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Unlike the real line, the real space Rd , for d ≥ 2, is not canonically or-
dered. As a consequence, such fundamental univariate concepts as quantile
and distribution functions and their empirical counterparts, involving ranks
and signs, do not canonically extend to the multivariate context. Palliat-
ing that lack of a canonical ordering has been an open problem for more
than half a century, generating an abundant literature and motivating, among
others, the development of statistical depth and copula-based methods. We
show that, unlike the many definitions proposed in the literature, the measure
transportation-based ranks and signs introduced in Chernozhukov, Galichon,
Hallin and Henry (Ann. Statist. 45 (2017) 223–256) enjoy all the properties
that make univariate ranks a successful tool for semiparametric inference. Re-
lated with those ranks, we propose a new center-outward definition of mul-
tivariate distribution and quantile functions, along with their empirical coun-
terparts, for which we establish a Glivenko–Cantelli result. Our approach is
based on McCann (Duke Math. J. 80 (1995) 309–323) and our results do not
require any moment assumptions. The resulting ranks and signs are shown to
be strictly distribution-free and essentially maximal ancillary in the sense of
Basu (Sankhyā 21 (1959) 247–256) which, in semiparametric models involv-
ing noise with unspecified density, can be interpreted as a finite-sample form
of semiparametric efficiency. Although constituting a sufficient summary of
the sample, empirical center-outward distribution functions are defined at ob-
served values only. A continuous extension to the entire d-dimensional space,
yielding smooth empirical quantile contours and sign curves while preserv-
ing the essential monotonicity and Glivenko–Cantelli features of the concept,
is provided. A numerical study of the resulting empirical quantile contours is
conducted.

1. Introduction. Unlike the real line, the real space Rd , for d ≥ 2, is not canonically
ordered. As a consequence, such fundamental concepts as quantile and distribution func-
tions, which are strongly related to the ordering of the observation space, and their empirical
counterparts—ranks and empirical quantiles—playing, in dimension d = 1, a fundamental
role in statistical inference, do not canonically extend to dimension d ≥ 2.

Of course, a classical concept of distribution function—the familiar one, based on marginal
orderings—does exist. That concept, from a probabilistic point of view, does the job of char-
acterizing the underlying distribution. However, the corresponding quantile function does not
mean much (see, e.g., Genest and Rivest (2001)), and the corresponding empirical versions
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(related to their population counterparts via a Glivenko–Cantelli result) do not possess any of
the properties that make them successful inferential tools in dimension d = 1.

That observation about traditional multivariate distribution functions is not new: palliat-
ing the lack of a “natural” ordering of Rd—hence, defining statistically sound concepts of
distribution and quantile functions—has been an open problem for more than half a century,
generating an abundant literature that includes, among others, the theory of copulas and the
theory of statistical depth.

A number of most ingenious solutions have been proposed, each of them extending
some chosen features of the well-understood univariate concepts, with which they coincide
for d = 1. Coinciding, for d = 1, with the univariate concepts obviously is important, but
hardly sufficient for qualifying as a statistically pertinent multivariate extension. For statis-
ticians, distribution and quantile functions are not just probabilistic notions: above all, their
empirical versions (empirical quantiles and ranks) constitute fundamental tools for inference.
A multivariate extension yielding quantiles and ranks that do not enjoy, in dimension d ≥ 2,
the properties that make traditional ranks natural and successful tools for inference in dimen-
sion one is not a statistically sound extension.

Those inferential concerns are at the heart of the approach adopted here.

1.1. Ranks and rank-based inference. To facilitate the exposition, let us focus on ranks
and their role in testing problems. Univariate rank-based methods naturally enter the pic-
ture in the context of semiparametric statistical models under which the distribution P(n)

θθθ,f

of some real-valued observation X = (X1, . . . ,Xn)
′, besides a finite-dimensional parame-

ter of interest θθθ ∈ ���, also depends on the unspecified density f ∈ F1 (F1 the family of
Lebesgue densities over R) of some unobserved univariate noise Zi(θθθ), say. More pre-
cisely, X ∼ P(n)

θθθ,f iff the θθθ -residuals Z1(θθθ), . . . ,Zn(θθθ) =: Z(n)(θθθ) are i.i.d.1 with density f .

In such models—call them i.i.d. noise models2—testing the null hypothesis H
(n)
0 : θθθ = θθθ0

(i.e., P(n)
θθθ,f ∈ P(n)

θθθ0
:= {P(n)

θθθ0,f
|f ∈ F1}) reduces to the problem of testing that Z1(θθθ0), . . . ,

Zn(θθθ0) are i.i.d. with unspecified density f ∈ F1. Invariance arguments suggest tests based
on the ranks R(n)(θθθ0) of the residuals Z(n)(θθθ0);3 such tests are distribution-free under H

(n)
0 .

Distribution-freeness (DF) is often considered as the trademark and main virtue of
(univariate) ranks; it guarantees the validity and similarity of rank-based tests of H

(n)
0 .

Distribution-freeness alone is not sufficient, though, for explaining the success of rank tests:
other classes of distribution-free methods indeed can be constructed, such as sign or runs
tests, that do not perform as well as the rank-based ones. The reason is that, unlike the ranks,
they do not fully exploit the information available once the nuisance (the unknown f ) has
been controlled for via some minimal sufficient statistic. That feature of ranks originates in
the fact that:

(DF+) (essential maximal ancillarity) the sub-σ -field generated by the residual
ranks R(n)(θθθ) is essentially maximal ancillary (hence distribution-free) for P(n)

θθθ in the sense
of Basu (1959) (see, e.g., Example 7 in Lehmann and Scholz (1992)),

1Although i.i.d.-ness can be relaxed into exchangeability, we are sticking to the former.
2Typical examples are linear models, with Zi(θθθ) = Xi − c′

iθθθ (ci a q-vector of covariates and θθθ ∈ Rq ), or first-
order autoregressive models, with Zi(θ) = Xi − θXi−1 (where i denotes time and θ ∈ (−1,1); see, for example,
Hallin and Werker (1999)), etc.

3Those ranks indeed are maximal invariant under the group of continuous monotone increasing transformations
of Z1(θθθ0), . . . ,Zn(θθθ0); see, for instance, Example 7 in Lehmann and Scholz (1992).
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while the sub-σ -field generated by the residual order statistic Z(n)
(·) (θθθ) is minimal sufficient

and complete (still for P(n)
θθθ ).

In families satisfying the condition (Koehn and Thomas (1975)) of nonexistence of a split-
ting set—which is the case here whenever f ranges over F1—Theorems 1 and 2 in Basu
(1955) imply that essential maximal ancillarity is equivalent to “essential maximal indepen-
dence with respect to the complete (hence minimal) sufficient statistic Z(n)

(·) (θθθ).”4

Intuitively, thus, and leaving aside the required mathematical precautions, the order statis-
tic Z(n)

(·) (θθθ), being minimal sufficient for P(n)
θθθ , is carrying all the information about the nui-

sance f and nothing but that information, while the ranks, being (essentially) “maximal in-
dependent of Z(n)

(·) (θθθ),” are carrying whatever information is left for θθθ . This can be interpreted

as a finite-sample form of semiparametric efficiency.5

In the same vein, it also has been shown (Hallin and Werker (2003)) that, under appropriate
regularity conditions, univariate ranks preserve semiparametric efficiency in models where
that concept makes sense:

(HW) (preservation of semiparametric efficiency) the semiparametric efficiency bound at
arbitrary (θθθ, f ) can be reached, under P(n)

θθθ,f , via rank-based procedures (here, tests that are
measurable functions of the ranks of θθθ -residuals Zi(θθθ)).

The latter property, contrary to (DF) and (DF+), is of a local and asymptotic nature; in
Hallin and Werker (2003), it follows from the maximal invariance property of ranks under
a group of order-preserving transformations of Rn generating the fixed-θθθ submodel (i.e.,
yielding a unique orbit in the family P(n)

θθθ of fixed-θθθ model distributions). Being intimately
related to the concept of order-preserving transformation, this invariance approach is much
more delicate in dimension d > 1. For lack of space, we do not investigate it any further here,
leaving a formal multivariate extension of (HW) for further research.

Properties (DF+) and (HW), which indicate, roughly, that the order statistic only carries
information about the nuisance f while the ranks carry all the information available about θθθ ,
are those a statistician definitely would like to see satisfied by any sensible multivariate ex-
tension of the concept.

1.2. Multivariate ranks and the ordering of Rd , d ≥ 2. The problem of ordering Rd

for d ≥ 2, thus defining multivariate concepts of ranks, signs, empirical distribution functions
and quantiles, is not new, and has a rather long history in statistics. Many concepts have been
proposed in the literature, a complete list of which cannot be given here. Focusing again on
ranks, four types of multivariate ranks, essentially, can be found:

(a) Componentwise ranks. The idea of componentwise ranks goes back as far as Hodges
(1955), Bickel (1965) or Puri and Sen (1966, 1969), Sen and Puri (1967). It culminates in the
monograph by Puri and Sen (1971), where inference procedures based on componentwise
ranks are proposed, basically, for all classical problems of multivariate analysis. Time-series
testing methods based on the same ranks have been considered in Hallin, Ingenbleek and Puri
(1989). That strand of literature is still alive: see Chaudhuri and Sengupta (1993), Segers, van
den Akker and Werker (2014), etc. to quote only a very few. Componentwise ranks actually
are intimately related to copula transforms, of which they constitute the empirical version:

4We refer to Appendix D.1 for precise definitions, a more general and stronger version of this property, and a
proof.

5Semiparametric efficiency indeed is characterized as asymptotic orthogonality, with respect to the central se-
quences carrying information about parametric perturbations of the nuisance; asymptotic orthogonality here is
replaced with finite-sample independence.
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rather than solving the tricky problem of ordering Rd , they bypass it by considering d univari-
ate marginal rankings. As a consequence, they crucially depend on the choice of a coordinate
system. Unless the underlying distribution has independent components (Nordhausen, Oja
and Paindaveine (2009), Ilmonen and Paindaveine (2011), Hallin and Mehta (2015)) coincid-
ing with the chosen coordinates, componentwise ranks in general are not even asymptotically
distribution-free: neither (DF) nor (DF+) hold.

(b) Spatial ranks and signs. This class of multivariate ranks (Möttönen and Oja (1995),
Möttönen, Oja and Tienari (1997), Chaudhuri (1996), Koltchinskii (1997), Oja and Randles
(2004), Oja (2010), and many others) includes several very ingenious, elegant and appealing
concepts. Similar ideas also have been developed by Choi and Marden (1997) and, more
recently, in high dimension, by Biswas, Mukhopadhyay and Ghosh (2014) and Chakraborty
and Chaudhuri (1996, 2014, 2017). We refer to Marden (1999), Oja (1999) or Oja (2010) for
a systematic exposition and exhaustive list of references. All those concepts are extending
the traditional univariate ones but none of them enjoys (DF),6 let alone (DF+).

(c) Depth-based ranks. Those ranks have been considered in Liu (1992), Liu and Singh
(1993), He and Wang (1997), Zuo and He (2006), Zuo and Serfling (2000), among others; see
Serfling (2002) for a general introduction on statistical depth, Hallin, Paindaveine and Šiman
(2010) for the related concept of quantile, López-Pintado and Romo (2009) for functional ex-
tensions, Zuo (2018) for a state-of-the art survey in a regression context. Depth-based ranks,
in general, are distribution-free but fail to satisfy (DF+).

(d) Mahalanobis ranks and signs/interdirections. When considered jointly with interdi-
rections (Randles (1989)), lift interdirections (Oja and Paindaveine (2005)), Tyler angles or
Mahalanobis signs (Hallin and Paindaveine (2002a, 2002c)), Mahalanobis ranks do satisfy
(DF+), but in elliptical models only—when f is limited to the family of elliptical densities.
There, they have been used, quite successfully, in a variety of multivariate models, including
one-sample location (Hallin and Paindaveine (2002a)), k-sample location (Um and Randles
(1998)), serial dependence (Hallin and Paindaveine (2002b)), linear models with VARMA
errors (Hallin and Paindaveine (2004a, 2005, 2006a)), VAR order identification (Hallin and
Paindaveine (2004b)), shape (Hallin and Paindaveine (2006b), Hallin, Oja and Paindaveine
(2006)), homogeneity of scatter (Hallin and Paindaveine (2008)), principal and common prin-
cipal components (Hallin, Paindaveine and Verdebout (2010, 2013, 2014)). Unfortunately, the
tests developed in those references cease to be valid, and the related R-estimators no longer
are root-n consistent, under nonelliptical densities.

None of those multivariate rank concepts, thus, enjoys distribution-freeness and (DF+)—
except, but only over the class of elliptically symmetric distributions, for the Mahalanobis
ranks and signs. A few other concepts have been proposed as well, related to cone orderings
(Belloni and Winkler (2011), Hamel and Kostner (2018)), which require some subjective
(or problem-specific) preliminary choices, and similarly fail to achieve distribution-freeness,
hence (DF+).

The lack, for d ≥ 2, of a canonical ordering of Rd places an essential difference between
dimensions d = 1 and d ≥ 2. Whereas the same “exogenous” left-to-right ordering of R

applies both in population and in the sample, pertinent orderings of Rd are bound to be
“endogenous,” that is, distribution-specific in populations, and data-driven (hence, random)
in samples. This is the case for the concepts developed under (b)–(d) above; it also holds
for the concept we are proposing in this paper. Each distribution, each sample, thus, is to
produce its own ordering, inducing quantile and distribution functions, and classes of order-
preserving transformations. As a result, datasets, at best, can be expected to produce, via

6Biswas, Mukhopadhyay and Ghosh (2014) is an exception, but fails on (DF+).
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adequate concepts of multivariate ranks and signs, consistent empirical versions of the under-
lying population ordering. That consistency typically takes the form of a Glivenko–Cantelli
(GC) result connecting an empirical center-outward distribution function to its population
version. A quintessential feature of Glivenko–Cantelli is its insensitivity to continuous order-
preserving transformations of the data. That feature is not compatible with moment assump-
tions, since the existence of moments is not preserved under such transformations. Moment
assumptions (as in Boeckel, Spokoiny and Suvorikova (2018) or Chernozhukov et al. (2017)
where (weak) consistency is established under compactly supported distributions), therefore,
are somewhat inappropriate in this context.

No ordering of Rd for d ≥ 2 moreover can be expected to be of the one-sided “left-to-
right” type, since “left” and “right” do not make sense anymore. A depth-type center-outward
ordering is by far more sensible. All this calls for revisiting the traditional univariate concepts
from a center-outward perspective, while disentangling (since they are to be based on distinct
orderings) the population concepts from their sample counterparts.

1.3. Outline of the paper. This paper comprises a main text and an Online Appendix
(Hallin et al. (2020)) consisting of eight sections, labeled A, B, . . . , H. Except for the proofs,
the main text is self-contained and the reader familiar with measure transportation and sta-
tistical decision can skip most of the Appendix. For those who are less familiar with these
topics, however, we recommend the following plan for fruitful reading. After the Introduc-
tion (Section 1), one may like to go to Appendix A.1 for a brief and elementary account
of some classical facts in measure transportation, then to Appendix A.2 for a short review
of the (scarce) literature on the relation of that theory to multivariate ranks and quantiles.
Appendix B is describing how the traditional univariate case, where the concepts of distribu-
tion and quantile functions, ranks and signs are familiar, naturally enters the realm of mea-
sure transportation with the usual distribution function F replaced by the so-called center-
outward one 2F − 1. The paper then really starts with Section 2, where the main concepts—
center-outward distribution and quantile functions, ranks, signs, quantile contours and quan-
tile regions—are defined and their main properties—regularity of distribution and quantile
functions, nestedness and connectedness of quantile regions, distribution-freeness of ranks
and signs, their maximal ancillarity property and their Glivenko–Cantelli asymptotics—are
stated. Proofs are given in Appendix D and the relation, under ellipticity, to Mahalanobis
ranks and signs is discussed in Appendix C. Up to that point, empirical distribution and
quantile functions are defined at the observations only. Section 3 shows how to extend them
into smooth functions defined over the entire space Rd while preserving their gradient of con-
vex function nature, without which they no longer would qualify as distribution and quantile
functions. This smooth extension is shown (Proposition 3.3) to satisfy an extended Glivenko–
Cantelli property; proofs are concentrated in Appendix F. The tools we are using throughout
are exploiting the concept of cyclical monotonicity and the approach initiated by McCann
(1995).7 Section 4 provides some numerical results. The algorithms we are using can handle
samples of size as large as n = 20,000 in any dimension (the complexity of the algorithms
in Rd only depends on n, not on d); simulations demonstrate the power of empirical center-
outward quantile functions as descriptive tools. Further numerical results, and a comparison
with Tukey depth are given in Appendix H. Section 5 concludes with a discussion of some
perspectives for further research.

7This fact is emphasized by a shift in the terminology. Our center-outward distribution and quantile func-
tions actually are particular cases of what Chernozhukov et al. (2017) define as Monge-Kantorovich vector ranks
and quantiles; as our approach is focusing on the properties of distribution functions and no longer relies on
Monge–Kantorovich optimization ideas, however, we consistently adopt the terminology center-outward instead
of Monge–Kantorovich ranks and signs.
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1.4. Notation. Throughout, let μd stand for the Lebesgue measure over Rd equipped
with its Borel σ -field Bd . Denote by Pd the family of Lebesgue-absolutely continuous distri-
butions over (Rd,Bd), by Fd := {f := dP/dμd,P ∈ Pd} the corresponding family of densi-
ties, by Bn

d the n-fold product Bd ×· · ·×Bd , by P(n) or P(n)
f the distribution of an i.i.d. n-tuple

with marginals P = Pf ∈ Pd , by P(n)
d the corresponding collection {P(n)

f , f ∈ Fd}; P(n)
d -a.s.

means P(n)-a.s. for all P ∈ P(n)
d . Write spt(P) for the support of P, spt(P) for its interior. Fi-

nally, let Sd−1, Sd and Sd denote the unit sphere, the open, and the closed unit ball in Rd ,
respectively.

2. Distribution and quantile functions, ranks and signs in Rd . As announced in the
Introduction, our definitions of center-outward distribution and quantile functions are rooted
in the main result of McCann (1995). Those definitions in Hallin (2017) are given under the
assumption that P has a nonvanishing density with support Rd . Under that assumption, one
safely can define the center-outward distribution function as the unique gradient of a convex
function ∇φ pushing P forward to the uniform distribution over the unit ball.8 That gradient,
moreover, is a homeomorphism between Rd \∇φ−1({0}) and the punctured unit ball Sd \ {0}
(Figalli (2018)) and its inverse naturally qualifies as a quantile function—a very simple and
intuitively clear characterization.

Things are slightly more delicate when the support of P is a strict subset of Rd , as unique-
ness of ∇φ then only holds P-a.s., and requires the less direct and slightly more elaborate
definitions developed here, starting, as in Chernozhukov et al. (2017) and Ghosal and Sen
(2019), with the quantile function Q± (Definition 2.1), then defining the distribution func-
tion F± via the Legendre transform (2.3). The two approaches, however, coincide in case P
has a nonvanishing density over Rd .

2.1. Center-outward distribution and quantile functions in Rd . Recall that a convex
function ψ from Rd to R ∪ {∞} (a) is continuous on the interior of its do-
main dom(ψ) := {x : ψ(x) < ∞} and (b) is Lebesgue-a.e. differentiable, with gradient ∇ψ ,
on dom(ψ). By abuse of language and notation, call gradient and denote as ∇ψ any function
coinciding μd -a.e. with that gradient. A statement of McCann’s main result adapted to our
needs is the following.

THEOREM 2.1 (McCann (1995)). Let P1 and P2 denote two distributions in Pd . Then,

(i) the class of functions

∇�P1;P2 := {∇ψ |ψ : Rd →R convex, lower semicontinuous, and

such that ∇ψ#P1 = P2
}(2.1)

is not empty;
(ii) if ∇ψ ′ and ∇ψ ′′ are two elements of ∇�P1;P2 , they coincide P1-a.s.;9

(iii) if P1 and P2 have finite moments of order two, any element of ∇�P1;P2 is an optimal
quadratic transport pushing P1 forward to P2.

Although not mentioned in McCann’s main result (page 310 of McCann (1995)), lower
semicontinuity in (2.1) can be imposed without loss of generality (this follows, for instance,
from his proof of uniqueness on page 318).

8We are borrowing from the measure transportation literature the convenient notation T #P1 = P2 for the distri-
bution P2 of T (X) under X ∼ P1—we say that T is pushing P1 forward to P2.

9That is, P1({x : ∇ψ ′(x) 
= ∇ψ ′′(x)}) = 0; in particular, ∇ψ1(x) = ∇ψ2(x) Lebesgue-a.e. for x ∈ spt(P1).
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Denoting by Ud the spherical uniform distribution over Sd ,10 consider Theorem 2.1
and (2.1) for P1 = Ud and P2 = P ∈ Pd . Since the support of Ud is Sd (which is convex
and compact), ψ is uniquely determined over Sd if we impose, without loss of genera-
lity, ψ(0) = 0.11 Outside Sd (i.e., on a set with Ud -probability zero), let us further impose

(2.2) ψ(u) = ∞ for ‖u‖ > 1 and ψ(u) = lim inf
Sd�v→u

ψ(v) for ‖u‖ = 1.

This extension—a standard construction in convex analysis (see, e.g., (A.18) in
Figalli (2017))—yields a function ψ which is convex and lower semicontinuous over Rd ,
with 1-Lipschitz Legendre transform (2.3). The domain of ψ , viz. dom(ψ) := {u|ψ(u) < ∞},
is such that Sd ⊂ dom(ψ) ⊂ S̄d . A convex function is differentiable a.e. in the interior of its
domain. Hence, the gradient ∇ψ of ψ satisfying (2.2) exists, is unique a.e. in Sd , and still
belongs to ∇�Ud ;P.

Inspired by the univariate case as described in Appendix B.3, we propose the following
definition of the center-outward quantile function of P ∈Pd .

DEFINITION 2.1. Call center-outward quantile function Q± of P ∈ Pd the a.e. unique
element ∇ψ ∈ ∇�Ud ;P such that ψ satisfies (2.2).

In general, thus, Q± is a class of Lebesgue-a.e. equal functions rather than a function.
Each element in that class pushes Ud forward to P, hence fully characterizes P. Such a.e.
uniqueness, in probability and statistics, is not uncommon: densities, conditional expecta-
tions, likelihoods, MLEs, etc. all are defined up to sets of probability zero. As we shall see,
however, strict uniqueness does hold for important families of distributions, for which ψ is
everywhere differentiable over Sd .

Next, let us proceed with the definition of the center-outward distribution function F±.
Consider the Legendre transform

(2.3) φ(x) := ψ∗(x) := sup
u∈Sd

(〈u,x〉 − ψ(u)
)
, x ∈ Rd

of the a.e.-unique convex function ψ (satisfying ψ(0) = 0 and (2.2)) of which Q± is the
gradient. Being the sup of a family of 1-Lipschitz functions, φ also is 1-Lipschitz. It follows
that φ is a.e. differentiable, with ‖∇φ(x)‖ ≤ 1, so that (Corollary (A.27) in Figalli (2017)),
denoting by ∂φ(x) the subdifferential of φ at x,12

(2.4) ∂φ
(
Rd) := ⋃

x∈Rd

∂φ(x) ⊆ Sd .

Moreover, since P has a density, Proposition 10 in McCann (1995) implies that

(2.5) ∇ψ ◦ ∇φ(x) = x P-a.s. and ∇φ ◦ ∇ψ(u) = u Ud -a.s.

In view of (2.4) and the second statement in (2.5), F± := ∇φ takes values in Sd and pushes P
forward to Ud . Moreover, there exist subsets ˘spt(P) and S̆d of spt(P) and Sd , respectively,
such that (a) P( ˘spt(P)) = 1 = Ud(S̆d), (b) the restriction to ˘spt(P) of ∇φ =: F± and the
restriction to S̆d of ∇ψ =: Q± are bijective, and (c) those restrictions are the inverse of each
other. Accordingly, F± qualifies as a center-outward distribution function.

10Namely, the product of the uniform over the unit sphere Sd−1 with a uniform over the unit interval of distances
to the origin. While Ud coincides, for d = 1, with the Lebesgue-uniform over S1, this is no longer the case
for d > 1; we nevertheless still call it uniform over the unit ball.

11Indeed, two convex functions with a.e. equal gradients on an open convex set are equal up to an additive
constant; see Lemma 2.1 in del Barrio and Loubes (2019).

12Recall that the subdifferential of φ at x ∈ R is the set ∂φ(x) of all z ∈ Rd such that φ(y) − φ(x) ≥ 〈z,y − x〉
for all y; φ is differentiable at x iff ∂φ(x) consists of a single point, ∇φ(x).
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DEFINITION 2.2. Call F± := ∇φ the center-outward distribution function of P ∈ Pd .

The following propositions summarize the main properties of F± and Q±, some of which
already have been mentioned in previous comments.

PROPOSITION 2.1. Let Z ∼ P ∈ Pd and denote by F± the center-outward distribution
function of P. Then:

(i) F± takes values in Sd and F±#P = Ud : F±, thus, is a probability-integral transfor-
mation;

(ii) ‖F±(Z)‖ is uniform over [0,1], S(Z) := F±(Z)/‖F±(Z)‖ is uniform over Sd−1, and
they are mutually independent;

(iii) F± entirely characterizes P;
(iv) for d = 1, F± coincides with 2F − 1 (F the traditional distribution function).

For q ∈ (0,1), define the center-outward quantile region and the center-outward quantile
contour of order q as

(2.6)
C(q) := Q±(qS̄d) = {

z|∥∥F±(z)
∥∥ ≤ q

}
and

C(q) := Q±(qSd−1) = {
z|∥∥F±(z)

∥∥ = q
}
,

respectively.

PROPOSITION 2.2. Let P ∈ Pd have center-outward quantile function Q±. Then:

(i) Q± pushes Ud forward to P, hence entirely characterizes P;
(ii) the center-outward quantile region C(q), 0 < q < 1, has P-probability content q;

(iii) Q±(u) coincides, for d = 1, with inf{x|F(x) ≥ (1 + u)/2)}, u ∈ (−1,1), and C(q),
for q ∈ (0,1), with the interval (F the traditional distribution function)13

(2.7)
[
inf

{
x|F(x) ≥ (1 − q)/2

}
, inf

{
x|F(x) ≥ (1 + q)/2

}] ∩ spt(P).

The modulus ‖F±(x)‖ thus is the order of the quantile contour and the P-probability con-
tent of the smallest quantile region containing x; the unit vector S(z) := F±(z)/‖F±(z)‖ has
the interpretation of a multivariate sign. Note that the definition of C(0) so far has been post-
poned.

These properties are not entirely satisfactory, though, and a bijection between ˘spt(P)

and S̆d is not enough for a quantile concept to be meaningful. The terminology quantile
region and quantile contour, indeed, calls for a collection of connected, closed and strictly
nested regions C(q)—i.e., such that C(q1) � C(q) � C(q2) for any 0 < q1 < q < q2 < 1—
with continuous boundaries C(q) of Hausdorff dimension d − 1. A reasonable14 definition of
a median set then is

(2.8) C(0) := ⋂
0<q<1

C(q).

13Since Q± is only a.e. defined, one can as well use spt(P) in (2.7); this, however, no longer produces a closed
region and may result in an empty set

⋂
0<q<1C(q) of medians in (2.8).

14By analogy with the definition of C(q) for q > 0, one may be tempted to define C(0) as Q±(0). This yields
for C(0) an arbitrary point in the subdifferential ∂ψ(0) which, unless that subdifferential consists of a single point,
cannot satisfy (2.8).
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Such attractive properties do not hold, unfortunately, and the median set C(0), as defined
in (2.8) may be empty, unless Q±, hence also F±, enjoy some continuity properties, which re-
quire regularity assumptions on P and its support: see Appendix H for examples. A sufficient
condition, as we shall see, is the continuity of u �→ Q±(u), at least on Sd \ {0}.

To see this and understand the special role of 0, recall that Q± is only a.e. defined.
Hence, Q±(0) can take any value compatible with the convexity of ψ—namely, any single
point in the subdifferential ∂ψ(0) of the uniquely defined ψ satisfying ψ(0) = 0. As a con-
sequence, continuity of Q± is impossible unless ∂ψ(0) (and all other subdifferentials—not
just almost all of them) contains exactly one single point.

Continuity of the restriction of Q± to a closed spherical annulus q+Sd \ q−Sd yields
continuous contours C(q) and strictly nested closed regions C(q) for the orders q ∈ [q−, q+].
Letting q+ = 1 − ε and q− = ε with ε > 0 arbitrarily small, continuity of Q± everywhere
except possibly at 0 thus yields continuous contours and strictly nested closed regions for the
orders q ∈ (0,1).

The definition of quantile regions implies that all possible values of Q±(0) are contained
in the intersection

⋂
0<q<1 C(q) of all regions of order q > 0; hence, ∂ψ(0) ⊆ ⋂

0<q<1 C(q).
Conversely, any point u 
= 0 has a neighborhood V (u) such that 0 /∈ V (u). Assuming that Q±
is continuous everywhere but at 0, we have Q±(V (u)) ∩ ⋂

0<q<1 C(q) = ∅ and, conse-
quently, ∂ψ(0) = ⋂

0<q<1 C(q). Being the subdifferential of a convex function ψ , ∂ψ(0),
hence

⋂
0<q<1 C(q), is closed and convex. Because P has a density and 0 is in the interior

of ψ’s domain, it also is compact and has Lebesgue measure zero (Lemma A.22 in Figalli
(2017)).

It follows that by defining the median set as C(0) := ⋂
0<q<1 C(q) = ∂ψ(0) (instead

of C(0) := Q±(0), which is not uniquely determined), we do not need continuity at 0 to ob-
tain strict nestedness of all quantile contours and regions—now including C(0)—while (2.8),
of course, is automatically satisfied.

This, which justifies giving up continuity at 0 (and only there), is not an unimportant detail:
Proposition 2.3 below indeed shows that important classes of distributions yield quantile
functions Q± enjoying continuity over the punctured ball Sd \ {0} but not over Sd .

Denote by Pconv
d the class of distributions Pf ∈ Pd such that (a) spt(Pf ) is convex15 and,

(b) for all D ∈ R+, there exist constants 
D;f and λD;f such that

0 < λD;f ≤ f (x) ≤ 
D;f < ∞ for all x ∈ (DSd) ∩ spt(Pf ).

That class includes the class P+
d of distributions with support spt(P) = Rd considered by

Hallin (2017) and Figalli (2018).
The following result, which establishes the regularity properties of F± and Q± for P

in Pconv
d , extends the main result obtained for for P in P+

d by Figalli (2018) and is borrowed,
with some minor additions, from del Barrio, González-Sanz and Hallin (2019).

PROPOSITION 2.3. Let P ∈ Pconv
d have density f and support spt(P). Then, its center-

outward distribution function F± = ∇φ is continuous and single-valued on Rd , and such
that ‖F±(x)‖ = 1 for x /∈ spt(P). Furthermore, there exists a compact convex set K ⊂ spt(P)

with Lebesgue measure zero such that:

(i) F± and the center-outward quantile function Q± = ∇ψ are homeomorphisms be-
tween Sd \ {0} and spt(P) \ K , on which they are inverse of each other; for d = 1,2, how-
ever, K contains a single point and the homeomorphisms are between Sd and spt(P);

15That convex support is not necessarily bounded.
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(ii) the quantile contours C(q) and regions C(q), 0 < q < 1 defined by Q± are such
that

⋂
0<q<1 C(q) = ∂ψ({0}) = K ; K thus qualifies as the median set C(0) of P as defined

in (2.8).

If, moreover, f ∈ Ck,α
loc (spt(Pf )) for some k ≥ 0, then:

(iiia) Q± and F± are diffeomorphisms of class Ck+1,α
loc between Sd \ {0} and spt(P)\C(0);

(iiib) f (z) = c−1
d det[Hψ(∇φ(z))]‖∇φ(z)‖1−dI [z ∈ spt(Pf ) \C(0)] where cd denotes the

area 2πd/2/�(d/2) of the unit sphere Sd−1 and Hψ(u) the Hessian16 of ψ computed at u.

Denote by P±
d ⊂ Pd the class of all distributions of the form P = ∇ϒ#Ud where ϒ is

convex and ∇ϒ a homeomorphism from Sd \ {0} to ∇ϒ(Sd \ {0}) such that ∇ϒ({0}) is
a compact convex set of Lebesgue measure zero. By construction, such P ∈ P±

d has center-
outward quantile function Q± = ∇ϒ and center-outward distribution function F± = (∇ϒ)−1

for x in the range of ∇ϒ ; ‖F±(x)‖ = 1 outside that range, and F± satisfies Proposition 2.3.
The latter statement actually can be rephrased as Pconv

d ⊂ P±
d , with the following immediate

corollary in terms of quantile regions and contours.

COROLLARY 2.1. For any P ∈ P±
d (hence, any P ∈ Pconv

d ) and q ∈ [0,1), the quantile
regions C(q) are closed, connected and nested, with continuous boundaries C(q) satisfy-
ing μd(C(q)) = 0.

For any distribution P ∈ P±
d , F± thus induces a (partial) ordering of Rd similar to the

ordering induced on the unit ball by the system of polar coordinates, and actually coincides
with the “vector rank transformation” considered in Chernozhukov et al. (2017) when the
reference distribution is Ud . The quantile contours C(q) also have the interpretation of depth
contours associated with their Monge–Kantorovich depth. Their assumption of a compact
support satisfying Cafarelli regularity conditions are sufficient (not necessary, though: cfr the
possible discontinuities at the origin) for P ∈ P±

d .

2.2. Center-outward ranks and signs in Rd . Turning to the sample situation, denote
by Z(n) := (Z(n)

1 , . . . ,Z(n)
n ) an n-tuple of random vectors—observations or residuals asso-

ciated with some parameter θθθ of interest. We throughout consider the case that the Z(n)
i ’s

are (possibly, under parameter value θθθ ) i.i.d. with density f ∈ Fd , distribution P and center-
outward distribution function F±.

For the empirical counterpart F(n)
± of F±, we propose the following extension of the uni-

variate concept described in Appendix B. Assuming d ≥ 2, let n factorize into

(2.9) n = nRnS + n0, nR,nS, n0 ∈N, 0 ≤ n0 < min(nR,nS),

where nR → ∞ and nS → ∞ as n → ∞ (implying n0/n → 0); (2.9) is extending to d ≥ 2
the factorization of n into n = �n

2�2 + n0 with n0 = 0 (n even) or n0 = 1 (n odd) that leads,
for d = 1, to the grids (B.6).

Next, consider a sequence of “regular grids” over the unit ball Sd obtained as the intersec-
tion between

– a “regular” nS -tuple S(nS) := (u1, . . .unS
) of unit vectors, and

– the nR hyperspheres centered at 0, with radii j
nR+1 , j = 1, . . . , nR ,

16That Hessian exists since k ≥ 0 and ∇φ(z) 
= 0 for z ∈ spt(Pf ) \C(0).
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along with n0 copies of the origin whenever n0 > 0. In theory, by a “regular”
nS -tuple S(nS), we only mean that the sequence of uniform discrete distributions over {u1,

. . .unS
} converges weakly, as nS → ∞, to the uniform distribution over Sd−1. In prac-

tice, each nS -tuple should be “as uniform as possible.” For d = 2, perfect regularity can be
achieved by dividing the unit circle into nS arcs of equal length 2π/nS . Starting with d = 3,
however, this typically is no longer possible. A random array of nS independent and uni-
formly distributed unit vectors does satisfy (almost surely) the weak convergence require-
ment. More regular deterministic arrays (with faster convergence) can be considered, though,
such as the low-discrepancy sequences of the type considered in numerical integration and
Monte Carlo methods (see, e.g., Niederreiter (1992), Judd (1998), Dick and Pillichsham-
mer (2014) or Santner, Williams and Notz (2003)), which are current practice in numerical
integration and the design of computer experiments.

The resulting grid of nRnS points then is such that the discrete distribution with probability
masses 1/n at each gridpoint and probability mass n0/n at the origin converges weakly to
the uniform Ud over the ball Sd . That grid, along with the n0 copies of the origin, is called
the augmented grid (n points).

We then define F(n)
± (Z(n)

i ), i = 1, . . . , n as the solution of an optimal coupling problem
between the observations and the augmented grid. Let T denote the set of all possible bijec-
tive mappings between Z(n)

1 , . . . ,Z(n)
n and the n points of the augmented grid just described.

Under the assumptions made, the Z(n)
i ’s are all distinct with probability one, so that T con-

tains n!/n0! classes of n0! indistinguishable couplings each (two couplings T1 and T2 are
indistinguishable if T1(Z

(n)
i ) = T2(Z

(n)
i ) for all i).

DEFINITION 2.3. Call empirical center-outward distribution function any of the map-
pings F(n)

± : (Z(n)
1 , . . . ,Z(n)

n ) �→ (F(n)
± (Z(n)

1 ), . . . ,F(n)
± (Z(n)

n )) =: F(n)
± (Z(n)) satisfying

(2.10)
n∑

i=1

∥∥Z(n)
i − F(n)

±
(
Z(n)

i

)∥∥2 = min
T ∈T

n∑
i=1

∥∥Z(n)
i − T

(
Z(n)

i

)∥∥2

or, equivalently,

(2.10)
n∑

i=1

∥∥Z(n)
i − F(n)

±
(
Z(n)

i

)∥∥2 = min
π

n∑
i=1

∥∥Z(n)
π(i) − F(n)

±
(
Z(n)

i

)∥∥2
,

where the set {F(n)
± (Z(n)

i )|i = 1, . . . , n} consists of the n points of the augmented grid and π

ranges over the n! possible permutations of {1,2, . . . , n}.

Determining such a coupling is a standard optimal assignment problem, which takes the
form of a linear program for which efficient algorithms are available (see Peyré and Cuturi
(2019) for a recent survey).

Call order statistic Z(n)
(·) of Z(n) the un-ordered n-tuple of Z(n)

i values—equivalently, an

arbitrarily ordered version of the same. To fix the notation, let Z(n)
(·) := (Z(n)

(1), . . . ,Z(n)
(n)),

where Z(n)
(i) is such that its first component is the ith order statistic of the n-tuple of Z(n)

i ’s

first components. Under this definition, the points z ∈ Rnd at which (2.10) possibly admits
two minimizers or more lie in the union N of a finite number of linear subspaces of Rnd

where some equidistance properties hold between Z(n)
i ’s and gridpoints; therefore, N is Z(n)

(·) -
measurable and has Lebesgue measure zero. Such multiplicities have no practical impact,
thus, since (for a given grid) they take place on a unique null set N .
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Another type of multiplicity occurs, even over Rnd \ N : each of the minimizers F(n)
± (Z(n))

of (2.10) indeed is such that the n-tuple

(2.11)
{(

Z(n)
1 ,F(n)

±
(
Z(n)

1

))
, . . . ,

(
Z(n)

n ,F(n)
±

(
Z(n)

n

))}
is one of the n0! indistinguishable couplings between the n observations and the n points of
the augmented grid that minimize, over the n! possible couplings, the sum of within-pairs
squared distances. That multiplicity, which involves n0 tied observations, does not occur
for n0 = 0 or 1: the mapping z �→ (z(·),F(n)

± (z)) then is injective over Rnd \ N . For n0 > 1,
it is easily taken care of by replacing, in the grid, the n0 > 1 copies of 0 with n0 i.i.d. points
uniformly distributed over (nR + 1)−1Sd—a convenient tie-breaking device (see footnote 9
in Appendix D.2) restoring the injectivity over Rnd \ N of z �→ (z(·),F(n)

± (z)).
Reinterpreting (2.10) as an expected (conditional on the order statistic—see Section 2.4 for

a precise definition) transportation cost, the same optimal coupling(s) also constitute(s) the
optimal L2 transport mapping the empirical distribution to the uniform discrete distribution
over the augmented grid (and, conversely, the two problems being entirely symmetric, the
optimal L2 transport mapping the uniform discrete distribution over the augmented grid to
the empirical distribution). Classical results (McCann (1995) again) then show that optimality
is achieved (i.e., (2.10) is satisfied) iff the so-called cyclical monotonicity property holds for
the n-tuple (2.11).

DEFINITION 2.4. A subset S of Rd × Rd is said to be cyclically monotone if, for any
finite collection of points {(x1,y1), . . . , (xk,yk)} ⊆ S,

(2.12) 〈y1,x2 − x1〉 + 〈y2,x3 − x2〉 + · · · + 〈yk,x1 − xk〉 ≤ 0.

The subdifferential of a convex function does enjoy cyclical monotonicity, which heuristi-
cally can be interpreted as a discrete version of the fact that a smooth convex function has a
positive semidefinite second-order differential.

Note that a finite subset S = {(x1,y1), . . . , (xn,yn)} of Rd × Rd is cyclically mono-
tone iff (2.12) holds for k = n—equivalently, iff, among all pairings of (x1, . . . ,xn)

and (y1, . . . ,yn), S maximizes
∑n

i=1〈xi ,yi〉 (an empirical covariance) or, equivalently, mini-
mizes

∑n
i=1 ‖yi − xi‖2 (a squared empirical distance). In other words, a finite subset S is

cyclically monotone iff the couples (xi ,yi ) are a solution of the optimal assignment problem
with assignment costs ‖yi − xi‖2. The L2 transportation cost considered here is thus closely
related to the concept of convexity and the geometric property of cyclical monotonicity; it
does not play the statistical role of an estimation loss function, though—the L2 distance be-
tween the empirical transport and its population counterpart (the expectation of which might
be infinite), indeed, is never considered.

Associated with our definition of an empirical center-outward distribution function F(n)
±

are the following concepts of

– center-outward ranks R
(n)
±,i := (nR + 1)‖F(n)

± (Z(n)
i )‖,

– empirical center-outward quantile contours and regions

C(n)

±;Z(n)

(
j

nR + 1

)
:= {

Z(n)
i |R(n)

±,i = j
}

and C
(n)

±;Z(n)

(
j

nR + 1

)
:= {

Z(n)
i |R(n)

±,i ≤ j
}
,

respectively, where j/(nR + 1), j = 0,1, . . . , nR , is an empirical probability contents, to
be interpreted as a quantile order,

– center-outward signs S(n)
±,i := F(n)

± (Z(n)
i )I [F(n)

± (Z(n)
i ) 
= 0]/‖F(n)

± (Z(n)
i )‖, and center-

outward sign curves {Z(n)
i |S(n)

±,i = u}, u ∈ S(nS).



DISTRIBUTION AND QUANTILE FUNCTIONS IN Rd 1151

The contours, curves and regions defined here are finite collections of observed points; the
problem of turning them into continuous contours enclosing compact regions and continuous
lines is treated in Section 3.

Up to this point, we have defined multivariate generalizations of the univariate concepts
of center-outward distribution and quantile functions, center-outward ranks and signs, all
reducing to their univariate analogues in case d = 1. However, it remains to show that those
multivariate extensions are adequate in the sense that they enjoy in Rd the characteristic
properties that make the inferential success of their univariate counterparts—namely:

(GC) a Glivenko–Cantelli-type asymptotic relation between F(n)
± and F±, and

(DF+) the (essential) maximal ancillarity property described for d = 1 in Section 1.1.

This is the objective of Sections 2.3 and 2.4.

2.3. Glivenko–Cantelli. With the definitions adopted in Sections 2.1 and 2.2, the tra-
ditional Glivenko–Cantelli theorem, under center-outward form (B.7), holds, essentially ne
varietur, in Rd under P ∈ P±

d .

PROPOSITION 2.4. Let Z(n)
1 , . . . ,Z(n)

n be i.i.d. with distribution P ∈ P±
d . Then

(2.13) max
1≤i≤n

∥∥F(n)
±

(
Z(n)

i

) − F±
(
Z(n)

i

)∥∥ −→ 0 a.s. as n → ∞.

The particular case of elliptical distributions is considered in Appendix C.
Proposition 2.4 considerably reinforces, under more general assumptions (no compact sup-

ports, no second-order moments), an early strong consistency result by Cuesta-Albertos, Ma-
trán and Tuero-Díaz (1997) as well as the Glivenko–Cantelli result of Boeckel, Spokoiny and
Suvorikova (2018). It readily follows from the more general Proposition 3.3 below, which
establishes (2.13) under sup form for cyclically monotone interpolations of F(n)

± .

2.4. Distribution-freeness and maximal ancillarity. Proposition 2.5 provides the multi-
variate extension of the usual distributional properties of univariate order statistics and ranks.
Note that, contrary to Proposition 2.4, it holds for P ∈Pd . See Appendices D.2 and D.1 for a
proof and details on sufficiency, ancillarity and (strong) essential maximal ancillarity.

PROPOSITION 2.5. Let Z(n)
1 , . . . ,Z(n)

n be i.i.d. with distribution P ∈ Pd , center-outward

distribution function F±, order statistic Z(n)
(·) , and empirical center-outward distribution func-

tion F(n)
± . Then:

(i) Z(n)
(·) is sufficient and complete, hence minimal sufficient, for P(n)

d ;

(ii) (DF) F(n)
± (Z(n)) := (F(n)

± (Z(n)
1 ), . . . ,F(n)

± (Z(n)
n )) is uniformly distributed over the

n!/n0! permutations with repetitions (the origin counted as n0 indistinguishable points) of
the grid described in Section 2.2;

(iii) for n0 = 0, the vectors (R
(n)
±,1, . . . ,R

(n)
±,n) and (S(n)

±,1, . . . ,S(n)
±,n) of center-outward

ranks and signs are mutually independent; for n0 > 0, the same independence holds for
the (nRnS)-tuples of ranks and signs associated with the (random) set {i1 < · · · < inRnS

}
of indices for which F(n)

± (Z(n)
ij

) 
= 0;

(iv) for all P ∈ Pd , Z(n)
(·) and F(n)

± (Z(n)) are mutually P-independent;

(v) for n0 ≤ 1 or after adequate tie-breaking (see the comment below), F(n)
± (Z(n)) is

strongly P(n)
d -essentially maximal ancillary.
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In (iii) and (v), n0 plays a special role. In (iii), the fact that the sign, for the n0 obser-
vations mapped to the origin, is not a unit vector induces, for n0 ≥ 1, a (very mild) depen-
dence between signs and ranks which, however, does not affect joint distribution-freeness.
In (v), n0 ≤ 1 implies that z �→ (z(·),F(n)

± (z)) is injective over Rnd \ N (N the Lebesgue
measure-zero random set on which (2.10) admits two solutions or more; see page 13). As
previously explained, injectivity is easily restored via a simple tie-breaking device: (v) then
holds irrespective of the value of n0. Note that the proportion n0/n of points involved anyway
tends to zero as n → ∞.

More important is the interpretation of essential maximal ancillarity in terms of finite-
sample semiparametric efficiency in case Zi is the θ -residual Zi (θ) in some semiparametric
model with parameter of interest θ and nuisance f (see Section 1.1). Another crucial conse-
quence of (v) is the following corollary.

COROLLARY 2.2. Denote by B̃(n)
± the sub-σ -field generated by the mapping F̃(n)

± associ-

ated with some other deterministic17 n-points grid—whether over the unit ball, the unit cube,
or any other fixed domain. Then, there exists M ∈ Bn

d such that P(n)(M) = 0 for all P ∈ Pd

and B(n)
± ∩ (Rnd \ M) = B̃(n)

± ∩ (Rnd \ M).

It follows (see Appendix D.1) that B(n)
± and B̃(n)

± are strongly essentially equi-
valent σ -fields. Ranks and signs associated with distinct grids, thus, essentially generate
the same sub-σ -fields, which considerably attenuates the impact of grid choices; see Ap-
pendix D.2 for details and a proof.

3. Smooth interpolation under cyclical monotonicity constraints. So far, Defini-
tion 2.3 only provides a value of F(n)

± at the sample values Z(n)
i . If F(n)

± is to be extended

to z ∈ Rd , an interpolation F
(n)

± , similar for instance to the one shown, for d = 1, in Fig-
ure 1 of Appendix B, has to be constructed. Such interpolation should belong to the class of
gradients of convex functions from Rd to Sd , so that the resulting contours C(n)

±;Z(n) have the
nature of continuous quantile contours. Moreover, it still should enjoy (now under a supz∈Rd

form similar to (B.2)) the Glivenko–Cantelli property.18 Constructing such interpolations is
considerably more delicate for d ≥ 2 than in the univariate case.

Empirical center-outward distribution functions F(n)
± , as defined in Definition 2.3, are

cyclically monotone (discrete) mappings from the random sample (or n-tuple of resi-
duals) Z(n)

1 , . . . ,Z(n)
n to a (nonrandom) regular grid of Sd ; hence, F(n)

± is defined at the ob-

served points only. Although such discrete F(n)
± perfectly fulfills its statistical role as a suf-

ficient sample summary carrying the same information as the sample itself, one may like to
define an empirical center-outward distribution function as an object of the same nature—a
smooth cyclically monotone mapping from Rd to Sd—as its population counterpart F±. This
brings into the picture the problem of the existence and construction, within the class of gradi-

ents of convex functions, of a continuous extension x �→ F
(n)

± (x) of the discrete F(n)
± , yielding

a Glivenko–Cantelli theorem of the supx∈Rd form—namely, supx∈Rd ‖F
(n)

± (x)− F±(x)‖ → 0

17Deterministic here means nonrandom or randomly generated from a probability space that has no relation to
the observations.

18It should be insisted, though, that the max1≤i≤n form (2.13) of Glivenko–Cantelli is not really restrictive, as
interpolations do not bring any additional information, and are mainly intended for (graphical or virtual) depiction
of quantile contours.
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a.s. as n → ∞—rather than the max1≤i≤n form given in Proposition 2.4. That problem re-
duces to the more general problem of smooth interpolation under cyclical monotonicity (see
Definition 2.4) constraints, which we now describe.

Let XXX n = {x1, . . . ,xn} and YYYn = {y1, . . . ,yn} denote two n-tuples of points in Rd . As-
suming that there exists a unique bijection T :XXX n →YYYn such that the set {(x, T (x))|x ∈XXX n}
is cyclically monotone, there is no loss of generality in relabeling the elements of YYYn so
that yi = T (xi ). Accordingly, we throughout are making the following assumption.

ASSUMPTION (A). The n-tuples XXX n and YYYn are such that T : xi �→ T (xi ) = yi

for i = 1, . . . , n is the unique cyclically monotone bijective map from XXX n to YYYn.

Our goal, under Assumption (A), is to construct a smooth (at least continuous) cyclically
monotone map T :Rd →Rd such that T (xi ) = T (xi ) = yi for i = 1, . . . , n.

It is well known that the subdifferential of a convex function ψ from Rd to R enjoys cycli-
cal monotonicity. A classical result by Rockafellar (1966) establishes the converse: any finite
cyclically monotone subset S of Rd ×Rd lies in the subdifferential of some convex function.
Our result reinforces this characterization by restricting to differentiable convex functions.
Note that a differentiable convex function ψ is automatically continuously differentiable,
with unique (at all x) subgradient ∇ψ(x) and subdifferential {(x,∇ψ(x))|x ∈ Rd}. When ψ

is convex and differentiable, the mapping x �→ ∇ψ(x) thus enjoys cyclical monotonicity. We
show in Corollary 3.1 that, conversely, any subset S = {(xi ,yi )|i = 1, . . . , n} of Rd × Rd

enjoying cyclical monotonicity is the subdifferential (at x1, . . . ,xn) of some (continuously)
differentiable convex function ψ .

Note that Assumption (A) holds if and only if identity is the unique minimizer, among the
set of all permutations σ of {1, . . . , n}, of

∑n
i=1 ‖xi − yσ(i)‖2. Letting ci,j := ‖xi − yj‖2, the

same condition can be recast in terms of uniqueness of the solution of the linear program

(3.1) min
π

n∑
i=1

n∑
j=1

ci,jπi,j s.t.
n∑

i=1

πi,j =
n∑

j=1

πi,j = 1

n
, πi,j ≥ 0, i, j = 1, . . . , n.

Clearly, σ(i) = i minimizes
∑n

i=1 ‖xi −yσ(i)‖2 iff πi,i = 1/n, πi,j = 0 for j 
= i is the unique
solution of (3.1).

Our solution to the cyclically monotone interpolation problem is constructed in two steps.
First (Step 1), we extend T to a piecewise constant cyclically monotone map defined on a set
in Rd the complement of which has Lebesgue measure zero. Being piecewise constant, that
map cannot be smooth. To fix this, we apply (Step 2) a regularization procedure yielding the
required smoothness while preserving the interpolation feature. For Step 1, we rely on the
following result (see Appendix F.1 for the proof).

PROPOSITION 3.1. Assume that x1, . . . ,xn ∈ Rd and y1, . . . ,yn ∈ Rd are such that i 
= j

implies xi 
= xj and yi 
= yj . Then:

(i) the map T (xi ) = yi , i = 1, . . . , n is cyclically monotone if and only if there exist real
numbers ψ1, . . . ,ψn such that

〈xi ,yi〉 − ψi = max
j=1,...,n

(〈xi ,yj 〉 − ψj

)
, i = 1, . . . , n;

(ii) furthermore, T is the unique cyclically monotone map from {x1, . . . ,xn} to {y1, . . . ,yn}
if and only if there exist real numbers ψ1, . . . ,ψn such that

(3.2) 〈xi ,yi〉 − ψi > max
j=1,...,n,j 
=i

(〈xi ,yj 〉 − ψj

)
, i = 1, . . . , n.
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REMARK 3.1. The condition, in Proposition 3.1, that y1, . . . ,yn are distinct in general
is not satisfied in the case of empirical center-outward distribution functions, where typi-
cally y1 = · · · = yn0 with y1 
= yi for i > n0 and n0 ranging between 0 and min(nR,nS) −
1. This can be taken care of by means of the tie-breaking device described in Section 2.2.
The proof (see Appendix F.1), however, is easily adapted to show that the map T (xi ) = yi

for i = 1, . . . , n is cyclically monotone if and only if there exist real numbers ψn0+1, . . . ,ψn

and ψ1 such that, setting ψi = ψ1 for i = 2, . . . , n0,

〈xi ,yi〉 − ψi = max
j=1,...,n

(〈xi ,yj 〉 − ψj

)
, i = 1, . . . , n.

Similarly, the map T (xi ) = yi , i = 1, . . . , n is the unique cyclically monotone map from XXX n

to {y1,yn0+1 . . . ,yn} mapping n0 points in XXX n to y1 if and only if there exist real num-
bers ψn0+1, . . . ,ψn and ψ1 such that

〈xi ,y1〉 − ψ1 > 〈xi ,yj 〉 − ψj , i = 1, . . . , n0, j = n0 + 1, . . . , n,

〈xi ,yi〉 − ψi > 〈xi ,yj 〉 − ψj , i = n0 + 1, . . . , n, j = 1, n0 + 1, . . . , n, j 
= i.

Details are omitted.

As a consequence of Proposition 3.1, we can extend T to a cyclically monotone map
from Rd to Rd as follows. Under Assumption (A), we can choose ψ1, . . . ,ψn such that (3.2)
holds. Consider the convex map

(3.3) x �→ ϕ(x) := max
1≤j≤n

(〈x,yj 〉 − ψj

)
.

Now the sets Ci = {x ∈ Rd |(〈x,yi〉 − ψi) > maxj 
=i(〈x,yj 〉 − ψj)} are open convex sets
such that ϕ is differentiable in Ci , with ∇ϕ(x) = yi , x ∈ Ci . The complement of

⋃n
i=1 Ci has

Lebesgue measure zero. Thus, we can extend T to x ∈ ⋃n
i=1 Ci , hence to almost all x ∈ Rd ,

by setting T (x) := ∇ϕ(x).
By construction, xi ∈ Ci , hence T is an extension of T . Theorem 12.15 in Rockafellar

and Wets (1998) implies that T is cyclically monotone. We could (in case
⋃n

i=1 Ci � Rd )
extend T from

⋃n
i=1 Ci to Rd while preserving cyclical monotonicity, but such extension

of T cannot be continuous. Hence, we do not pursue that idea and, rather, try to find a smooth
extension of T . For this, consider the Moreau envelopes

(3.4) ϕε(x) := inf
y∈Rd

[
ϕ(y) + 1

2ε
‖y − x‖2

]
, x ∈ Rd, ε > 0

of ϕ (as defined in (3.3)): see, for example, Rockafellar and Wets (1998). The follow-
ing theorem shows that, for sufficiently small ε > 0, ∇ϕε—the so-called Yosida regular-
ization of ∇ϕ (Yosida (1965))—provides a continuous, cyclically monotone interpolation
of (x1,y1), . . . , (xn,yn), as desired.

PROPOSITION 3.2. Let Assumption (A) hold and consider ϕ as in (3.3), with con-
stants ψ1, . . . ,ψn satisfying (3.2). Let ϕε as in (3.4). Then, there exists e > 0 such that, for ev-
ery 0 < ε ≤ e, the map ϕε is continuously differentiable and Tε := ∇ϕε is a continuous, cycli-
cally monotone map such that Tε(xi ) = yi for all i = 1, . . . , n and ‖Tε(x)‖ ≤ maxi=1,...,n ‖yi‖
for all x ∈Rd .

The main conclusion of Proposition 3.2 (see Appendix F.2 for the proof) remains true in the
setup of Remark 3.1, and we still can guarantee the existence of a convex, continuously dif-
ferentiable ϕ such that ∇ϕ(xi ) = y1 for i = 1, . . . , n0 and ∇ϕ(xi ) = yi for i = n0 + 1, . . . , n.
More generally, the following corollary, which heuristically can be interpreted as a discrete
version of the fact that a smooth convex function has a positive semidefinite second-order
differential, is an immediate consequence.
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COROLLARY 3.1. Any cyclically monotone subset {(xi ,yi )|i = 1, . . . , n} of Rd × Rd

such that xi 
= xj for i 
= j lies in the subdifferential (at xi , i = 1, . . . , n) of some (continu-
ously) differentiable convex function ψ .

REMARK 3.2. It is important to note that, in spite of what intuition may suggest, and
except for the univariate case (d = 1), linear interpolation does not work in this problem; see
Remark F.1 in the Appendix for a counterexample.

REMARK 3.3. The interpolating function Tε given by the proof of Proposition 3.2 is
not only continuous but, in fact, Lipschitz with constant 1/ε (see, e.g., Exercise 12.23 in
Rockafellar and Wets (1998)). Looking for the smoothest possible interpolation we should,
therefore, take the largest possible ε for which the interpolation result remains valid. Let
us assume that ‖yi‖ ≤ 1, i = 1, . . . , n (this does not imply any loss of generality: we could
adequately normalize the data to get it satisfied, then backtransform the interpolating func-
tion). Set

(3.5) ε0 := 1

2
min

1≤i≤n

((〈xi ,yi〉 − ψi

) − max
j 
=i

(〈xi ,yj 〉 − ψj

))
.

Then, arguing as in the proof of Proposition 3.2, we see that B(xi , ε0) ⊂ Ci . Let ε > 0
and δ > 0 be such that ε + δ < ε0. Then, for x ∈ B(xi , δ), we have x − εyi ∈ B(xi , ε0),
and we can mimic the argument in that proof to conclude that, for x ∈ B(xi , δ), it holds
that ϕε(x) = 〈x,yi〉 − ψi − ε

2‖yi‖2, which entails Tε(xi ) = yi for every ε < ε0 with ε0 given
by (3.5). By continuity of the Yosida regularization (see Theorem 2.26 in Rockafellar and
Wets (1998)), we conclude that Tε0(xi ) = yi , i = 1, . . . , n. We summarize our findings in the
following result.

COROLLARY 3.2. Let Assumption (A) hold. Assume further that ‖yi‖ ≤ 1 for
all i = 1, . . . , n. Let ϕ(x) := max1≤j≤n(〈x,yj 〉 − ψj) with ψ1, . . . ,ψn defined as in (3.2), ϕε

as in (3.3), and ε0 as in (3.5). Then Tε0 := ∇ϕε0 is a Lipschitz continuous, cyclically mono-
tone map, with Lipschitz constant 1/ε0, such that Tε0(xi ) = yi , i = 1, . . . , n and ‖Tε0(x)‖ ≤ 1
for every x ∈Rd .

To conclude, let us turn to the choice of the weights ψi that satisfy condition (3.2), as
required by our construction. In view of Corollary 3.2 and the discussion in Remark 3.3,
choosing the weights that maximize ε0 in (3.5) results in smoother interpolations. The optimal
smoothing value then is half of the maximum in the linear program

(3.6) max
ψ,ε

ε s.t. 〈xi ,yi − yj 〉 ≥ ψi − ψj + ε, i, j ∈ {1, . . . , n}, i 
= j ;
the optimal ψj ’s are the corresponding weights. The dual of (3.6) is

min
zi,j ,i 
=j

∑
i,j=1,...,n;i 
=j

zi,j 〈xi ,yi − yj 〉(3.7)

s.t.
∑

j=1,...,n;j 
=i

(zi,j − zj,i) = 0,(3.8)

∑
i,j=1,...,n;i 
=j

zi,j = 1, zi,j ≥ 0, i, j = 1, . . . , n.

Now, (3.7) is a circulation problem over a complete graph with n vertices. By the flow
decomposition theorem (see, e.g., Theorem 3.5 and Property 3.6 in Ahuja, Magnanti and
Orlin (1993)), any circulation is of the form zi,j = ∑

W∈W δij (W)f (W) where W denotes
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the set of all cycles W in the graph, δij (W) = 1 if the arc connecting i and j belongs to W

(δij (W) = 0 otherwise), and f (W) ≥ 0 is the flow along W . Writing ci,j := 〈xi ,yi − yj 〉
and c(W) := ∑

i,j δij (W)ci,j (where c(W) is the cost of moving one mass unit along the
cycle W ), the objective function in (3.7) takes the form∑

i,j=1,...,n;i 
=j

ci,j zi,j = ∑
W∈W

c(W)f (W),

with the constraint
∑

W∈W |W |f (W) = 1 where |W | denotes the length (number of arcs) in
the cycle W . Putting f̃ (W) := |W |f (W), (3.7) can be rewritten as

min
f̃ (W)

∑
W∈W

f̃ (W)
c(W)

|W | s.t.
∑

W∈W
f̃ (W) = 1, f̃ (W) ≥ 0.

It follows that the optimal solution to (3.7) is zi,j = δij (Ŵ )/|Ŵ |, where Ŵ is a min-
imum mean cost cycle, that is, a minimizer among all cycles of c(W)/|W |. The com-
putation of the minimum mean cost cycle can be carried out in polynomial time using,
for instance, Karp’s algorithm (Karp (1978)). For this, we fix a vertex in the graph (ver-
tex 1, say; this choice does not affect the final ouput) and write dk,i for the length of
the shortest path from 1 to i in k steps (where the length of the path (i1, i2, . . . , ik)

is ci1,i2 + · · · + cik−1,ik and dk,i = +∞ if there is no path with k steps from 1 to i). The
lengths dk,i for 0 ≤ k ≤ n and 1 ≤ i ≤ n can be computed recursively starting from initial
values d0,1 = 0, d0,i = ∞ for i 
= 1 and letting dk+1,i = minj (dk,j + cj,i) with ci,i = ∞.
Then the minimum cycle mean is ε∗ = min1≤i≤n max0≤k≤n−1(dn,i − dk,i)/(n − k), which
can be computed in O(n3) steps (see Theorem 1 and subsequent comments in Karp (1978)).
We observe that Assumption (A) is equivalent to ε∗ > 0.

We still need to compute the optimal weights ψi . For this, we can consider the graph with
modified costs c̃i,j := ci,j − ε∗ and compute the length d̃i of the shortest path (of any length)
from vertex 1 to i. It is easy to see that a shortest path of length at most (n − 1) exists. Hence
we can compute the shortest k-step distances d̃k,i as above; letting d̃i := min0≤k≤n−1 d̃k,i ,
set ψi := −d̃i . By optimality, d̃j ≤ d̃i + c̃i,j , that is, ci,j ≥ ψi − ψj + ε∗. This shows
that (ψ1, . . . ,ψn, ε

∗) is an optimal solution to (3.6) which, moreover, can be computed
in O(n3) computing time.

For n = 2, it is easily seen that the optimum in the dual (3.7) (hence in the primal
problem (3.6)) is ε0 = 〈x1 − x2,y1 − y2〉/4 > 0. The optimal weights can be chosen
as ψi = 〈(x1 + x2),yi〉/2, i = 1,2. In the one-dimensional case, if n = 2, uniqueness of T

holds iff x1 < x2 and y1 < y2. A simple computation yields

Tε(x) =

⎧⎪⎪⎨
⎪⎪⎩

y1 for
(
x − (x1 + x2)/2

)
/ε ≤ y1,(

x − (x1 + x2)/2
)
/ε for y1 ≤ (

x − (x1 + x2)/2
)
/ε ≤ y2,

y2 for y2 ≤ (
x − (x1 + x2)/2

)
/ε.

We see that Tε is an extension of xi �→ yi , i = 1,2 if and only if x2 − x1 ≥ −2εy1
and x2 − x1 ≥ 2εy2, which implies that ε ≤ (x2 − x1)/(y2 − y1)—equivalently, 1/ε larger
than or equal to (y2 − y1)/(x2 − x1), the minimal Lipschitz constant of any Lipschitz exten-
sion of xi �→ yi . This yields, for y1 = −1, y2 = 1,

ε0 = (x2 − x1)/2 = (y2 − y1)/(x2 − x1)

and Tε0 is the Lipschitz extension of xi �→ yi with minimal Lipschitz constant.

We now turn back to the smooth extension of the empirical center-outward distribution
function F(n)

± of Section 2.2. Proposition 3.2 (and subsequent comments in case n0 > 1) al-

lows us to extend F(n)
± to a Lipschitz-continuous gradient of convex function over Rd , denoted
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as F
(n)

± . The following result (proof in Appendix F.3) extends to F
(n)

± the Glivenko–Cantelli
result of Proposition 2.4. We state (and prove) it for the value ε0 (3.5) of the smoothing
constant; with obvious modifications, it also holds for any admissible ε.

PROPOSITION 3.3 (Glivenko–Cantelli). Let F
(n)

± denote the smooth interpolation, with

smoothing constant ε0, of F(n)
± computed from an i.i.d. sample of observations with distri-

bution P ∈P±
d and center-outward distribution function F±. Then

sup
x∈Rd

∥∥F
(n)

± (x) − F±(x)
∥∥ → 0 a.s. as n → ∞.

REMARK 3.4. Throughout, we focused on a smooth interpolation of F(n)
± , applying

Proposition 3.2 to the cyclically monotone n-tuple (Z(n)
i ,F(n)

± (Z(n)
i )), i = 1, . . . , n. For n0 ≤ 1

(or after implementing the tie-breaking device described in Section 2.2), the resulting F
(n)

± is

invertible, yielding a smooth interpolation—denote it as Q
(n)

± := (F
(n)

± )−1—of the empirical

quantile function Q(n)
± . For n0 > 1, the restriction of F

(n)

± to Rd \ (F(n)
± )−1(0) (a restriction

that has Lebesgue measure one) can be considered instead. In all cases, strong consistency

still holds for Q
(n)

± ; its uniformity is lost, however, unless spt(P) itself is compact.

REMARK 3.5. Another interpolation of Q(n)
± is considered in Chernozhukov et al.

(2017), based on the so-called α-hull method (see, e.g., Pateiro-López and Rodríguez-Casal
(2010)). Although producing visually nice results (Figure 2, same reference), that method
does not take into account any cyclical monotonicity constraints. The resulting contours

therefore do not have the nature of quantile contours. Moreover, contrary to Q
(n)

± , the α-
hull interpolation does not yield a homeomorphism; α-hull contours need not be closed, and
the resulting quantile regions need not be connected—see Appendix H.4 for an example.

An alternative “multivariate step function” extension of F(n)
± is proposed in Appendix G.

4. Some numerical results. This section provides some two-dimensional numerical il-
lustrations of the results of this paper. The codes we used were written in R, and can handle
sample sizes as high as n = 20,000 (with nR = 100 and nS = 200, for instance) on a com-
puter with 32 Gb RAM. The algorithm consists of three main steps.

(Step 1) Determine the optimal pairing between the sample points and the regular grid.
This could be done with a cubic implementation of the Hungarian algorithm like the one
included in the clue R package (for a detailed account of the Hungarian algorithm and
the complexity of different implementations, see, e.g., Chapter 4 in Burkard, Dell’Amico
and Martello (2009)). Faster algorithms are available, though, as Bertsekas’ auction algo-
rithm or its variant, the forward/reverse auction algorithm (Chapter 4 in Bertsekas (1991)),
implemented in the R package transport. These auction algorithms depend on some para-
meter ε > 0 and give in O(n2) time a solution to the assignment problem which is within nε

of being optimal. If the costs are integers and nε < 1, the solution given by the auction algo-
rithm is optimal. Else, Step 2 below provides a check for the optimality of the solution given
by the auction algorithm. If the check is negative, the algorithm is iterated with a smaller
value of ε.

(Step 2) Compute the optimal value ε0 of the regularization parameter and the optimal
weights ψi . This is achieved via Karp’s algorithm and the subsequent computation of shortest
path distances as described in the discussion after Corollary 3.2. If ε∗ < 0, then the solution
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FIG. 1. Smoothed empirical center-outward quantile contours (probability contents 0.50 (green), 0.75 (red),
and 0.90 (black)) computed from n = 200,500,1000,2000,5000, and 10,000 i.i.d. observations from a bivari-
ate N (0, I) distribution, along with their theoretical counterparts (dotted lines).

of the assignment problem was not optimal: return to Step 1 with a smaller value of ε. If not,
go to Step 3.

(Step 3) Compute the Yosida regularization based on a projected gradient descent method.

In Figure 1, we illustrate the convergence (as formulated by the Glivenko–Cantelli result of
Proposition 3.3), of empirical contours to their population counterparts as the sample size in-
creases. The problem is that analytical expressions for the population contours are not easily
derived, except for spherical distributions. We therefore investigate the case of i.i.d. observa-
tions with bivariate N (0, I) distributions, and increasing samples sizes n = 200, . . . ,10,000.
Figure 1 clearly shows the expected consistency. Empirical contours are nicely nested, as they
are supposed to be. For sample sizes as big as n = 1000 (with nR = 25 and nS = 40), and
despite the fact that the underlying distribution is light-tailed, the 0.90 empirical contour still
exhibits significant “spikes” out and in the theoretical circular contour. Those spikes reflect
the intrinsic variability of an empirical quantile of order 0.90 based on nR = 25 observations;
they rapidly and uniformly disappear from n = 2000 on.

Figures 2–4 consider various Gaussian mixtures. Gaussian mixtures generate a vari-
ety of possibly multimodal and nonconvex empirical dataclouds. In Figure 2, we simu-
lated n = 2000 observations from a symmetric mixture of two spherical Gaussians. It clearly
demonstrates the quantile contour nature of our interpolations, as opposed to level contours.
Level contours clearly would produce (mostly, in the right-hand panel) disconnected regions
separating the two modes of the mixture. Here, the contours remain nested—a fundamental
monotonicity property of quantiles. The low-probability region between the two component
populations is characterized by a “flat profile” of the empirical quantile contours

Figure 3 similarly considers a mixture of three Gaussian distributions producing, in the
central and right panels, distinctively nonconvex datasets. Picking that nonconvexity is typi-
cally difficult, and none of the traditional depth contours (most of them are intrinsically con-
vex) are able to do it. Our interpolations do pick it, the inner contours much faster than the
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FIG. 2. Smoothed empirical center-outward quantile contours (probability contents 0.02 (yellow), 0.20 (cyan),
0.25 (light blue) 0.50 (green), 0.75 (dark blue), 0.90 (red)) computed from n = 2000 i.i.d. observations from
mixtures of two bivariate Gaussian distributions.

outer ones, as n increases. The very idea of a smooth interpolation indeed leads to bridging
empty regions with nearly piecewise linear solutions. This is particularly clear with the 0.90
contour in the right-hand panel: the banana shape of the distribution is briefly sketched at
the inception of the concave part, but rapidly turns into an essentially linear interpolation in
the “central part of the banana.” That phenomenon disappears as n → ∞ and the “empty”
regions eventually fill in.

Attention so far has been given to quantile contours, neglecting an important feature of
center-outward quantile functions: being vector-valued, they also carry essential directional
information. That information is contained in the empirical sign curves—the images, by the
interpolated empirical quantile function, of the radii of the underlying regular grid. In the
spherical case, these sign curves are quite uninformative and we did not plot them in Figures 1
and 2. In the highly nonspherical Gaussian mixture of Figure 3, sign curves are conveying an
essential information.

Figure 4 is providing the full picture for n = 20,000 (see also Figure 3 in Appendix H.1).
The sign curves to the left and to the right of the vertical direction are vigorously combed to
the left and the right. Since each curvilinear sector comprised between two consecutive sign

FIG. 3. Smoothed empirical center-outward quantile contours (probability contents 0.02 (yellow), 0.20 (cyan),
0.25 (light blue) 0.50 (green), 0.75 (dark blue), 0.90 (red)) computed from n = 2000 i.i.d. observations from mix-
tures of three bivariate Gaussian distributions, with μ0 = ( 0

0

)
, μh = ( 1

0

)
, μv = ( 0

1

)
, �1 = ( 5 −4
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FIG. 4. Center-outward quantile contours and sign curves for the same Gaussian mixture as in the middle panel
of Figure 3, with n = 20,000.

curves roughly has the same probability contents, Figure 4 provides graphical evidence of a
very low density in the central concavity bridged by the quantile contours, thus producing
a clear visualization of the banana shape of the dataset. Such figures, rather than contours
alone, are the descriptive plots associated with empirical center-outward quantile functions.
See Appendix H.1 for a comparison with Tukey depth.

5. Conclusions and perspectives. Unlike the earlier proposals, our concepts of distribu-
tion and quantile functions, ranks, and signs are satisfying the properties that make their uni-
variate counterparts efficient and meaningful tools for statistical inference. In principle, they
are paving the way to a solution of the long-standing open problem of distribution-free infer-
ence in multivariate analysis, offering a unique combination of strict distribution-freeness and
semiparametric efficiency. A preliminary version (Hallin (2017)) of this paper already trig-
gered several important applications: De Valk and Segers (2018), Shi, Drton and Han (2019),
Deb and Sen (2019), Ghosal and Sen (2019), Hallin, La Vecchia and Liu (2020), Hallin, La
Vecchia and Liu (2020), Hallin, Hlubinka and Hudecová (2020), etc. A number of questions
remain open,19 though. In particular:

(i) Several issues remain to be studied about the concepts themselves: how in finite sam-
ples should we choose the factorization of n into nRnS + n0? should we consider cross-
validation? how do those grids compare to random grids?

(ii) How should we construct efficient rank tests in specific problems? Proposition C.1
suggests replacing, in the optimal test statistics derived under elliptic symmetry, the Maha-

19Some of them have been solved or partially solved since these lines were written (added in proof).
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lanobis ranks and signs with the center-outward ones. Can we similarly construct one-step
R-estimators? This, which requires Hájek-type asymptotic representation results,20 would
result in a fairly complete toolkit of distribution-free (hence “universally valid”) semipara-
metrically efficient-at-elliptical-densities rank-based procedures for multivariate analysis and
multivariate time series.

(iii) Can goodness-of-fit tests be based, for example, on Kolmogorov–Smirnov or
Cramér–von Mises distances between center-outward distribution functions?21

(iv) Turning to quantiles, what are the properties of Q(n)
± (0) (for n0 
= 0) as a multivariate

median? can we use them in the construction of multivariate median or sign tests? can we, on
the model of Carlier, Chernozhukov and Galichon (2016) or Hallin, Paindaveine and Šiman
(2010), Hallin, Lu, Paindaveine and Šiman (2015), perform parametric and nonparametric
multiple-output quantile regression? construct multivariate growth charts (as in McKeague
et al. (2011))?

(v) Center-outward quantile contours are obvious candidates as multivariate value-at-risk
concepts, playing a central role in risk management; in that context, still in dimension d = 1,
the primitives of ordinary distribution or quantile functions enter the definitions of a number
of relevant notions such as Lorenz curves, values at risk or expected shortfalls; see Gushchin
and Borzykh (2017), Beirlant et al. (2020). The potential functions ψ and φ are natural mul-
tivariate extensions of those primitives, and likely to provide useful multivariate extensions.

(vi) What happens in high dimension (d → ∞)? in functional spaces? on spheres (direc-
tional data) and other Riemannian manifolds?

Finally, these new empirical distribution and quantile functions are calling for a study
of the corresponding empirical processes with further results such as Donsker and iterated
logarithm theorems or Bahadur representations.
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SUPPLEMENTARY MATERIAL

Supplement to “Distribution and quantile functions, ranks, and signs in dimension d:
A measure transportation approach” (DOI: 10.1214/20-AOS1996SUPP; .pdf). Supple-
mentary material and technical proofs can be found in an Online Appendix (Hallin et al.
(2020)) consisting of eight sections labeled A, B, . . . , H, along with additional references.

REFERENCES

AHUJA, R. K., MAGNANTI, T. L. and ORLIN, J. B. (1993). Network Flows: Theory, Algorithms, and Applica-
tions. Prentice Hall, Englewood Cliffs, NJ. MR1205775

BASU, D. (1955). On statistics independent of a complete sufficient statistic. Sankhyā 15 377–380. MR0074745
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