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Abstract. Monitoring transmission systems is a huge scientific focus to prevent any anomaly and malfunc-
tioning damaging the system. Several methods were used to investigate the gears behaviour and mainly its
state. And until the last century, vibrations signals were the most performing technique in this field. However,
nowadays, other alternatives are considered more accurate and accessible such as controlling the motor cur-
rent signals to study the behaviour of the mechanical system. Within this context, this paper aims to study
the electromechanical interaction between a double stage of planetary gearboxes driven by an asynchronous
machine. The model used is based on a Park transformation for modelling the asynchronous machine and a
torsional model to describe the dynamic behaviour of the double-stage planetary gearbox. Through this ap-
proach, the numerical simulations illustrate the impact of the tooth gear defect on the signature of the motor
current. The results obtained from the simulations will be presented in the time domain and the frequency
domain using the fast Fourier transform and the Hanning window to highlight the mechanical frequencies in
the phase current spectrum. This work will be distinguished by validating the numerical results using exper-
imental measurements, which will be displayed in order to justify the sensitivity of the model developed.
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1. Introduction

Planetary gearboxes have been used in different industrial domains especially in applications
that recommend large torque transmission. Due to its spatial configuration, planetary transmis-
sions are complicated to model, but the importance of these gear systems in aerospace and en-
ergy generation applications makes the effort worth it. Despite its enormous use, durability and
condition monitoring of these systems are still a major scientific trend also an industrial focus.
Gears are exposed to several types of defects. Those defects are divided into two main families
as stated in Chaari et al. [1]; geometry defects, which concerns manufacturing and assembly de-
fects, and teeth defects, that attack the system, like pitting, cracks, or breakages, etc. Thus, many
researchers had worked on evaluating gears state by different techniques based on nondestruc-
tive tests that aim to provide early detection of any anomalies in the system. Until the beginning
of the last century, studying the vibration signals of the rotating machinery has been the most
performing tool to evaluate the dynamic behaviour and to detect the presence of any mechanical
defect.

In order to study the dynamic behaviour of these gears in the presence of tooth pitting and
cracking, Chaari et al. [2], had worked on modelling defected planetary gearboxes. Likewise,
Fernandez et al. [3, 4] had developed a model that studies the interaction between different pairs
of teeth in contact. Li et al. [5] had used an extraction method using both the Empirical Mode
Decomposition and Autocorrelation Local Cepstrum to detect fault diagnosis of sophisticated
multistage gearbox.

The impact of tooth defect generates a torque variation which is manifested in a significant
modification of contact ratio. Within the same context, Qinkai et al. [6] had also investigated
the localization of tooth breakage on a wind turbine planetary gear system, considering the
manufacturing errors. Indeed, the severity of the impact depends on the type, placement, and
size of the defect. Therefore, each defect has different signature that will lead to detect and
identify it by analysing the output signals. The tooth defect is characterized in the vibration
signal by its key frequency. Through the frequency spectrum, the vibration signals of a single-
stage planetary gearbox provide an overview of the teeth defect. This correlation is identified
and explained by a numerical model and experimental investigations developed by Qiang and
Qinghua [7]. Moreover, vibration signals have been the key of diagnosing the gears state in
helicopters, not only in detecting gears defects but also in studying its impact on the behaviour
of the system and its natural frequencies [8–10].

However, the use of this technique has several limitations, such as the sensitivity of the sensors
used to the operating conditions. These sensors used can enhance the appearance of significant
noise in the signals due to perturbations. Also, for complicated rotating machineries it is very
difficult to get access to implement the sensors. Therefore, the industry is interested in a more
accurate technique that provides a global overview about the system behaviour with least cost.
In this framework, innovative engineering is oriented to the multi-domain interaction that aims
to control the mechanical systems by involving different physical phenomena, such as the motor
current signature analysis (MCSA), which has been one of the most used techniques is this field.

And so forth, Kar et al. [11] had worked on investigating other techniques to early defects
detection. The paper was based on a comparative study between vibrations and motor current
intensity in the presence of tooth defect. The MCSA was used also to evaluate the influence of
the electromagnetic effect on the natural vibration characteristics of the gearbox in the work of
Yi et al. [12].

Investigating the motor’s behaviour was used in several studies to monitor the mechanical sys-
tem, detecting defects. This Proposal was highlighted by the work developed by Balan et al. [13]
studying the impact of the unbalance seen in the motor’s component on the motor current signal.
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The use of the current signal to investigate the gearbox state is considered more accurate given
the accessibility for different operating conditions and complex systems. This is one additional
advantage comparing with the vibration signals, since in the stator current, the modulations
produced by the planet motion do not appear [14], which makes the spectrum more significant.
Different research papers [14, 15] had proved the sensitivity of this method not only to detect
the state of the system but also to localize and identify the defect. Nandi et al. [16, 17] had used
the motor current signal analysis MCSA to show that the appearance of the static and dynamic
air gap eccentricity simultaneously is seen in the amplitude modulation of the stator current.
Kia [18] had develop the idea of using the current of the driving machine to detect a mechanical
system defect. In fact, this development is based on a fundamental study of the effect of the tor-
sional vibration for two mass–spring systems in the stator current signal [19, 20]. It had showed
that for two different joints inertia–mass systems, the source of torque oscillation is related to a
single torsional vibrations frequency.

For the electrical part, the modelling of the asynchronous machine was done in different stud-
ies by various approaches such as analytical, semi-analytical, or finite element modelling. The
choice of the approach depends on whether the need of it or mainly the operating conditions
which define the hypothesis of modelling. One of the basic method used in the analytical mod-
elling is the Park transformation [21], that transforms a tri-phased motor, to an equivalent two-
phase machine called a d-q model. Even though finite element methods are the most used nowa-
days for simple problems and controlling the electrical machines, the Park transformation is rec-
ommended for rapidly resolving situations in steady state operating conditions. Few researchers
worked on the planetary gears monitoring using the MSCA, Ottewill et al. [22] had investigated
the impact of the tooth defect in epicyclic gearboxes on the current signals using numerical mod-
elling pursued by experimental validation.

The importance of using the motor current signature analysis is highlighted mainly in the ac-
cessibility to the information through the driving system. Electric machine current signal analy-
sis provides an alternative technique for planetary gearbox fault diagnosis. The faults generated
in the mechanical system led to changes in electric current intensity because of mechanical–
magnetic–electric interactions, and hence electric current signals contain rich information about
planetary gearbox health conditions. Goa had demonstrated [23] that the impact of a gear defect
is sidebands of the supply frequency of the motor. Planetary gearbox faults result in input torque
oscillations, leading to both amplitude modulation and frequency modulation (AM–FM) effects
on stator current signals.

Besides the accessibility, this technique is mainly used in power stations to avoid system
damage. Also, online fault monitoring can be done without shutdown the motor [24].

The study presented in this paper extends the approach of studying the electromechanical
interaction’s ability to monitor the mechanical system. This work is going to be structured in the
paper as follows. Section 2 is dedicated to the theoretical development of an electromechanical
system composed of a planetary gearbox and an induction motor. In Section 3, the experimental
testbench is described, composed of a Siemens induction motor and a back-to-back planetary
gearbox. In Section 4, the numerical model developed in Section 2 will be adopted to simulate
the experimental rig. Finally, the last section highlights the accuracy of the current signals in
investigating the state of the gears in a double-stage planetary gearbox. And later, experimental
measurements were taken in order to validate the sensitivity of the model. The real contribution
in this work is justifying the numerical approach by experiments. Lastly, some conclusions are
presented.
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Figure 1. A torsional model of a double-stage planetary gearbox.

2. Theoretical formulation

The electromechanical model is composed of three parts:
Starting from the mechanical model of planetary gears, this model is based mainly on the

motion expression that illustrates the dynamic behaviour of the system, considering only the
torsional degree of freedom. The second part will be devoted to the model of the asynchronous
motor using the Park transformation that aims to transfer the three-phased motor to an equiv-
alent circuit. Finally, in the last part, a global electromechanical system based on both previous
models is presented. The coupling terms between the electrical part and the mechanical system
are due to the electromechanical torque coming from the motor and the vibration’s responses of
the gearboxes to the motor.

2.1. Mechanical model

The mechanical system developed in this study is a planetary gear set. In order to simplify
the model, only torsional degrees of freedom were considered, and therefore only the torsional
stiffness will be involved in the model, Figure 1. Modelling the planetary gears used is based on
the development of Lin and Parker [25] and its dynamic model. So, the model seen in Figure 1
presents (n +3) degrees of freedom each gearbox, where n is the planets number (given 3 in this
case).

The equation of motion for the mechanical system is expressed as follows:

M q̈ +C q̇ + (K (t )+Kc )q = F (t ), (1)

where F (t ) and q(t ) are external force and displacement vector, respectively. M represents the
diagonal mass matrix

M = diag(mc +N mp ,mr ,ms ,m1,m2,m3) (2)

and mi = Ii /ri , where Ii refers to the inertia of each component and ri is the base radius of the
component i . Finally, C refers to the damping matrix, taken as a Rayleigh damping.

The mesh stiffness of the system is given by the matrix both K (t ) (3).
In each set of gears, the sun and the ring were connected to the three planets via the mesh

stiffness given by Ki n j , Ki j , where i ∈ {s,r }, where s refers to the sun and r to the ring, n ∈ {t ,r }
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(r refers to the reaction gearbox, t refers to test gearbox) and j presents the number of planets,
j ∈ {1,2,3}. The mesh stiffness is usually assumed as one linear spring as seen in Figure 1, acting
on the line of action. Thus, the possibility of considering one stiffness for each contact [26].

K (t ) =



3∑
i=1

(Ksi (t )+Kr i (t )) −
3∑

i=1
Kr i (t ) −

3∑
i=1

Kr i (t ) Kr 1(t )−Ks1(t ) Kr 2(t )−Ks2(t ) Kr 3(t )−Ks3(t )

−
3∑

i=1
Kr i (t )

3∑
i=1

Kr i (t ) 0 −Kr 1(t ) −Kr 2(t ) −Kr 3(t )

−
3∑

i=1
Ksi (t ) 0

3∑
i=1

Ksi (t ) Ks1(t ) Ks2(t ) Ks3(t )

Kr 1(t )−Ks1(t ) −Ks3(t ) Ks1(t ) Ks1(t )+Kr 1(t ) 0 0
Kr 2(t )−Ks2(t ) −Kr 2(t ) Ks2(t ) 0 Ks2(t )+Kr 2(t ) 0
Kr 3(t )−Ks3(t ) −Kr 3(t ) Ks3(t ) 0 0 Ks3(t )+Kr 3(t )


.

(3)

2.2. Electrical model

Modelling the electrical machine has been a tool whether to study the machine state or to
ensure the physical coupling between motor and any mechanical systems. The model used
depends on the application [27]. Thus, the objective of this study is to investigate the state of the
mechanical system. For this reason, it was decided to work with a Park transformation since it is
an analytical approach with settings easily identifiable [28]. Park transformation is an analytical
method that aims to transform a three-phased machine into a bi-directional, maintaining the
physical phenomena. Since this method recommends theoretical developments of equations
describing the electromagnetic response of an asynchronous motor, it is necessary to make the
following assumptions to simplify the complexity of the system.

• The saturation is neglected: the own and mutual inductances are independent of the
currents flowing in the different windings.

• Hysteresis and eddy currents are not considered in the magnetic parts because it is
assumed that the magnetic circuit is perfectly laminated.

• The notches are supposed to be infinitely thin in order to neglect the notches effect.
• Magnetomotive forces are sinusoidally distributed in the air gap and are assumed uni-

form; there is symmetry with respect to the magnetic axis of the windings.

The choice of the d q0 framework related to the rotating system depends on the objective of the
study [29]. The change from a three-phased machine to a bi-phased was ensured by the matrix.

Td q0 =
√

2

3


cosθ cos

(
θ− 2π

3

)
cos

(
θ+ 2π

3

)
−sin(θ) −sin

(
θ− 2π

3

)
−sin

(
θ+ 2π

3

)
1p
2

1p
2

1p
2

 , (4)

where ω= dθ/dt .
The relation ensuring the interaction between the magnetic field and the electric circuit is

given by the Law of Faraday.

vi j = R j ii j +
dψi j

dt
, (5)

where R j : resistance of j phase; j : stator, rotor; i : coiling (a, b, c).
ψi j : the magnetic flux of j phase.
ii j : the current of the j phase.
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The asynchronous motor case is squirrel cage motor, which explains the following expression

var = vbr = vcr = 0. (6)

The relations between the magnetic flux ψ and the current in each phase coiling, noted ii j , are
presented by the matrix expression below (7) and (8)


ψas

ψbs

ψcs

 =


Las Mas Mr s cosθ Mr s cosθ Mr s cos

(
θ+ 2π

3

)
Mr s cos

(
θ− 2π

3

)
Mas Las Mr s cosθ Mr s cos

(
θ− 2π

3

)
Mr s cosθ Mr s cos

(
θ+ 2π

3

)
Mas Mas Las Mr s cos

(
θ+ 2π

3

)
Mr s cos

(
θ+ 2π

3

)
Mr s cosθ

∗



ias

ibs

ics

iar

ibr

icr


(7)


ψar

ψbr

ψcr

 =


Mr s cosθ Mr s cos

(
θ− 2π

3

)
Mr s cos

(
θ+ 2π

3

)
Lar Mar Mar

Mr s cos

(
θ+ 2π

3

)
Mr s cosθ Mr s cos

(
θ− 2π

3

)
Mar Lar Mar

Mr s cos

(
θ− 2π

3

)
Mr s cos

(
θ+ 2π

3

)
Mr s cosθ Mar Mar Lar

∗



ias

ibs

ics

iar

ibr

icr


, (8)

where
Mas : mutual inductance between two phases of the stator
Mar : mutual inductance between two phases of the rotor
Las : self-inductance of the stator
Lar : self-inductance of the rotor
Mr s : maximum inductance between a stator’s phase and a rotor’s phase.
The previous electrical and magnetic expressions are described in the same frame d q .{

vd s

vqs

}
=

[
Rs 0
0 Rs

]{
id s

iqs

}
+ d

dt

{
ψd s

ψqs

}
+

[
0 −ωe

ωe 0

]{
ψd s

vqs

}
(9){

vdr

vqr

}
=

[
Rr 0
0 Rr

]{
idr

iqr

}
+ d

dt

{
ψdr

ψqr

}
+

[
0 −ωr

ωr 0

]{
ψdr

vqr

}
(10){

ψd s

ψdr

}
=

[
Ls Lm

Lm Lr

]{
id s

idr

}
(11){

ψqs

ψqr

}
=

[
Ls Lm

Lm Lr

]{
iqs

iqr

}
. (12)

Supposing Ls = Las −Mas : stator synchronous inductance
Lr = Lar −Mar : rotor synchronous inductance
Lm = (3/2)Mr s : magnetizing inductance,
where ωs = pπ f , ω= pπN /30 and ωr =ω−ωs .
The previous analytical development of the three-phased motor had contributed to give a bi-

phased equivalent machine, as presented in Figure 2. The stator current and the rotor magnetic
flux, written in the same framework had led to the global asynchronous machine model given
by (14).

d

dt
{X (t )} = [A]{X (t )}+ [B ]{U (t )}, (13)
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Figure 2. The equivalent bi-phased machine obtained from an asynchronous motor.

Table 1. Motor parameters

Parameters Value
Rs 9.172 Ω

Rr 5.162 Ω

Ls 0.115 H
Lr 0.0943 H
Lm 0.0943 H

where X (t ) the state vector given by

X (t ) = {
id s iqs ψdr ψqr

}T
(14)

⇒ d

dt


id s

iqs

ψdr

ψdr

=


e11 e12 ∗ωs e13 e14 ∗ω

e21 ∗ωs e22 e23 ∗ω e24

e31 0 e33 e34 ∗ωr

0 e42 e43 ∗ωr e44




id s

iqs

ψdr

ψdr

+



1

σLs
0

0
1

σLs
0 0
0 0


{

vd s

vqs

}
, (15)

where

σ = 1−
(

Lm
2

Ls Lr

)
; Tr = Lr

Rr
; Ts = Ls

Rs

e11 = e22 =−
(

1

σTs
+ (1−σ)

σTr

)
, e33 = e44 =− 1

Tr
e12 = e34 = 1, e21 = e43 =−1

e13 = e24 = (1−σ)

σTr Lm
, e31 = e42 = Lm

Tr

e14 = −e23 = (1−σ)

σLm
.

The electrical parameters of the motor are given in the Table 1. The motor’s parameters mainly
used in the simulations (resistance and inductance) were determined by experimental measure-
ments through the starter “MICROMASTER”.

2.3. Electromechanical problem

The combination of all the expressions had led to a global electromechanical system (16). The
coupled state variable vector contains different electrical parameters of the motor (current and
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Table 2. The mechanical system parameters

System
The motor Operating configuration

Frequency (Hz) Power Connection Speed (tr/mn) Poles
50 15 kW Triangle connected 1460 4

The gearbox Component
Carrier Planet Ring Sun

Number 1 3 1 1
Teeth number — 24 65 16

Mass (kg) 3.65 1.22 28.1 0.49

magnetic flux), the displacement of each component of planetary gears and its velocity. This state
vector is deduced form the need of combining a first order differential system from the electrical
equation and the motion equation from the mechanical system, as presented by Z (t ).

dZ (t )

dt
= A(t , Z (t ))Z (t )+B(t ), (16)

where
{Z (t )} = {

X (t ) Y (t ) Ẏ (t )
}T

. (17)

A(t ) and B(t ) are developed in the expression below.

d

dt



id s

iqs

ψdr

ψdr

u1

. . .

. . .
u12

u̇1

. . .

. . .
u̇12



=



e11 e12ωs e13 e14(θ̇1) 0 . . . . . . 0 0 . . . . . . 0
e21ωs e22 e23(θ̇1) e24 0 . . . . . . 0 0 . . . . . . 0

e31 0 e31 e34ωr 0 . . . . . . 0 0 . . . . . . 0
0 e42 e43ωr e44 0 . . . . . . 0 0 . . . . . . 0
0 0 0 0 0 . . . . . . 0 1 . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . 0 . . . 1 . . . . . .

. . . . . . . . . . . . . . . . . . . . . 0 . . . . . . . . . 0
0 0 0 0 0 . . . . . . 0 0 . . . . . . 1

0 0
. . . . . .
. . . . . .
0 0

[
p

Lm

Lr
inv(M)∗F

]
[−inv(M)K ] [−inv(M)C ]





id s

iqs

ψdr

ψdr

u1

. . .

. . .
u12

u̇1

. . .

. . .
u̇12



+



vd s

σLs
vqs

σLs
0

. . .

. . .
0

. . .

. . .

. . .
inv(M)Fimp



.

(18)
The electromechanical interaction between the motor and the gearboxes system is ensured
though

• The impact of the system’s vibrations and any anomaly is presented in (18) by θ̇sun.
• The mechanical torque transmitted to the gearbox given by the following expression

Cem = pLm

Lr
(ψdr iqs −ψqr id s ). (19)

{F }, is given by (19), expresses the coupling terms between the electrical model and the mechan-
ical model, which expresses the electromagnetic torque. While, {Fimp}, expresses the presence of
any external efforts.

3. The experimental testbench

The most important step in the numerical approaches is giving credibility to results by validating
them using experimental measurements. Thereby, the study presented in this paper will probe
into an experimental rig as shown in the Figure 3. This testbench is composed of two parts, the

C. R. Mécanique — 2021, 349, n 2, 275-298
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Figure 3. (a) The test bench, (b) the test gearbox, (c) the external load.

characteristics of which are illustrated in Table 2. The driving part is a three-phased asynchronous
motor controlled by a Siemens inventor. The mechanical part is structured as a back-to-back
planetary gearbox, which is basically composed of two stages of identical planetary gearbox
(reaction and test).

Each stage, as shown in the same Figure 3, is composed of an external ring, three planets fixed
on a carrier, and a sun, which is the input gear. The configuration of the bench is compacted with
a mechanical power circulation for economic energy efficiency. Both gearboxes are connected to
each other through a rigid hollow shaft that holds both carriers and a second one that connects
the sun of the reaction gearbox to the test sun [30].

C. R. Mécanique — 2021, 349, n 2, 275-298
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Figure 4. Back-to-back configuration in the testbench used.

Figure 5. The electric clamp.

The experimental measurements were done for constant speed fixed by fixing the motor input
frequency maintained in the experiments at 20 Hz (corresponds to 570 rpm: rotating speed).

The configuration of the used test bench is compact with purely mechanical power circulation.
For the mechanical power circulation type, input and output shafts of both gearboxes with
identical gear ratios are connected to each other by intermediate shafts and gearboxes.

The sun gears of both planetary gear sets are connected through a common shaft and the
carriers of both planetary gear sets are connected to each other through a rigid hollow shaft. This
system builds a closed loop as seen in Figure 4 below.

Moreover, the design of the test bench allows applying external load on the testbench by an
arm connected to the reaction gearbox. The load added on the test bench is described by external
masses or by using a jark as seen in Figure 3(c).

In the experiments, we used 600 N·m load applied.
As for the instrumentations, clamp metre of type fluke i200s AC current clamp, sensitivity of

10 mv/A as shown in Figure 5 was mounted around the input wires of the motor to measure the
current in each phase of the motor. The clamp was connected to a data acquisition system “LMS
SCADAS 316”, controlled by LMS Test Lab, where all the data was registered and archived.

In order to highlight the sensitivity of the numerical model, to detect the tooth defect, we had
introduced on one of the planets a groove as shown in Figure 6. The cut was done on the length
of the teeth, with a depth and a width which equals, respectively, to 0.2 mm and 0.3 mm.

4. Numerical simulations

In order to adopt the numerical model developed in Section 2 to the test bench in Section 3,
we consider a double-stage planetary gears as show in Figure 7. The mesh stiffness of the global

C. R. Mécanique — 2021, 349, n 2, 275-298
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Figure 6. The planet defect.

system is given by K (t ) = diag(Kt ,Kr ), where t describes the test gear set and r the reaction set.
For the stiffness, connections between both gearboxes were simulated to linear springs in the
Kc coupling stiffness matrix. As indicated above, the connection between the test gearbox and
the reaction gearbox is done through two shafts and this connection is assured in the numerical
model by the matrix below.

As seen, Figure 7 illustrates a numerical schema of the test bench and clarify the connection
matrix (20) between both gearboxes and all the corresponding parameters are presented in detail
in Table 3. The connecting shafts are modelled by torsional stiffness Ks and Kc , where Ks is given
to the stiffness of the shaft connecting the suns and Kc for the hollow shaft connecting carriers.
For this testbench the reaction ring is considered free, its torsional stiffness Kr r u equals to zero,
although, the test ring is not completely clamped so a high torsional stiffness Kr tu is given.

Kc =



kc 0 0 0 0 0 −kc 0 0 0 0 0
0 kr tu 0 0 0 0 0 0 0 0 0 0
0 0 ks 0 0 0 0 0 −ks 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

−kc 0 0 0 0 0 kc 0 0 0 0 0
0 0 0 0 0 0 0 kr tu 0 0 0 0
0 0 0 0 0 0 0 0 ks 0 0 0
0 0 −ks 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



. (20)

In order to highlight the sensitivity of the model used to different perturbations, some tooth
defects would be introduced in the coming work. Chaari et al. [1] had proved that the presence of
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Figure 7. Numerical model of the test bench.

Table 3. The simulations parameters

Input frequency 50 Hz
Sun Planet Ring Carrier

Moment of inertia (kg·m2) 352×10−6 2045×10−6 697767×10−6 21502×10−6

Reaction gearbox: torsional
stiffness (N·m/rad)

3×108

Test gearbox: torsional stiffness
(N·m/rad)

0

Shaft stiffness (N·m/rad) 9.3×107 — — 3.7×108

a breakage generates a decrease in the meshing stiffness the moment the defected gear meshes
with another pair of teeth. This fluctuation is relatively due to the decrease of the contact area
while meshing the defected tooth.

For the healthy configuration, Figure 8(a) illustrates the temporal evolution of the gear mesh
stiffness, ensuring the contact between planet–sun (the blue diagram) and the meshing stiffness,
ensuring the contact between planet–ring (the green diagram). Several authors like Chaari et al.;
Merainani et al. [1, 31] had proved that the presence of a tooth defect is seen in the gear meshing
stiffness through a decrease in its amplitude each time the defected tooth gets involved in a
contact, once per revolution of the damaged gear.

To study the sensitivity of the electromechanical approach suggested in investigating the
dynamic behaviour of the mechanical system, we assumed the presence of tooth breakage that
resulted in a decrease in the corresponding gear mesh stiffness per revolution of the defected gear
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Figure 8. The gear meshing stiffness. (a) The gear meshing stiffness for the healthy config-
uration (blue: ring–planet1) (green: sun–planet1); (b) the impact of the tooth defect on the
gear meshing stiffness.

as seen in Figure 8(b). The objective beyond this paper is to highlight the sensitivity of the stator
current to the mechanical anomalies. Consequently, different defects were tested in the coming
studies by modifying the placement and the number of defects.

The resolution of the system (18) has been done by using the Runge–Kutta method due to
the appearance of nonlinear terms in the torque expression. The time step calculation is taken
depending on the mechanical parameter, and in order to simplify the calculation, the time
increment is given by Tincr = Teng/300, where Teng is the gear mesh frequency.

5. Results and discuss

5.1. Numerical simulations in time domain

The direct-quadrature-zero transformation is a mathematical transformation used to simplify
the analysis of a three-phased motor. This method uses the three phases current presented in
a sinusoidal signal to obtain a constant current involving different electrical parameters [29].
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Figure 9. Current signal for healthy configuration. (a) The current temporal signal;
(b) zoom in on the zone (2).

Table 4. Key frequencies

Notation Expression Value (Hz)

Sun frequency (input) fs fs = N

60
24.33

Carrier frequency (output) fc fc = zs

(zr + zs )
fs 4.80

Gear meshing frequency Fm Fm = zr fc 312.47

In this context, this approach’s objective is to investigate the electromechanical interaction
between the driving machine and the mechanical system.
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Figure 10. Stator current signal for healthy gears (blue) and in the presence of sun defect
(red).

Figure 9 illustrates the temporal evolution of the stator current id s obtained from the Park
transformation. The current signal is divided into two parts. The steady state, which is the
concern of this study, and the transitional regime that represents the run up of the motor. For
this approach only results seen in the steady state are representative. Therefore, in the rest of the
paper, we are interested in that part of the signal. In Figure 5(b) the current signal represents a
periodic fluctuation with an amplitude 5×10−3 and a period that corresponds to the gear mesh
period Teng given by

Teng = 1

Fm
, (21)

where Fm is the gear meshing frequency, given in Table 4.
The appearance of the meshing frequency in the current id s is explained mathematically by

the transmission of the sun velocity’s signal seen in (18). On the other hand, the meshing phe-
nomena is transmitted to the motor as a load fluctuation which will affect the speed of the shaft
and produce vibrations each time the planet accomplishes one relative revolution. Hence, the
simulated stator current obtained by the equivalent circuit is sensitive to the electromechanical
interaction between the asynchronous motor and the gearboxes.

5.2. Damaged gearbox

5.2.1. Sun defect

Generally, the sun of the planetary gearbox is considered the first part attacked by tooth
defects. The pitting process starts with a fatigue crack that initiates most of the time at the surface.
When the crack grows, the surface loses a piece of material which results in a pit. This loss of
material leads to the loss of contacts between the meshing teeth, and there on have impacts on
the gear meshing frequency. Therefore, we consider the presence of a local defect on one of the
sun teeth. When the defected tooth meshes with one of the planets, the vibration signals are
modulated by impulse signals. These impulsions are justified by revolutionary phenomena that
repeats each time the defected tooth is in contact with one planet. Therefore, Figure 10 presents
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Figure 11. The impact of the sun tooth defect on the stator current ids.

the current signal in the defect’s presence comparing with the healthy configuration. The sun
tooth defect impacts the signal three times along the revolution of the sun due to the contact
with three planets. Thus, the vibration signals impacts presented in the mechanical system were
transmitted to the motor by the sun shaft and seen in the stator current signals.

Besides the fluctuation seen in the current signal due to the gear meshing, Figure 11 clearly
shows the appearance of the variation of the stator current id s in the presence of sun tooth defect.
The temporal variation shows current modulation by Td s given by

Td s = 1

Fd s
(22)

Fd s = N ( fs − fc ) = N zr

zr + zs
fs (23)

where fs is the sun frequency and fs is the carrier frequency as demonstrated in Table 4.
The increase of the current amplitude when the defected tooth gets in contact each time is

totally foreseen. Meshing defected tooth generate additional load which makes the system is
partially overloaded.

5.2.2. Planet defect

The impact of the planet defect on the signal depends on its localization, therefore, in this case
we assumed two different cases: The defect is present in one side of the planet or it is present in
both sides.

The defected side of the damaged tooth that gets in contact with the sun presents a modulation
in the recorded signals once each revolution of the planet (Td p ) as it is illustrated in Figure 12(a).
So, the defect on the planet would be seen by its frequency given by

Td p = 1

Fd p
(24)

Fd p = Fm

zp
= zs zr

zp (zr + zs )
fs . (25)

We assume that the same defect is applied from both sides of the same tooth. When the sun is
in contact with surface A, this contact will produce a modulation in the current signals as it was
explained in the case of a tooth defect from one side so that the defect A will appear in each
Fd p [6].
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Figure 12. Ids current signal in the presence of planet defect. (a) Defect on one side of the
tooth, (b) defect on both sides of the tooth.

After a half revolution of the planet, the defected tooth will be in contact with the ring tooth
but with the surface B this time, which will be seen itself in the current spectrum by the same
frequency. Although both defects will not be seen in the same amplitude as it is shown in
Figure 10(b), in one revolution of the planet the tooth defect is signed twice as it is given by

Fd p = 2
Fm

zp
= 2

zs zr

zp (zr + zs )
fs . (26)

5.3. Experimental validations

In order to validate the results, obtained by the numerical simulations, some experimental
measurements will be presented. The system was running at 570 rpm, the electrical frequency of
the motor was maintained at 20 Hz. First, we noticed some differences between the experimental
and numerical measurements. These differences are mainly related to the state of the motor as
seen in Figure 13(a) and excluded from the simulations since the machine was considered perfect
due to several simplifications adopted in the modelling to reduce the system complexity.

For the numerical model, the motor is not supposed to present any behavioural imperfections,
then delivering a perfect sinusoidal current. Therefore, the frequency spectrum of the phase
current is dominated only by the electrical frequency as seen in the Figure 13(b). Although in
reality, as seen in Figure 12(a), many harmonics also appear. These harmonics are signed in
the presence of the mechanical or electrical anomalies in the motor [32]. The objective of this
part of the paper is to highlight the sensitivity of the model to the electromechanical interaction
and the detection of the appearance of any tooth defect. For the healthy configuration, we
applied the fast Fourier transformation on the temporal signal seen in Figure 7(b) to obtain the
frequency spectrum. Clearer Figure 14 shows that the current spectrum id s is dominated by the
gear meshing frequency and its harmonics.

In order to obtain the current in the phase of the motor, we used the inverse of the Park trans-
formation. The Figure 14 illustrates the phase current frequency spectrum, which is dominated
by the electrical frequency given as 20 Hz in these simulations. Therefore, in order to highlight the
frequency with low amplitude, we used the Hanning window to plot the coming simulations re-
sults for the phase current. Besides, in the same figure, we notice the appearance of the additional
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Figure 13. Phase current for free motor. (a) Experimental measurements; (b) numerical
simulations.

peaks related to the meshing frequency, which is given by the expression

| f ±n fmesh|, (27)

where n ∈ N∗, fmesh = 121.9 Hz.
In reality the torque oscillations can exist even in the healthy case because of space and time

harmonics, this is what explains its appearance in the spectrum of the phase current measured
and showed in Figure 16.

In this study, the experiments were done to prove the sensitivity of the motor current to
investigate the dynamic behaviour of the mechanical system, also to justify the results obtained
in the simulations. Like results in Figure 15, the load torque oscillations due to the gear meshing
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Figure 14. The frequency spectrum of the ids current in the HEALTHY configuration.

Figure 15. The frequency spectrum of a phase current in the HEALTHY configuration
(numerical simulations).

phenomena is modulating the input motor current and appear in the spectrum as additional
frequencies given by (27).

5.3.1. Planet defect

Besides the appearance of the gear meshing frequency and its harmonics, Figure 17 illustrates
the appearance of additional frequencies, due to the defect included on the defect in the fre-
quency spectrum of the id s current.

Thomson had shown in [33] that the appearance of a defect in the mechanical system pro-
duces a load fluctuation, which causes some speed oscillations that modulate the current input.
In that regard, Figure 18 presents the phase current obtained from the current shown above. In
fact, the vibrations produced by a defect of a mechanical component acts on the induction ma-
chine as a torque ripple ∆Ti (t ) which would produce a speed ripple ∆ωi (t ).

Hence, the consequent mechanical angular variation will generate an angular fluctuation in
the magnetic flux of the device and since the induction machines are considered symmetrical
systems because of the magnetic rotating field, the appearance of any anomaly will impact
the symmetrical properties [34]. The planet defect affects the phase current by modulating
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Figure 16. The frequency spectrum of a phase current (experimental results).

Figure 17. The frequency spectrum of the ids current in the presence of planet defect.

the electric frequency. Therefore, we justify the appearance of the related defect frequency
modulated by the supply frequency (28) and modulated by the mesh frequency

| f ±n fd p | (28)

| f ±n fd p ±m fmesh|. (29)

The presence of the related frequencies to the planet defect are justified in the phase cur-
rent signal measured on the test bench. Figure 19 highlights the presence of sidebands that cor-
responds to those seen in Figure 18 given by (28). The experimental measurements justify the
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Figure 18. The frequency spectrum of the phase current in the presence of planet defect
(numerical simulations).

results obtained by the simulations. Although, the simplification adopted, the numerical model
is sensitive to the teeth contact and to the tooth defects.

6. Conclusion

Using MCSA, this paper had presented a deep overview of the impact of tooth defects on the
start current by numerical simulations and experimental measurements. The approach used in
modelling, was based on an electromechanical system that defines the interaction between asyn-
chronous machine and double-stage planetary gearboxes. The numerical model was obtained in
three main stages: a first part that had described the dynamic model of the asynchronous motor.
For the electrical part, a three-phased machine was described by an equivalent bi-phased circuit
obtained by the Park transformation which involves all the physical parameters.

The second part consisted of dynamic modelling of a double stage’s gearboxes. In the model
used, only the torsional degree of freedom was considered for simplification purposes. And
finally, a global model based on the electromechanical torque transmitted form the motor to the
mechanical system and on the dynamic response of the gearboxes propagated back to the motor.
Numerical results obtained in stationary operating conditions had highlighted the visibility of the
impact of the mechanical system on the electrical model. It was clearly seen in the appearance
of the gear meshing frequency in the frequency spectrum of the Ids current. Also, in the case of
the teeth defect, the electrical model was sensitive to detect the appearance of an anomaly in
the mechanical system. Comparing the obtained results from the numerical simulations to the
experimental measurements, the mechanical frequencies were related to the electrical frequency
that dominates the phase frequency spectrum.

In the future, the electrical model will be extended rising its complexity to be closer to the
real system by including the imperfections in the electric machine. This technique would be a
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Figure 19. The frequency spectrum of the phase current in the presence of planet defect
(experimental measurements).

leading method in diagnosing the rotating system due to its accuracy, and mainly its accessibility,
in different operating conditions.

Nomenclature

Electrical system
r Subscripts for the rotor
s Subscripts for the stator
j Subscripts for the motor phase, where j ∈ {a,b,c}
R Subscripts for the resistance
L Subscripts for the self-inductance
M Subscripts for the mutual inductance
i Subscripts for the current
v Subscripts for the voltage
ψ Subscripts for the magnetic flux
ω Subscripts for the angular velocity
f Subscripts for the motor frequency
N Subscripts for the motor speed (rpm)
p Subscripts for the number of pairs of poles

C. R. Mécanique — 2021, 349, n 2, 275-298



Safa Boudhraa et al. 297

Mechanical system
s Subscripts for the sun gear
r Subscripts for the ring gear
ni Subscripts for the planet gear (i = 1 : 3)
c Subscripts for the carrier gear
t Subscripts for the test gearbox
r Subscripts for the reaction gearbox
fi Subscripts for the frequency of the i th gear, where i ∈ {s,r,c,1,2,3}
k Subscripts for the stiffness
M Subscripts for the mass
C Subscripts for the damping
Cem Subscripts for the electromechanical torque
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