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Abstract

The assessment of climate change impacts in regions with complex orography

and land-sea interfaces poses a challenge related to shortcomings of global cli-

mate models. Furthermore, climate indices based on absolute thresholds are

especially sensitive to systematic model biases. Here we assess the effect of bias

adjustment (BA) on the projected changes in temperature extremes focusing

on the number of annual days with maximum temperature above 35�C. To this

aim, we use three BA methods of increasing complexity (from simple scaling

to empirical quantile mapping) and present a global analysis of raw and BA

CMIP5 projections under different global warming levels. The main conclu-

sions are (1) BA amplifies the magnitude of the climate change signal (in some

regions by a factor 2 or more) achieving a more plausible representation of

future heat threshold-based indices; (2) simple BA methods provide similar

results to more complex ones, thus supporting the use of simple and parsimo-

nious BA methods in these studies.
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1 | INTRODUCTION

Extreme heat has a direct impact on human activities and
natural systems (e.g., Bedia et al., 2015; Deryng
et al., 2014; Grotjahn, 2021; Hatfield & Prueger, 2015;
Turco et al., 2018) and is emerging as an important threat
in densely populated areas such as India, Southeast Asia,
and Africa (Knutson & Ploshay, 2016; Moda &
Minhas, 2019; Mora et al., 2017; Rohini et al., 2016; Zhao
et al., 2015). Heat-related impacts are often related to spe-
cific exposure limits or “trigger points,” linked to the
increased risk of the target impact. As a result, absolute
temperature thresholds are commonplace in vulnerability,

impacts and adaptation (VIA) studies (e.g., Grotjahn, 2021;
Petitti et al., 2016). For instance, staying below certain
exposure limits (Kjellstrom et al., 2009a; Kjellstrom
et al., 2009b) reduces the risk of mortality, heat-related ill-
nesses, and economic losses due to heat stress (Casanueva
et al., 2020b, and references therein).

Heat extremes are very likely to be more frequent
and intense in the future (Seneviratne et al., 2021),
mainly as a direct consequence of the increase in mean
temperature (Fischer & Schär, 2010; Schär et al., 2004).
Global climate models (GCMs) are the fundamental tools
producing future climate projections for impact and
adaptation studies. However, uncertainties still remain
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for key large-scale processes (see e.g., Fernandez-Granja
et al., 2021) and sub-grid scale processes, which are often
misrepresented due to the coarse resolution of GCMs
(e.g., Maraun, 2016). This is particularly true for regions
with complex orography, intricate coastlines and/or
small islands (e.g., Karl et al., 1999; Peterson et al., 2001;
Sanjay et al., 2017), leading to large uncertainties and
biases for extreme events.

Absolute threshold-based temperature indices are
largely sensitive to systematic model biases, and therefore
they cannot be reliably calculated from raw GCM out-
puts. Bias adjustment (BA) methods are often used to cor-
rect specific statistical properties and reduce these biases

(see e.g., Li et al., 2020; Maraun, 2016; Matthews
et al., 2017; Teutschbein & Seibert, 2012). A proper appli-
cation of BA (Ehret et al., 2012; Maraun et al., 2017) pro-
vides an improved and more robust signal (Dosio, 2016)
through the reduction of the multimodel ensemble
spread (see e.g., Zhao et al., 2015), by placing all models
on equal footing, at the expense of additional uncertainty
related to the BA method (Casanueva et al., 2020a;
Maraun & Widmann, 2018).

Previous studies have shown the high sensitivity of
threshold-based index projections to the BA method,
although these are mostly limited to regional models
or/and regional spatial scales (Ahmed et al., 2013; Dong

TABLE 1 CMIP5 global models

(GCMs) used in the study (for historical

and RCP8.5 scenarios) for run r1i1p1 in

all cases except (*) r12i1p1

GCMs

Resolution (�) Warming levels

Lon Lat +1.5�C +2�C +3�C

ACCESS1-0 1.88 1.25 2028 2041 2061

ACCESS1-3 1.88 1.25 2031 2042 2062

bcc-csm1-1 2.81 2.77 2007 2028 2059

bcc-csm1-1-m 1.13 1.11 2019 2036 2059

CanESM2 2.81 2.77 2012 2026 2049

CCSM4 1.25 0.94 2014 2030 2057

CESM1-BGC 1.25 0.94 2017 2033 2058

CMCC-CESM 3.75 3.68 2029 2041 2061

CMCC-CM 0.75 0.74 2029 2041 2060

CNRM-CM5 1.41 1.39 2030 2044 2067

CSIRO-Mk3-6-0 1.88 1.85 2034 2044 2064

EC-EARTH(*) 1.13 1.11 2018 2034 2060

GFDL-CM3 2.50 2.00 2022 2034 2054

GFDL-ESM2G 2.00 2.00 2037 2054 2080

GFDL-ESM2M 2.50 2.00 2036 2051 2081

HadGEM2-CC 1.88 1.25 2027 2039 2056

HadGEM2-ES 1.88 1.25 2023 2035 2054

inmcm4 2.00 1.50 2044 2057 2083

IPSL-CM5A-LR 3.75 1.89 2009 2025 2047

IPSL-CM5A-MR 2.50 1.27 2015 2030 2050

IPSL-CM5B-LR 3.75 1.89 2022 2037 2061

MIROC-ESM 2.81 2.80 2018 2030 2050

MIROC-ESM-CHEM 2.81 2.80 2020 2030 2052

MIROC5 1.41 1.40 2033 2048 2071

MPI-ESM-LR 1.88 1.86 2017 2036 2061

MPI-ESM-MR 1.88 1.86 2019 2038 2060

MRI-CGCM3 1.13 1.12 2041 2052 2076

NorESM1-M 2.50 1.89 2032 2048 2072

Note: Columns indicate the effective resolution (longitude/latitude), and the central years of the 20-year
period defining warming levels at +1.5�C, +2�C, and +3�C (using RCP8.5 scenario). More details about

CMIP5 models are available at https://pcmdi.llnl.gov/mips/cmip5.
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et al., 2015; Dosio, 2016; Schmith et al., 2021). Here, we
provide a global analysis of the effects of BA on an
extreme temperature index (the annual number of days
with maximum temperature above 35�C, TX35), using
three fit-for-purpose BA methods applied to the GCM sim-
ulations of the Coupled Model Intercomparison Project
Phase 5 (CMIP5) from historical and RCP8.5 experiments.
The effect of BA on the projected TX35 changes is then
evaluated for different global warming levels (GWLs) ana-
lysing regional differences focusing on the updated IPCC-
WGI reference regions (Iturbide et al., 2020).

2 | DATA AND METHODS

2.1 | Model data (CMIP5)

Daily maximum temperature from 28 GCMs from CMIP5
(Taylor et al., 2012, curated version used for IPCC-AR5)
was used in this work considering both the historical and
RCP8.5 experiments (see Table 1). All the simulations
were downloaded from the IPCC Data Distribution Cen-
tre (https://www.ipcc-data.org/sim/gcm_monthly/AR5/
index.html; last accessed, 31 December 2019). For compa-
rability, all simulations were interpolated to a common
2� grid. The common grids and land/sea masks used are
available in the ATLAS GitHub repository.1

The period 1986–2005 was considered as the historical
baseline while +1.5�C, +2�C, and +3�C GWLs (with
respect to the pre-industrial 1850–1900 mean value, see
for example, Nikulin et al., 2018) were used for future
projections. The corresponding time periods for each
GCM are computed using 20-year moving windows.
Table 1 shows the central years (n) of the 20-year window
where the warming is first reached. The GWL period is
thus taken as [n�9,nþ10]. The use of a 20-year moving
window is selected to be consistent with 20-year time
slices typically used for near-term (2021–2040), mid-term
(2041–2060), and long-term (2081–2100) future projec-
tions. The reference GWLs (and additional supplemen-
tary materials and reproducibility scripts) are available in
the ATLAS GitHub repository.2

2.2 | Observational data

Daily maximum temperature of W5E5 (Cucchi et al., 2020;
Lange, 2019; Weedon et al., 2014) was used as the observa-
tional reference to calibrate the GCM output. This dataset
was developed as part of the Phase 3b of the Inter-Sectoral
Impact Model Intercomparison Project (https://www.
isimip.org/), being the observational reference for the cali-
bration of the GCMs considered in the third phase of this

initiative, which is focused, among others, on the detection
and attribution of observed impacts following the defini-
tion established by the IPCC-WGII (Cramer et al., 2014).
W5E5 is a global daily dataset with 0.5� horizontal resolu-
tion covering the period 1979–2016. It is a merged dataset
which combines WFDE5 data (Cucchi et al., 2020;
Weedon et al., 2014) over land with ERA5 (Hersbach
et al., 2020) over the ocean.

To avoid spurious effects due to the scale gap between
model and observations, W5E5 was regridded to the same
common 2� resolution grid used for the GCMs before
training the BA methods. This way, the downscaling effect
is avoided, being thus BA used as a mere adjustment (see
Casanueva et al., 2020a, for a discussion on this).

2.3 | Bias adjustment

In this study, we use three BA methods of increasing
complexity. The simplest parametric methods adjust only
the mean (referred to as MA) and the mean and variance
(MVA), respectively (similar to RaiRat-M6 and RaiRat-
M7 in the Cost Action VALUE intercomparison experi-
ment Gutiérrez et al., 2019, see Appendix A1). These
methods are applied on a monthly basis, that is, the
parameters are adjusted separately for each month.

Empirical quantile mapping (EQM) is a popular BA
method and consists in calibrating a transfer function over
the control period to map the quantiles from the empirical
cumulative distribution function of the model output onto
the corresponding observed distribution. Here we use the
implementation from Déqué (2007) which fits 99 empirical
percentiles and uses constant extrapolation for out-of-
sample values (i.e., values below and above the calibration
range). The EQM implementation is similar to that in the
Cost Action VALUE Gutiérrez et al., 2019), with a slight
modification in the moving window size in order to allevi-
ate the computational demand of the method for the
global domain (here EQM is applied on a monthly basis,
consistently with MA and MVA). The reader is referred to
Maraun et al. (2018) for an overall evaluation of these
methods over Europe.

The intercomparison of the three BA methods presented
here allows to assess the suitability of simple (parsimonious)
versus complex BA methods for this particular problem.
Casanueva et al. (2013) showed that adjusting the mean
(MA) reduces to a large extent biases in high- and low-
temperature percentiles and these are close-to-zero after the
second-order correction (MVA). Here we further analyse the
practical implications for heat indices depending on absolute
temperature thresholds (annual number of days with maxi-
mum temperature above 35�C, TX35). Moreover, this com-
parison allows to assess the effect of inflation in the results.
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Whereas MVA and EQM produce an inflation of the vari-
ance, thus modifying the climate change signal, the simplest
method (MA) does not affect the variance and preserves
trends (trend-preserving method).

The BA methods were trained over the historical
1986–2005 period and subsequently applied to the
20-year GWL periods (Table 1) considering every land
gridbox for each GCM separately. Finally, values of TX35
were calculated from both the raw and BA daily maxi-
mum temperature time series. These methods are
implemented in the R package downscaleR (Bedia
et al., 2020) through the function biasCorrection, using
the optional arguments method = “eqm” or
method = “scaling” or method = “mva”, and window =

c(30,30). Further details and worked examples of the
EQM application for absolute threshold, temperature-
based climate indices are given in Iturbide et al. (2019)
and companion materials.

3 | RESULTS

3.1 | Model biases in the historical
period

When compared with the observed data in the calibration
period, the EQM exhibits very low biases of the ensemble
mean TX35 (see Figure 1, first column) with less than

FIGURE 1 The first row shows the number of mean annual days with maximum temperature above 35�C—TX35—For the W5E5

observational reference (first column) and the raw CMIP5 ensemble for the historical 1986–2005 period (second) and +2�C global warming

level (third). Rows 2–4 show the results corresponding to the different bias adjustment methods (simple mean bias adjustment—MA—,

mean–variance bias adjustment—MVA—And empirical quantile mapping—EQM—, respectively), representing the bias (first column) and

the differences between the raw and bias-adjusted values (adjustment factor) in the training period (middle column) and a representative

test period (right). The overlaid map shows the updated IPCC-WGI reference regions (see Figure 4a)
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3 days/year bias over most of the global surface. This is
not surprising since this method adjusts the percentiles of
the distribution. Moreover, the results are very similar for
the MVA method, indicating that adjusting just the mean
and variance indirectly produces a good adjustment of
the upper quantiles (e.g., those related to TX35). The sim-
plest method, MA results in higher differences but still
smaller than the adjusted biases (as shown in column 2).
Therefore, parametric methods seem to be convenient for
the assessment of the TX35 index, related to high percen-
tiles of the maximum temperature.

The ensemble mean maps of the historical (training)
period exhibit large differences between raw and bias-
adjusted TX35 over sizeable global land areas (see Figure 1,
middle column), highlighting the large effect of the BA step.

These differences, expressed as the absolute difference BA�
raw (days), are remarkable affecting pre-eminently the inter-
tropical range, for which the bulk of land area is concen-
trated on Eastern Africa and Sahara Desert with positive
differences over 50days (IPCC-WGI regions SAH, WAF,
CAF, NEAF, see Figure 4a), South America (mixed pattern
with positive differences over NWS and SAM and mostly
negative in NSA—Amazon Basin—and NES), Central
America (SCA), Arabian peninsula (ARP, with positive/
negative differences in the northern/southern parts), and
Southern Asia (mostly negative in SAS). Some important dif-
ferences are also found in some adjacent areas of the
extratropic in North/South America (NCA/SES regions),
Northern/Southern Africa (MED/SWAF), the Middle East
(WCA), and Australia. In South America, positive differences

FIGURE 2 Changes in mean number of annual days with maximum temperature above 35�C—TX35—For three future 20-year periods

corresponding to +1.5�C, +2�C, and +3�C global warming levels (GWL) (in columns) relative to the historical 1986–2005 period. The first
row shows the results corresponding to the raw model data and the second to fourth rows show the results for the MA, MVA and EQM bias

adjustment methods, respectively. Hatching represents multimodel uncertainty (hatched areas correspond to weak model agreement, that is,

less than 80% of the models agreeing on the sign)
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are located over the major mountainous areas of the conti-
nent, namely, the Andes (NWS, SAM, SES) and Brazilian
highlands (SAM), while the negative differences are strength-
ened in low-lying areas of the Amazon (NSA) and Paran�a
(SES) River Basins.

Overall, we find a distinctive spatial pattern of the dif-
ference between raw and BA maps resembling the spatial

pattern of CMIP5 biases in extreme values of mean temper-
ature described in previous studies (see e.g., Zhao
et al., 2015). This pattern is consistent among the different
BA methods (Figure 1), particularly for EQM and MVA
which exhibit an almost identical pattern worldwide. The
simpler MA method yields some differences of low magni-
tude in a few regions; Eastern South America (NES),

FIGURE 3 Historical and RCP8.5

time series of the individual models

(thin lines) and the multimodel mean

(solid lines) of regional TX35 for the

Southeast Asia (SEA) region for the

(a) raw and (b–d) MA, MVA and EQM

bias-adjusted model data. The red

shaded area indicates the multimodel

range
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Central Africa (CAF) and Indian Peninsula (SAS), and
Southeast Asia (SEA), for example, but in general these dif-
ferences are weak and restricted to small areas. This result
supports the use of simple and parsimonious BA methods
over more complex EQM involving multiple parameters.

3.2 | Future projections of extreme heat

The differences between raw and BA projections are increas-
ingly reinforced consistently for the three BA methods from
the historical experiment to future projections, as shown in

Figure 1 (right column) which corresponds to +2�C GWL.
In the Amazon basin (NSA, SAM) the negative difference in
the historical period is inverted showing a strong positive
increment at +2�C GWL. These differences tie in with the
increment of the projected changes from lower to higher
levels of warming shown in Figure 2, which unveils a pro-
gressive southward displacement toward South American,
South African and SEA regions, more accentuated with
increasing GWLs (Figure 2).

In general, there is a strong multimodel agreement
over the bulk of land areas, notably improved in the land-
sea transitions after BA application over most of the world
coastal regions like in west Africa (western SAH, CAF,
WSAF) and Indian Ocean coasts (NEAF, SEAF, ARP,
SAS, SEA, NAU, SAU), as indicated by limited areas with
hatched pattern in Figure 2. The low multimodel agree-
ment depicted in the higher latitudes of the northern
hemisphere (less than 80% of models bear the same delta
change sign) are due to the very low delta changes in the
number of days above the 35�C threshold, ranging from
small negative to small positive values around zero. Differ-
ently, multimodel agreement is met (all zero values) in
those areas where this temperature threshold is never
reached by any model (e.g., Antarctica and Greenland).

To gain a better insight into the effect of BA, Figure 3
shows the multimodel time series of the spatially aver-
aged TX35 over SEA. Here, the climate change signal is
largely reinforced after BA application. The trend of the
ensemble mean is clearly more pronounced for the BA
series, with a quasi-linear increment until reaching
+125 days/year by the end of the 21st century, this is,
more than double the raw projection (50 days/year). Fur-
thermore, the ensemble spread of the historical period
and the near-future projections is drastically reduced
with EQM and MVA (not that much with MA), yielding
a more robust ensemble projection than the raw version.
This particular result is consistent with the overall
improvement in the multimodel agreement found after
BA application in this region, as indicated by the reduc-
tion of hatched areas in Figure 2.

Figure 4 summarizes the main results by showing
regional averages of the projected change signal at +2�C
GWL before and after BA (Figure 4b,c), and the magni-
tude of the adjustment for the +2�C GWL (BA� raw,
Figure 4d). This synthesis of the information clearly
shows that the magnitude of the correction is, in absolute
value, similar or even larger than the raw TX35 climate
change signal (for the policy relevant +2�C GWL) in
many IPCC-WGI reference regions, mostly within the
tropical range.

This result highlights the paramount importance of
the BA step in order to obtain credible TX35 change pro-
jections. Overall, the BA projections in this case yield
much more intense future heat in the equatorial range in

FIGURE 4 (a) Land subset of the updated IPCC-WGI

reference regions (see Iturbide et al., 2020, for details). (b, c)

Climate change signals of TX35 for the 2�C warming level w.r.t. the

historical values, for raw and BA (MVA) data. (d) Differences

between bias-adjusted and raw data for the 2�C warming level
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Africa and South America, regions where the raw projec-
tions may dangerously underestimate future impacts.
Moreover, these results suggest that the change in the cli-
mate change signal is mostly due to the nonlinear trans-
formation between high temperatures and number of
threshold excesses (a desired effect) with variance infla-
tion playing a small role in this case.

4 | DISCUSSION AND
CONCLUSIONS

Even though fundamental model errors cannot be
improved by BA, and process-informed BA is in general a
preferable approach (Maraun et al., 2017), BA could still
be justified for highly biased climate indices such as those
defined using absolute thresholds, for which the raw sig-
nal is unreliable (Dosio, 2016), as we show using TX35.
In this context, some BA methods allow, by construction,
the modification of the raw climate change signal at the
cost of introducing some additional uncertainty inherent
to the statistical adjustment of the raw model outputs.
The BA application of the TX35 CMIP5 products here
presented constitutes a suitable example of this, allowing
for more credible future extreme heat projections.

The added value of the correction is noteworthy since
the observational dataset (W5E5) has a higher native res-
olution allowing for a better representation of orographi-
cal features, even after the degradation of its resolution
prior to BA. Similarly, over islands and predominantly
insular regions, the trend is reinforced after BA applica-
tion (see e.g., Figure 3, SEA region). This effect can there-
fore be considered as an actual “correction” of the raw
model outputs based on the more reliable representation
of observed conditions of the reference dataset (here
W5E5) used for the adjustment.

While EQM applies a specific adjustment factor for each
of the 99 percentiles of the distribution, MA acts on just one
parameter (the mean) and MVA on two (mean and vari-
ance). Our results show that the three methods yield similar
results (virtually identical in the case of EQM and MVA),
thus supporting the use of simpler and more parsimonious
BA methods (MVA in this case) for threshold-based indices.
This work also paves the way for further analyses with alter-
native BA techniques for handling climate indices based on
absolute thresholds. The increasing temperature trends
throughout the 21st century projections (particularly accen-
tuated for the RCP 8.5) pose a non-stationarity problem that
is tackled in the case of the EQM using a constant correction
for the outlying values of the latest percentile. However,
alternative techniques may prove to be better suited to this
particular extrapolation problem, and also in preserving the
warming signal trends (Casanueva et al., 2020a).

This study demonstrates the need of BA for achieving
a more plausible representation of future climate
impacts, since observational references can aid to
improve the poor GCM representation of these features
due to their coarse original resolution. These results
unveil a stronger and more rapid increase of the fre-
quency of heat extremes in the future than that one may
expect using the raw model outputs alone. The projected
changes affect to large world land areas, some of them
highly populated and vulnerable, stressing the compel-
ling need for adaptation and mitigation strategies to face
unprecedented heat extremes in the next decades.
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ENDNOTES
1 https://github.com/SantanderMetGroup/ATLAS, doi:10.5281/
zenodo.3688072.

2 https://github.com/SantanderMetGroup/ATLAS/tree/master/
warming-levels.
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