smallest weight nmin D nmin.p/ of p .

Geometry & Topology, Volume 25 (2021)
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(b) We put �p;" D pC ".��p/ and ƒp D Zd CZp .

(c) We say that p is "–hollow if �p;" is hollow with respect to the group ƒp .

The notation in Definition 3.2(a) is compatible with the notation of Corollary 2.6
because

�1C
X

ni D�1CV
X

pi D�1CV
�
1

V
C 1

�
D V;

but at this stage we do not require the weights to be integers: V and n need not even
be rational, so the group ƒp may not be a lattice.

Observe that �p;" is � shrunk towards p by a factor ", so it is a simplex with facets
parallel to the facets of �.

3.2 The canonical case of Birkar’s conjecture

We let H0 D
˚
x j

P
xi D 0

	
and H1 D

˚
x j

P
xi D 1

	
. Thus H1 is the affine

hyperplane containing �1 and H0 is the linear hyperplane parallel to it. Let �ı1
denote the relative interior of �1 .

Fix a linear subspace L � Rd, of codimension k . Assuming that L ª H0 , we are
going to prove a bound `L , depending only on L, for the minimum weight of every
point p 2� such that LCp does not meet �ı1 .

Let �L WRd ! Rd=L Š Rk be the canonical projection along L, let si D �L.ei /,
and let S D f0; s1; : : : ; sd g, so that Conv.S/ D �L.�/. The condition L ª H0

implies that no affine hyperplane in Rd=L, in particular no facet of Conv.S/, contains
fs1; : : : ; sd g. This makes the minimum in the following statement well-defined.

Proposition 3.3 Suppose that L�Rd is a linear subspace not contained in H0 . For
each facet-supporting hyperplane H of �L.�/, let

`H WD min
si…H

dist.H; 0/
dist.H; si /

;

and let `L DmaxH `H . Then every point p 2� such that pCL does not meet �ı1
has nmin.p/� `L .

Remark 3.4 Let kDd�dimL. In Rd=LŠRk , an affine hyperplane H is expressed
as H Dfx 2Rk jf .x/D cg, where f WRk!R is a linear functional. For y 2Rk, we
define the distance dist.H;y/D jf .y/�cj. This depends on the choice of f , which is
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only unique up to a scalar and, implicitly, on the choice of isomorphism Rd=LŠRk .
But in the statement of Proposition 3.3 and the rest of this section we only consider
ratios of two distances, which do not depend on choice. In Section 4 we shall need to
be more definite.

Proof Since .pCL/\�ı1 D¿ and p 2�, we also have .pCL/\�ı D¿, and
the point �L.p/ is not in the interior of Conv.S/. Hence there is a facet-supporting
hyperplane H of Conv.S/ that weakly separates �L.p/ from Conv.S/. Let zH D
��1L .H/, which is a hyperplane weakly separating LCp from � (but is not necessarily
facet-supporting for �).

If 0 2 zH then, in order for p to be in �, one of the coordinates of p , hence one of
the weights of p , must be zero. Thus we assume 0 … zH and we can find an a 2Rd

such that zH D fx 2Rd j a:x D 1g, where a:x WD
Pd
iD1 aixi is the usual Euclidean

inner product.

Since zH weakly separates � from p we have
P
i aipi D a:p � 1 but a:x � 1 for

every x 2�; in particular, ai D a:ei � 1 for every i . Thus

dX
iD1

.1� ai /ni D

dX
iD1

ni �V

dX
iD1

aipi � .V C 1/�V D 1:

Since the terms in the first sum are nonnegative, .1� ai /ni � 1 for every i .

Observe that dist. zH; 0/D 1 and dist. zH; ei /D .1� a:ei / so

dist.H; si /
dist.H; 0/

D
dist. zH; ei /

dist. zH; 0/
D 1� ai :

Hence, for any i with si … H — which exists, because otherwise we would have
zH D

˚P
xi D 1

	
DH1 and that would imply L�H0 — we have

ni �
1

1�ai
D

dist.H; 0/
dist.H; si /

:

Thus nmin.p/� `H . This does not yet give a bound for nmin.p/ because H depends
on p , but H is one of the finitely many facet-supporting hyperplanes of �L.�/, so
nmin.p/�maxH `H D `L as claimed.

Although we give below a separate proof of the general case, it is interesting to
observe that Proposition 3.3 leads to the following easy proof of the canonical case of
Theorem 1.3.
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Proof of Theorem 1.3 for " D 1 It follows from Theorem 3.1 that there is a finite
collection fG1; : : : ; Gtg of closed subgroups of Rd containing Zd and not meeting �ı,
such that any subgroup of Rd containing Zd and not meeting �ı is contained in one
of them. We denote by Lj the identity component of Gj .

If Lj �H0 , then the quotient Gj =.Gj \H0/Š �H0.Gj / is a discrete subgroup of
Rd=H0 Š R. Let y be the minimum of �H0.Gj / in the interval .1;1/ and define
`Gj D 1=.�1Cy/. Then the index (and hence each weight) of every p 2Gj \� is
bounded by `Gj .

If Lj ªH0 , then Proposition 3.3 applies, since Lj Cp �Gj does not meet �ı. The
proposition gives us an `Gj D `Lj (depending only on Lj ) with nmin.p/ � `Gj for
every p 2Gj \�.

We can then take `1;d D maxjD1;:::;t `Gj . Indeed, let n 2 Nd be such that Adn has
only canonical singularities. As above, let V D�1C

P
ni and let p D 1

V
n, which

lies in �. By Corollary 2.6 the lattice ƒp D Zd CZp does not meet �ı and is thus
contained in some Gj from our list. Thus, nmin D nmin.p/� `Gj � `1;d .

3.3 Local weight bound

In this section we examine the situation near a given point x of �1 and show the
following.

Proposition 3.5 Let "2 .0; 1� and d 2N be fixed. Then , for each point x 2�1 , there
is a nonnegative integer `x 2N and an open neighbourhood Wx of x in Rd, such that
if p 2�\Wx is "–hollow then its smallest weight nmin.p/ satisfies nmin.p/� `x .

To prove this we introduce the following notation. For each set U with x 2 U �Rd

we define �U;" D
T

q2U �q;" , and we let GU;" be the family of all subgroups of Rd

containing Zd and not meeting �ıU;" . Observe that

U � U 0 D) �U;" ��U 0;" D) GU;" � GU 0;":

We are interested in the case where U is a neighbourhood of x .

Lemma 3.6 Let B1 � B2 � � � � be a countable base of neighbourhoods of x, so thatT
r2N Br D fxg. Then

S
r2N �

ı
Br ;"
D�ıx;" .

Geometry & Topology, Volume 25 (2021)
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Proof The inclusion
S
r2N �

ı
Br ;"
� �ıx;" is immediate. For the other direction, if

y 2�ıx;" then

x 2 fz j y 2�ız;"g D fz j 9w 2 "�ı such that y D z.1� "/Cwg

D fz j y � z.1� "/ 2 "�ıg;

which is open because "�ı is open and z 7! y � z.1� "/ is continuous.

Hence y 2�ız;" for all z in some neighbourhood of x , and in particular for all z 2Br

for some sufficiently large r . Hence y 2
S
r2N �

ı
Br ;"

.

By analogy with Definition 3.2 we say that a closed group G with identity component
L is "–hollow at x if G \ .xCL/\�ıx;" D¿.

Observe that this includes all closed groups with x …G , since in this case G\ .xCL/
is already empty. Our next two lemmas prepare the proof of Proposition 3.5, dealing
separately with groups that are and are not "–hollow at x .

Lemma 3.7 Every x 2 �1 has an open neighbourhood Ux such that every closed
group in GUx;" is "–hollow at x .

Proof Let B1�B2� � � � be a countable base of neighbourhoods of x . We will prove
the following, which has Lemma 3.7 as the case k D 0:

For every k 2 f0; : : : ; dg there is an r such that every closed group of
dimension � k in GBr ;" is "–hollow at x .

The proof of this is by induction on d � k . The base case k D d is trivial since the
only group of dimension d is the whole space Rd, and this group does not lie in GB1;" .
(We assume that �B1;" has nonempty interior: Lemma 3.6 allows us to do this.)

Now, for a fixed k , our induction hypothesis is that there is an r , let us call it r0 , such
that every closed group of dimension greater than k in GBr0 ;" is "–hollow at x . That
is, every closed group in GBr0 ;" that is not "–hollow at x has dimension at most k .
By Theorem 3.1, GBr0 ;" contains finitely many maximal groups, all closed. Let us
denote by G1; : : : Gt the ones of dimension k that are not "–hollow (if any), and let
L1; : : : ; Lt be their corresponding identity components. Observe that, although GBr0 ;"
may contain additional non-"–hollow groups of dimension k , apart from the Gi , any
such group must be contained in one of the Gi and, in particular, its identity component
must equal the corresponding Li .

Geometry & Topology, Volume 25 (2021)
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For each i 2 f1; : : : ; tg, since Gi is non-"–hollow, xCLi meets �ıx;" ; by Lemma 3.6,
xCLi meets �ıBri ;" for some ri > 0. In particular, GBri ;" contains neither Gi nor
any other group whose identity component equals Li . Obviously, the same holds for
any r � ri .

Hence, taking r 0 D maxfr0; r1; : : : ; rtg, we have that GBr0 ;" does not contain any
group with identity component equal to any of the Li . Since Br 0 � Br0 we have
GBr0 ;" � GBr0 ;" , and hence all the non-"–hollow groups in GBr0 ;" are non-"–hollow
groups in GBr0 ;" too, but necessarily of smaller dimension.

Lemma 3.8 Let x 2�1 and let G be a closed group containing Zd and "–hollow
at x . Then there is a neighbourhood WG of x and a natural number `G such that every
p 2�\G \WG has nmin.p/� `G .

Proof Let L be the identity component of G . There are three possibilities:

� If x …G , simply take WG DRd nG and `G D 0.

� If L�H0 , then �H0.G/D G=.G \H0/�R is discrete. Let s be its minimum
in .1;1/. We can take WG D

˚
p j

P
pi < s

	
and `G D 0, since �\G \WG D¿.

� If x 2 G and LªH0 , then xCL� G but .xCL/\�ıx;" D¿, because G is
"–hollow. But then LCx does not meet �ı1 , so we may apply Proposition 3.3 to L.
We then get an `G such that for every p 2�\ .xCL/ we have that the minimum
weight of p is bounded by `L . We can then take WG DRd n .G n .xCL//, so that
G \WG D xCL and �\G \WG D�\ .xCL/.

We can now prove Proposition 3.5.

Proof of Proposition 3.5 By Lemma 3.7, x has an open neighbourhood Ux such
that every group in GUx;" that contains x is "–hollow. By Theorem 3.1, GUx;" has a
finite number of maximal elements, all closed and "–hollow at x , which we denote by
G1; : : : ; Gt . By Lemma 3.8, each Gi gives a neighbourhood Wi of x and a natural
number `i such that every p 2�\Gi \Wi has nmin.p/� `i .

Now it is enough to take WxDUx\
�T

i Wi
�

and `xDmax `i . Indeed, let p2Wx\�

be "–hollow, so that �p;"\ƒpD¿. Since p 2Wx , we have �p;"��Wx;"��Ux;" .
In particular, the group ƒp is in GUx;" , and hence is contained in one of the Gi . Thus
p 2�\Gi \Wi .

Geometry & Topology, Volume 25 (2021)
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3.4 The general case of Birkar’s conjecture

We are now in a position to give the proof of Theorem 1.3, settling Conjecture 1.2
completely.

Proof of Theorem 1.3 Fix " 2 .0; 1�. For each x 2 �1 , choose `x and Wx as in
Proposition 3.5, with `x as small as possible. For a nonnegative integer `, define
�1.`/ WD fx 2 �1 j `x � `g. Then �1.`/ is relatively open in �1 , because if
y 2Wx \�1 then `y � `x . Moreover, the .�1.`//`2N obviously form an increasing
sequence and they cover �1 . Observe, for example, that �ı1 � �1.0/, because if
x 2�ı1 and G \ .xCL/ meets �ı1 then L�H0 . Put differently, Proposition 3.3 is
not needed on �ı1 .

By compactness, �1 is contained in a finite union, call it W , of some of the Wx . If
we let `W be the maximum of the corresponding `x we have that every "–hollow
p 2�\W has nmin.p/� `W . On the other hand, if p 2 2� then V < 1, and since
� n .2�[W / is compact, the index (hence the minimum weight) of all p 2� nU

has a global upper bound.

4 Terminal and canonical bounds

Throughout this section we take "D 1, so that we are considering only canonical and
terminal singularities. In these cases we compute more explicit bounds, assuming that
dimL or codimL is small. Combining these bounds with the classification of empty
4–simplices in [9] we give precise bounds in the terminal 4–fold case: that is, a precise
answer to Question 1.1.

4.1 Bounds in terms of width

We first rework the bound of Proposition 3.3 in terms of the lattice width of Conv.S/D
�L.�/.

Definition 4.1 A linear functional f WRd !R is called primitive with respect to a
lattice ƒ if f .ƒ/D Z.

The width of a lattice polytope … in the direction of f is the length of the interval f .…/.
Its facet width with respect to a facet F is the width in the direction of the unique
(up to a sign) primitive linear functional that is constant on F .

Geometry & Topology, Volume 25 (2021)



Blowups with log canonical singularities 2157

Let G � Rd be a closed group containing Zd and not meeting �ı, with identity
component L. We keep the notation from Section 3.2, and we let ƒG D�L.G/, which
is a lattice in Rd=L, and put

`G Dmaxfnmin.p/ j p 2�\Gg;

ie the best possible bound for the smallest weight in G .

Proposition 4.2 The integer `G is bounded by the maximum facet width of �L.�/
with respect to ƒG .

Proof Suppose first that L ª H0 and let H be a facet-supporting hyperplane
of �L.�/ D Conv.S/. We normalise the distance to H by taking f to be the
primitive linear functional constant on H and dist.H;x/ D jf .x/� f .H/j. Then
1 � dist.H; si / 2 N for every si …H and dist.H; 0/ is bounded above by the facet
width with respect to the facet contained in H. Hence the statement follows from
Proposition 3.3.

If L�H0 then �L.H1/ is a facet-supporting hyperplane of �L.�/. If p 2�\G then
�L.p/2ƒG and is strictly separated from �L.�/ by �L.H1/. So if f is the primitive
linear functional constant on �L.H1/, then f1 WD f .�L.H1// is the facet width
of �L.�/ with respect to �L.H1/, and f .p/� f1C 1. Hence

P
pi � .f1C 1/=f1 ,

so V � f1 and therefore nmin.p/� f1 .

Corollary 4.3 With the notation of Proposition 4.2:

(a) If �L.�/ has width equal to 1 in some lattice direction , then `G 2 f0; 1g. This
is always the case if dimLD d � 1.

(b) If dimLD d � 2, then `G 2 f0; 1; 2g.

Proof (a) Let f be a primitive functional giving width 1 to �=L, and zf its pullback
to Rd. Then G0 WDGCKer. zf / is a closed group containing G and not intersecting �ı,
which implies `G � `G0 .

Thus there is no loss of generality in assuming dimLDd�1. In this case LDKer. zf /,
so �L.�/D f .�/ is a hollow lattice polytope of dimension 1, that is, a unit segment.
This has facet width 1 with respect to every facet, so Proposition 4.2 gives the statement.

(b) Here �L.�/ is a hollow lattice polytope of dimension 2. This implies �L.�/
either has width 1 or equals (modulo an affine isomorphism of the lattice) the triangle
Conv.f.0; 0/; .2; 0/; .0; 2/g/; see eg [8]. This triangle has width 2 with respect to all
three of its facets.
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We can now recover Kawakita’s result on the terminal weighted blowups in dimension 3.

Corollary 4.4 [10, Theorem 3.5] The weighted blowup A3n has terminal singularities
if and only if the weights are .1; a; b/, with a and b coprime.

Proof This follows immediately from Corollary 4.3(a) and the theorem of White [16]
that all empty 3–simplices have width 1.

4.2 Groups of dimension 1

For our application to d D 4 in Section 4.3 below, we want to consider the case
dimLD 1 more carefully. In this case let .a1; : : : ; ad / 2 Zd be a primitive integer
vector in L, which is unique up to sign, and let a0 WD �

Pd
iD1 ai . The vector a WD

.a0; : : : ; ad / 2ZdC1 is called the .d C 1/–tuple of L. We assume LªH0 , which is
equivalent to a0 ¤ 0.

Lemma 4.5 Suppose p 2� and that dimLD 1, and that .pCL/\�ı D¿. Then
nmin.p/�maxiD1;:::;d f�ai=a0g.

Proof The set S Df0; s1; : : : ; sd g affinely spans Rd=LŠRd�1 and has dC1 points,
so it has a unique (modulo a scalar factor) affine dependence. Since

Pd
iD1 aiei 2 L,

the coefficient vector of that dependence is precisely a .

To bound the minimum weight we use Proposition 3.3. Let H be a facet-supporting
hyperplane of Conv.S/. If 0 2 H then `H D 0 in Proposition 3.3. If 0 … H then,
since LªH0 , there must be an i with si …H. Thus H contains all of S except for 0
and a single si . Applying the affine dependence a to the affine functional vanishing
on H gives dist.H; 0/ a0C dist.H; si / ai D 0, which finishes the proof since

min
sj…H

dist.H; 0/
dist.H; sj /

D
dist.H; 0/
dist.H; si /

D�
ai

a0
:

We also have the following alternative bound, which is better than the previous one in
a few critical cases.

Lemma 4.6 Let p 2 � be such that nD Vp 2 Nd, where V D 1=
�
�1C

P
pi
�

as
usual. Suppose that there is a proper subset J � f1; : : : ; dg such thatX

i2J

pi � s

dX
iD1

pi 2 Z

for a positive integer s . Then either
P
i2J nj � s or else ni D 0 for all i … J .
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Proof Multiplying the equation in the statement by V we obtain thatX
i2J

ni � s.V C 1/ 2 VZ;

so
P
i2J ni � s .mod V /. Since

P
ni D V C 1, either ni D 0 for every i … J , orP

i2J ni � V . In the latter case, the fact that
P
i2J ni � s .mod V / implies thatP

i2J ni � s .

4.3 Terminal 4–fold case

Now we consider the case d D4, where there is an extensive history. Notice that another
interpretation of Corollary 2.6 is that Adn has terminal (or canonical) singularities
if and only if the cyclic quotient singularity 1

V
n is terminal (or canonical), where

V D�1C
P
ni .

In fact any non-Gorenstein terminal quotient singularity in dimension 4 is cyclic, but
this fails in higher dimension: see [2] for both of these facts. The singularity 1

V
n

is never Gorenstein, but we note for completeness that Gorenstein cyclic terminal
4–fold singularities were classified in [13], and Gorenstein noncyclic terminal 4–fold
singularities in [1].

In dimension 4, a classification of non-Gorenstein terminal quotient singularities was
begun experimentally in [12]. The first definite result was proved in [15] (another
proof of the same result may be found in [5]): together with the results of [6] and [2],
it implies that the list in [12] of such singularities of prime index is complete with
possibly finitely many exceptions. Note, however, that the claim made in [2] that the
results of [15] and [5] are valid for composite index is incorrect, as was pointed out
in [4].

The complete classification of non-Gorenstein terminal quotient singularities in dimen-
sion 4 was recently given in [9], and we use it to prove Theorem 1.4.

In [9, Section 2] hollow simplices are divided into fine families. Two hollow lattice
simplices �1 and �2 in Rd, with Vx.�i /D fvij g �Zd, lie in the same fine family if
there is an integer k�d and integer affine maps �i W Zd!Zk such that �1.Vx.�1//D
�2.Vx.�2//DS and Conv.S/ is hollow. Here SDfs0; : : : ; sd g is to be thought of as a
multiset: that is, there is a permutation � of f0; : : : ; dg such that �1.v1�.j //D�2.v2j /
for all j .
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As before, if G is a closed group containing Zd and with G \�ı D¿, then �L.�/
is a hollow lattice polytope with respect to the lattice ƒG D �L.G/. Thus the rational
points in G parametrise (perhaps part of) a fine family of hollow simplices: each
point p 2G \Qd corresponds, as in Corollary 2.6, to the standard simplex ��Rd

considered with respect to ƒp . In this situation we say p is a generating point of that
hollow simplex. This relation makes Theorem 3.1 equivalent to [9, Corollary 2.7].

The case L D f0g corresponds to the sporadic hollow simplices that do not project
to hollow polytopes of lower dimension: more generally, the codimension of L,
which we have called k here, is the same as the parameter k in [9, Theorem 1.6]. In
particular, cases k D 1; 2; 3; 4 of [9, Theorem 1.6] correspond exactly to the cases
dimLD 3; 2; 1; 0 in our setting. We prove Theorem 1.4 separately for each value of k .
We have already done k D 1 and k D 2.

Proposition 4.7 If a blowup A4n of A4 belongs to the case k D 1 then nmin � 1, and
if k D 2 then nmin � 2.

Proof These are just parts (a) and (b) of Corollary 4.3.

For the case k D 3, the most interesting one, we analyse the bounds from Section 4.2.
The index of a family parametrised by a group G as above is defined to be the index
jG WLCZd j. A family is called primitive if its index is 1, and nonprimitive otherwise.

The classification in [9] for k D 3 consists of two lists: one of 29 primitive quintuples
Q1–Q29 (the same as the list of quintuples that appears in [12]), and one of 17
nonprimitive quintuples N1–N17.

A primitive family is fully determined by L. In the case dimL D 1 and d D 4 we
specify L via a quintuple q D .q1; : : : ; q5/ with

P
qi D 0, defined by the property

that Rq parametrises .LC Z4/=Z4 in barycentric coordinates with respect to the
standard simplex. As shown in [9], the quintuple q can also be interpreted as the affine
dependence among the points in S D�L.f0; e1; : : : ; e4g/. Thus, modulo a permutation
of the entries, q is the same as the vector aD .a0; : : : ; a4/ that we used in Lemma 4.5.
However, in order to apply Lemma 4.5 we need to specify which of the entries ql will
be considered the distinguished entry a0 .

A more concrete interpretation of the quintuple is as follows: for each V 2 N , the
family corresponding to q contains a unique (modulo affine-integer isomorphism)
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hollow simplex of index V ; the generating point p of this simplex can be chosen to
be p D 1

V
.a1; : : : ; a4/, where .a1; : : : ; a4/ is obtained from q by deleting the entry

ql D a0 corresponding to the origin and permuting the rest. The generating point is
only important modulo Z4 .

In the nonprimitive case a family is determined by not only L or q , but also by
information on the group G=.LC Z4/. In [9] and in Table 1 this is expressed by
adding to q a vector of the form V r (or of the form ˙V r, for the nonprimitive
quintuples of index greater than 2, which are N7–N17). Observe, however, that the
statement of Lemma 4.5 depends only on L, so only the q part plays any role in it.
The part V r is only relevant when we apply Lemma 4.6. Since we will do this only
for one nonprimitive case, namely N5, we defer the details on how to interpret V r to
when we need it.

Table 1 lists the quintuples, with the conventional labels Q1–Q29 and N1–N17. In
every case the entries are arranged so that

q1 > q2 > 0 > q3 � q4 � q5:

With this convention, we have

maxf�aj =a0g �
�
�q1=q3 if a0 2 fq1; q2g;
�q5=q2 if a0 2 fq3; q4; q5g:

Thus Lemma 4.5 implies the following. Observe that in the hypotheses of this statement
we can write < 7 instead of � 6, since all weights are integers.

Lemma 4.8 If a quintuple q (primitive or not) written as above satisfies

maxf�q1=q3;�q5=q2g< 7;

then every blowup coming from that quintuple has nmax � 6.

With this, we are now ready to prove the main result in this section, which gives
Theorem 1.4 for the families with dimLD 1, that is, k D 3.

Proposition 4.9 If a blowup A4n of A4 belongs to the case k D 3— equivalently,
dimLD 1 — then nmin � 6.

Proof The reader may easily check that the only cases where Lemma 4.8 is not
sufficient to prove a bound of 6 are the ones shown (with the ratio q1 W �q3 or �q5 W q2
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case quintuple case quintuple

Q1 9; 1;�2;�3;�5 N1 6C 1
2
V; 1;�2;�2C 1

2
V;�3

Q2 9; 2;�1;�4;�6 N2 4; 3;�1;�2C 1
2
V;�4C 1

2
V

Q3 12; 3;�4;�5;�6 N3 8; 1;�2C 1
2
V;�3;�4C 1

2
V

Q4 12; 2;�3;�4;�7 N4 6C 1
2
V; 3;�1;�2C 1

2
V;�6

Q5 9; 4;�2;�3;�8 N5 8; 3;�1;�4C 1
2
V;�6C 1

2
V

Q6 12; 1;�2;�3;�8 N6 12; 1;�3;�4C 1
2
V;�6C 1

2
V

Q7 12; 3;�1;�6;�8 N7 3; 1;�1˙ 1
3
V;�1˙ 2

3
V;�2

Q8 15; 4;�5;�6;�8 N8 3; 2;�1;�1˙ 2
3
V;�3˙ 1

3
V

Q9 12; 2;�1;�4;�9 N9 3; 2;�1;�2˙ 1
3
V;�2˙ 2

3
V

Q10 10; 6;�2;�5;�9 N10 4˙ 1
3
V; 2;�1;�1˙ 2

3
V;�4

Q11 15; 1;�2;�5;�9 N11 6; 1;�2;�2˙ 2
3
V;�3˙ 1

3
V

Q12 12; 5;�3;�4;�10 N12 6; 1;�1˙ 2
3
V;�2;�4˙ 1

3
V

Q13 15; 2;�3;�4;�10 N13 4; 3;�1˙ 2
3
V;�2;�4˙ 1

3
V

Q14 12; 1;�3;�4;�6 N14 6; 3˙ 1
3
V;�1;�2˙ 1

3
V;�6˙ 1

3
V

Q15 14; 1;�3;�5;�7 N15 3˙ 1
4
V; 2;�1;�1˙ 1

4
V;�3˙ 1

2
V

Q16 14; 3;�1;�7;�9 N16 6; 1˙ 1
4
V;�1;�3˙ 1

4
V;�3˙ 1

2
V

Q17 15; 7;�3;�5;�14 N17 3; 1˙ 1
6
V;�1;�1˙ 1

6
V;�2˙ 2

3
V

Q18 15; 1;�3;�5;�8

Q19 15; 2;�1;�6;�10

Q20 15; 4;�2;�5;�12

Q21 18; 1;�4;�6;�9

Q22 18; 2;�5;�6;�9

Q23 18; 4;�1;�9;�12

Q24 20; 1;�4;�7;�10

Q25 20; 1;�3;�8;�10

Q26 20; 3;�4;�9;�10

Q27 20; 3;�1;�10;�12

Q28 24; 1;�5;�8;�12

Q29 30; 1;�6;�10;�15

Table 1

that we do get) in Table 2. In all the other cases, including the ones marked “—” in
Table 2, the ratios q1 W �q3 and �q5 W q2 are strictly less than 7. In the nonprimitive
quintuples this check is especially easy, since none of them has �q5 > 6 and the only
ones with q1 > 6 are N3, N5, and N6.
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quintuple q1 W �q3 �q5 W q2

Q2 9 W 1 —
Q6 — 8 W 1
Q7 12 W 1 —
Q9 12 W 1 —
Q11 15 W 2 9 W 1
Q15 — 7 W 1
Q16 14 W 1 —
Q18 — 8 W 1
Q19 15 W 1 —

quintuple q1 W �q3 �q5 W q2

Q20 15 W 2 —
Q21 — 9 W 1
Q23 18 W 1 —
Q24 — 10 W 1
Q25 — 10 W 1
Q27 20 W 1 —
Q28 — 12 W 1
Q29 — 15 W 1
N5 8 W 1 —

Table 2

Even where the bound exceeds 7, the ratios �q5=q1 and �q1=q4 (hence also �q1=q5 )
are less than 7, which implies that for the cases with lD1; 4; 5 the bound of Lemma 4.5
is at most 6 in every quintuple. Thus the eighteen quintuples in Table 2 correspond to
nineteen pairs (quintuple, l ) that need to be checked: one of l D 2 or l D 3 for each
of the quintuples, except for the quintuple Q11 where we have to check both.

Sixteen of the nineteen cases are primitive quintuples in which q2 D 1 (if l D 2) or
q3 D�1 (if l D 3). This is fortunate since in these cases it is particularly simple to
apply Lemma 4.6. Indeed:

� If a0 D q2 D 1 then we can use s D�q3 in the lemma, by letting J be just one
coordinate, the one corresponding to q3 .

� If a0 D q3 D�1 then we can use s D q2 in the lemma, by letting J be just one
coordinate, the one corresponding to q2 .

That is, in these sixteen cases we can use �q3 and q2 as bounds instead of the bigger
�q5 and q1 , respectively. The worst value obtained is 6, for Q29 with l D 2.

For the last three remaining cases we also apply Lemma 4.6 as follows:

� For Q11D .15; 1;�2;�5;�9/ with a0 D q3 D �2, our generating point is
pD 1

V
.15; 1;�5;�9/. Taking J to be the first and fourth coordinates and sD 3

we have
P
i2J pi � s

P4
iD1 pi D

1
V
..15� 9/� 3 � 2/ D 0. Thus, Lemma 4.6

gives n1Cn4 � 3.

� For Q20D .15; 4;�2;�5;�12/ with a0 D q3 D �2, our generating point is
pD 1

V
.15; 4;�5;�12/. Taking J to be the first and third coordinates and sD 5

Geometry & Topology, Volume 25 (2021)



2164 Gregory Sankaran and Francisco Santos

we have
P
i2J pi � s

Pd
iD1 pi D

1
V
..15� 5/� 5 � 2/ D 0. Thus, Lemma 4.6

gives n1Cn3 � 5.

� For N5 the quintuple is expressed as
�
8; 3;�1;�4C 1

2
V ;�6C 1

2
V
�
, that is, as

qCV r with q D .8; 3;�1;�4;�6/ and r D 1
2
.0; 0; 0; 1; 1/. The interpretation

of this is that hollow simplices in this family are those with generating point (in
barycentric coordinates) equal to

1
V
.8; 3;�1;�4;�6/C 1

2
.0; 0; 0; 1; 1/:

See [9] for more details.
Since l D 3, we have to omit the third coordinate and get

p D 1
V

�
8; 3;�4C 1

2
V ;�6C 1

2
V
�
;

whose sum of coordinates is equal to 1C 1
V

.
Taking J to be just the second coordinate and s D 3 we haveX

i2J

pi � s

dX
iD1

pi D
3
V
� 3

�
1C 1

V

�
D�3 2 Z;

so Lemma 4.6 gives n2 � 2.

Thus, in all cases we get a bound of at most 6 for the smallest weight.

Remark 4.10 The bounds obtained by these methods are not sharp for each individual
quintuple and choice of l , but the overall bound in Proposition 4.9 is sharp. For example,
the blowup A4

.V�30;6;10;15/
, arising from Q29 with l D 2, has terminal singularities

whenever V is coprime with 30, and has minimum weight equal to 6 for every V � 37.
This gives an infinite family of blowups of A4 with terminal singularities and nminD 6.

To finish the proof of Theorem 1.4 we need to look at the case kD 4, that is, at the 2641
sporadic terminal 4–simplices enumerated in [9]. The full list is publicly available,
and each simplex is expressed as a pair .V;b/ with V 2 N and b 2 .ZV /5 where,
as before, V equals the (normalised) volume and 1

V
b are the barycentric coordinates

(modulo an integer vector, which does not affect the lattice) for a generator of ƒ=Zd.

Each such simplex corresponds to five terminal quotient singularities (perhaps not
distinct, if the simplex has symmetries) but not all such singularities correspond to
blowups of A4 . The conditions for that are that:

� the corresponding entry bl of b is coprime to V , so that by multiplying by a
unit in ZV we can assume that entry to be �1, and
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� after this multiplication, the representatives in f0; : : : ; V � 1g of the other four
entries (remember that they are only important modulo V ) add up to V C 1.

When these conditions hold, the other four entries are the weights of a blowup of A4 .

We have computationally checked the 2641 � 5 possibilities, obtaining the results
summarised in the following statement.

Proposition 4.11 Among the 2641 � 5 sporadic terminal quotient singularities of
dimension 4 there are 4620 blowups , all with nmin � 32. The number B of sporadic
blowups with each possible value of nmin is as follows:

nmin B

1 0
2 964
3 804
4 413
5 468
6 187
7 408
8 212

nmin B

9 194
10 130
11 178
12 81
13 137
14 63
15 63
16 48

nmin B

17 65
18 34
19 57
20 26
21 16
22 11
23 23
24 7

nmin B

25 12
26 5
27 5
28 2
29 3
30 1
31 2
32 1

The unique blowup with nmin D 32 has V D 245 and n D .32; 41; 71; 102/. The
unique sporadic simplex of maximum volume V D 419 produces two blowups with
terminal singularities, with weight vectors

.20; 57; 133; 210/ and .21; 60; 140; 199/:

Theorem 1.4 now simply summarises Propositions 4.7, 4.9 and 4.11.
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