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CHAPTER 1

Resumen en Español

1.1 Contexto y Objetivos de la Tesis

Los modelos numéricos son la principal herramienta usada actualmente para estudiar

la evolución del clima a diferentes escalas temporales, desde unos pocos d́ıas (predicción

meteorológica) hasta varias décadas (proyecciones de cambio climático) en el futuro. Es-

tos modelos resuelven numéricamente las ecuaciones que describen la dinámica del sistema

climático (conservación de la masa y de la enerǵıa, ecuaciones de Navier-Stokes, etc.) so-

bre una malla tridimensional discretizada en el espacio formada por puntos de rejilla. Los

requerimientos computaciones de estos modelos limitan su resolución espacial y temporal.

Por ejemplo, los modelos globales del clima (GCM1) desarrollados bajo el paraguas del

CMIP52 (Taylor et al., 2012) presentan resoluciones espaciales que van desde 1◦ hasta 3◦

(entre 100 y 300 km en latitudes ecuatoriales, aproximadamente). Estos modelos simulan

la evolución del sistema climático a escala global en base a diferentes forzamientos3 natu-

rales y antropogénicos. A pesar de que los GCMs actuales reproducen satisfactoriamente

gran parte de los patrones climáticos que tienen lugar a escalas sinópticas (del orden de

los cientos de km), son incapaces de representar procesos importantes que ocurren en

escalas espaciales menores que el tamaño del punto de rejilla usado en el modelo (p.e.,

la precipitación convectiva). La obtención de campos climáticos de alta resolución que

1Todos los acrónimos que aparecen a lo largo de este caṕıtulo han sido definidos de acuerdo a sus siglas
en inglés.

2El experimento de intercomparación de modelos acoplados (CMIP) representa la iniciativa más ambi-
ciosa en estudios de modelización del clima a escala global. CMIP5 es la quinta fase/versión de CMIP.

3El término forzamiento se refiere a cualquier mecanismo que tiene el potential de alterar el clima del
planeta a través de cambios en su balance energético, por ejemplo erupciones volcánicas o cambios en la
concentración de gases de efecto invernadero, entre otros.

7



8 1. RESUMEN EN ESPAÑOL

resuelvan/implementen esta variabilidad local es clave para el desarrollo de aplicaciones

de impacto en diversas actividades socio-económicas de interés como la enerǵıa, la agri-

cultura, la hidroloǵıa o la sanidad. Además, la disponibilidad de simulaciones climáticas

de alta resolución para las próximas décadas es clave para el desarrollo de poĺıticas de

sostenibilidad y planes de adaptación y mitigación ante el cambio climático. Por estos

motivos, recientemente han surgido varias iniciativas internacionales cuyo principal obje-

tivo es el de coordinar a la comunidad cient́ıfica del clima para la generación de escenarios

locales/regionales de cambio climático mediante distintas técnicas (p.e., ver Jacob et al.

(2020)).

En este contexto, en las últimas décadas se han desarrollado dos enfoques diferentes

para incrementar la resolución espacial de los GCMs de cara a su uso en estudios de im-

pacto: la regionalización (o downscaling) dinámica y la estad́ıstica. Por un lado, el down-

scaling dinámico (DD) está basado en el uso de modelos numéricos regionales (RCM) que

resuelven un conjunto de ecuaciones similar al usado en los GCMs pero a resoluciones

espaciales más altas sobre una determinada región del mundo. Para ello se usan como

condiciones de frontera las salidas de los GCMs (Rummukainen, 2010). Por otro lado,

el downscaling estad́ıstico (SD) construye modelos estad́ısticos o algoritmos que relacio-

nan un conjunto de variables atmosféricas de larga escala y baja resolución (predictores)

con un registro de observaciones a escala local (predictandos; t́ıpicamente temperatura y/o

precipitación en superficie) sobre un área de interés. Esta Tesis se centra en un tipo en par-

ticular de SD —el cual es considerablemente menos costoso en términos computacionales

que el DD,— conocido como “Perfect-Prognosis” (PP).

La principal particularidad del PP es que se utilizan observaciones, tanto para los

predictores como para los predictandos, en la construcción de los modelos estad́ısticos o

algoritmos. En el caso de los predictores es muy común recurrir a datos de reanálisis4,

mientras que para los predictandos se suelen utilizar tanto rejillas de observación a alta

resolución como registros meteorológicos en estaciones puntuales. Una vez que la relación

estad́ıstica es establecida en condiciones “perfectas” —es decir, usando observaciones (o

quasi -observaciones) para predictor y predictando— esta puede ser aplicada a los pre-

dictores de baja resolución dados por los GCMs para distintos escenarios de forzamiento

radiativo —que se definen en base a diferentes trayectorias de concentración de gases de

efecto invernadero,— obteniendo aśı las correspondientes proyecciones de cambio climático

de alta resolución hasta el final de siglo. Es importante destacara que el PP se construye

sobre tres hipótesis clave que tienen que ver con la calidad del modelo estad́ıstico inferido

4Un reanálisis es un dataset definido sobre una malla regular que cubre todo el globo y combina
observaciones con predicciones meteorólogicas a corto plazo a través de un proceso de asimilación. Son la
herramienta más precisa que existe en la actualidad para describir el estado de la atmósfera en un instante
de tiempo determinado.
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y su transferabilidad desde el campo de las observaciones hasta el mundo del modelo

climático (Maraun and Widmann, 2018; Maraun et al., 2019). Estas hipótesis establecen

que los predictores de baja resolución empleados en la construcción del modelo estad́ıstico

tienen que 1) ser suficientemente informativos para describir la variabilidad local del pre-

dictando de interés, y 2) ser reaĺısticamente simulados por los GCMs —a nivel de com-

patibilidad distribucional con respecto a sus equivalentes en el reanálisis.— Además, con

vistas a su utilidad en condiciones de cambio climático, 3) los modelos estad́ısticos deben

mostrar cierta capacidad de extrapolación (con respecto a las condiciones en que se hayan

calibrado). Hasta la fecha, una gran variedad de técnicas han sido utilizadas para ligar

la larga y la pequeña escalas, por ejemplo los modelos lineales (Gutiérrez et al., 2019),

los análogos (Hewitson and Crane, 1996), las support vector machines (Tripathi et al.,

2006) y los random forests (Hutengs and Vohland, 2016), entre otras. A pesar de sus

respectivos éxitos, ninguna de estas técnicas es capaz de tratar automáticamente la alta

dimensionalidad del espacio de entrada (campo de predictores) sin sobreajustar. Por este

motivo es habitual recurrir a técnicas de selección de variables o de compresión del espacio

de los predictores como paso previo a la construcción del modelo estad́ıstico (Gutiérrez

et al., 2019). Este proceso, que a menudo es guiado por el conocimiento experto humano,

suele conllevar cierta pérdida de información que puede ser relevante para explicar las

fluctuaciones temporales del predictando local de interés.

Por ello, la comunidad cient́ıfica del clima está dirigiendo su atención últimamente

hacia las redes neuronales profundas (DL, Goodfellow et al. (2016)), y en particular hacia

las redes de convolución (CNN)5, que ya han demostrado ser de gran utilidad en otras dis-

ciplinas que involucran el uso de grandes volúmenes de datos tales como el reconocimiento

de voz o la visión por ordenador. En concreto, algunos estudios previos en el campo de

estas aplicacioens han puesto de manifiesto que las CNNs son capaces de 1) aprender pa-

trones espaciales complejos de los datos, y 2) tratar automáticamente, y de forma eficiente,

con espacios de alta dimensionalidad sin sobreajustar. Estas propiedades convierten a este

tipo de redes en potenciales candidatas para una gran variedad de aplicaciones climáticas,

incluyendo el downscaling estad́ıstico. Sin embargo, hasta la fecha muy poco estudios

—mayormente centrados en casos de estudio sintéticos (ver Vandal et al. (2018b) para un

ejemplo ilustrativo),— han analizado la aplicabilidad del DL (y en concreto, las CNNs) a

este problema. Estos primeros trabajos muestran resultados prometedores y una buena

capacidad a la hora de reproducir las fluctuaciones de ciertas variables (p.e., temperatura

y precipitación) a escala local, pero las topoloǵıas analizadas 1) no son aplicables en el

marco del PP ya que se incumplen algunas de las hipótesis mencionadas anteriormente, 2)

5Una CNN es un tipo espećıfico de red neuronal que es comúnmente empleada para aprender patrones
no lineales en datasets que presentan cierta estructura espacial (LeCun et al., 1995).
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en caso de verificar las hipótesis del PP, no han sido rigurosamente estudiadas (por ejem-

plo, atendiendo a los diferentes aspectos que determinan la calidad de una predicción), y

3) no han sido evaluadas en el espacio del modelo climático, es decir, usando predictores

de GCMs.

De acuerdo con estas consideraciones, esta Tesis se centra en evaluar la idoneidad de

los modelos de DL, en particular las CNNs, para el downscaling estad́ıstico de simulaciones

de cambio climático sobre Europa bajo el paradigma PP. En particular, se plantean los

siguientes objetivos:

1. Analizar la aplicabilidad y el rendimiendo de las CNNs para el downscaling es-

tad́ıstico del clima en condiciones “perfectas” —es decir, usando datos de reanálisis

como predictores.— Una de las principales cualidades a examinar será la capaci-

dad de estos modelos para tratar espacios de alta dimensionalidad, inherentes en la

mayoŕıa de aplicaciones climáticas.

2. Evaluar los beneficios y las desventajas de topoloǵıas CNN de tipo multi-site —es

decir, en las que las predicciones se realizan simultáneamente en varias localida-

des o sites con el mismo modelo estad́ıstico,— frente a sus equivalentes single-site.

En particular, se analizará la regularización impĺıcita que ocurre en este tipo de

topoloǵıas.

3. Mejorar la interpretabilidad sobre el comportamiento interno de las CNNs, las cuales

son t́ıpicamente vistas como modelos tipo “caja negra”. En concreto, se estudiará

en detalle la relación predictor-predictando, midiendo la influencia que cada patrón

ejerce sobre los resultados devueltos por la red.

4. Estudiar la idoneidad de las CNNs para el downscaling estad́ıstico de escenarios

de cambios climático. Para ello, se evaluará en primer lugar el rendimiento de las

CNN para reproducir el clima observado cuando se hace downscaling del escenario

histórico (hasta el 2005) de los GCMs. A continuación se explorará el potencial de

estos modelos para producir proyecciones futuras de cambio climático, prestando

especial a su plausabilidad, para lo que se compararán los resultados proporcionados

por las CNNs con las propias salidas de un conjunto de GCMs y RCMs.

1.2 Principales Resultados y Conclusiones

Presentamos a continuación el marco metodológico considerado para el desarrollo de

la Tesis, aśı como una discusión sobre los principales resultados y conclusiones obtenidos

de la misma, en relación a los objetivos anteriormente expuestos.
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En concreto, en la sección 1.2.1 se describe y expone el experimento llevado a cabo

para evaluar el rendimiento de las CNNs en condiciones “perfectas”, además de dos estu-

dios de interpretabilidad que pretenden aportar conocimiento sobre la relación predictor-

predictando que se establece en las redes. Esta sección se basa en el art́ıculo titulado “Con-

figuration and intercomparison of deep learning neural models for statistical downscaling”,

publicado en la revista Geoscientific Model Development, y en tres art́ıculos publicados

en los proceedings del congreso internacional —en los años 2018, 2019 y 2020— denomi-

nado Climate Informatics: “Deep convolutional networks for feature selection in statistical

downscaling”, “Understanding deep learning decisions in statistical downscaling models”

y “The importance of inductive bias in convolutional models for statistical downscaling”.

En la sección 1.2.2 se describen los experimentos que abordan la idoneidad de las

CNNs para el downscaling estad́ıstico de GCMs con el fin de generar escenarios regionales

de cambio climático sobre Europa. Esta sección se basa en los art́ıculos titulados “On

the suitability of deep convolutional neural networks for downscaling climate change pro-

jections” —publicado en la revista Climate Dynamics,— y “DeepESD: An ensemble of

regional climate change projections over Europe based on deep learning downscaling” —en

proceso de revisión en la revista Nature Scientific Data.—

1.2.1 Downscaling en Condiciones “Perfectas”

En esta sección, 1) se analiza el rendimiento de diversas topoloǵıas de CNNs utilizando

como referencia modelos lineales generalizados (GLM), 2) se evalúan los beneficios de las

arquitecturas multi-site frente a las single-site, y 3) se producen una serie de saliency maps6

—utilizando para ello la técnica del análisis de las diferencias en las predicciones (PDA,

Zintgraf et al. (2017))— con el fin de ganar interpretabilidad en la relación predictor-

predictando de las CNNs desarrolladas en esta Tesis.

Para ello se ha seguido el marco experimental que se definió para el Experimento 1

de VALUE7. En consecuencia, nuestro interés se centra en la generación de predicciones

diarias de temperatura y precipitación sobre Europa para el peŕıodo 1979-2008. Para ello

utilizamos el dataset de observaciones E-OBS (Cornes et al., 2018) —que cubre todo el

continente a una resolución espacial de 0.5◦— como predictando y una serie de variables de

6El término saliency map hace referencia a cualquier tipo de transformación que consiga trasladar la
información contenida en un cierto espacio en el que se establecen relaciones complejas entre distintas
variables a otro en el que la interpretabilidad sea mayor. Este tipo de herramientas han sido ampliamente
utilizadas para el estudio de distintas topoloǵıas de DL (Simonyan et al., 2014; Zhou et al., 2016; Zintgraf
et al., 2017; Montavon et al., 2018; Larraondo et al., 2019; Reimers et al., 2019; Toms et al., 2021).

7VALUE es una COST action europea diseñada con el fin de proporcionar un marco experimental que
permitiese evaluar e intercomparar diferentes técnicas de SD para estudios de cambio climático. Esta
iniciativa une a climatólogos, informáticos, cient́ıficos y empresarios con el fin de facilitar la transferencia
de conocimiento entre sectores y mejorar la calidad de la investigación en este ámbito.
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larga escala —altura geopotencial, temperatura del aire, humedad espećıfica y velocidad

del viento a distintas alturas— provenientes del reanálisis ERA-Interim (Dee et al., 2011)

como predictores, estos últimos sobre una rejilla de 2◦. La elección de predictores se hizo en

base a la literatura previa existente (Huth, 2002, 2005; Gutiérrez et al., 2013; San-Mart́ın

et al., 2017; Gutiérrez et al., 2019). Nuestra principal aportación en este punto fue el

diseño de un conjunto de modelos de DL que implementan distintas topoloǵıas —a grandes

rasgos consisten en tres capas convolucionales seguidas (o no) de capas densas— con grados

crecientes de complejidad, y su comparación con otras técnicas más tradicionales para el

downscaling estad́ıstico a nivel continental.

En comparación con los métodos de downscaling considerados como referencia —dos

configuraciones distintas de GLMs que dieron muy buenos resultados en el mayor experi-

mento de intercomparación de métodos de downscaling estad́ıstico realizado hasta la fecha

sobre Europa (Gutiérrez et al., 2019),— las CNNs desarrolladas en esta Tesis muestran

una mayor capacidad explicativa de la variabilidad local, tanto para la temperatura como

para la precipitación (especialmente para esta última). Esto es concecuencia de la habili-

dad de estas redes para 1) aprender patrones complejos y no-lineales que están presentes

en los datos, y 2) tratar eficientemente y de forma automáticamente espacios de entrada

(campo de predictores) de alta dimensionalidad. Este último aspecto constituye una clara

ventaja con respecto a los métodos tradicionales de SD, puesto que el uso de técnicas de

reducción de la dimensionalidad —que implican cierta pérdida de información— deja de

ser necesario. Sin embargo, las razones que explican el buen comportamiento encontrado

para las CNNs siguen siendo, en parte, desconocidas. Por ello, se describen a continuación

los dos estudios de interpretabilidad llevados a cabo en esta Tesis con el fin de arrojar luz

sobre el carácter de “caja negra” que habitualmente se le confiere a las redes neuronales.

En primer lugar construimos versiones multi-site y single-siste de las CNNs que mejores

resultados obtuvieron en el estudio intercomparativo anterior —tres capas convolucionales

de 50, 25 y 1 mapa de caracteŕısticas, respectivamente.— Los resultados de este experi-

mento indican que mientras las CNNs single-site son propensas a sobreajustar en algu-

nas localidades, sus equivalentes multi-site muestran cierta capacidad de regularización

impĺıcita. Esto permite a las redes muti-site tratar simultáneamete todo el espacio de los

predictores, evitando el sobreajuste. Además, el uso de modelos CNN multi-site puede

traducirse en una mejora en la reproducibilidad de la escala local, especialmente en la

predicción de la cantidad de precipitación.

En segundo lugar estudiamos la relación predictor-predictando que se establece en

las CNNs de acuerdo a un análisis basado en PDA (ver Zintgraf et al. (2017) para más

detalles sobre esta técnica). PDA evalúa la influencia que cada patrón de entrada tiene en

la salida de los modelos de downscaling midiendo la diferencia en las predicciones según
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se utilice o no como predictor. En el caso de la precipitación, los resultados muestran

una gran dependencia en la humedad espećıfica del aire, lo cual es consistente con previos

estudios sobre Europa de SD (San-Mart́ın et al., 2017; Gutiérrez et al., 2019), aunque

otras variables como la velocidad del viento y la altura geopotencial también ejercen cierta

influencia en la predicción. A diferencia de la precipitación, la temperatura muestra una

dependencia clara (y casi exclusiva) de los campos sinópticos de temperatura en las capas

más bajas de la atmósfera. Este comportamiento también es consistente con lo descrito

en estudios previos (Huth, 1999, 2002, 2004). Además, tanto para precipitación como

para temperatura, únicamente un área de 5x5 puntos de rejilla centrados en la localidad

de interés parece ser relevante en el proceso de downscaling, lo cual también está en la

ĺınea de lo encontrado en otros estudios (Timbal and McAvaney, 2001; Timbal et al., 2003;

Gutiérrez et al., 2004; Brands et al., 2011b; Gutiérrez et al., 2013; San-Mart́ın et al., 2017).

En ĺıneas generales, los experimentos descritos anteriormente han permitido 1) analizar

el rendimiento de las CNNs en condiciones “perfectas”, encontrando una mayor capacidad

explicativa para la escala local que en los métodos de SD tradicionalmente usados por la

comunidad hasta la fecha y, 2) arrojar luz sobre el funcionamiento interno de las CNNs,

lo cual resulta clave para que la comunidad cient́ıfica gane confianza en el uso de este tipo

de técnicas para aplicaciones climáticas.

1.2.2 Downscaling de Modelos Globales del Clima

En esta sección se analiza la idoneidad de las CNNs desarrolladas en esta Tesis para el

downscaling estad́ıstico de las simulaciones climáticas dadas por los GCMs, comparándolas

contra métodos de SD más tradicionales como GLMs. Para ello, nos acogemos al marco ex-

perimental propuesto en EURO-CORDEX-ESD8 y hacemos downscaling de la simulación

número 12 del GCM denominado EC-Earth, llevando sus salidas de baja resolución a la

rejilla de 0.5◦ de E-OBS, produciendo aśı campos diarios de temperatura y precipitación

sobre toda Europa, tanto para el escenario histórico (1979-2008) como para el RCP8.59

(2071-2100). En el primer caso, los campos de alta resolución producidos son directamente

validados contra E-OBS. Sin embargo, para el RCP8.5, dado que no existe un dataset de

observaciones futuras, las propias salidas de baja resolución del EC-Earth (conveniente

interpoladas a la rejilla de E-OBS) son usadas como “pseudo-realidad” contra la que com-

parar las proyecciones generadas con los distintos métodos de SD empleados. Este mismo

8EURO-CORDEX-ESD es una evolución de EURO-CORDEX —la rama europea del experimento coor-
dinado de downscaling a escala regional (CORDEX), una iniciativa global que busca desarrollar escenarios
de cambio climático de alta resolución a través del uso de RCMs— que se centra en SD.

9RCP8.5 describe un escenario extremo de emisiones en el que se seguiŕıan liberando a la atmósfera
gases de efecto invernadero sin restricción alguna hasta 2100, alcanzando para ese momento una presión
radiativa promedio de 8.5 W/m2.
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enfoque ha sido ampliamente usado en la literatura (ver por ejemplo Vrac et al. (2007b);

Quesada-Chacón et al. (2021)) y se basa en la idea de que variaciones significativas en la

señal de cambio climático obtenida por métodos de SD —con respecto a la mostrada por

los GCMs que se intentan regionalizar; en este caso el EC-Earth— pueden ser un indi-

cador de la implausabilidad de las proyecciones generadas (a menos que esté justificado

por procesos f́ısicos conocidos).

Los modelos estad́ısticos analizados —tres configuraciones de GLMs y las CNNs que

mejores resultados obtuvieron en el experimento en condiciones “perfectas” (sección 1.2.1),—

permiten reducir los sesgos sistemáticos que exhibe el EC-Earth (al compararlo con E-

OBS) en el peŕıodo histórico. A pesar de ello, alguna de las variables incluidas en el

conjunto de predictores utilizado parece incumplir la condición de PP que establece que

el GCM debe ser similar al reanálisis, al menos en términos de distribuciones. Como

consecuencia, se encuentran algunos sesgos en el caso de los GLMs, en concreto para cier-

tos ı́ndices relacionados con la precipitación. Este efecto indeseado se reduce cuando los

predictores locales (información en un reducido número de puntos de rejilla cercanos a

la localidad de interés) se sustituyen por predictores representativos de un dominio es-

pacial más extenso —p.e., usando la técnica de análisis de componentes principales— o

cuando se utilizan CNNs en lugar de GLMs. Además, en comparación con los GLMs, el

downscaling sobre el escenario RCP8.5 (peŕıodo 2071-2100) por parte de las CNNs pro-

duce patrones de cambio climático que son notoriamente más compatibles con la “pseudo-

realidad” mostrada por el EC-Earth, tanto para la temperatura como para la precipitación.

Estos resultados ponen de manifiesto que las CNNs son capaces de generar escenarios re-

gionales de cambio climático a escalas continentales, sin la necesidad de hacer una elección

“óptima” de predictores.

El análisis descrito anteriormente para el EC-Earth se extendió en su segundo experi-

mento a un conjunto de ocho GCMs actuales inclúıdos en el CMIP5. En este caso, además

de los propios GCMs regionalizados, se ha considerado también un subconjunto de RCMs

de EURO-CORDEX como “pseudo-realidad” con el fin de evaluar la plausabilidad de nue-

stros campos de alta resolución. El resultado es un ensemble de proyecciones de cambio

climático de precipitación y temperatura diarias sobre toda Europa para el siglo XXI que

ha sido acuñado como DeepESD.

Nuestros resultados muestran que DeepESD reproduce satisfactoriamente los campos

de precipitación y temperatura observados sobre Europa en el peŕıodo histórico, lo que

otorga cierta confianza en las proyecciones futuras —de hecho, en ĺıneas generales, no se

encuentran diferencias significativas entre las señales de cambio climático proyectadas por

DeepESD y las dadas por los GCMs y RCMs considerados como “pseudo-realidad”.—

Sin embargo, DeepESD proyecta menores niveles de calentamiento para el futuro lejano
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(2071-2100) que el simulado por el conjunto de GCMs. Este aspecto será analizado en

detalle en un trabajo futuro que tratará de definir si estas diferencias son consecuencia

de una mejora en la reproducibilidad de la escala local por parte de DeepESD o si por el

contrario podŕıan deberse a violaciones en la condición de estacionariedad.

1.3 Principales Logros

1.3.1 Publicaciones

Los principales resultados de esta Tesis han derivado en una serie de publicaciones en

revistas internacionales de alto impacto relacionadas con las ciencias atmosféricas y la

inteligencia artificial. En particular, la sección 1.2.1 está basada en:

• J. Baño-Medina, R. Manzanas, and J. M. Gutiérrez, “Configuration and inter-

comparison of deep learning neural models for statistical downscaling”, Geoscien-

tific Model Development, vol. 13, pp. 2109–2124, 2020, DOI: 10.5194/gmd-2019-278

(primer decil en JCR10)

• J. Baño-Medina and J. M. Gutiérrez, “The importance of inductive bias in con-

volutional models for statistical downscaling”, Proceedings of the 9th International

Workshop on Climate Informatics: CI 2019, 2019, DOI: 10.5065/y82j-f154

• J. Baño-Medina and J. M. Gutiérrez, “Deep convolutional networks for feature

selection in statistical downscaling”, Proceedings of the 8th International Workshop

on Climate Informatics: CI 2018, 2018, DOI: 10.5065/D6BZ64XQ

• J. Baño-Medina, “Understanding deep learning decisions in statistical downscaling

models”, Association for Computing Machinery, New York, NY, USA, p 79–85,

2020, DOI: 10.1145/3429309.3429321

Por otro lado, los resultados descritos en la sección 1.2.2 están basados en las sigu-

ientes publicaciones:

• J. Baño-Medina, R. Manzanas, and J. M. Gutiérrez, “On the suitability of deep

convolutional neural networks for downscaling climate change projections”, Climate

Dynamics, 2021, DOI:10.1007/s00382-021-05847-0 (primer cuartil en JCR)

• J. Baño-Medina, R. Manzanas, and J. M. Gutiérrez, “DeepESD: An Ensemble of

Regional Climate Change Projections over Europe based on Deep Learning Down-

scaling”, En revisión en Nature Scientific Data (primer cuartil en JCR)

10Journal of Citation Reports (JCR) es una herramienta inclúıda en la plataforma Web of Science (WOS)
que permite cuantificar la importancia de una revista, dentro del conjunto de revistas que versan sobre la
misma temática, en base en el número de citas promedio que reciben los art́ıculos que publica.
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Adicionalmente, como resultado de las actividades llevadas a cabo en el Grupo de

Meteoroloǵıa de Santander (SMG) en paralelo al desarrollo de la Tesis se han publicado

dos art́ıculos más relacionadas con el desarrollo de software para el tratamiento de datos

climáticos (incluyendo herramientas para SD):

• M. Iturbide, J. Bedia, S. Herrera, J. Baño-Medina, J. Fernández, M.D. Fŕıas, R.

Manzanas, D. San-Mart́ın, E. Cimadevilla, A.S. Cofiño and J.M. Gutiérrez, “The

R-based climate4R open framework for reproducible climate data access and post-

processing”, Environmental Modelling & Software, vol. 111, pp. 42-54, 2019, DOI:

10.1016/j.envsoft.2018.09.009 (primer cuartil JCR)

• J. Bedia, J. Baño-Medina, M.N. Legasa, M. Iturbide, R. Manzanas, S. Herrera,

D. San-Mart́ın, A.S. Cofiño and J.M. Gutiérrez, “Statistical downscaling with the

downscaleR package (v3.1.0): Contribution to the VALUE intercomparison project”,

Geoscientific Model Development, 2019, DOI: 10.5194/gmd-2019-224 (primer decil

en JCR)

Todos estos art́ıculos han sido desarrollado en base a los principios FAIR11 de trans-

parencia y reproducibilidad, ingredientes clave en la promoción de la ciencia de alta cali-

dad. Para ello hemos creado un repositorio de GitHub (https://github.com/SantanderMetGroup/

DeepDownscaling) que almacena el código que permite reproducir todos los resultados de

la Tesis. Además, la publicación en abierto de dicho código asegura que el mismo pueda ser

fácilmente adaptado por cualquier usuario en base en función de sus intereses particulares.

1.3.2 DeepESD

En base al conocimiento adquirido durante la Tesis, hemos desarrollado DeepESD, el

primer dataset basado en DL que proporciona proyecciones de cambio climático de pre-

cipitación y temperatura diarias a partir de un conjunto de ocho GCMs, a una resolución

de 0.5◦ sobre Europa. DeepESD se ha publicado en abierto y está disponible a través

del “Earth System Grid Federation (ESGF)”, en el nodo de la Universidad de Cantabria

(https://data.meteo.unican.es/thredds/catalog/esgcet/collections/CORDEX-DeepESD-EE/

catalog.html12). Por un lado, esperamos que este dataset por lo que se espera que consti-

tuya una referencia para la comunidad cient́ıfica del clima para el estudio en profundidad

11Recientemente, la comunidad cient́ıfica se ha unido para definir una serie de principios denominados
FAIR (findable, accesible, interoperable y reusable) que sirvan de gúıa para promover el aprovechamiento
por parte de cualquier usuario de los datos y/o el código generado en cualquier trabajo cient́ıfico (Wilkinson
et al., 2016)

12Esta dirección web es temporal dado que el art́ıculo que describe DeepESD está actualmente en proceso
de revisión en Nature Scientific Data. Una vez se haya publicado, se publicará una versión final del dataset
en otra URL.

https://github.com/SantanderMetGroup/DeepDownscaling
https://github.com/SantanderMetGroup/DeepDownscaling
https://data.meteo.unican.es/thredds/catalog/esgcet/collections/CORDEX-DeepESD-EE/catalog.html
https://data.meteo.unican.es/thredds/catalog/esgcet/collections/CORDEX-DeepESD-EE/catalog.html
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de las ventajas e inconvenientes que las redes neuronales puedan presentar para la gen-

eración de proyecciones climáticas de alta resolución (p.e., capacidad de extrapolación y

condición de estacionariedad). Además, DeepESD proporciona un nuevo ensemble plau-

sible de escenarios de cambio climático que complementa los ya existentes (p.e., las simu-

laciones númericas de los RCMs de EURO-CORDEX) y que, junto con aquellos, podŕıan

ser utilizados tanto para el desarrollo de actividades de impacto en distintos sectores

socio-económicos (p.e. enerǵıa, agricultura, salud, turismo, etc.) como para el diseño de

poĺıticas adecuadas de mitigación frente al cambio climático.

1.3.3 Software

Esta Tesis se construye sobre (y contribuye a) climate4R (C4R), un conjunto de libreŕıas

de R desarrolladas por el SMG que permiten abordar las particularidades y requerimientos

de (casi) cualquier aplicación en estudios del clima. Para mayor detalle, referimos al lector

al art́ıculo de referencia en el que se describe C4R (Iturbide et al., 2019) y/o al siguiente

repositorio de GitHub: https://github.com/SantanderMetGroup/climate4R.

Además de colaborar en el desarrollo de diferentes libreŕıas de C4R —especialmente

en downscaleR (Bedia et al., 2020), que permite aplicar fácilmente distintas técnicas de

SD— la principal contribución de esta Tesis a dicho framework es downscaleR.keras,

que proporciona una interfaz a Keras (Chollet et al., 2015), la libreŕıa de referencia

hoy por hoy en el campo del deep learning que permite diseñar (casi) cualquier tipo

de topoloǵıa. Por tanto, downscaleR.keras permite incorporar sofisticadas arquitec-

turas de redes neuronales al conjunto de métodos tradicionales de SD disponibles en

downscaleR. Se puede encontrar más información sobre downscaleR.keras en https:

//github.com/SantanderMetGroup/downscaleR.keras.

1.3.4 Premios

Esta Tesis ha obtenido el tercer premio en el Doctoral consortium celebrado en Granada

(España) en 2018 por la Asociación Española de Inteligencia Artificial (AEPIA).

1.4 Ĺıneas de Trabajo Futuro

Parte de los resultados de esta Tesis han abierto la puerta al desarrollo de nuevos

estudios que constituyen una continuación natural de algunos de los análisis presentados

en esta memoria.

Por ejemplo, una extensión que nos planteamos consistiŕıa en evaluar la idoneidad de

las CNNs para SD en el resto de dominios de CORDEX (más allá de Europa), con la idea de

generar un dataset global de proyecciones de cambio climático de alta resolución basado en

https://github.com/SantanderMetGroup/climate4R
https://github.com/SantanderMetGroup/downscaleR.keras
https://github.com/SantanderMetGroup/downscaleR.keras
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DL. Además, también nos planteamos analizar la viabilidad de las CNNs para hacer SD a

resoluciones espaciales más finas que los 0.5◦ considerados en esta Tesis (0.5◦). Es bastante

probable que estos estudios impliquen tener que implementar cambios en las topoloǵıas

desarrolladas durante esta Tesis, lo cual permitirá adquirir un mayor conocimiento sobre

los potenciales beneficios y limitaciones de las CNNs para aplicaciones de SD.

Además, hemos visto a lo largo de la Tesis como la falta de poder explicativo por parte

de los predictores de larga escala para reproducir la variabilidad local —especialmente para

la precipitación— resulta en una infraestimación de los extremos en las predicciones. Ac-

tualmente, la manera de atajar este problema es realizando un remuestreo aleatorio desde

las distribuciones estimadas, lo que conlleva una pérdida de estructura espacio-temporal en

los campos de alta resolución. Sin embargo, algunas topoloǵıas de DL como los Variational

Auto-Encoders (VAE, Kingma and Welling (2013)) o los modelos generativos (GAN, Good-

fellow et al. (2014)) podŕıan ser de utilidad para la generación de predicciones estocásticas

espacialmente consistentes, por lo que serán investigadas en detalle próximamente.

Además, es crucial seguir avanzando en el estudio de la interpretabilidad de las redes

neuronales —nótese que este aspecto ha sido parcialmente resuelto en esta Tesis— con

el fin incrementar la confianza de la comunidad en este tipo de modelos, lo que podŕıa

promover su uso en distintas aplicaciones climáticas (más allá del SD).

Finalmente, en el marco de una colaboración internacional entre SMG y el Centre

National de Recherches Météorologiques (CNRM) que se inició durante una de las estancias

realizadas a lo largo de esta Tesis, contemplamos abrir una nueva ĺınea de investigación

centrada en el uso de DL para construir emuladores estad́ısticos. Esta ĺınea tratará de

dar respuestas a algunas de las preguntas clave que han sido formuladas en el Flagship

Pilot Study (FPS) sobre convección de CORDEX13: 1) ¿Es un modelo de DL capaz de

aprender eficazmente el sistema de ecuaciones que caracterizan a un RCM? 2) Una vez

que se ajusta la red neuronal para una combinación GCM-RCM particular, ¿tiene sentido

su utilización con el find de emular el mismo RCM pero acoplado a otros GCMs? 3)

¿Tiene sentido utilizar en estudios climáticos una red que ha sido ajustada teniendo en

cuenta un escenario de emisión que difiere claramente del que se espera para el futuro? Los

resultados preliminares que se obtuvieron durante la estancia en el CNRM para un caso

de estudio concreto muestran que las CNNs desarrolladas en esta Tesis podŕıan suponer

una alternativa real al uso de RCMs.

13Véase https://www.hymex.org/cordexfps-convection/wiki/doku.php?id=home para más detalles

https://www.hymex.org/cordexfps-convection/wiki/doku.php?id=home


CHAPTER 2

Context, Objectives and Structure

2.1 Context

Numerical models are the main tool used nowadays to study the evolution of climate

at different time-scales, from a few days into the future (weather forecasting) to several

decades (climate change projections). These models solve numerically the equations that

describe the dynamics of the climate system (energy and mass conservation, Navier-Stokes

equations, etc.) over a discretized three-dimensional space formed by gridboxes. Compu-

tational limitations constrain the temporal and spatial resolution these models can achieve.

For instance, the Global Climate Models (GCMs) of the Coupled Model Intercomparison

Project Phase 5 (CMIP5, Taylor et al. (2012)) present spatial resolutions in between 1◦

and 3◦. These GCMs provide simulations for the entire globe based on different natural

and anthropogenic forcings1. Despite current GCM have proved robust to reproduce key

large-scale circulation patterns, they usually misrepresent important processes that occur

at spatial scales smaller than the size of the model gridbox (e.g., convective precipitation).

To produce high-resolution climate fields which explicitly resolve regional-to-local features

is key to different socio-economic sectors such as energy, agriculture, hydrology and health,

which are in need of these products for the development of their particular activities (e.g.,

high-resolution wind fields are needed for energy generation, accurate precipitation es-

timates are needed for local water management). Moreover, they have become crucial

in the design of efficient adaption plans, to elaborate sustainable environmental policies,

and to assess the possible impacts of climate change at the regional-to-local level. For

1The term forcing refers to any mechanism that has the potential to alter the Earth’s climate, for
instance changes in the energy balance of the planet due to a volcano’s eruption or to an alteration in the
concentration of greenhouse gases.
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these reasons, several worldwide initiatives aimed at providing accurate and top-quality

high-resolution climate products have recently emerged (e.g. the Coordinated Regional

Downscaling EXperiment (CORDEX)).

To improve the usability of the GCM outputs for impact applications, two conceptually

different approaches have been developed in the last decades: dynamical and statistical

downscaling. On the one hand, Dynamical Downscaling (DD) is based on the use of

numerical Regional Climate Models (RCMs) which simulate regional features of the climate

at a higher resolution over a limited area, driven at the boundaries by the coarse-resolution

GCM outputs (Rummukainen, 2010). On the other hand, Statistical Downscaling (SD)

relies on statistical models/algorithms which link the coarse-resolution outputs from the

GCMs (predictors) with the local observations (predictands) over the area of interest

(Maraun and Widmann, 2018). Despite the relative merits and disadvantages of both

approaches, they are seen as complementary rather than mutually exclusive (see Vrac

et al. (2012); Casanueva et al. (2019) for illustrative examples). This Thesis focuses on a

particular type of SD —which is drastically cheaper than DD in terms of computational

resources— known as “Perfect-Prognosis” (PP).

The main particularity of PP is that the statistical models/algorithms linking the pre-

dictors and the predictand are built based on observations. For the predictors, reanalysis

data2 are typically considered, whilst for the predictand either high-resolution gridded

data or station-scale records can be used. Once the statistical model is fitted in these

“perfect” conditions, it can be subsequently applied to GCM predictors to derive the cor-

responding high-resolution products up to the end of the century, based on a number of

possible socio-economic pathways. PP downscaling builds on three key assumptions with

regards to the quality of the statistical model inferred and its transferability from the

observational to the climate model space (Maraun and Widmann, 2018; Maraun et al.,

2019). These assumptions state that the low-resolution predictors considered to build the

statistical model 1) have to be informative enough for the local-scale, and 2) must be

realistically simulated by the GCMs at a distributional level. Moreover, for a meaningful

use under conditions not seen during the calibration phase (e.g., in climate change sce-

narios), 3) the statistical models should exhibit moderate extrapolation capabilities. To

date, a variety of techniques which include (generalized) linear models (Gutiérrez et al.,

2019), analogs (Hewitson and Crane, 1996), support vector machines (Tripathi et al.,

2006), random forests (Hutengs and Vohland, 2016) and very shallow neural networks

(Quesada-Chacón et al., 2021) have been employed to establish the link between the large

2A reanalysis is a global gridded dataset that combines observations with short-range weather forecasts
through data assimilation, providing the most reliable representation of the actual state of the atmosphere
at a given time. Reanalyses are widely used by the climate community in different applications, especially
in regions with low density and/or quality of observational records.
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and the local-scale. Despite their several merits, none of these methods has the capabil-

ity to automatically handle high-dimensional input spaces without leading to overfitting,

reason why the predictor space needs to undergo tedious and “human-guided” feature

selection and/or reduction procedures before entering the statistical model for training/-

calibration/fit (Gutiérrez et al., 2019). This typically implies a loss of information which

can be relevant to explain the local variability of the target predictand.

In this context, the community has moved its attention to deep neural networks or

Deep Learning (DL, Goodfellow et al. (2016)), with a special focus on convolutional-

based3 topologies. DL models have already beaten part of the existing battery of machine

learning models —especially in computer vision and natural speech recognition— and

have proved capable to 1) learn complex spatial patterns from data, and 2) automatically

deal with high-dimensional input spaces without leading to overfitting. These proper-

ties make DL models a potentially powerful candidate for a range of climate-oriented

applications, including statistical downscaling. Nevertheless, very few attempts —mostly

focused on synthetic use-cases based on image-super-resolution architectures (see Vandal

et al. (2018b) for an illustrative example)— tackle the use of DL for this problem to date.

These first works show promising results and a good skill to reproduce local precipitation

and/or temperature fields, but they 1) are directly not applicable for PP downscaling

due to some methodological constraints, 2) lack from a rigorous analysis of their perfor-

mance when applied in PP mode, and 3) miss an evaluation of their appropriateness for

downscaling of GCM scenarios.

2.2 Objectives

Following from the previous considerations, this Thesis focuses on assessing the suit-

ability of deep learning topologies, in particular Convolutional Neural Networks (CNNs),

for the downscaling of GCMs over Europe under the PP paradigm. The following main

objectives will be addressed:

1. To test the applicability and performance of CNNs for climate downscaling in “per-

fect” conditions —i.e. based on reanalysis predictors.— In this regard, one of the key

features to examine will be their ability to deal with high-dimensional input spaces.

2. To evaluate the benefits and disadvantages of CNN multi-site topologies, as com-

pared to the equivalent single-site versions. We will analyze for this aim the implicit

regularization that occurs in multi-site architectures.

3A Convolutional Neural Network (CNN, LeCun et al. (1995)) is a specific type of neural-based topology
which is commonly employed to learn non-linear patterns in datasets in which the underlying spatial
structure is important (e.g., for images). CNNs are the main focus of this Thesis.
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3. To gain understanding about the internal functioning of CNNs, which are typi-

cally seen as “black-box” models. To do this, we will focus on the study of the

predictor-predictand link (i.e., influence of every input feature in the downscaling

model outputs).

4. To study the suitability of CNNs to downscale future climate change scenarios. To

do so, we will first evaluate the ability of CNNs to reproduce the observed climate

based on the historical scenario of a GCM. Then, we will explore their potential for

moderate and coherent extrapolation under one emission scenario, based on various

GCMs.

2.3 Structure

To accomplish the above goals, the Thesis is structured in four main parts: Intro-

duction (Part I), Data and Methods (Part II), Main Results (Part III) and Concluding

Remarks (Part IV).

Part I is formed by two introductory chapters. Chapter 3 presents SD as a way to

bridge the gap between the coarse resolution provided by the current GCMs and the

regional-to-local information required by most of impact applications. We devote special

interest to PP-SD —assumptions, techniques and limitations of this paradigm.— Chapter 4

introduces the principles of deep learning and the CNNs used along this Thesis. Moreover,

a review of the literature that discusses the use of neural-networks in the context of climate

SD is also presented.

Part II consists on a single chapter which describes the methodological framework

followed in most of the analysis presented in this Thesis. In particular, Chapter 5 describes

the datasets, SD methods and validation metrics used.

Part III is formed by two central chapters that present the main results of this Thesis,

which are based on six manuscripts published in prestigious international journals and

conference proceedings. On the one hand, Chapter 6 assesses the suitability of CCNs for

PP-SD and is based on Baño-Medina et al. (2020). Moreover, this chapter also includes an

analysis of multi-site CNN topologies, —based on Baño-Medina and Gutiérrez (2019),—

and an exploratory study of the internal functioning of DL models for SD —based on Baño-

Medina and Gutiérrez (2018) and Baño-Medina (2020).— On the other hand, Chapter 7

studies the appropriateness of CNNs to downscale GCM simulations (both in historical and

future scenarios). This chapter is based on Baño-Medina et al. (2021b) —which focuses

on a single GCM— and Baño-Medina et al. (2021a) —which uses CNNs to downscale an

ensemble of CMIP5 GCMs.—
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Finally, in Part IV, Chapter 8 summarizes the main conclusions of the Thesis, discusses

future lines of work and enumerates the main the achievements accomplished.
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CHAPTER 3

Statistical Downscaling

3.1 Climate Modeling

Numerical models are the main tool used nowadays to study the evolution of climate

at different time-scales, from a few days into the future (weather forecasting) to sev-

eral decades (climate change projections). These models solve numerically the equations

that describe the dynamics of the climate system (energy and mass conservation, Navier-

Stokes equations, etc.) over a discretized three-dimensional space formed by gridboxes.

Computational limitations constrain the temporal and spatial resolution these models can

achieve –doubling the spatial resolution would require ten times more of computational

power to complete a simulation in the same time.— For instance, the Global Climate

Models (GCMs) included in the Coupled Model Intercomparison Project (CMIP1) Phase

5 (CMIP5, Taylor et al. (2012)) present spatial resolutions in between 1◦ and 3◦. These

GCMs provide worldwide simulations of a large number of meteorological variables based

on different natural (e.g. eruption of volcanoes) and anthropogenic forcings. Amongst the

latter, it is of particular importance the observed and estimated concentration of Green

House Gases (GHG) for historical and future periods, respectively. For the future, an

ensemble of possible emission trajectories were designed (mostly for CMIP5) based on

different socio-economic indicators. These trajectories are known as Representative Con-

centration Pathways (RCP, Van Vuuren et al. (2011)) and are labelled according to the

radiative pressure that is expected for the year 21002

1CMIP represents the most ambitious initiative for global climate modeling and has designed a wide
catalog of model intercomparison projects (MIPs) targeting different time horizons and socio-economic
sectors.

2For instance, RCP8.5 is an extreme emission scenario which assumes that GHG will continue to be
emitted to the atmosphere without restriction, reaching a radiative pressure of 8.5 W/m2 by 2100. This

27
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Currently, 62 different GCMs from 29 different modeling groups have participated in

CMIP5 (an illustrative subset of models is listed in Table 3.1). This large variety is key

to characterize the inherent uncertainty associated to climate change simulations, which

is derived not only by changes in model formulation/parametrizations and by the use of

different RCPs, but also from the chaotic and non-linear nature of the climate system

itself.

Name Institution HR Reference
CanESM2 Canadian Centre for Climate Modelling and Analysis (2.81º/2.79º) Christian et al. (2010)

CNRM-CM5
Centre National de Recherches Météorologiques and
Centre Européen de Recherche et de Formation Avancée

(1.4º/1.4º) Voldoire et al. (2013)

MPI-ESM-MR Max-Planck Institut für Meteorologie (1.87º/1.87º) Müller et al. (2018)
MPI-ESM-LR Max-Planck Institut für Meteorologie (1.87º/1.87º) Müller et al. (2018)
NorESM1-M Norwegian Climate Center (2.5º/1.9º) Bentsen et al. (2013)

GFDL-ESM2M
National Oceanic and Atmospheric Administration
Geophysical Fluid Dynamics Laboratory

(2.5º/2.02º) Dunne et al. (2013)

EC-EARTH European-wide consortium (1.12º/1.12º) Doblas Reyes et al. (2018)
IPSL-CM5A-MR Institut Pierre Simon Laplace Climate Modelling Center (2.5º/1.27º) Dufresne et al. (2013)

Table 3.1: An illustrative subset of the GCMs included in CMIP5, including the running
institution, the lon/lat horizontal resolution (HR) and the reference manuscript for each
model.

Nowadays, both public and private sectors elaborate mid- and long-term policies ac-

cording to the available climate change scenarios provided by the different GCMs. For

instance, CMIP simulations are analyzed in the periodic Assessment Reports (AR) elabo-

rated by the Intergovernmental Panel on Climate Change (IPCC3), which ultimately are

used to support national adaptation plans in many countries. Nevertheless, policy makers

and stakeholders are often in need of high-resolution information which current GCMs

are not able to provide (despite model resolution has increased considerably during the

last decades due to the development of faster and more efficient computational infrastruc-

tures). These finer scale products are critical —especially in regions vulnerable to climate

change— for efficient design and management of energy plants, irrigation schemes, civil

and transport infrastructures, etc.

It is important to note that sub-grid processes which often drive the regional-to-

local climate are misrepresented in GCMs. This can be partially alleviated by intro-

ducing parametrization schemes as part of the model formulation (McFarlane, 2011).

Parametrizations are complex empirical functions which allow to adjust the variable of in-

terest (e.g., precipitation) returned by the model towards more realistic values. However,

many works have reported substantial model biases (as compared to observational records)

is the scenario considered in this Thesis.
3IPCC is the panel of worldwide experts founded by the United Nations (UN) in 1988 which aims to

ease the communication between the scientific community and policymakers regarding the physical basis
and potential impacts of climate change.
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DD / SD

SD

SD

Low-resolution High-resolution
    (gridded)

High-resolution
(station-scale)

Figure 3.1: Diagram illustrating the spatial resolution of typical climate products; from
the coarse outputs of a GCM (left) to the high-resolution gridded or station-scale data
required by most of practical applications (middle and right, respectively). DD is used
to bridge the gap between low- and high-resolution gridded products whilst SD can be
employed to pass from the coarse to the local scale based either on gridded data or in
station-wise measurements.

for particular variables and/or locations regardless of the use of tuned parametrizations

(see, e.g., Kotlarski et al., 2014). For instance, this is the case of mountainous regions in

which precipitation is often triggered by convective events related to the local orography,

or coast borders where the land-sea interface determines the appearance of pronounced

temperature gradients. Moreover, parametrizations do not modify the original resolution

of the model towards finer grids, and therefore they are not enough to bridge the scale

gap that hinders the use of GCMs in real-life problems (Demory et al., 2020).

In this context, downscaling emerged as a tool to improve the usability of the coarse

resolution outputs provided by the GCMs (see Figure 3.1). In particular, two conceptually

different approaches have been developed during the last decades to this aim: dynamical

downscaling (DD) and statistical downscaling (SD).

DD is based on the use of Regional Climate Models (RCMs) which numerically solve

the equations describing the dynamics of the climate system over a relatively small area

(e.g., Europe), driven by GCM outputs at the boundaries (Rummukainen, 2010). As a

consequence of running on finer grids, RCMs are typically better than GCMs at repro-
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ducing the observed climate in regions where it is mostly determined by local phenomena.

Moreover, studies also point to an improvement of DD over GCMs in regions with a low

dependence on local mechanisms (Sørland et al., 2018). Nevertheless, RCMs tend to in-

herit some of the limitations from the driving GCMs such as biases in the atmospheric

fields (Christensen et al., 2008) and require powerful computational infrastructures to run.

Differently, SD establishes empirical relationships between the large-scale and a set

of observational records at the local-scale (Maraun and Widmann, 2018). As a result of

being calibrated directly with observations, SD models are expected to present very small

biases (as compared to observations) over the training period. Moreover, SD is drastically

cheaper than DD in terms of computational resources and requires much shorter times

—e.g., the calibration of a typical SD model can take minutes or hours, depending on the

particular technique used and the extension of the area of study.—- However, SD needs

high quality, long enough observational records to establish robust links between the large-

and the local- scale, which limits its applicability in many regions of the world. Also, SD

does not take into account the physical principles linking the large- and the local-scale,

which typically results in worse spatio-temporal coherence than RCMs. Furthermore, SD

models can not capture small-scale dynamical changes, since they are not reflected in

the large-scale predictors (Vrac et al., 2007b). Finally, the key limitation of SD is the

stationary assumption, as the statistical models learnt over a given period (e.g. the recent

past) are assumed to remain valid for other periods (e.g. the end of the century) in which

the synoptic patterns may differ. This is especially relevant for the SD of long-term climate

change scenarios (Gutiérrez et al., 2013).

Statistical Downscaling (SD) Dynamical Downscaling (DD)

Unbiased predictions
since it is calibrated directly
with observations

Reduces the bias of GCMs
but generates its own bias

Computationally cheap
(∼ minutes/hours)

Computationally expensive
and requires sophisticated
supercomputers (∼ months)

It is not based on physical principles,
and spatio-temporal consistency is
not granted

It is based on physical principles,
and therefore ensures inter-variable
and spatio-temporal correlations

Table 3.2: A comparative summary between statistical and dynamical downscaling.

Several intercomparison studies between DD and SD have been carried out (see, e.g.,

Murphy, 1999; Haylock et al., 2006; Schmidli et al., 2007; Vaittinada Ayar et al., 2016),

illustrating the mentioned issues (see Table 3.2 for a comparative summary). Nowadays,

DD and SD are seen as complementary rather than mutually exclusive (see Vrac et al.
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(2012) for an example). For instance, SD is often used to remove the systematic biases

of RCMs (Casanueva et al., 2019). The next section is devoted to explain the different

approaches and techniques available for SD, the focus of this Thesis.

3.2 Statistical Downscaling

This section provides a brief overview of the three different approaches available for SD:

Perfect-Prognosis (PP), Model Output Statistics (MOS) and Weather Generators (WG).

The interested reader is referred to Maraun and Widmann (2018) for further details.

PP-SD is based on the use of transfer functions or algorithms which allow to establish

empirical links between a low- and a high-resolution dataset of observations. For the

former, reanalyses are typically used, whilst for the latter, either high-resolution gridded

data or station-scale records can be employed. Once the statistical model is fitted in these

“perfect” conditions, it can be applied to derive high-resolution downscaled fields of the

variable of interest using as inputs GCM predictors under different scenarios (e.g. historical

and RCP simulations). Typical PP techniques include linear (Huth, 2002; Chandler and

Wheater, 2002; Fealy and Sweeney, 2007; Hertig et al., 2013; Beecham et al., 2014) and

non-linear (Vrac et al., 2007a; Huth et al., 2008; Chen et al., 2010; Quesada-Chacón et al.,

2021; Olmo and Bettolli, 2021) regression methods, and analogs (Zorita and Von Storch,

1999; Walton et al., 2020).

MOS-SD aims to build statistical relationships which link the variable of interest (e.g.

precipitation) simulated by a particular climate model (either a GCM or a RCM) with the

corresponding observational record at a given site. This is often done by mapping some

order-moments (e.g. the mean, the variance, and/or different percentiles) of the simulated

distribution to the observed one. Once fitted over a determined period (e.g. the recent

past), this link can be subsequently used to correct the outputs of the same GCM/RCM

for other time periods (e.g. future decades). In climate change studies, MOS basically

reduces to bias adjustment techniques, which have become increasingly popular during the

last years. These range from simple additive or multiplicative scaling corrections (Durman

et al., 2001; Iizumi et al., 2011; Casanueva et al., 2013) to more distributional-oriented

ones (Piani et al., 2010; Lafon et al., 2013; Turco et al., 2017; Fauzi et al., 2020), such

as quantile mapping (Panofsky et al., 1958). The latter performs a quantile-to-quantile

adjustment of the probability functions of the variable of interest (see, e.g., Maraun et al.,

2010; Teutschbein and Seibert, 2012; Maraun et al., 2017a; Manzanas et al., 2020b). MOS-

SD essentially refines the climatological detail of the fields, but do not add significant value

since the spatial and temporal structure of the downscaled series are largely inherited from

the climate model. Therefore, MOS methods are most commonly used to post-process
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RCM outputs (e.g. to correct their systematic biases) or to bridge the scale-gap when the

resolution of the climate model is close to the target resolution.

Finally, WG (see Wilks and Wilby (1999) and Ailliot et al. (2015) for a review) is

aimed at learning the distributional moments of the variable of interest at a given site

from an observational record. For instance, it is common to estimate the parameters of an

exponential function to model the observed wet-day distribution. Afterwards, a synthetic

time-series which preserves the statistics of the observed climate can be generated by

sampling from the estimated probability function. To downscale future projections, the

calibrated parameters are perturbed —in a manner consistent with the climate change

projected by the GCM/RCM of interest— to produce local series under different emission

scenarios (Kilsby et al., 2007; Keller et al., 2017; Vesely et al., 2019). WGs are commonly

built on a monthly basis (i.e., a WG per month, see Wilks (2010) for an illustrative case-

study), or conditioned to certain atmospheric patterns. For instance, Bardossy and Plate

(1992) and Fowler et al. (2000) have produced synthetic series of precipitation based on

different weather types. It is of special interest to this Thesis the hybrid PP-WG approach

in which large-scale reanalysis predictors are linked —based on some transfer function,—

to the parameters of a selected probability function, describing the variable of interest at

a given site. For instance, Williams (1998) and Cannon (2008) deploy linear and neural

network models, respectively, to learn daily Bernoulli-Gamma distributions describing

local precipitation, which are conditioned to the large-scale atmospheric situation (further

details on this topic are given in section 4.4). This approach permits to overcome the

miss-representation of the extremes of some PP-SD downscaled series —which appears

when predictors lack from a sufficient informative power to explain the local variability,—

by sampling from the estimated conditional distributions.

This Thesis focuses on PP downscaling. Therefore, the rest of the chapter is devoted

to a deeper explanation of this particular approach.

3.3 Perfect-Prognosis Statistical Downscaling

As explained, SD is based on empirical functions that link the large-scale atmospheric

situation to the local scale of the variable of interest (typically daily temperature or pre-

cipitation). Under the PP approach (see Figure 3.2), this link is inferred building on a

particular statistical method —e.g., analogs, generalized linear models, etc.— consider-

ing observational datasets for both the predictors (reanalysis) and the predictand (e.g.,

station-scale records). The so-constructed model can be applied then to produce local

downscaled projections using as inputs the large-scale variables simulated by the GCMs

under different scenarios (for instance, future RCPs).
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The following sections dig into the details of different methodological aspects that are

key for PP-SD.

 Large-scale 
 Predictors

(2º resolution)

...

   Local-scale
  Predictands
(0.5º resolution)

Linear Regression
Generalized Linear Models
Support Vector Machines
Neural Networks
Random Forest
...

Reanalysis (xrea)

GCM simulations (xgcm)

 Pre-processing of GCM predictor variables

Model prediction                   y = f(xgcm) 

Downscaling of climate simulations 

 1 

 2 

Observations (yobs)

Downscaled field (y)

 Pre-processing of reanalysis predictor variables

Model calibration                   yobs = f(xrea), where f()  

Model calibration in "perfect" conditions

 1 

 2 
→

→

→

Figure 3.2: Diagram illustrating the different phases of a typical PP-SD experiment. First,
large-scale reanalysis predictors (at a spatial resolution of 2◦ in this example), xrea, are
linked to a high-resolution gridded observational dataset, yobs (at 0.5◦) through an em-
pirical functions, f(), which is learnt based on a given SD method (see section 3.3.3 for
details). Subsequently, f() can be applied to derive the high-resolution downscaled field
of the variable of interest, y, using as inputs GCM predictor variables, xgcm. Note that
some processing of the predictors is usually performed (for instance, standardization is
normally applied to avoid scale artifacts in the downscaled results).

3.3.1 Cross-Validation

When assessing the performance of any SD technique it is crucial to rely on a proper

cross-validation scheme; otherwise, misleading conclusions may be obtained. Hold-out is

the simplest approach to do so. It consists of dividing the entire observational datasets

into independent train and test sets. Whilst the former is used for model calibration, the

latter is used to assess the generalization capacity of the SD model, ensuring it does not

incur into overfitting. One of the key advantages of hold-out cross-validation is that it

allows for evaluating whether or not a given SD method presents “moderate” extrapolation

capabilities. This can be done by wisely selecting train and test periods with different

climatological properties. This kind of analysis is crucial if the SD model is planned to be

used for downscaling of climate change scenarios, since it should be able to work reasonably

well under new conditions which may have not occurred during the calibration phase.

Hold-out has evolved to a more sophisticated splitting of the data, called k-fold cross-

validation (Markatou et al., 2005), which splits the data —either random or chronologically—

in K folds. The SD model is tested on each of the K folds separately, using the remaining

K − 1 folds for model calibration. By doing so, a complete prediction covering the full

period can be recovered by appropriately concatenating the results from the K models.
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Given the importance of the temporal structure in climate data, chronological partitioning

is often used (Gutiérrez et al., 2019) for SD.

3.3.2 Key Assumptions

In a climate change downscaling context, the PP approach needs to fulfill the following

key assumptions (see, e.g., Maraun and Widmann, 2018; Maraun et al., 2019):

• The predictors chosen have to be informative, i.e, they should explain a large fraction

of the temporal variability of the predictand of interest. Moreover, they should carry

the climate change signal —typically, this is ensured by including some temperature

and/or humidity variables in the predictor set.— Otherwise, the downscaled projec-

tions might not reflect the changes that are expected in future climate conditions.

• The predictors chosen have to be realistically simulated by GCMs in both recent past

(historical) and future (RCP) simulations. A minimum requirement in this sense

would be to assure that GCM predictors present no biases with respect to their rea-

nalysis counterparts for the calibration period; otherwise, the high-resolution prod-

ucts would inherit the biases from the GCM (Wilby and Wigley, 2000). To ensure

compatibility among datasets, harmonization and/or standardization procedures can

be applied prior to downscaling. For instance, Vrac and Ayar (2016) performed a

bias correction of the monthly mean of the GCM predictors taking the reanalysis as

reference, for a better fit of the seasonal cycle.

• The statistical models have to be flexible enough to model the complex interactions

between the large- and the local-scale. On the one hand, very simple models (e.g.,

linear regression) might fail to reproduce the non-linear mechanisms that link pre-

dictors and predictand. On the other hand, overparameterized models may suffer

from overfitting, which in turn might reduce their predictive skill in out-of-training

conditions. Regardless of the model complexity, any technique should be able to

show some extrapolation capability when driven by predictor spaces which had not

been observed during model calibration.

Due to importance of these hypotheses to the PP-SD approach, these are analyzed

along the Thesis, especially in Chapters 5, 6 and 7.

3.3.3 Techniques

The existing battery of statistical and machine learning techniques for PP downscaling is

extensive, ranging from simple (generalized) linear models (Gutiérrez et al., 2019), quantile

regression (Koenker and Hallock, 2001), self-organizing maps (Hewitson and Crane, 2002;



3.3. PERFECT-PROGNOSIS STATISTICAL DOWNSCALING 35

Hope, 2006), neural networks (Schoof and Pryor, 2001), support vector machines (Tripathi

et al., 2006), random forests (Hutengs and Vohland, 2016) and analogs (Hewitson and

Crane, 1996), among others.

Several intercomparison studies have demonstrated that there is not a single method

which clearly outperform the others in terms of reproduction of the local variability and

spatio-temporal consistency (Wilby et al., 1998; Chen et al., 2010; Sachindra et al., 2018;

Yang et al., 2018; Gutiérrez et al., 2019). Due to their simplicity and general good per-

formance, Generalized Linear Models (GLM) and analogs tend to be the preferred op-

tion among the downscaling community (Brandsma and Buishand, 1997; Chandler and

Wheater, 2002; Abaurrea and Aśın, 2005; Fealy and Sweeney, 2007; Hertig et al., 2013).

We devote the rest of the section to explain the particularities of GLMs, which are con-

sidered the benchmark against the Convolutional Neural Networks (CNNs) developed in

this Thesis are compared.

GLMs (Nelder and Wedderburn, 1972) establish an empirical link, g−1(), parameter-

ized by a set of coefficients ω which map a set of explanatory variables x to the expected

value of the target variable, E(y), which is assumed to follow a particular probability

distribution belonging to the exponential family:

E(y) = g−1(ωx) (3.1)

Well-known types of regression can be deduced from Eq.3.1. For instance, multiple

linear regression is equivalent to assume a Gaussian distribution with an identity link

in the GLM formulation. Logistic regression is also a special case of Eq.3.1, where a

GLM with Bernoulli error distribution is trained using the logit canonical link. These

two cases appear often in downscaling studies, principally to derive local temperature and

precipitation occurrence, respectively (Gutiérrez et al., 2019). Note that even though they

are linear by definition, GLMs can achieve a limited degree of non-linearity by considering

sophisticated (e.g. logarithmic) links.

GLMs can be used either as a pure PP or as a hybrid PP-WG downscaling technique

(Gutiérrez et al., 2019). In PP mode, GLMs predict the expectance of the conditional

distribution being modeled. Differently, in a PP-WG context, the predictions are sampled

out from the modeled distributions, which allows to increase the variance of the downscaled

temporal series (see, e.g., Manzanas et al., 2020b).

3.3.4 Model Setup, Limitations and Challenges

PP-SD presents several challenges mostly related to the model setup. In particular, re-

garding the predictor set, one should ideally select a relevant and unredundant set of

variables —confined within a meaningful geographical domain— which largely explain the
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local variability of the predictand of interest. For instance, whereas surface temperature

is known to be highly determined by the large-scale atmospheric situation, precipitation is

in many cases triggered by local processes (e.g., convection) which are not represented in

the coarse-resolution predictors. Moreover, in climate change studies, circulation predic-

tors (e.g., sea level pressure) should always be accompanied by thermodynamic variables

such as temperature and/or humidity which account for the proper climate change signal

(Maraun and Widmann, 2018). As a result, the predictor/domain selection is a complex

task which is typically undertaken based on an exhaustive screening which should focus

on different validation metrics (see, e.g., Gutiérrez et al., 2013; San-Mart́ın et al., 2017).

In addition, Manzanas et al. (2020a) proved —on a use-case over Malawi,— that the vari-

ability in the climate projections due to predictor selection is also an important source of

uncertainty.

Previous studies suggest that temperature at 850 hPa (Huth, 1999, 2002; Maraun and

Widmann, 2018; Gutiérrez et al., 2013; Gutiérrez et al., 2019) and geopotential height

(Huth, 1999) are the most relevant predictors for surface temperature, and are often

present in models aimed at downscaling this variable both from reanalysis and GCMs

(Huth, 1999, 2002, 2004).

For precipitation, the choice of informative predictors is more difficult (Maraun and

Widmann, 2018). Precipitation occurs when moist air ascends vertically leading to satu-

ration and the formation of droplets. The presence or not of particles where to coalescence

the droplet, local orography, convergence of air masses or local diabatic heating are some of

the physical processes responsible for precipitation, which are only partially described by

the synoptic-scale. As a result, fully informative predictors for this variable are typically

lacking. Anyhow, there is general agreement regarding the usefulness as predictor of rel-

ative humidity, geopotential height and temperature at different vertical levels (Schmidli

et al., 2007; San-Mart́ın et al., 2017; Yang et al., 2018; Gutiérrez et al., 2019; Soares et al.,

2019). Still, the observed variability of local precipitation is typically underestimated in

the downscaled time series by deterministic PP methods (Enke and Spegat, 1997). PP-WG

methods aim to overcome this issue by sampling out from the distributions conditioned

to the large-scale atmospheric situation. However, this stochastic simulation procedure

damages the spatio-temporal structure of the downscaled precipitation fields, making nec-

essary to find an optimum trade-off between spatio-temporal representativeness and the

adequate reproduction of extremes.

Despite this “a priori” knowledge, the choice of predictors is known to constitute

an important source of uncertainty in SD for the generation of climate change scenarios

(Huth, 2004; Manzanas et al., 2020b). In addition, due to the incapacity of state-of-the-art

SD methods to efficiently handle high-dimensional input spaces, the available predictors
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need to undergo restrictive feature selection and/or reduction techniques in order to avoid

overfitting. This implies a loss of information which ends by damaging the predictive skill

of the resulting SD models. In this context, Deep Learning (DL) emerges as a powerful

alternative for PP-SD, capable of handling high-dimensional input spaces in a meaningful

way. For instance, the CNNs developed in this Thesis have the potential to extract relevant

information from the complex spatio-temporal patterns present in the data, helping thus

to overcome some of the explained limitations of traditional PP-SD techniques.

Moreover, any PP-SD technique has to deal with the “stationarity” assumption, which

entails that the predictor-predictand links inferred in present climate conditions will re-

main valid under future climate change. In this regard, some of the strategies considered

to-date to assess the extrapolation capability include the use of test periods with different

climatic characteristics than the one used for calibration —for instance, by selecting the

warmest years in a “perfect” conditions environment (see, e.g. Gutiérrez et al., 2013)—

and the comparison of the downscaled future projections with those directly obtained

from either GCM or RCM simulations, which are considered as “pseudo-observations” or

“pseudo-reality”(Vrac et al., 2007b). In this Thesis we rely on these two approaches to

dig into the “stationarity” assumption of the SD models proposed.
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CHAPTER 4

Deep Learning

4.1 A Brief Historical Overview

The history of Neural Networks (NN) dates back to the 40’s when the first neuron

model was developed to differentiate between two categories (McCulloch and Pitts, 1943).

In the next decade, the perceptron model (Rosenblatt, 1958) extended that first naive

neuron model by implementing an optimization algorithm that would be the predecessor

of the current backpropagation (Rumelhart et al., 1986). The perceptron was designed to

learn a set of coefficients w that leverage a number of explanatory variables, x, allowing

to estimate the outcome for a particular classification task, y —which was then casted to

boolean based on a pre-defined threshold (step function).— Perceptrons evolved to neu-

rons, which passed the resulting affine transformation to a non-linear activation function

f() —e.g., sigmoidal.— Basically, NNs consist of an arrangement of neurons in (hidden)

layers to perform operations in a sequential and hierarchical manner (see Figure 4.1), re-

sulting into a non-linear mapping between a set of explanatory (input layer) and response

(output layer) variables. NNs were found to be useful for a variety of applications, in-

cluding sequential modeling (Hochreiter and Schmidhuber (1997), Bengio et al. (1994)),

distributed representation (Hinton et al., 1990) and computational neuroscience (Touret-

zky and Hinton, 1985). However, in the mid 90s, due to the lack of large data records

and suitable computational infrastructures, NNs were found to easily incur in overfitting

or become intractable. As a result, the use of NNs was limited to very shallow topolo-

gies/architectures (i.e., one or two hidden layers). These simple networks lacked from

the ability to learn complex data patterns, and in parallel, kernel machines (Gunn et al.,

1998) and graphical models (Koller and Friedman, 2009) outperformed shallow NNs for

39
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important tasks. As a consequence, investment and research towards neural-based topolo-

gies decreased considerably, remaining only a few isolated research centres truly devoted

to this matter. In 2006, a special type of NN called deep belief network was efficiently

trained (Hinton et al., 2006) followed by other neural configurations (Bengio et al. (2007),

Ranzato et al. (2007)) and the field started to re-emerge. The definitive breakthrough

came in 2012 when a deep convolutional network won the most challenging competition

in object recognition (Krizhevsky et al., 2012), consolidating the back to scene of NNs.

The success behind the resurrection of NNs is closely related to different technolog-

ical developments. On the one hand, the digitalization of society has facilitated data

access and curation, eases the training of the network (the estimation of parameters be-

comes more robust). On the other hand, faster Computational Process Units (CPUs)

and the adoption of Graphical Processing Units (GPUs) — commonly used for image

processing— have improved the ability to store and process vast amounts of data and

have allowed the development of rapid optimization procedures. Not only the hardware,

but also new software has arrived in the form of R or Python libraries —e.g., Theano

(Bergstra et al., 2010), TensorFlow (Abadi et al., 2016), Keras (Chollet et al., 2015) or

PyTorch (Collobert et al., 2011), among others— which facilitate the design and coding

of neural models, and also ease the access to distributed computing. Altogether, these

new advances allowed that many NNs whose optimization had been impossible in the

past became feasible, pushing towards more and more complex topologies. In particu-

lar, based on biological neural networks, the research community put the focus on the

depth of the net, redefining thus the field to deep learning (DL). In addition to the above

mentioned technical developments, advances in the topological elements of the network

were also needed to successfully train these DL models. In particular, the appearance of

Rectified Linear units (ReLu, Nair and Hinton (2010)) —which overcame the vanishing

gradient problem (Hochreiter, 1998),— stochastic gradient descent (Bottou et al., 2018)

and the development of sophisticated learning algorithms (e.g., Adam optimizer or RM-

Sprop optimizer), among others — e.g., weights initialization (Glorot and Bengio, 2010),

regularization techniques (Srivastava et al., 2014), normalization layers (Ioffe and Szegedy,

2015),— were responsible for the success of deep networks. For these reasons, DL refers

not only to the growth in depth of the networks, but also to the technological developments

that have made models with many layers tractable. DL has recently emerged as a powerful

alternative to learn complex non-linear patterns from vast amounts of data (Goodfellow

et al., 2016) and has outperformed other machine learning methods in a variety of com-

mercial —e.g., image recognition (Krizhevsky et al., 2012)— and non-commercial —e.g.,

cancer detection (Amin et al., 2018)— applications.

But why have neural networks surpassed the wide variety of machine learning tech-
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Figure 4.1: Diagram of a neuron model (top), together with a simple (bottom left) and
deep (bottom right) neural network topologies. See sections 4.2.1 and 4.2.2 for details on
the mathematical formulation of these particular topologies.

niques? Leaving aside bio-inspired reasons, similar to classical machine learning tech-

niques, neural networks basically transform the input space into a hidden/latent one by

performing some mathematical operation. However, unlike in other machine learning tech-

niques in which the generation of this space relies on the kernel trick (e.g., support vector

machines (Gunn et al., 1998)) or it is simply randomly produced (e.g., extreme learning

machines (Huang et al., 2006)), NNs optimize this latent representation, which is shaped

by the hidden layer dimensions. The key challenge in the design of a neural network resides

in the choice of a suitable topology which allows to learn complex data patterns without

incurring in overfitting. In this regard, the width (number of neurons) and the depth

(number of hidden layers) of the network are key since they control its capacity to infer

the potential non-linearities linking input and output variables. Indeed, if there is a suffi-
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cient number of neurons, a neural network with a single hidden layer could approximate

in practice any function (Hornik (1991), Cybenko (1989)). Nevertheless, this particu-

lar architecture is usually not able to learn a function which generalizes to data samples

not seen during model calibration. Differently, deep topologies have demonstrated better

generalization properties than shallow ones due to their ability to extract useful knowl-

edge from hierarchical structures that appear in the input features. Still, due to the large

amount of parameters present in deep neural networks, some form of regularization is often

needed. Despite the success of DL in many disciplines, the truth is that neural networks

are often called “black-box” models since their complex topologies difficult the analysis

of the function begin approximated. The interpretability of DL models is challenging and

constitutes nowadays an active area of research which covers different approaches such as

geometrical interpretations related to Riemannian spaces or visualization of the hidden

structures (Daniely et al. (2016), Yosinski et al. (2015), Hauser and Ray (2017), Zintgraf

et al. (2017)). This lack of interpretability is in fact one of the major drawbacks of NN in

general (and DL in particular) to date and has hindered the adoption of these models in

more scientific disciplines, including the climate science.

4.2 Principles of Neural Networks

This section describes the basics of neural networks. We start by introducing the

perceptron model in section 4.2.1, followed by a brief explanation of the multi-layer per-

ceptron in section 4.2.2. Convolutional networks and multi-task architectures —which are

essential for the models developed in this Thesis,— are introduced in sections 4.2.3 and

4.2.4, respectively. In section 4.2.5, we describe the optimization procedure followed in

NNs. To facilitate the reader the understanding of these topologies we accompany the

explanations with diagrams of illustrative meteorological use-cases.

4.2.1 Neuron Model

Given a set of N input pairs {(x1, y1), ..., (xN , yN )} —where xj ∈ <a and yj ∈ <1 are the

explanatory and response variables, respectively,— an artificial neuron (see Figure 4.2)

learns an affine transformation which is activated by a non-linear function (e.g., sigmoidal),

such that each instance j of the variable y can be described as:

yj = f

(
a∑
i=1

xjiwi + bi

)
(4.1)

The election of the activation function, f(), depends on 1) the particular task being

addressed —e.g. classification or regression— and 2) the place in which the neuron is



4.2. PRINCIPLES OF NEURAL NETWORKS 43

y = f(xW + b)

y

b

W
x

Figure 4.2: Diagram showing a neuron model based for a meteorological application. For
a given sample, a row input vector of features, x ∈ <9, is multiplied by a column vector
of coefficients, W ∈ <9, plus an independent term, b. The neuron, y, activates this affine
transformation according to a given function f(). The set of coefficients ω = {W, b} are
learned thanks to the gradient descent method and the backpropagation algorithm.

disposed within the network (see section 4.2.2). Sigmoidal functions are usually chosen

for classification tasks since the output is bounded between 0 and 1, whereas the identity

or exponential functions are preferred for regression problems. In fact, note that when

the activation function is the identity, equation 4.1 is equivalent to a linear regression

(or multiple linear regression if a > 1). Another special case occurs when the activation

function is a Heaviside step function which reduces the model to its predecessor: the

perceptron (Rosenblatt, 1958).

4.2.2 Dense Neural Networks

The degree of non-linearity that a single neuron can achieve is very limited regardless the

activation function considered. To increase the model’s flexibility, neurons are arranged in

complex structures that define the topology of the network. The most common topology

encountered in the literature is the feedforward neural network, in which neurons are

disposed in layers connected in a sequential manner. Dense neural networks arrange the

neurons into three or more layers (see Figure 4.3), with each particular neuron outputting

an activated affine transformation based on all the neurons contained in the previous

layer (i.e., fully-connected). This architecture dates back to the 70s and was developed

as a natural extension of the perceptron model, reason why it is commonly known as

Multi-Layer Perceptron (MLP).

In brief, a neural network of L layers learns a function fw() which is parameterised
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y1

y2

h = f(xW1 + b1)

x M

N

L=2L=1 L=3

h1

h2
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1

y1 = f(hW2
1 + b2

1)

y2 = f(hW2
2 + b2

2)

W2
2

(input) (hidden) (output)

Figure 4.3: Diagram showing a 1-hidden layer dense NN in a meteorological application.
In this case, the hidden space consists of 2 neurons which are the result of an affine
transformation between an input vector of features, x ∈ <MxN , and a matrix of coefficients
W1 ∈ <(MxN)x2. Typically sigmoidal or ReLu activation functions are used as nonlinear
operators for the hidden space. Finally, the desired variable, y1, is obtained based on the
same procedure but relying on the 2-valued vector W 1

2 , since there are only 2 neurons
in the hidden layer. Multi-site topologies would consist of optimizing more than 1 site
simultaneously, included as an additional neuron, y2, in the output layer (see section 4.2.4
for a detailed explanation of these architectures). In this last case, the network would
optimize the following set of coefficients: ω = {W1,W

1
2 ,W

2
2 , B1, b

1
2, b

2
2}.

by a set of coefficients, ω = {W1,W2, ...,WL−1}, mapping the input space to the output

space. Hence,

y = fω(x) (4.2)

As mentioned in section 4.1, the width and depth of the network control the degree

of non-linearity that can be achieved. The number of coefficients/parameters/weights

that need to be adjusted by the network grows exponentially with both width and depth.

Moreover, there is a lack of “a priori” knowledge with regards to the optimum size of

the network in most applications. As a result, NNs are often grown in excess, which can

easily lead to overfitting. Several approaches have been reported in the literature to avoid

this problem, for instance data augmentation (Jaitly and Hinton, 2013), norm penalties

(Tibshirani, 1996), bagging (Breiman, 1996), dropout (Srivastava et al., 2014), injection of

artificial noise (Sietsma and Dow, 1991), multi-task learning (Ruder, 2017), early-stopping

(Bishop, 1995) or parameter sharing (LeCun et al., 1995). Convolutional operations, which

are the basis of the NNs developed in this Thesis, are a form of parameter sharing.
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4.2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a specific type of feedforward NNs in which

adjacent layers are linked through a convolutional operation which allows for learning

complex spatial structures (i.e. patterns) present in the data. This is due to the special

configuration of the network’s parameters, which are arranged in kernels that convolute

over the dimensions of the input layer (typically 2-dimensional maps). CNNs (LeCun

et al., 1995) were first introduced in the 90s for computer vision applications.

h1

h2

h1 =  f(x'11w1 + x'12w2 + ... + x'19w9)

x'1

x'2

h2 = f(x'21w1 + x'22w2 + ... + x'29w9)

x hM

N

M
M-2

N
N-2

K

K

Figure 4.4: Diagram showing a convolutional layer designed in a meteorological applica-
tion. The 2D input features, x ∈ <MxN , are convoluted by a 2D kernel, K ∈ <3x3x1. The
affine transformation is based on patches of the input space, x′ ∈ <3x3x1, and the described
kernel, K = {w1, w2, ..., w9}, which is identical independently of the patch (i.e., parameter
sharing). The result is a 2D filter map, h ∈ <MxN or h ∈ <(M−2)x(N−2) depending on
whether padding is applied or not, respectively. The number of filter maps depends on
the number of kernels (1 in this example).

Figure 4.4 illustrates the convolution operation in a meteorological application. Given

a set of input features, x ∈ <NxMxC (e.g., latitude-longitude fields of different atmospheric

variables) and a kernel, K ∈ <K1xK2xC , convolution provides a scalar product of these 2

real-valued functions across the spatial dimensions. The neurons in an adjacent layer are

the result of an activated affine transformation that involves a subset of the input neurons

(x′ ∈ <K1xK2xC) and a common set of weights (i.e., kernel). Convolution generates a

filter map, h ∈ <N−K1+1,M−K2+1, which can be understood as the spatial representation

of the feature learned by the kernel. Normally, a large number of kernels are used since

many spatial features can be learned from the input space. To keep the spatial resolution

of the outcome equal to that of the input space, padding can be applied by adding the

necessary zero-valued rows and/or columns before the convolution operation. Actually,
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the dimensions of the output space could also depend on other parameters which are not

of interest for this Thesis (e.g., stride). Note that when the dimensions of the kernel equal

the dimensions of the input space, the CNN is equivalent to the dense layer described in

section 4.2.2. In fact, the convolutional layer is equivalent to impose a strong prior over

the weights in a dense layer. This prior says that the parameters are zero except for a

valued receptive field representing a sub-domain —as defined by the kernel dimensions,—

of the whole input/feature map, which in addition are equal to the weights of its neighbour,

whose valued receptive field is shifted in space. This strong assumption makes CNN useful

for applications where the input patterns present local (spatial) correlations, as is the case,

for instance, of the atmospheric fields. The interested reader is referred to Goodfellow et al.

(2016) in case more details are desired.

4.2.4 Multi-task Neural Networks

In multi-task NNs (Caruana, 1998) several tasks are simultaneously learned with the

same model, sharing a latent space defined by the dimensionality of the hidden layers. For

example, suppose a 2-task neural model for image classification in which the objective is to

identify if a cat and/or a dog appears in a given picture. The output layer would be formed

by two sigmoidal neurons, one for each animal, which would be activated when the animal

in question is detected. The motivation behind these topologies relies on their implicit

generalization property (Baxter, 1995). Intuitively, note that features that are relevant to

identify cats may also be useful to identify dogs. This in turn would produce a similar effect

than that of increasing the size of dataset, which would allow for a more robust estimation

of the network’s parameters and a better generalization power. Mathematically, predicting

multiple tasks at a time can be viewed as imposing constraints to the single predictive

tasks by forcing the latent space to generalize to all the tasks addressed in the model. Due

to this regularization property, DL topologies are commonly designed in multi-task mode,

especially in applications for which the data available is very limited (see Ruder (2017)

for an overview). In section 4.4 we extend these ideas to neural-based models designed for

climate downscaling.

4.2.5 Optimization of Neural Networks

But, how does the network optimize the parameters ω? In the late 80s neural networks

were successfully trained thanks to the gradient descent method and the backpropagation

algorithm (Rumelhart et al., 1986). Whilst gradient descent provides a mathematical

formulation (see equation 4.3) to update the coefficients proportional to a learning rate, η,

the backpropagation algorithm provides an easy and accessible way to repeatedly compute

the partial derivatives ∂Eω(x,y)
∂ω at every iteration. The number of iterations needed to train
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the network (e.g., until the coefficients reach a minimum in the surface error) are called

epochs.

ω′ = ω − η∂E
ω(x, y)

∂ω
(4.3)

Instead of computing the partial derivatives over the whole dataset, these can be

estimated by limiting the calculation to a random subset of size m, namely “batch”. This is

commonly referred to as Stochastic Gradient Descent (SGD) (Bottou et al., 2018). Though

the functioning of SGD constitutes nowadays an active area of research (Zhang et al.,

2021), its use results into low computational requirements and regularization properties.

ω′ = ω − η

m
Σm
j=1

∂Eω(x, y)

∂ω
(4.4)

The choice of the loss function is case dependent (e.g., regression or classification

problems). Among the wide variety of available loss functions, it is of special interest the

negative log-likelihood, which allows for estimating the parameters of the distribution of

interest by conducting some kind of maximum likelihood estimation. In fact, the most

commonly used loss functions —mean squared error for regression and cross-entropy for

classification tasks— can be deduced from the log-likelihood approach when the objec-

tive variables are Gaussian- or Bernoulli-like distributed, respectively (Goodfellow et al.,

2016). The ability to infer any conditional probability distribution is very relevant for

climate-related problems, which usually involve non-Gaussian variables (e.g., wind and

precipitation) and is therefore one key aspect of the DL models developed in this Thesis.

This will be explained in more detail in section 4.4.

4.3 Deep Learning for Climate Science

Along the last decades, the climate community has produced a huge amount of data

from different sources, including in-situ measurements, radar images and model simula-

tions, among others (Overpeck et al., 2011). While the number of in-situ observations

is not expected to increase substantially in the next decades, the volume of satellite and

model data is expected to reach 150 and 350 petabytes by 2030, respectively.

There is therefore growing interest within the climate research community towards

developing machine learning and DL models which can take advantage of this large volume

of data.

To date, a wide battery of statistical techniques are routinely applied with different

aims in climate-related problems, which include 1) to replace physical components of

numerical models with faster (and more accurate) statistical schemes, 2) to learn links

between the different climate components when the physics are either unknown or very
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complex to model, and 3) to post-process climate products. For instance, some studies have

attempted to emulate climate models (Meyer et al., 2021), or to learn sub-grid parameteri-

zations (Chevallier et al. (1998), Seifert and Rasp (2020)). Others have reported successful

use-cases for ML-based weather forecasting (Papale and Valentini (2003), Landschützer

et al. (2013), Kühnlein et al. (2014)), or have employed these techniques for climate model

evaluation (Nowack et al., 2020), or for the detection and attribution of anthropogenic

climate change (Barnes et al., 2019); among others (e.g., data assimilation (Gilbert et al.,

2010)). Also, ML has been traditionally used to downscale seasonal (Manzanas et al.,

2020b) and long-term (Gutiérrez et al., 2019) climate simulations.

Despite promising results have been found in some of these works, traditional statistical

techniques are insufficient to tackle the challenges (and opportunities) that arise from the

ever-growing amount of climate data available. As a consequence, the climate community

has paid attention to other promising machine learning techniques, in particular DL models

(Monteleoni et al. (2013), Reichstein et al. (2019)), due to their recent success in computer

vision applications. Despite certain similitude can be found between computer vision and

climate —both have to deal with high-dimensional input spaces,— several challenges arise

in the latter; among others the lack of interpretability and physical consistency and the

high demand of computational resources (Reichstein et al., 2019).

Nevertheless, to date, some studies have already shown promising results regarding

the usefulness of DL in several climate applications.

• Emulation of climate models. Several works have tested the suitability of DL

topologies to emulate certain components of a climate model, or even full simple

climate model formulations. For instance, Scher (2018) used an off-the-shelf CNN

to emulate the evolution of four variables of a GCM. Lguensat et al. (2019) did the

same to learn the dynamics of the upper ocean, as described by a quasi-geostrophic

model. Since these DL models do not explicitly incorporate any physics, Beucler

et al. (2019) forced some NNs to model the conservation of energy for the emulation of

cloud processes. Following from the success of these works, the community has even

coined the term Neural Earth System Modelling (NESYM, Irrgang et al. (2021)).

• Parameterization of sub-grid processes. NNs can be trained to learn param-

eterization schemes based on observational records and/or high-resolution climate

model simulations, to improve the existing ones (Schneider et al., 2017). For in-

stance, the radiation of the European Centre for Medium-Range Weather Forecasts

(ECMWF) operational model is parameterized with a shallow NN (Chevallier et al.,

1998). Also, atmospheric convection —which is one of the key processes that limit

predictability nowadays— was skillfully parameterized with DL topologies (Gentine
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et al. (2018) and Rasp et al. (2018)). Moreover, an alternative approach consists

of directly emulating an existing parameterization scheme with NNs (Krasnopolsky

and Fox-Rabinovitz, 2006).

• Forecasting. To date, a diverse number of DL topologies have been used for fore-

casting purposes at different time-scales. For instance, CNNs have showed potential

to forecast atmospheric fields a few days into the future (Scher and Messori, 2019;

Weyn et al., 2019; Scher and Messori, 2018). Also, Recurrent Neural Networks

(RNN) and Long-Short-Term-Memory (LSTM) ones have been used for nowcast-

ing of precipitation (Xingjian et al., 2015) and for air pollution forecasting (Chang

et al., 2020). The interest in RNNs and LSTMs is due to their ability to learn the

right temporal structure by incorporating lagged-information in the model (Hochre-

iter and Schmidhuber, 1997). The limits of DL in forecasting applications are yet

unknown, and the community wonders if these models can fully replace the current

operational systems which are currently based on physical principles (Dueben and

Bauer, 2018). In this regard, it is particularly interesting the work presented by Rasp

et al. (2020), who have recently released a benchmarking dataset intercomparing the

performance of different DL topologies for medium-range weather forecasting. So

far, a LSTM architecture has already achieved better forecast skill in lead times up

to 12 hours, than the Weather Research and Forecasting (WRF) numerical weather

prediction (NWP) model (Hewage et al., 2021), for the prediction of several surface

atmospheric variables.

• Extreme events detection. Typically, both observations and numerical simula-

tions contain “hidden” patterns which provide useful information about the state

of the climate system. Nevertheless, identifying these patterns and predicting their

evolution —which can be relevant for impact studies— is a challenging task. In this

context, CNNs have been used for the detection of atmospheric rivers (Chapman

et al., 2019) and extreme events (Liu et al., 2016), for hurricane tracking (Giffard-

Roisin et al., 2020) and for the estimation of cyclone intensity (Pradhan et al., 2017).

Aside from these applications, it is of particular interest to this Thesis the DL models

developed with downscaling purposes. We devote the next section for a detailed review of

the state-of-the-art in this matter.

4.4 State-of-the-art in Deep Learning and Statistical Downscaling

NNs appeared in the 90s as a promising regression-based technique to downscale at-

mospheric fields (Wilby et al. (1998), Schoof and Pryor (2001)). They were designed to
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overcome the limitation of (generalized) linear models to learn non-linear links, which is

especially relevant for downscaling of precipitation (Yuval and Hsieh, 2006). Moreover,

NNs were found useful due to other properties soon. In particular, the hidden layers

learnt latent representations which consist of shared relevant features useful to downscale

at multiple sites. The potential of this latent space in multi-site architectures revealed

successful to model spatial dependencies (MacKay (1997), Caruana (1998)), crucial in

some sectorial applications such as hydrology (Salathé Jr, 2005). This contrasts with well-

adopted approaches at the time, mostly based on multivariate linear regression (Uvo et al.,

2001), which needed to be constrained with complex covariances matrices (Bürger, 1996)

to include spatial information in the downscaling. Nonetheless, Cannon (2008) showed

that, even with this latent structure, spatial constraints still had to be explicitly included

in the model formulation —for instance in the form of loss functions— for an accurate

reproduction of spatial fields.

The quality of any regression-based model mostly depends on whether the large-scale

is able to explain the local-scale. Given a particular predictor configuration, (determin-

istic) regression fits the data by estimating the conditional mean of a predictive distri-

bution. Consequently, the extremes are poorly represented unless the predictors are able

to explain most of the local variance, which is not usually the case. The variance of

the possible outcomes given a predictor configuration, mostly comes from noise measure-

ments (e.g., calibration error in the observational instrumentation) or uncertainty in the

model parameters —which can be improved by increasing the size of the dataset (Gal,

2016).— To account for these sources of uncertainty, NNs can be designed in a PP-WG

setup to estimate conditional daily probability distributions by minimizing the negative

log-likelihood of a certain predictive distribution. This approach is especially relevant to

downscale precipitation, which is usually triggered by local processes not described by the

coarse-resolution predictors. Differently, temperature is strongly linked to the large-scale

configuration and therefore, downscaling models for this variable commonly minimize the

mean squared error —which is equivalent to estimate the mean of a conditional Gaus-

sian distribution given a certain predictor configuration (Goodfellow et al., 2016)— in PP

mode.

To build a PP-WG model to downscale precipitation, one needs to select a proper para-

metric distribution which fits both the discrete (0: no rain, 1: rain) and the heavy-tailed

nature of this variable. Several studies addressed this issue by modeling a variety of den-

sity functions, which include the Poisson-Gamma (Dunn, 2004), the Bernoulli-lognormal

(Vandal et al., 2018a) and the Bernoulli-Gamma (Williams, 1998) distributions. This

(stochastic) regression-based modelling permits to characterize the uncertainty of the pre-

dictions given a particular large-scale configuration, and therefore account for the possible
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extremes by sampling from the estimated conditional distributions. In this Thesis we follow

Williams (1998) and Cannon (2008) to build PP-WG models, and thus infer Bernoulli-

Gamma distributions to downscale precipitation. The mathematical formulation of this

approach is described in equation 4.5

P (y|x; p, α, β) =

{
1− p if y < 1

p
Γ(α)βα y

α−1e
− y
β if y >= 1

(4.5)

where P (y|x; p, α, β) is the daily distribution of rainfall, y, conditioned on a given daily

predictor configuration, x, parameterized by the probability of rain, p, and the shape and

scale parameters of a Gamma distribution, α and β1. Our NNs are trained to minimize the

negative log-likelihood of this probability distribution (see equation 4.6). In addition, this

loss function depends on the number of samples or batch size, N , the observed precipitation

casted to a boolean object, y′, and the Gamma function, Γ() (see Williams (1998)).

L(ω) =
−1

N
ΣN (1− y′) log(1− p) + y′(log p+ (α− 1) log y − α log β − log Γ(β)− y

β
) (4.6)

The NNs based on this loss function can be reformulated as equation 4.7: given an input

predictor set, the model (parameterized by ω) returns the three distributional parameters

describing the conditional daily Bernoulli-Gamma distribution at a particular site.

[p, α, β] = fω(x) (4.7)

Under the multi-task approach, these three parameters are estimated simultaneously

at every site. Therefore, the output layer in this formulation consists of i × 3 neurons,

with i being the number of distributions (i.e., sites) inferred. Note that the inference

is performed from independent daily Bernoulli-Gamma distributions (one per site) that

share a common latent space rather than from a unique multivariate Bernoulli-Gamma

distribution.

Overall, simple NN configurations proved successful to provide accurate downscaled

predictions in “perfect” conditions due to their capacity to learn non-linear patterns among

the large- and the local-scale. Moreover, they developed a mathematical formulation

which produces probabilistic forecasts, crucial to reproduce the extremes. The literature

addressing the suitability of NNs to downscale in the climate model space is very limited,

with very few works digging into this topic. For instance, Quesada-Chacón et al. (2021) has

recently presented a case-study in which single-hidden-layer NNs were used to downscale

precipitation at three gauge stations in Central America until the end of the 21st century.

1Note that, for simplicity, we use p(x) = p, α(x) = α and β(x) = β in Eqs.4.5, 4.6, and 4.7.
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Figure 4.5: Diagram illustrating a 3-layer neural network that estimates conditional daily
Bernoulli-Gamma distributions, as described in Williams (1998). The output layer con-
sists of three output neurons, yi = {pi, αi, βi} if i = 1 (i.e., single-site mode). The complete
predicted series is the result of a day-to-day multiplication, yi = biri between 1) a binary
series, bi, adjusted according to a threshold (in some studies this threshold depends on
the observed frequency of rainy days (Gutiérrez et al., 2019)) and the expectance of the
conditional Gamma distribution, E(Γ), given by ri = αiβi, or 2) an independent sam-
pling for both precipitation occurrence and amount series. Note that whereas 1) produce
deterministic predictions, 2) gives place to stochastic ones.

The authors reported plausible downscaled projections for future emission scenarios, as

compared to degraded RCM simulations for the same region.

Despite these merits in both “perfect” and climate model spaces, classical NNs still suf-

fer from overfitting and predictor fields usually need to undergo subjective “human-guided”

selection or dimensionality reduction techniques (see e.g., Olmo and Bettolli (2021)). The

result is that the information coming from the large-scale predictor variables is only par-

tially (e.g., restricted to very small domains) or poorly (e.g., arbitrary feature compres-

sion techniques which do not account for the predictor-predictand dependence) exploited.

Moreover, the overparameterized structure of these models limits their use to very local

case studies, stepping behind of RCMs in continental-sized downscaling.

Since the explosion of DL, several studies have investigated the suitability of these

architectures for downscaling tasks with the idea of overcoming the above mentioned

limitations. Broadly, these studies2 can be grouped into the following categories (note

that the search of literature has not been limited to climate downscaling):

2Please be aware that most of the these studies have been released during the development of this
Thesis.
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• DL in synthetic case-studies. Very naive toy examples have been developed to

rapidly test off-the-shelf DL topologies for downscaling tasks. These case-studies

basically upscale a gridded observational dataset to a coarser resolution (usually

precipitation) and then use the low- and high-resolution fields as input-output pairs

to build the model. For instance, Vandal et al. (2018b) built a CNN-based topology

which estimated patches of local precipitation over the United States (US). This

architecture was named DeepSD by the authors, and was lately modified to quan-

tify the uncertainty of the precipitation estimates by assuming Bernoulli-lognormal

predictive distributions (Vandal et al., 2018a). This topology was intercompared

with other convolutional-based topologies in Kumar et al. (2021), yielding the best

results for downscaling of daily summer monsoon precipitation over India. The au-

thors also passed from this synthetic experiment to a more realistic case in which

the calibrated DL model was used to downscale a state-of-the-art reanalysis. Wang

et al. (2021) analyzed the suitability of deeper CNNs for the downscaling of daily

temperature and precipitation over two areas in the US. To avoid degradation —i.e.,

a loss in accuracy in the predictions as a consequence of increasing the number of

hidden layers— the authors included skip-connections in the network. This type of

topology is called Deep Residual Network (DRN), since it aims to learn a mapping of

the residual function (see He et al. (2016) for more details). Also, Sha et al. (2020a)

and Sha et al. (2020b) aimed to estimate temperature and precipitation, respectively,

based on U-NET topologies (Ronneberger et al. (2015), i.e., auto-encoder inspired)

over the Western region of the US. Finally, Mu et al. (2020) included “a priori” me-

teorological knowledge in the DL models, describing multi-scale spatial correlations

and the chaotic behavior of the atmosphere (Lorenz, 1963). This hybrid approach,

which combines DL with physical principles, successfully reproduced some key spa-

tial local dependencies. The models described herein, could be further exploited

for more realistic applications in MOS mode. However, due to their dependence on

predictor surface variables, we do not expect these topologies to work well in a PP

setup.

• DL in MOS setups. On the one hand, inspired by certain computer vision ap-

plications which aim to reconstruct a high-resolution image from its low-resolution

counterpart, a bunch of studies applying DL for SD tasks have recently appeared.

These studies establish an empirical link between GCM coarse variables (e.g. pre-

cipitation in the historical scenario) and high-resolution observational fields —even

though no great temporal correspondence between the two datasets is expected.—

This link is then applied to downscale the future coarse simulations from the same
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GCM under different emission scenarios. For instance, Liu et al. (2016) aimed to

downscale monthly precipitation using a RSN fed with thirty-five stacked GCMs as

input channels in the predictor field. A similar procedure was adopted in Rodrigues

et al. (2018) to downscale daily precipitation based on a combination of CNNs and

locally-connected networks. However, only Tran Anh et al. (2019) moved from his-

torical simulations and applied a calibrated LSTM network to obtain station-scale

projections from RCP simulations. A more plausible approach is based on unsuper-

vised learning by leaning on Generative Adversarial Networks (GAN3). Chaudhuri

and Robertson (2020) and François et al. (2021) deployed these topologies to im-

prove the spatial consistency of annual and daily precipitation fields, respectively.

On the other hand, DL has been also applied to RCMs. In particular, to link RCM

evaluation runs —simulations nested to a reanalysis in nudging-mode— with a set of

fine-grained observational records. This link can then be applied to the same RCM,

both in historical and RCP scenarios. For instance, Steininger et al. (2020) produced

a gridded 0.1◦ precipitation field by downscaling one RCM for the period 2000-2015.

The DL topology used, which was based on CNNs, outperformed conventional MOS

techniques for the same purpose.

• DL in PP setups. None of the above described studies fulfill the PP assumptions

for the predictor set, since the majority build on surface variables, which are not

well reproduced by GCMs. Indeed, very few DL topologies have been developed

to date for PP downscaling —note that reanalysis data are always used in PP to

learn the relationship between the large- and the local-scale, regardless the type

of simulation to be downscaled: weather forecast, seasonal prediction or climate

change projection.— The first attempts used convolutional (Vandal et al., 2017) and

auto-encoder4 (Vandal et al., 2019) topologies, with no clear benefits as compared

to other well-established machine learning techniques. Nonetheless, several studies

have successfully estimated local precipitation and temperature over different regions

of the globe. On the one hand, Pan et al. (2019) used a combination of convolutional

and dense layers which outperformed existing machine learning techniques over the

United States (US). On the other hand, Sun and Lan (2021) intercompared a va-

riety of CNN topologies to downscale gridded precipitation and temperature over

3GANs consist of a pair of mutually competing NNs with the overall objective of generating samples that
preserve the coherence of the observed fields, for instance the inter-variable correlations (see Goodfellow
et al. (2014) for more details).

4An auto-encoder is a particular NN topology in which the input and output spaces are equally-shaped.
For instance, spatial atmospheric fields at different times are used as the input-output pairs in a weather
forecasting application. The main characteristic of these topologies is that input features are compressed
(encoder) by defining a low-dimensional hidden space. The dimensionality is then increased in a second
stage of the network (decoder) until it reaches the original dimensions (see Goodfellow et al. (2016)).



4.4. STATE-OF-THE-ART IN DEEP LEARNING AND STATISTICAL DOWNSCALING 55

China, with successful results for the former and no clear added value for the latter.

On a sub-seasonal to seasonal scale, a conditional Generative Adversarial Network

(CGAN, Mirza and Osindero (2014)) was used to downscale spatially consistent

seasonal forecasts of temperature over the Iberian Peninsula, achieving satisfactory

results when considering both reanalysis and (seasonal) model predictors (Gómez-

Gonzalez et al., 2021). A similar study was performed by Miao et al. (2019), who

aimed to adjust daily precipitation estimates of the subseasonal-to-seasonal ECMWF

model over South China using a CNN-LSTM network. For station-scale downscal-

ing, to our knowledge only Vaughan et al. (2021) has built a DL model based on

convolutional conditional neural processes. This type of architecture has the advan-

tage that permits to produce predictions to arbitrary off-the-grid locations not seen

during the calibration period. Remarkably, none of the previous studies have passed

from the reanalysis world (“perfect” conditions) to the GCMs world. To our knowl-

edge, Stengel et al. (2020) presented the only case-study in which a PP-based DL

model was applied to downscale a GCM scenario. Despite its simplicity, —they do

not provide an extensive validation of their method neither in historical nor in RCP

simulations,— as compared to CNNs optimized with point-based error loss functions,

this study showed the potential of GANs to attain impressive levels of local spatial

correlations for hourly wind fields. Finally, note that except Vaughan et al. (2021),

all the DL models collected in this group perform a deterministic regression, leaving

aside the uncertainty of the conditional local distributions.

• DL to emulate RCMs. As explained, RCMs are very expensive in terms of com-

putational resources and just a few supercomputing centers around the world can

run them. Statistical emulators based on DL topologies have recently emerged as

a potential alternative to overcome this issue by trying to mimic the work done by

a RCM. This can be done either by 1) using the GCM-RCM fields as input-output

pairs to construct the DL model, or by 2) upscaling the circulation RCM varia-

bles to a coarser spatial resolution (predictors) and use the original high-resolution

RCM fields as “pseudo-reality” (predictands). Note that 1) follows the philosophy

of MOS-SD whilst 2) would be a form of PP-SD in the space of the RCM. On the

one hand, the only MOS-inspired DL topology reported to date is the work done

by Babaousmail et al. (2021), who stacked a set of GCMs as input channels to feed

a CNN aimed at learning the mapping between these GCMs and an ensemble of

high-resolution fields of monthly precipitation. In this setup, the target variables

came from the RCA4 RCM, driven by each of the input GCMs. This study showed

promising results to emulate the ensemble mean of the RCM simulations. How-



56 4. DEEP LEARNING

ever, improvements need still to be done regarding the emulation of each individual

RCM. On the other hand, Serifi et al. (2021) degraded the original spatial resolution

of temperature and precipitation from one RCM to derive their counterpart high-

resolution fields over Central Europe with CNN-DRN topologies. Also, Doury et al.

(2021) used coarsened large-scale variables from one RCM as predictors to emulate

near-surface temperature over the Mediterranean with a U-NET inspired topology,

with satisfactory results.

Despite many of these studies yield promising results regarding the applicability of DL

for SD problems, the variety of DL topologies used, regions analyzed and GCM/RCMs

—operating at different time-scales— considered make very difficult a fair, comprehensive

intercomparison. Indeed, the use of DL for SD tasks is still an incipient field of research

with many important questions to be answered yet. For instance, there is a clear lack of

works focused on the study of the extrapolation capabilities of the different topologies,

which may (or may not) justify their potential use for SD of climate change projections.

This Thesis aims to fill part of these knowledge gaps by assessing if CNNs are able to

outperform classical SD methods for downscaling of local temperature and precipitation

in “perfect” conditions and by studying their suitability to generate high-resolution climate

change projections over Europe, based on different emission scenarios.
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CHAPTER 5

Experimental Framework

This chapter describes the experimental framework followed in most of the analysis

carried out for the elaboration of this Thesis. This framework has been designed in the

European COST action VALUE, which is introduced in section 5.1. In section 5.2 we

present the observational datasets, GCMs and RCMs used. The post-processing of the

predictor variables used for SD is explained in section 5.3. Section 5.4 introduces the

CNNs and the benchmarking GLMs considered for SD. Finally, in section 5.6 we present

the metrics employed to validate the downscaled produced in both observational and

climate model spaces.

5.1 The COST Action VALUE

The COST action VALUE (Maraun et al., 2015) was designed to provide an exper-

imental framework to assess and intercompare different SD techniques in the context of

climate change research. This European initiative gathers climatologists, stakeholders,

impact modellers and statisticians to foster collaborations, ease the transfer of knowledge

and improve the quality of research in downscaling.

Overall, VALUE aims to answer the following questions:

• Can we gather the downscaling community into a single collaborative initiative to

promote a better understanding of the regional climate over Europe?

• Can we provide a common framework to comprehensively analyze the advantages

and limitations of (well-established) SD techniques, including PP-, MOS- and WG-

like methods?

59
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• Can SD models extrapolate to climate change conditions?

• Can we provide stakeholders and practitioners with user-friendly portals which ease

the access to the downscaled products generated?

To address these questions, VALUE has defined a set of experiments which are sum-

marized in Table 5.1. To date, only Experiment 1, the largest-to-date intercomparison of

SD methods in “perfect” conditions —to which 27 European institutions contributed,—

has been officially concluded. This experiment has led to a collection of publications which

evaluate the suitability of the many different (well- established) SD methods to reproduce

the 1) extremes (Hertig et al., 2019), 2) marginal (Gutiérrez et al., 2019), 3) temporal

(Maraun et al., 2017b) and 4) spatial properties (Widmann et al., 2019) of the observed

records. Moreover, a synthesis of the full experimental design, objectives and challenges

foreseen in VALUE can be found in Maraun et al. (2019).

Recently, VALUE has evolved to EURO-CORDEX Empirical Statistical Downscaling

(EURO-CORDEX ESD, Jacob et al. (2020)), a branch of EURO-CORDEX1 that focuses

on SD. Most of the work developed in this Thesis aligns with the goals of VALUE and

EURO-CORDEX ESD and takes advantage of the data and experimental frameworks

developed in these two initiatives. This has allowed us to test the suitability of CNNs

both in “perfect” conditions and in the climate model space at a continental-sized level.

5.2 Data Used

In this section we first introduce the observational datasets considered to build and

assess the performance of our SD models (both CNNs and GLMs) in “perfect” condi-

tions. Then, we also introduce the GCMs and RCMs which have been selected to test the

suitability of CNNs for downscaling of climate change projections.

As in VALUE’s Experiment 1 (see Table 5.1), our CNNs and GLMs were build in

“perfect” conditions based on ERA-Interim (Dee et al., 2011) predictors on a 2◦ regular

grid. Note that the original spatial resolution of this reanalysis is 0.75◦. However, we

have degraded it to a coarser 2◦ grid for better compatibility with the GCMs listed in

Table 3.1, whose resolution range in between 1◦ and 3◦. The set of possible predictor

variables considered for Experiment 1 is listed in Table 5.2. Based on previous literature

dealing with SD over Europe (Huth, 2002, 2005; Gutiérrez et al., 2013; San-Mart́ın et al.,

2017; Gutiérrez et al., 2019), this set includes circulation and thermodynamic variables at

different altitudes (500, 700, 850 and 1000 hPa).

1EURO-CORDEX is the European community of the Coordinated Region Downscaling EXperiment
(CORDEX), a global initiative that aims to develop high-resolution climate change projections worldwide
building on RCMs.
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Variable (code) Units Height (hPa) Predictor Predictand
Surface 1000 850 700 500

Zonal wind velocity (ua) m/s 6, 7.1 6, 7 6, 7 6, 7 X
Meridional wind velocity (va) m/s 6, 7.1 6, 7 6, 7 6, 7 X
Air temperature (ta) ◦C 6, 7.1 6, 7 6, 7 6, 7 X
Specific humidity (hus) kgkg−1 6, 7.1 6, 7 6, 7 6, 7 X
Geopotential (z) m2/s2 6, 7.1 6, 7 6, 7 6, 7 X
Sea level pressure (slp) Pa 7.2 X
Precipitation (pr) mm/day 6, 7 X
Near-surface air temperature (tas) ◦C 6, 7 X

Table 5.2: List of variables used in this Thesis. Since we do not lean on the same set
of (predictor) variables throughout the Thesis, we indicate with numbers the section in
which they participated. We use a Xto designate whether any variable is used as predictor
or as predictand in the models developed. All variables have a daily temporal resolution.
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Figure 5.1: Schematic representation illustrating the grids used for the predictors (left)
and the predictands (right) considered in the Experiments 1 (blue) and 2 (red) of VALUE.
For instance, a 19 by 22 latitude-longitude grid over the domain of study is considered for
ERA-Interim reanalysis. Note that the map on the right shows both the E-OBS grid and
the 86 stations addressed in VALUE’s Experiment 1a.

VALUE proposed to downscale daily precipitation and temperature fields both at a

station-scale (Experiment 1a) and over high-resolution grids (Experiments 1b, 2). For

the former, 86 stations covering the different climates of the continent were selected. For

the latter, the E-OBS (version 14, Cornes et al. (2018)) dataset, which provides daily

temperature and precipitation on a 0.5◦ regular grid, was considered. Figure 5.1 shows
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an schematic representation of the spatial structure of the predictor and predictand fields

used in this Thesis.

VALUE’s Experiment 1, (Gutiérrez et al., 2019) covered the period 1979-2008, which

was split into 5 chronological folds (1979-1984, 1985-1990, 1991-1996, 1997-2002, 2003-

2008) for cross-validation purposes. However, since one of the goals of this Thesis is to

study the extrapolation capability of the proposed SD methods, we used for Chapter 6

a hold-out approach in which the total period of study was split into independent train

(1979-2002) and test (2003-2008) sets. Figure 5.2 shows some climatology statistics of

local temperature (top panel) and precipitation (bottom panel) for these two periods:

the mean, and the 2nd (P02) and 98th (P98) percentiles for temperature; and the daily

rainfall, the frequency of rainy days (≥ 1mm/day, R01) and the P98 for precipitation.

The second and fourth rows show the differences between the test and train (taken as

reference) period for these statistics. On the one hand, warmer conditions (of about 1◦)

are found for the test period for the three temperature metrics displayed —except for the

P02 in some regions of Southern Europe.— On the other hand, precipitation statistics

do not seem to vary significantly between the train and the test periods and the notable

differences found in the North of Portugal, Southern Greece and Lithuania are due to

deficiencies in E-OBS, —changes or interruptions in the national station networks used to

construct the dataset— rather than real climatology variations. This figure proves that

the hold-out approach followed provides a reasonable scenario to evaluate the ability of

our SD methods to extrapolate to unseen conditions during the calibration phase (e.g., a

warmer climate).

In VALUE’s Experiment 2, the statistical models built in “perfect” conditions during

Experiment 1 are subsequently applied to GCM predictors. In particular, to the 12th run of

EC-Earth (?), since this GCM is known to satisfactorily reproduce key large-scale patterns

observed over Europe, including storm tracks (Lee, 2015). As already explained in 3.3,

this is crucial since the GCM predictors used for SD of climate change projections should

realistically resemble their counterpart variables in the reanalysis. Based on this idea, the

SD models built in Chapter 6 are applied to EC-Earth’s predictors for the historical (1979-

2008) and RCP8.5 (2071-2100) scenarios in section 7.1. Moreover, section 7.2 extends this

analysis to the subset of CMIP5 models listed in Table 3.1. For compatibility, all these

GCMs are re-gridded by means of nearest interpolation to the ERA-Interim’s 2◦ grid.

Unlike in section 7.1, in which just the far-future (2071-2100) is considered, in section

7.2 we downscale the periods 1979-2005 and 2006-2100 for the historical and RCP8.5

scenarios, respectively. Furthermore, in section 7.2, this ensemble of SD-based projections

is compared against a representative subset of RCMs from EURO-CORDEX, listed in

Table 5.3. These RCMs, which are used as “pseudo-reality” (Vrac et al., 2007b), have been
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Figure 5.2: Top panel, top row: E-OBS climatology for the mean, the P02 and the P98
values of temperature in the train period (1979-2002). Top panel, bottom row: Mean dif-
ference between the test (2002-2008) and train period —the latter is taken as reference—
for the statistics shown in the top row. Bottom panel: As the top panel, but for precipi-
tation. In this case, the mean, the frequency of rainy days (R01) and the P98 are shown.
In all cases, the numbers within the maps indicate the spatially averaged values.

selected based on their driving GCMs to match those used as inputs in the SD models.

For direct comparison against the SD-based projections, all the EURO-CORDEX RCMs

were re-gridded by nearest interpolation from its original spatial resolution of 0.44◦2 to

the E-OBS’s grid, at 0.5◦.

2They belong to EURO-CORDEX 44, a specific experiment which aims to produce climate projections
over Europe with a spatial resolution of 0.44◦
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GCM Run RCM Institution

CanESM2 1st SMHI-RCA4 Swedish Meteorological and Hydrological Institute, Rossby Centre
CNRM-CM5 1st CLMcom-CCLM5-0-6 Climate Limited-area Modelling Community
CNRM-CM5 1st SMHI-RCA4 Swedish Meteorological and Hydrological Institute, Rossby Centre
MPI-ESM-LR 1st CLMcom-CCLM4-8-17 Climate Limited-area Modelling Community
MPI-ESM-LR 1st MPI-CSC-REMO2009 Max Planck Institute for Meteorology
NorESM1-M 1st SMHI-RCA4 Swedish Meteorological and Hydrological Institute, Rossby Centre
GFDL-ESM2M 1st SMHI-RCA4 Swedish Meteorological and Hydrological Institute, Rossby Centre
EC-EARTH 12th SMHI-RCA4 Swedish Meteorological and Hydrological Institute, Rossby Centre
EC-EARTH 12th CLMcom-CCLM5-0-6 Climate Limited-area Modelling Community
IPSL-CM5A-MR 1st SMHI-RCA4 Swedish Meteorological and Hydrological Institute, Rossby Centre
IPSL-CM5A-MR 1st IPSL-INERIS-WRF331F Institut Pierre-Simon Laplace

Table 5.3: List of RCMs considered in section 7.2 (third column). The first column
indicate the GCM to which each RCM is nested. The second and fourth columns show
the particular GCM run and the institution responsible for running the RCM simulations,
respectively.

VALUE has made publicly available both ERA-Interim’s and EC-Earth’s predictors

proposed for Experiments 1 and 2, which are used in Chapters 6 and 7 for model calibration

and prediction, respectively. These data can be downloaded as netCDF files from http:

//www.meteo.unican.es/tds5/catalogs/value.html. E-OBS (version 14) is available

at the European Climate Assessment Dataset (ECA&D) website: https://www.ecad.

eu/download/ensembles/download.php.

5.3 Harmonization of Global Climate Model Predictors

To ensure that GCM and reanalysis predictor fields are reasonably similar —note that

this is one of key requirements that should be fulfilled in PP-SD (see section 3.3.2),—

recent studies have demonstrated that GCM predictors need to undergo some form of

post-processing, even in GCMs which have proved robust to reproduce key large-scale

atmospheric processes (Cheng et al., 2008; Vrac and Ayar, 2016; San-Mart́ın et al., 2017;

Nikulin et al., 2018; Manzanas et al., 2020b).

In this Thesis we follow the approach adopted in Vrac and Ayar (2016), in which GCM

predictors are subjected to harmonization and standardization procedures. Harmoniza-

tion consists of adjusting the GCM (xGCM ) monthly means towards the corresponding

reanalysis values (xREA) at a gridbox level. This is done to overcome the possible misrep-

resentation of the seasonal cycle in the GCM. Equations 5.1 and 5.2 formulate mathemat-

ically the mentioned harmonization for the historical and RCP8.5 scenarios, h and f , for

a given predictor variable j and month i = {1, 2, ..., 12}. Additionally, in order to avoid

undesired artifacts related to possible magnitude mismatches among different variables,

standardized values (at the gridbox level) are considered. Each reanalysis/GCM predictor

is standardized based on its own mean and standard deviation over a reference period:

http://www.meteo.unican.es/tds5/catalogs/value.html
http://www.meteo.unican.es/tds5/catalogs/value.html
https://www.ecad.eu/download/ensembles/download.php
https://www.ecad.eu/download/ensembles/download.php
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1979-2002 in Chapter 63 and 1979-2008 in Chapter 7.

x′ij,GCMh
= xij,GCMh

− x̄iGCMh
+ x̄iREA (5.1)

x′ij,GCMf
= xij,GCMf

− x̄iGCMh
+ x̄iREA (5.2)

To assess whether or not the PP requirement of having similar predictors in the rea-

nalysis and in the GCM (see Brands et al. (2011a) Gutiérrez et al. (2013) for an example)

is fulfilled, we rely in this Thesis on the Kolmogorov-Smirnov test (KS), which measures

the maximum distance between two cumulative density functions. The test was applied,

independently for each predictor variable in Table 5.2, to compare EC-Earth and ERA-

Interim over the period 1979-2009. With illustrative purposes, Figure 5.3 shows the results

obtained for ta1000 and hus700 (for brevity, results for the rest of variables are skipped

here). Red crosses in the left (right) panel identify those gridpoints where the null hy-

pothesis of the test —reanalysis and GCM distributions are indistinguishable— can be

rejected at a 95% confidence level when the EC-Earth is (is not) harmonized.
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Figure 5.3: P-value from the Kolmogorov-Smirnov (KS) test applied to quantify the
similarity of raw EC-Earth and ERA-Interim distributions for temperature at 1000 hPa
and specific humidity at 700 hPa (top and bottom row, respectively), considering the
entire year, winter and summer (in columns) during the period 1979-2008. Red crosses in
the left (right) panel identify those gridboxes where the null hypothesis of the test —both
distributions are indistinguishable— can be rejected at a 95% confidence level when the
EC-Earth is (is not) harmonized. See the text for details.

Both ta1000 and hus700 present in general low p-values (below the significance level of

3This chapter focuses on the results of the performance of the different SD methods considered in
“perfect” conditions, i.e., using reanalysis predictors. Therefore, only standardization is applied in this
case.
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0.05), reflecting that EC-Earth and ERA-Interim raw distributions are significantly differ-

ent over many regions. This is partially explained by the systematic biases that are usually

exhibited by GCMs. However, the situation is substantially improved once standardization

—or harmonization plus standardization— is carried out (see the red crosses in the corre-

sponding panels). In particular, if EC-Earth and ERA-Interim distributions are compared

over the entire year (left column) both ta1000 and hus700 fullfil the PP hypothesis tested

practically over the entire domain (with a few exceptions in the Mediterranean for the case

of hus700). Differently, when the comparison is undertaken for winter and summer (mid-

dle and right column, respectively), different results are found depending on whether or

not harmonization is applied, which suggests the importance of this procedure for PP-SD.

Indeed, for other predictor variables —especially wind velocity components in Southern

Europe and specific humidity at other height levels— harmonization is crucial to make

reanalysis and GCM predictors compatible (not shown). Therefore, both standardization

plus harmonization are applied to all the GCMs considered for SD in this Thesis.

5.4 Deep Learning Models

As explained in section 4.1, NNs are usually seen as “black-box” models, which leads to

distrust feelings among the climate community (Reichstein et al., 2019). For downscaling,

a proper an extensive comparison of DL topologies aiming to shed light on the use of

these techniques has not been addressed yet. To partially overcome this shortcoming, we

propose in this Thesis different configurations of CNNs of increasing levels of complexity,

which are listed in Table.5.4. This allows us to marginalize the role that each element of

the network plays for SD tasks. In Chapter 6 we present a comprehensive evaluation of

the performance of these CNNs in “perfect” conditions. Based on the results from this

analysis, we select the best-performing models to downscale GCM scenarios in Chapter 7.

Model Topology Rationale

CNN-LM inp-50-25-1-out Using convolutions to obtain meaningful spatial features
CNN1 inp-50-25-1-out Testing the added value of non-linearity
CNN10 inp-50-25-10-out Increasing model complexity from 1 to 10 feature maps
CNNdense inp-50-25-10-50-50-out Combining the spatial patterns with dense layers
CNN-PR inp-10-25-50-out Using standard topologies from pattern recognition

Table 5.4: Topology of the CNNs developed and intercompared in this Thesis. inp and
out stand for the input and output layers, respectively. The numbers indicate the amount
of neurons or filter maps (boldfaced numbers) conforming every hidden layer. The symbols
‘-’ and ‘-’ denote the dense and convolutional connections, respectively. In addition, a brief
rationale describing the purpose of each topology is also given.
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Figure 5.4 shows a schematic representation of the CNNs developed in this Thesis.

The particular network here illustrated, which is designed for precipitation downscaling,

consists of a 3D (latitude-longitude-variable) input layer. Similarly to the RGB channels

in computer vision models, the spatial fields of the different predictor variables (20 in this

example) are stacked along the third dimension. The architecture continues with a three

convolutional layer stage (deeper architectures were tested with no added value). Data flow

through the hidden layers —which present linear (CNN-LM) or nonlinear ReLU (CNN1,

CNN10, CNN-PR and CNNdense) activation functions,— transforming the input space

into meaningful spatial patterns. Finally, the last hidden layer is fully-connected to the

output layer. Consequently, most of the parameters are located in this part of the network

which centralizes a large fraction of the learning power. The CNNs proposed in this Thesis

follow the distributional estimation approach presented in Williams (1998) and explained

in section 4.4. The output layer produces estimates for the daily parameters of a Bernoulli-

Gamma (Gaussian) probability function for the downscaling of precipitation (temperature)

based on three (two) output neurons per predictand site. We use linear activation functions

on the output neurons describing the parameters of the probability distributions proposed

—either Bernoulli-Gamma for precipitation or Gaussian for temperature,— except for the

probability of rain, p, for which we use a sigmoidal function. The output layer in Figure 5.4

consists of three vectors of size 3258, associated to the land gridboxes in E-OBS showing

no missing values. These vectorized fields are reshaped to the latitude-longitude domain

of study (73x85 gridboxes) after model calibration, during the prediction phase.

For this Thesis we developed different CNNs of increasing levels of complexity. The

simplest one is referred to as CNN-LM. This network presents linear activation functions in

the hidden layers. Similar to the computation of Empirical Orthogonal Functions (EOFs),

setting linear activation functions at every layer leads to a projection of the data into an

alternative space which is the result of a linear combination of the input dimensions. We

use this model as “control” for the presence of non-linearities in the predictor-predictand

link. Next, we built the non-linear version of CNN-LM, labelled as CNN1, which is

able to learn more complex functions (if necessary). According to the experience gained

with DL models in other disciplines, limiting the last layer to one feature map (CNN-

LM and CNN1) is quite restrictive. Therefore, we increased the number of filter maps

to ten (CNN10). Since the last hidden layer is fully-connected to the output layer in

our convolutional networks, we needed to find an adequate compromise between model

complexity and the ability to take advantage from meaningful, complex data patterns.

Building on this idea, we designed a topology which placed two fully-connected layers of

fifty neurons each right after the convolutional stage (named CNNdense). This network

allows for diminishing the number of parameters in the last layer. Besides, computer



5.5. GENERALIZED LINEAR MODELS 69

50 kernels (3x3x20) 
25 kernels 
(3x3x50) 

10 kernels 
(3x3x25) (50x50) 

convolutions

19x22 (20 vars:
Q, T, Z, U, V at 

1000, 850, 700 and 500 mb)

Large-scale 
Predictors

(2º resolution)

inputs:

U 500

Q 1000

T 1000

Z 1000
...

73x85 (3 vars)

outputs:

E-OBS precip.
(0.5º resolution)

p

pr
ec

ip
 (m

m
)

α
β

dense

0

2

4

6

8

10

Figure 5.4: Schematic representation of the CNNs developed in this Thesis. This network
includes a block of three convolutional layers with 50, 25 and 10 feature maps —produced
based on a kernel of dimensions 3× 3×#channels (different kernel sizes were tested with
no added value),— respectively, followed by two fully-connected (dense) layers with 50
neurons each. This illustrative network is designed to downscale daily precipitation, and
therefore the output layer —formed by three neurons at each predictand site— estimates
the daily parameters of a conditional Bernoulli-Gamma distribution (p, α and β), see
the text for details. Based on these parameters, either deterministic or stochastic daily
downscaled precipitation values can be produced (see section 4.4).

vision models typically present this type of topology in which the spatial patterns learned

are mixed in the dense connections. Finally, inspired by computer vision applications, we

also proposed the CNN-PR model, which contains an increasing number of filter maps.

This configuration allows for learning a larger amount of complex spatial patterns. With

regards to the dimensionality of all these CNNs (listed in Table 5.4), we considered padded

and non-padded versions of each topology. Padding adds artificial zeroes in the borders

of the 2D feature maps to preserve the original dimensions of the input space after the

convolutional operation. If padding is not applied, the dimensions of the output space are

reduced by a magnitude that depends on the kernel’s size (Goodfellow et al., 2016). We

found that keeping the original latitude-longitude dimensions (i.e., padding) led to better

results for the networks with low-dimensional spaces in the last hidden layer (CNN-LM

and CNN1). Therefore, all the results shown in section 6.1 correspond to the best version

(with or without padding) of each of the CNNs listed in Table 5.4.

5.5 Generalized Linear Models

Along the Thesis, we used as benchmark for the CNNs described in the previous

section, three different implementations of the GLM technique (see section 3.3.3).
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Several reasons supported this choice: 1) GLMs are regression-based models, which

allows for a fair comparison with CNNs, 2) GLMs are well-established within the climate

community and have been extensively used for SD tasks, and 3) despite their simplicity,

GLMs ranked among the best performing methods in VALUE’s Experiment 1 (Gutiérrez

et al., 2019)). In particular, we focused in this Thesis on the GLMs developed in Bedia

et al. (2020), a recent extension of the VALUE’s Experiment 1. These GLMs use local

predictor information at the ‘n’ closest gridpoints to each predictand site. Panels a and

b in Figure 5.5 illustrate the case of n = 1 (GLM1) and n = 4 (GLM4), respectively. In-

creasing ‘n’ allows to assess the influence of larger spatial local patterns. In this same line,

we also considered the GLMPC method appearing in Gutiérrez et al. (2019), which uses

as predictor the leading principal components (PCs, Preisendorfer and Mobley (1988))

instead of local fields. In particular, this model reduces the input space by projecting

the predictor set over the PCs that explain the 95% of the total variance over each PRU-

DENCE region (Christensen and Christensen, 2007). Panel c shows these regions, which

roughly correspond to different climate regimes, in squares of different colors. Note that,

differently to the DL models presented in section 5.4, which are able to automatically han-

dle high-dimensional input spaces in an efficient way, tedious and human-guided feature

selection or feature reduction techniques (i.e., PC analysis) have to be applied to generate

a meaningful predictor set for the case of GLMs. Indeed, the full set of predictor variables

listed in Table 5.2 was not even tested for these models since they are known to overfit

under high-dimensional input spaces (see section 3.3.4).

Note also that, actually, three different GLM-like models were needed at each predic-

tand site (thus moving from multi-site downscaling in CNNs to single-site downscaling in

GLMs) for the three configurations shown in Figure 5.5: a logistic regression, a Gamma

regression with logarithmic link and a Gaussian regression. The first two models address

the downscaling of precipitation; in particular its binary (0: no rain, 1: rain) and con-

tinuous (rainfall amount in wet days) aspects, respectively. Similar to the downscaling

performed with CNNs (see Figure 4.5 in section 4.4), the estimated parameters —p in

the logistic regression, and α and β in the Gamma model— can be used to generate ei-

ther deterministic predictions or stochastic ones. The third of the models, the Gaussian

regression one, directly returns the estimated local temperature.

5.6 Evaluation Metrics

Assessing the performance of any SD method is not trivial. Several aspects of the

predictions should be evaluated, including marginal, temporal and spatial properties.

To date, downscaling methods are tested in different case studies, each using its own
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Figure 5.5: Schematic representation showing the different predictor configurations used
in GLM1, GLM4 and GLMPC methods (from left to right). Blue squares in Panels a and
b indicate the gridboxes in which local predictor information is used to build the statistical
model for a particular predictand location, marked with a red square. Panel c displays
the eight PRUDENCE regions, delimited by squares of different colors. The 86 stations
considered in VALUE’s Experiment 1a are also shown in different colors (according to the
PRUDENCE regions they belong to). In all cases, the 2◦ regular grid in which predictors
are available is shown with blue dots.

validation metrics, what makes difficult a meaningful assessment of their performance

and prevent from a fair intercomparison. To alleviate this issue, VALUE developed

a comprehensive list of indices and measures (available at the VALUE validation por-

tal: http://www.value-cost.eu/validationportal) which allows to properly evaluate

the most relevant forecast aspects. Moreover, these metrics were implemented in the

R package VALUE (https://github.com/SantanderMetGroup/VALUE), which facilitates

research reproducibility. We present in this section the subset of VALUE metrics used

along this Thesis.

On the one hand, Table 5.5 shows the indices and metrics used for the validation

in “perfect” conditions of the temperature (tas) and precipitation (pr) downscaled fields

presented in Chapter 6. For temperature, we validate the biases of our predictions (i.e.

their mean errors with respect to the observations for a common period, expressed in ◦C)

for the mean, 2nd and 98th percentiles. In addition, we also consider the ratio between

predicted and observed standard deviations (the closer to 1, the better). For precipitation,

we consider the biases relative to the observed value (expressed in %) for the mean and the

P98. Moreover, to validate the accuracy of the downscaled series, we also compute for both

temperature and precipitation the Root Mean Squared Error (RMSE), which measures

the average error. For the particular case of precipitation, the RMSE is conditioned on the

http://www.value-cost.eu/validationportal
https://github.com/SantanderMetGroup/VALUE
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observed wet days (≥ 1 mm). Furthermore, to assess the quality of the temporal structure

of the predictions, we also measure their correlation with the corresponding observations.

For temperature, the Pearson correlation coefficient —which measures the degree of linear

dependence between the predicted and the observed series and is therefore appropriate

for Gaussian variables— is used. Differently, for precipitation, we employ the Spearman

correlation, which is based on ranks and is therefore more adequate for non-gaussian

variables. For completeness, we also calculate the biases of the lag-1 autocorrelation (i.e.,

correlation of the series shifted by 1 day) and a number of annual maximum indices,

including the warm (WAMS), cold (CAMS), wet (WetAMS) and dry (DryAMS) spells.

For precipitation, we additionally include the bias of the relative amplitude of the annual

cycle. Finally, to properly validate the probabilistic prediction of precipitation occurrence,

we also consider the ROC skill score (ROCSS, e.g., Manzanas et al. (2014)), which is based

on the area under the ROC curve (see Kharin and Zwiers (2003), for details).

Description Units Variable Perfect score

Bias (for the mean) ◦C , % tas, pr 0
Bias (for the 2nd percentile, P02) ◦C tas 0
Bias (for the 98th percentile, P98) ◦C , % tas, pr 0
Root Mean Square Error (RMSE) ◦C,mm/day tas, pr 0
Ratio of standard deviations (Std ratio) - tas 1
Pearson correlation - tas 1
Spearman correlation - pr 1
ROC Skill Score (ROCSS) - pr 1
Bias (warm annual max spell, WAMSl) days tas 0
Bias (cold annual max spell, CAMS) days tas 0
Bias (wet annual max spell, WetAMS) days pr 0
Bias (dry annual max spell, DryAMS) days pr 0
Bias (lag 1 autocorrelation, AC1) - tas 0
Bias (relative amplitude of the annual cycle) - pr 0

Table 5.5: Subset of VALUE metrics used for the validation in “perfect” conditions of the
downscaled fields (see Chapter 6). The symbol ‘-’ indicates that the corresponding metric
is dimensionless.

On the other hand, Table 5.6 lists the metrics used in Chapter 7 to asses the suit-

ability of the different SD models used for downscaling in the climate model space. For

temperature, we consider the mean, and the 2nd (P02) and 98th (P98) percentiles of the

distributions, whilst for precipitation we additionally include the frequency of wet days

(R01), the mean precipitation amount in wet days (Simple Daily Intensity Index: SDII)

and the 98th percentile of the wet-day distribution (P98Wet). All these metrics allow

both for a robust validation of the downscaled fields in the historical scenario and for a

good evaluation of their plausibility in the RCP8.5 (by comparing the statistics of the
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downscaled projections with those from an ensemble of GCMs and RCMs). Note that

in section 7.1 we compute the relative biases of the precipitation statistics in Table 5.6,

whilst in section 7.2 we consider absolute biases.

Code Description Units Variable

R01 Frequency of wet (≥ 1 mm/day) days % pr
SDII Simple daily intensity index mm/day pr
P98Wet 98th percentile of the wet (≥ 1 mm/day) days distribution mm/day pr
P02 2nd percentile ◦C tas
Mean Mean ◦C tas
P98 98th percentile ◦C tas

Table 5.6: List of metrics used to asses the suitability of the different SD methods
considered for downscaling in the climate model space (see Chapter 7).
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CHAPTER 6

Downscaling in “Perfect” Conditions

This chapter focuses on the performance of CNNs for SD in “perfect” conditions —i.e.,

using reanalysis data as predictors.— On the one hand, in section 6.1 we intercompare

a set of CNNs of increasing levels of complexity with classical GLMs. These benchmark

methods ranked among the best ones in VALUE’s Experiment 1a, which represents the

largest-to-date downscaling intercomparison study in “perfect” conditions over Europe

(Gutiérrez et al., 2019; Bedia et al., 2020). On the other hand, we analyze the “black-

box” nature of NNs (section 6.2), one of the key factors that limit their use in the climate

science. In particular, we 1) assess the benefits of multi-site topologies, as compared to

single-site ones (section 6.2.1) and 2) shed some light about the modeling of the predictor-

predictand link in the CNNs considered in this Thesis by producing and studying a set of

saliency maps1 (section 6.2.2).

The first part of this Chapter (section 6.1) is based on the manuscript entitled “Con-

figuration and intercomparison of deep learning neural models for statistical downscaling”,

published in Geoscientific Model Development. The second part (section 6.2) is based on

a series of papers published in the proceedings of the Climate Informatics (CI) interna-

tional conferences held in 2018, 2019 and 2020. Two of these works, “Deep convolutional

networks for feature selection in statistical downscaling” and “Understanding deep learn-

ing decisions in statistical downscaling models” deal with the interpretability of CNNs.

The third one, “The importance of inductive bias in convolutional models for statistical

1The term saliency map refers to any transformation of the information contained in an input image
to another meaningful space which facilitates its interpretability. Saliency maps have been widely utilized
in previous works to better understand the functioning of DL applications (Simonyan et al., 2014; Zhou
et al., 2016; Zintgraf et al., 2017; Montavon et al., 2018; Larraondo et al., 2019; Reimers et al., 2019; Toms
et al., 2021).
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downscaling”, analyzes the benefits of multi-site topologies, as compared to single-site

ones.

6.1 Performance Intercomparison for Different Deep Learning Models

This section discusses the performance of the different DL models proposed in this

Thesis (see section 5.4) for SD in “perfect” conditions. We use as benchmark methods the

GLM1 and GLM4 described in section 5.5 —we do not include GLMPC in this analysis

since it was found to provide worse results than the two local GLMs in San-Mart́ın et al.

(2017) and Bedia et al. (2020).— This section is framed within VALUE’s Experiment

1b (see Chapter 5). Therefore, we produce daily precipitation and temperature over the

0.5◦ E-OBS grid for the period 1979-2008 building on ERA-Interim predictors (see Table

5.2). This study is limited to a hold-out approach (train: 1979-2002, test: 2003-2008) to

measure the extrapolation capability of the CNNs and GLMs considered (see Figure 5.2

for a an assessment of the climatological differences between these two periods). Note that

this aspect is crucial to provide insight into the applicability of these methods to climate

change studies. To validate our downscaled results in “perfect” conditions we rely on the

subset of VALUE metrics listed in Table.5.5.

Fig 6.1 shows the validation of the downscaling of temperature, in terms of nine differ-

ent metrics. In each panel (one per metric), the results for the seven methods intercom-

pared are shown by means of boxplots which represent the spread of the targeted metric

along the entire E-OBS grid. The dark gray boxplot corresponds to the CNN10 model,

which provides overall the best results for this variable.

Accuracy is evaluated in terms of the RMSE and the Pearson correlation (panels a

and b, respectively). For the latter we have removed the seasonal cycle of the series, to

avoid overestimated values. Even though they only differ in the number of neighbouring

points included in the predictor field, GLM4 outperforms GLM1 for these two metrics.

These results are consistent with previous literature suggesting that the use of spatial

rather than local predictor information helps to gain prediction accuracy (Gutiérrez et al.,

2013). In this regard, it is interesting to see that the CNN-LM model —which uses linear

convolutional operations to exploit the spatial structure of the entire predictor domain—

yields indeed better RMSE and correlation values than GLM1, but comparable to those

from GLM4. This indicates that 1) a subset of the 4 closest gridboxes to a given site

seems to be enough to gather most of informative power required to reproduce the local

variability of temperature, and 2) the CNN-LM is able to deal with continental-scale

predictor fields without leading to overfitting. Note that the latter is a clear benefit with

respect to traditional SD methods since it avoids the use of “human-guided” selection
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Figure 6.1: Validation of the downscaling of the temperature, in terms of nine different
metrics. In each panel (one per metric), the results for the seven methods intercompared
are shown by means of boxplots which represent the spread of the targeted metric along
the entire E-OBS grid (the boxes/whiskers cover 25–75th/10-90th percentile range). For
comparison purposes, the horizontal red line marks the median value for the benchmarking
GLM4. The horizontal gray lines indicates the ‘perfect’ value for each metric. The dark
gray boxplot identifies the overall best-performing method, in this case the CNN10.

procedures of filtering techniques to retain only the most explicate predictors. The CNN1

and CNN10 models achieve lower (higher) RMSE (Spearman correlation) values than the

GLM4. However, these improvements are not excessively high, which suggests that non-

linear models add actually little value for the downscaling of temperature. Similar results
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were obtained in previous studies over Europe testing the use of non-linear regression for

this variable (Huth et al., 2008). The computer vision inspired topologies, CNN-PR and

CNNdense, present worse results than GLM4 in terms of RMSE and correlation. For the

CNN-PR, a high amount of filter maps in the last hidden layer may have overparameterized

the net, whilst the CNNdense may have lost local-connectivity since the spatial patterns

are fully-mixed in the dense layers.

To assess the performance of our predictions in terms of distributional similarity with

E-OBS, we considered the ratio of standard deviations and the biases for the mean, P02

and P98 (panels c, d, e and f respectively). Overall, all the methods intercompared yield

similar results. There is a general slight positive bias for the mean (0.1-0.2◦C) that tends

to be higher for P02 (0.3-0.5◦C). For P98, positive and negative errors (in between -0.2 and

0.3◦C) are found. These results indicate that all methods present moderate extrapolation

capabilities (recall the test period is warmer than the train one).

Regarding temporal aspects, the biases for the AC1, the WAMS and the CAMS are

shown in panels g, h and i, respectively. With the exception of the CNNdense model,

which yields positive biases for all these metrics, very slight differences are found among

the rest of models, all of them exhibiting zero-centred biases (note however that the spatial

variability of these errors in considerable). Overall, no method outperforms clearly the

others in terms of these temporal metrics. It has to be noted that neither the linear nor

the CNN models have been specifically designed to preserve the temporal structure of

the data, and improvements in this aspect might be achieved by recurrent connections or

LSTM networks.

To gain spatial detail about the results presented in Figure 6.1, Figure 6.2 shows

maps for a subset of the analyzed metrics. For simplicity, only the GLM1 and GLM4

are displayed, together with the best-performing CNN: the CNN10. The RMSE and the

correlation exhibit similar spatial patterns regardless of the model considered. In particu-

lar, the highest (lowest) RMSE (correlation) values are found in Scandinavia, the Balkans

and some regions over the Iberian Peninsula2, for which the CNN10 yields slightly better

results than the two GLMs. Moreover, GLM1 leads occasionally to patchy (discontin-

uous) spatial patterns, unlike the GLM4 which produces smoother fields as a result of

incorporating predictor information representative of a wider area.

In terms of distributional similarity, all models exhibit similar spatial patterns for the

ratio of standard deviations and the biases for the mean, P02 and P98. In particular, low

mean errors appear in areas where the E-OBS dataset present inconsistencies (the Eastern

Balkans and Southern Iberia). For the extremes, P02 and P98, a gradient of negative-

2As already pointed out in Sec5.2, the anomalous results found for Southern Iberia could likely be
related to issues in the E-OBS dataset.
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Figure 6.2: Spatial results for a subset of the validation metrics considered for the down-
scaling of temperature (in columns), for the two benchmarking GLMs (top and middle
row) and the best-performing method, the CNN10 (bottom row). The numbers within
the maps indicate the spatial mean absolute values (to avoid error compensation).

positive biases crosses Europe from west to east. Noticeable, the CNN10 model reduces

the magnitude of these biases, especially for P02.

Similar to Figure 6.1 for temperature, Figure 6.3 shows the validation results obtained

for the downscaling of precipitation. In this case, the dark gray boxplot corresponds to

the CNN1 model, which provides overall the best results for this variable. Panels a, b and

c show the ROCSS, the RMSE (conditioned on the observed wet days) and the Spearman

correlation, respectively. There is a considerable improvement of GLM4 over GLM1 for the

ROCSS and the correlation. However, both models exhibit similar RMSE values. These

results indicate that precipitation occurrence (described by the ROCSS) is better predicted

when making use of a wider area in the predictor field, which in turn improves also the

correlation values attained. Nevertheless, predictor information at the closest gridbox

seems to be sufficient to predict rainfall amount, which is usually not much affected by

the processes that occur in far regions. This idea is supported by the results obtained for

the CNN-LM. This model, which is designed to exploit the spatial structure of the entire

predictor domain, yields very similar results to GLM4 for ROCSS, correlation and RMSE.

Nevertheless, except for the CNN-PR —which behaves similarly to the GLMs,— all the

(non-linear) CNN models tested achieve better validation scores for the these three metrics,

in particular, the CNN1. Differently to the case of temperature (whose dependence on

the synoptic situation is nearly linear), these results suggest that CNNs would outperform
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Figure 6.3: Equivalent to Figure 6.1 but for the validation of the downscaling of precipita-
tion. In this case, the labels ‘DET’ and ‘STO’ for the relative bias of the P98 refer to the
deterministic and stochastic versions of the different methods intercompared, respectively.

classical GLMs for downscaling of precipitation due to their ability to properly model the

non-linearities linking this variable with the large-scale predictors.

To validate the marginal aspects of the downscaled precipitation, panels d, e and f

show the relative biases for the mean, P02 and P98, respectively. For the latter, results for
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both deterministic and stochastic predictions are provided. For the mean, all models show

zero-centred values (note however the spatial variability of these errors, represented by the

spread of the boxplots). As expected, the deterministic predictions underestimate the P98

whilst stochastic ones show small, zero-centred biases. Presumably, the underestimation

of extreme precipitation in the deterministic series might be a consequence of a lack of

informativeness in the predictor set, which is typical for this variable.

Regarding temporal aspects, panels g, h and i show the biases for the relative amplitude

of the annual cycle, the WetAMS and the DryAMS. For these three metrics, all models

present positive biases, especially the GLM1. We argue that other type of NNs which

explicitly take into account the temporal structure of the data such as LSTMs may help

to improve these results.
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Figure 6.4: Equivalent to Figure 6.2 but for a subset of the validation metrics considered
for the downscaling of precipitation. In this case, CNN1 is given in the bottom row for
being the best-performing model for this variable. The numbers within the maps indicate
the spatial mean absolute values (to avoid error compensation).

For further insight into the spatial distribution of the results shown in Figure 6.3,

Figure 6.4 provides maps for some the analyzed metrics, in particular the ROCSS, Spear-

man correlation, RMSE, and the relative biases for the mean and the P98 (from left to

right). In rows, the GLM1 and GLM4 are shown along with the best-performing CNN: the

CNN1. The latter outperforms the two GLMs for the accuracy metrics (ROCSS, correla-

tion and RMSE) whilst present comparable biases. The highest ROCSS and correlations
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are found over France and the Mediterranean arch, which may be explained by the type of

mechanisms driving precipitation in these regions (mostly Atlantic fronts), which are well-

represented by the large-scale atmospheric configuration. Likewise, the highest RMSE

values are located in mountainous regions (e.g. the Alps), where precipitation is often

related to convective processes and other local phenomena not reflected in the predictor

set. Still, CNN1 exhibits lower RMSE values than the GLMs do, especially over Central

and Eastern Europe.

Notice that the anomalous results found over Northeastern Iberia and the Baltic states

for the bias of P98 are likely due to the issues identified in the E-OBS dataset. Nonetheless,

particularly bad results are also found over the Greek peninsula (especially for the mean

bias), for which we do not envisage a clear explanation.

The last column correspond to the bias for the P98, as obtained from deterministic pre-

dictions. As expected, extreme precipitation is underestimated by all methods. However,

this issue can be overcome by stochastic predictions, although at the cost of losing part of

the spatio-temporal consistency. To shed light on the benefits and shortcomings of both

deterministic and stochastic predictions for rainfall amount, Figure 6.5 shows the results

obtained for the CNN1 model when 1) directly predicting from the expected value of the

conditional daily distribution learnt and 2) sampling out a new value from its parameters

—in both cases, deterministic predictions of precipitation occurrence are considered.—

In particular, panel a (c) shows the Spearman correlation over the entire time-series

(conditioned to the observed wet days). Panels b and d correspond to the RMSE and

the ratio of standard deviations. Similar correlations are found for both deterministic

and deterministic-stochastic prediction when the complete time-series is assessed since its

temporal structure is determined to a great extent by the binary occurrence. However, if

the validation is restricted to the days in which observed precipitation was above 1 mm,

the deterministic-stochastic prediction exhibit lower correlations than deterministic ones

over the entire continent. Moreover, the introduction of a stochastic component leads to

larger RMSE values (as compared to the deterministic predictions). Nonetheless, as shown

by the ratio of standard deviations, it is needed in order to achieve a realistic variability

in the predictions (note that this metric is clearly underestimated by purely deterministic

predictions).

Overall, our results show that CNNs yield better validation metrics than the bench-

marking GLMs in “perfect” conditions. In particular, CNN1 and CNN10 were shown to be

the best-performing models for the downscaling of temperature and precipitation, respec-

tively. This is due to 1) the ability of CNNs to learn complex and non-linear patterns from

data — which has been found to be particularly relevant for the case of precipitation—

and 2) their ability to efficiently handle high-dimensional input spaces in a multi-site
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Figure 6.5: Comparison between deterministic (Det.) and deterministic-stochastic (Det-
Sto.) predictions from the CNN1 model in terms of the Spearman correlation for the
full series (a), the RMSE (b), the Spearman correlation conditioned to the observed wet
days (c) and the ratio of standard deviations (d) —see the text for details about these
metrics.— The numbers within the maps indicate the spatially averaged values.

configuration. The latter constitutes a clear advantage over traditional SD models since

tedious and human-guided dimensionality reduction techniques —which may entail a loss

of relevant information for the downscaling— are no longer needed. However, the reasons

explaining this success for the CNNs are still unknown and we provide dig into this matter

in the next section.

6.2 Unveiling the “Black-box” Nature of Deep Learning Models

This section delves into the functioning of DL topologies for climate downscaling and

try to explain the success of the CNNs analyzed in the preceding section. In particular, in

section 6.2.1 we explore the implicit regularization that occurs in multi-site convolutional

networks. Moreover, with the idea of detecting the most relevant input features for a

given climate downscaling application, we analyze in depth the modelling of the predictor-
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predictand link in our CNNs in section 6.2.2.

6.2.1 The Implicit Regularization of Multi-site Topologies

To better understand the reasons that may be behind the ability of CNNs to efficiently

treat high-dimensional input spaces without leading to overfitting, we compare in this

section single- and multi-site versions of the CNN1 model (labelled as CNN1-SS and

CNN1-MS, respectively) for downscaling of precipitation. During single-site mode, each

site is downscaled with independent statistical models (CNNs in our case), whilst multi-

site topologies downscale simultaneously the entire predictand field in a single statistical

model (see section 4.2.4). To enrich the analysis, we also include in this experiment

the GLM4 model, which is limited to the PRUDENCE region encompassing the Iberian

Peninsula (see Figure 5.5c). In contrast to section 6.1, which built on a hold-out approach,

we use here the 5-folds defined in VALUE’s Experiment 1 for cross-validation purposes:

1979-1984, 1985-1990, 1991-1996, 1997-2002, 2003-2008.
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Figure 6.6: Cross-validated results in each of the five folds considered for the single- and
multi-site versions of the CNN1 model (CNN1-SS and CNN1-MS, respectively) and the
GLM4, in terms of the ROCSS, the RMSE, the Spearman correlation and the relative bias
for the mean.
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Figure 6.6 shows the results obtained in each fold for the CNN1-SS, the CNN1-MS and

the GLM4 methods in terms of the ROCSS, the RMSE, the Spearman correlation and the

relative bias for the mean, which have been spatially averaged across all predictand sites

within the region of interest. In agreement with the results from the preceding section

(Figure 6.3), very high ROCSS (with values close to 0.9) are found for the CNN1-MS, which

outperforms the CNN1-SS and especially the GLM4. Likewise, the multi-site version of

CNN1 exhibit better correlations than the rest of the models, with the CNN1-SS yielding

even slightly lower values than the GLM4 for the period 1991-2008. A similar behaviour

is also found for the RMSE, with the CNN1-MS yielding better results than both CNN1-

SS and GLM4. Moreover, it has to be noticed that about a 5% of the predictand sites

which exhibited very large RMSE values (above 10 mm/day) in the CNN1-SS had to be

excluded from this analysis. This suggests that CNN1-MS regularizes the network by

training simultaneously to all the target sites, therefore avoiding the potential instabilities

that may appear in single-site topologies. The relative biases for the mean are also better

for the CNN1-MS than for the GLM4(CNN1-SS), which present positive(negative) values.

This experiment indicate that, whereas single-site CNNs are prone to overfitting in

certain locations, the equivalent multi-site topologies perform an implicitly regularization

which allows the network to treat simultaneously the high-dimensional predictor space,

avoiding overfitting and leading to improved forecast accuracy.

6.2.2 Automatic Feature Selection

This section digs into the “black-box” nature of DL topologies by providing insight into

the predictor-predictand link in a climate downscaling application. This is done in two

different ways. In the first part of the section we show spatial representations of the last

filter map in the CNN1 model and compare it against the different predictor fields for a

particular day. Also, we show the coefficients which link this last filter map to two illus-

trative locations with different climate regimes: Madrid and Helsinki. In the second part

of the section we extend this naive study to other locations distributed along Europe, and

base the interpretation of the predictor-predictand link on Prediction Difference Analysis

(PDA3, (Zintgraf et al., 2017)).

Following the methodological framework described in Chapter 5, we downscale pre-

cipitation occurrence over the 86 stations considered in the VALUE’s Experiment 1a

building on ERA-Interim 2◦ large-scale variables. To assess the influence of low- and

high-dimensional input spaces, we build two different versions of the CNN1 model which

differ on the predictor setup used (see Figure 6.7). In particular, whereas CNN1(20) was

3PDA is a mathematical formulation that permits to marginalize the influence that each predictor
variable has on the model outputs.
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Figure 6.7: The twenty predictors listed in Table 5.2 (rows 1-5) for a given day —randomly
selected— plus the resulting features in the last convolution layer (bottom row) for the
CNN1(7) and CNN1(20) models. Whereas CNN1(20) was trained with the full predictor
set, only the seven variables marked with a black frame were considered in CNN1(7).

trained with the full predictor set, only the seven variables marked with a black frame

—coinciding with those used in VALUE’s experiment 1 to build regression-based models

(Gutiérrez et al., 2019),— were considered in CNN1(7).

Figure 6.7 shows the atmospheric situation as described by the twenty predictor va-

riables listed in Table 5.2 for a given day (selected randomly), plus the last filter map

in the two versions of the CNN1 model —CNN1(7), CNN1(20).— The goal is to search

for similarities between these predictor fields and the last feature map, which allows for

visualizing the implicit predictor selection that occurred within the hidden layers of the

network. Visual inspection reveals that humidity at intermediate height levels (700 and

850 hPa) resembles the bottom part of the pattern found in the last feature map for both

CNN1(20) and CNN1(7), which suggest that these are the variables used by the network
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to downscale precipitation in this area. The same occurs for geopotential height at 850

and 1000 hPa over the central and top parts of the studied domain. The robustness of the

model to high-dimensional spaces is proved, since both CNN(20) and CNN(7) present very

similar patterns in their last feature map. The main difference between these two maps

appears in the top-right corner of the domain, which seems to be dominated by zonal wind

velocity —not present in the CNN1(7) predictor configuration.— This analysis shows how

variables which are not relevant (or play a minor role) for downscaling, such as meridional

wind velocity, are mostly neglected by the network without altering the predictive skill.

The results derived from this study are consistent with previous works which suggest that

humidity and geopotential are the most useful variables to explain the local variability of

precipitation in Europe (Timbal and McAvaney (2001), San-Mart́ın et al. (2017)).

Figure 6.8: Weights connecting the last convolution layer to the output neurons in Madrid
(left) and Helsinki (right). A 5x5 spatial moving average is applied to represent the effect
of kernels. Blue/red colors indicate positive/negative weights.

Figure 6.8 shows the coefficients (i.e. the weights) that link the last filter map to two

illustrative locations which were selected for presenting very different climates: Madrid and

Helsinki. Since we have applied padding to the convolutional layers in the CNN1 model,

the last feature map has the same latitude-longitude dimensions than the input variables,

which allows to visualize the importance of the predictor set for downscaling across the

entire domain4. Noticeably, the largest weights are found over an area of approximately

5x5 gridboxes surrounding the location of interest, with (quasi) zeroed-values elsewhere.

This indicates that the network automatically neglects the regions which are not of interest

for downscaling, taking advantage thus of site-dependent windows of information.

4In computer vision, this type of representation is referred to as saliency maps.
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To gain further insight into the conclusions drawn from this naive analysis, it is next

extended by considering a more sophisticated way to produce saliency maps, namely Pre-

diction Difference Analysis (PDA). PDA allows to directly estimate the relevance of each

predictor variable for downscaling —to a certain extent, this aspect was qualitatively as-

sessed in Figure 6.8 but without quantitatively evaluate the degree of participation of each

predictor variable.— Moreover, here we focus not only on the prediction of precipitation

occurrence but also in rainfall amount.

Following from the mathematical formulation of a NN described in Eq.4.2, PDA esti-

mates the relevance of an input feature, xj , by measuring how the predicted parameters,

(i.e., y = {p, α, β} for precipitation or y = {µ, σ2} for temperature) change when it is

unknown, (i.e., y’ = {p′, α′, β′} for precipitation or y’ = {µ′, σ2′} for temperature). This

can be done by marginalizing the j feature:

y′ = fω(x\j) =
∑
xj

P (xj |x\j)fω(xj , x\j) (6.1)

Where x\j refers to the complete set of input features except xj . As Zintgraf et al.

(2017), we adjust the probability function P (xj |x\j) with a conditional multivariate normal

distribution from which M predictor configurations are sampled. These are feed-forwarded

through the network, being the output y′ the average of these M realizations.

Approximating P (xj |x\j) is usually not feasible so these authors simplify the term by

conditioning only on a surrounding region of size LxL, described by x̂\j . Moreover, a

multivariate analysis can be carried out by removing jointly a set of z features grouping a

patch of size KxK. Hence,

y′ = fω(x\z) =
∑
xz

P (xz|x̂\z)fω(xz, x\z) (6.2)

Figure 6.9 shows an schematic representation of the PDA technique. For a given

predictand site, given N daily samples and the full set of predictor variables listed in Table

5.2, we obtain saliency maps of dimension Nx19x22x20 (time-latitude-longitude-variable).

For every sample i, each pixel in these maps represents the Activation Difference (AD)

of the expectance of the predictive distributions (i.e., Bernoulli-Gamma and Gaussian for

precipitation and temperature models, respectively):

ADi = µ′i − µi (6.3)

ADi = p′iα
′
iβ
′
i − piαiβi (6.4)
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fω(xz,x\z)

x̂\z xzx\z

x y'

L

L

where xz is sampled from
P(xz | x̂\z) ~ MN(μ,Σ) 

Figure 6.9: Diagram illustrating the marginalization of xz, of size KxK (red), conditioned
on its surrounding region of size LxL, x̂\z (green), given an input feature channel x —note
this particular case corresponds to one single feature map, K = 3 and L = 9.— The input
features, xz and x\z, are feed-forwarded to the neural network fω, where xz is drawn from
the Multivariate Normal (MN) distribution P (xz|x̂\z), described by µ (a z-variate vector
of means) and Σ (the covariance matrix), which are the estimated conditional parameters.
This process is repeated by successively centering xz in the rest of predictor gridboxes.

With illustrative purposes, we focus here on four locations —actually their closest

gridboxes in the E-OBS grids— corresponding to different climates regimes: Paris, Rome,

Cophenaguen and a point in the Alps. The objective is to gain interpretability about the

internal functioning of CNN1 and CNN10, which were found to be the best-performing

models for downscaling in “perfect” conditions of precipitation and temperature, respec-

tively (see section 6.1). Building on this idea, we applied the PDA technique on the

conditional daily predictions learnt with these models for the year 2008 —we limited

the study to a single year of the test set due to computational limitations.— For each

predictand variable, the results are 365 saliency maps of dimension 19x22x20x4 (latitude-

longitude-variable-site) providing the spatial distribution of the AD. We used K = 3,

L = 11, and M = 30 for the PDA technique, which proved to be a good trade-off between

computational requirements and representativeness in the saliency maps.

Figure 6.10 shows the saliency maps obtained for each target location, averaged across

the time dimension —to avoid error compensation, absolute AD values are considered.—

For each location, results for the twenty predictor variables available is presented. In

agreement with the results found in the first part of this section, the specific humidity at

1000 hPa is found to play a key role for precipitation downscaling, finding strong signals

in their surrounding areas for all locations except in the Alps. Nevertheless, different

importance patterns emerge for other predictor variables at different sites. For instance,
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the wind velocities appear to be quite informative to precipitation in the Alps, —especially

at 700 and 850 hPa— whilst having only relative influence over Paris and Rome. Also,

the geopotential at 1000 hPa presents (low) high AD values for (Alps and Cophenaguen)

Paris and Rome. Finally, Cophenaguen is the only location where air temperature at 1000

hPa is detected to have a strong influence for the downscaling of local precipitation.

To our knowledge, a systematic study about the importance of the different predictor

variables typically used for SD of precipitation has not been been undertaken yet. Indeed,

just a few works addressing this topic can be found in the literature. For instance, Soares

et al. (2019) evaluated the importance of some large-scale mechanisms (e.g., the North

Atlantic Oscillation) for downscaling of precipitation over Europe, and Yang et al. (2018)

used a step-wise algorithm and partial correlations to search for relevant variables for the

same task over China. Other studies perform an exhaustive screening of predictors and

domains to find the best model setup (see San-Mart́ın et al. (2017) for an example in

Spain). Despite this lack of studies makes difficult to properly contextualize the results

from Figure 6.10, the high AD values found for humidity are consistent with previous

literature (San-Mart́ın et al., 2017) and physical principles. Moreover, the spatial extent

of the importance patterns revealed by Figure 6.10 are also in agreement with previous

works which suggest that an area of 5x5 gridboxes centered around the location of interest

is enough to retain most of the informative power that is needed to reproduce the observed

local variability (Timbal and McAvaney, 2001; Timbal et al., 2003; Gutiérrez et al., 2004;

Brands et al., 2011b; Gutiérrez et al., 2013; San-Mart́ın et al., 2017). Furthermore, this

conclusion is also consistent with the results described in section 6.1 and with the saliency

maps displayed in Figure 6.8.

Figure 6.11 is the equivalent to Figure 6.10 but for temperature. Unlike for precip-

itation, all predictor variables except air temperature at 1000 hPa present very low AD

values, suggesting that most of the informativeness required to downscale local surface

temperature is already provided by the large-scale near-surface temperature —note that

even air temperatures at other vertical levels exhibit a nearly negligible influence.— This

result is in agreement with previous studies (Huth, 1999, 2002, 2004).

Overall, the analyses presented in this section allow to better understand the internal

functioning of the CNNs used for climate downscaling in this Thesis.
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Figure 6.10: Saliency maps obtained for the CNN1 model at four illustrative locations:
Paris, Rome, Cophenaguen and Madrid. For each location, results for the meridional
(va) and zonal (ua) wind velocities, air temperature (ta), specific humidity (hus) and
geopotential (z) at 500, 700, 850 and 1000 hPa are given. To avoid error compensation,
the maps show the absolute AD values, averaged across the time dimension (for the year
2008).
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Figure 6.11: As Figure 6.10 but for temperature.



CHAPTER 7

Downscaling from Global Climate Models

This chapter is formed by two sections which allow to comprehensively assess the

suitability of SD methods —with special focus on the best-performing CNNs found in the

“perfect” conditions experiment (Chapter 6)— to downscale GCM simulations.

First, section 7.1 focuses on the use of CNNs (and GLMs) to downscale the 12th run of

the EC-Earth model to the target E-OBS resolution (0.5◦), producing daily precipitation

and temperature fields over Europe for both historical (1979-2008) and RCP8.5 (far-future:

2071-2100) scenarios. For the former, the downscaled fields are directly validated against

E-OBS. However, for RCP85, since no observational reference exists for the future, the raw

outputs from the EC-Earth —interpolated to the target 0.5◦ grid— are used as “pseudo-

reality” to “validate” the downscaled projections. This approach, which has been widely

used in the literature (Vrac et al., 2007b; Gutiérrez et al., 2013; San-Mart́ın et al., 2017;

Quesada-Chacón et al., 2021), builds on the idea that significant deviations from the

driving GCM could be an indicator of the implausibility of the SD-based projections

(unless it is justified by process understanding).

Second, section 7.2 extends section 7.1 by using our CNNs to downscale the subset of

CMIP5 models listed in Table 5.4 to produce DeepESD, an ensemble of high-resolution

projections of daily precipitation and temperature over Europe for the entire 21st century

(2005-2100). The objective of this dataset —which represents the first of its kind at a

continental scale,— is to be used as reference by the community for the research of crucial

aspects of climate statistical downscaling (e.g., stationarity assumption), with views to

further explore the use of this type of projections in real impact studies. In this case, in

addition to the driving GCMs, a subset of RCMs from EURO-CORDEX are also used as

“pseudo-reality” to “validate” the plausibility of the downscaled projections. The reason

95
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for this is that, as compared to their driving GCMs, RCMs may significantly alter the

climate change signal at the regional-to-local level, since they explicitly resolve small-scale

mechanisms which are not taken into account by GCMs (Giorgi and Gutowski Jr, 2015;

Giorgi et al., 2016; Sørland et al., 2018). Nevertheless, deciding whether or not RCMs

are able to provide more plausible climate change scenarios than GCMs is nowadays a

hot research topic. In addition to the increase in spatial resolution, other factors such as

inconsistencies among the parameterization schemes used (Pinto et al., 2018), the absence

of ocean coupling in the RCM formulation (Gaertner et al., 2018; Akhtar et al., 2018),

and the inclusion (or not) of time-varying anthropogenic aerosols, may also lead to large

differences between the RCMs and their driving GCMs (Gutiérrez et al., 2020; Boé et al.,

2020). All these aspects make difficult the election of either GCMs or RCMs as the

“pseudo-reality” our SD-based projections should be compared to. For this reason, the

plausibility of DeepESD is studied here based on both GCMs and RCMs.

The first part of this Chapter (section 7.1) is based on the manuscript entitled “On the

suitability of deep convolutional neural networks for downscaling climate change projec-

tions”, published in Climate Dynamics. The second part (section 7.2) is based on another

paper, “DeepESD: An ensemble of regional climate change projections over Europe based

on deep learning downscaling”, which is currently under review in Nature Scientific Data.

7.1 Assessing the Suitability of Deep Learning Models to Downscale
Historical and Future Climate Simulations

In this section we explore the suitability of CNNs to downscale the historical (1979-

2008) and RCP8.5 (2071-2100) scenarios from a single GCM. We frame the study in

EURO-CORDEX ESD, and therefore we focus on the 12th run of the EC-Earth. To do

this, we build on the best-performing CNNs found for downscaling in “perfect” conditions

(section 6.1): CNN10 for temperature and CNN1 for precipitation. For completeness, the

GLMs introduced in section 5.5 (GLM1, GLM4 and GLMPC) are also considered. All

these SD methods are first trained based on the ERA-Interim predictors used in Chapter

6 during 1979-2008. Then, they are applied to the EC-Earth predictors —note that the

distributional similarity between ERA-Interim and EC-Earth predictors was assessed in

section 5.3.— The resulting downscaled fields are validated in terms of different metrics

depending on the scenario of interest, either the historical (focusing on 1979-2008) or the

RCP8.5 (focusing on the far-future: 2071-2100). In particular, for the historical scenario

we compute the (relative) biases for the indicators listed in Table 5.6, taking as reference

the E-OBS (precipitation) temperature. With respect to the RCP8.5 scenario, we focus

on the projected “delta” changes (i.e. the mean difference between the RCP8.5 and the
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historical fields) provided by the different SD methods for the same indicators. Based

on previous literature (Vrac et al., 2007b; Gutiérrez et al., 2013; San-Mart́ın et al., 2017;

Quesada-Chacón et al., 2021), these changes are compared with those obtained from the

EC-Earth’s raw simulations, which are considered as “pseudo-reality”.
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Figure 7.1: (Relative) biases of the downscaled fields in the historical scenario for (R01,
SDII and P98Wet) P02, the mean and P98, which are computed taking E-OBS (precipi-
tation) temperature as reference. In rows (from top to bottom), results for the EC-Earth,
GLM1, GLM4, GLMPC and CNN (CNN1 for precipitation and CNN10 for temperature)
are given. For P98Wet, deterministic and stochastic predictions are considered.

Figure 7.1 shows the (relative) biases of the downscaled fields in the historical scenario

for (R01, SDII and P98Wet) P02, the mean and P98, which are computed taking E-OBS

(precipitation) temperature as reference. In rows (from top to bottom), results for the

EC-Earth, GLM1, GLM4, GLMPC and CNN (recall, CNN1 for precipitation and CNN10

for temperature) are given.

The EC-Earth shows systematic errors across vast regions of the continent for all the

metrics considered. For precipitation, the R01 is overestimated —especially in Southern

and Western Europe— whilst the SDII (P98Wet) presents small (high) positive biases

over large areas, especially in mountainous regions. The overestimation of the R01 can
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be explained by the so-called “drizzle effect”1 (see Dai (2006) and references therein).

Likewise, the underestimation of rainfall amount (as described by SDII and P98) could

be due to the miss-representation in the model of certain atmospheric phenomena which

trigger local precipitation (e.g., orographic convection). For temperature, a gradient of

negative-positive biases are found for P02 from South to North. Differently, negative

biases are generally found for the mean and the P98, especially in Central Europe and the

Iberian Peninsula. Again, these errors might be attributed to the limited spatial resolution

of EC-Earth, which have as a result the misrepresentation of important local features such

as complex orography, land-sea contrasts, etc. (Manzanas et al., 2018)

Differently to the EC-Earth’s raw simulations, the GLMs and CNNs exhibit in general

lower biases for all the metrics considered. However, before analyzing the performance

of these SD methods for downscaling the EC-Earth’s historical scenario, it is important

to recall that all of them showed nearly negligible biases across the entire Europe in the

“perfect” conditions experiment (Chapter 6). Having this in mind, the biases found in

Figure 7.1 for the GLMs and CNNs might presumably be caused by violations of the PP

assumption of having GCM predictors which are reasonably similar to their counterpart

variables in the reanalysis.

For R01, all SD methods yield satisfactory results in the historical scenario, with minor

positive biases for GLM1 and GLM4 over the Balkans.

Moreover, for the SDII, these two local-based GLMs present positive biases over large

regions. As already argued, these errors are presumably due to some inconsistency be-

tween ERA-Interim and EC-Earth predictors over those regions. However, the GLMPC

and the CNN (especially the former) exhibit very small biases for these two metrics since

the “problematic” predictors may be not represented in the leading PCs, or directly ne-

glected in the hidden layers of the CNN. For P98Wet, we show the resulting biases both

for deterministic and stochastic versions of the SD models considered. In agreement with

the results from Figure 6.4, deterministic predictions underestimate clearly this indica-

tor. Nonetheless, stochastic predictions allow to better reproduce the local extremes. In

particular, the local-based GLMs (especially GLM4) exhibit strong (positive) biases for

P98Wet while the GLMPC and the CNN present small (positive) biases in some scattered

regions across the continent.

With regards to temperature, Figure 7.1 shows nearly null biases for the mean and

the P98 for all the SD models considered. Nevertheless, in agreement with the results

from Figure 6.2 positive biases are found for P02 over Eastern Europe and Scandinavia.

These errors are less pronounced for the CNN than for the GLMs. Contrary to what

1Overly frequent drizzle is a persistent problem in climate models which arises from the use of convective
parametrization schemes that tend to trigger precipitation too easily.



7.1. ASSESSING THE SUITABILITY OF DEEP LEARNING MODELS TO DOWNSCALE HISTORICAL
AND FUTURE CLIMATE SIMULATIONS 99

happened for local GLMs (in particular for GLM4) in the case of precipitation, the errors

found for P02 in temperature for GLM1 and GLM4 are lower than for GLMPC, and only

slightly larger than for CNN (which provides the best results). Since the predictor set

considered is the same for downscaling of both temperature and precipitation, we argue

that the predictor variables responsible for the biases found in the SDII and P98Wet

(stochastic) maps —in the precipitation panel— would not be driving local temperature.

Indeed, recall from section 6.2.2 that most of the informative power required to explain

local surface temperature comes solely from large-scale near-surface temperature.

R01 SDII
Precipitation Temperature

P98Wet

G
LM

1
G

LM
4

G
LM

PC
C

N
N

EC
-E

ar
th

 C
lim

at
e

ch
an

ge
 s

ig
na

l
D

iff
er

en
ce

 b
et

w
ee

n 
th

e 
G

C
M

 a
nd

 S
D

 s
ig

na
ls

 

P02 Mean P98

−40 −20 0 20 40 −4 −2 0 2 4
Difference of relative changes (%) Difference of changes (ºC)

−40 −20 0 20 40 0 2 4 6 8 10
Relative change (%) Change (ºC)

Figure 7.2: First row: (Relative) “delta” changes projected by the EC-Earth’s raw outputs
—interpolated to the target 0.5◦ grid— for (R01, SDII and P98Wet) P02, the mean and
P98. These changes are computed based on the mean difference between the RCP8.5 (2071-
2100) and the historical (1979-2008) fields. Rows 2-5: Difference between the changes
projected by GLM1, GLM4, GLMPC and CNN (CNN1 for precipitation and CNN10 for
temperature) and those shown in the first row for EC-Earth —which are considered as
“pseudo-reality”.—
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To “validate” the plausibility of the downscaled projections in the RCP8.5 scenario we

compute the “delta” changes derived from the different SD methods and compare them

with those directly obtained from the EC-Earth’s raw outputs —interpolated to our target

0.5◦ grid.— In this line, the first row of Figure 7.22 shows the (relative) “delta” changes

obtained from EC-Earth for (R01, SDII and P98Wet) P02, the mean and P98. Rows

2-5 correspond to the GLM1, GLM4, GLMPC and CNN (recall, CNN1 for precipitation

and CNN10 for temperature), and display the difference between the changes projected by

these methods and those from EC-Earth (which are considered as “pseudo-reality”), shown

in the first row. Based on previous works (Vrac et al., 2007b; Gutiérrez et al., 2013; San-

Mart́ın et al., 2017; Quesada-Chacón et al., 2021), we argue that large (small) differences

between the first row and rows 2-5 might be an indicator of bad (good) extrapolation

capability for the corresponding SD method.

For R01, EC-Earth exhibits almost no changes except for the Mediterranean arch,

where a decrease (in between -10% and -20%) in the number of rainy days is projected.

Nonetheless, the SDII and the P98Wet (especially the latter) are expected to increase con-

siderably (by about 20-40%) over most parts of the continent. This indicates that a fewer

number of rainy days would bring larger rainfall amounts in the far-future (with respect

to the historical period). For the case of temperature, positive changes (i.e. increases)

are projected for all the indicators considered. In particular, a warming of about 2-5◦C is

expected for mean temperature across the entire continent, reaching 6-10◦C for the case

of P02 over Scandinavia. Similarly, increases of about 5-7◦C are projected for P98 over

France and Southern Europe. These results are in agreement with the literature (Giorgi

and Lionello, 2008; Terray and Boé, 2013; Collins et al., 2013).

For R01, the changes projected by the SD methods show very low differences with

respect to those obtained from EC-Earth. A similar situation is also found for the P02,

the mean and the P98 for the case of temperature. Moreover, the minor deviations found

with respect to the EC-Earth’s signals (in between -15 and 20% for R01; -2 and 2◦C for the

P02 and P98) appear mostly for the two GLMs, particularly in some regions over Central

and Northeastern Europe. Furthermore, for SDII and P98Wet, large positive differences

are also encountered for the two GLMs over vast parts of the continent. Nevertheless,

these differences are much lower for CNN, and restricted to small scattered locations.

The “overestimation” of future precipitation for the GLMs —regardless of the predictor

configuration used— has also been reported in other studies (see San-Mart́ın et al. (2017)

for an example in Spain). The latter cannot be justified by any known physical mechanism,

2The colorbars used in this figure are designed to ease the visualization of the differences between the
“delta” changes provided by the different SD methods and those given by EC-Earth’s raw outputs. Note
that providing a detailed description of the projected climate change signals is not the scope of this study.
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and could be attributed to a lack of extrapolation power for future climates based on the

(linear) predictor-predictand link learned in present-climate conditions. In this regard,

building on the non-linearities learnt by the network, the CNN model projects a picture

of change for local precipitation which is broadly consistent with the one given by the EC-

Earth. For the case of temperature, we had already seen that the predictor-predictand

link is mostly linear (see section 6.1) and therefore the CNN and the GLMs yield similar

“delta” changes. This result is consistent with previous works which have demonstrated

that regression-based methods provide good extrapolation capabilities for the downscaling

of anomalously warm temperatures which have not been seen during the calibration period

(Gutiérrez et al., 2013).

Overall, the SD methods analyzed allow to reduce the systematic biases exhibited by

the raw simulations from the EC-Earth in the historical period. Nevertheless, some of

the variables here included in the predictor set seem to violate the PP assumption of

being well simulated by the GCM, which leads to notable biases for SDII and P98Wet

in local GLMs (GLM1 and GLM4). This undesired effect diminishes when the predictor

space is adequately manipulated, making use of either PCs (GLMPC) or convolutional

operations (CNN10 for temperature and CNN1 for precipitation). Moreover, as compared

to GLMs, when the CNNs are used to downscale the RCP8.5 scenario (for the far future

2071-2100), they lead to patterns of change which are notoriously more compatible with

those projected by the EC-Earth’s raw outputs —considered as “pseudo-reality”— for

all the metrics analyzed, and especially for those related to rainfall amount. Therefore,

this section demonstrates that CNNs provide a good alternative (in particular better than

GLMs) to downscale climate change scenarios, particularly for precipitation.

7.2 Building an Ensemble of Regional Climate Change Projections for
Europe Based on Deep Learning

In this section we extend the analysis performed in the preceding one —which focuses

exclusively on EC-Earth— by using our CNNs to downscale the subset of CMIP5 models

listed in Table 3.1. As a result, we produce DeepESD, the first ensemble of high-resolution

(0.5◦) climate change projections for the 21st century (1975-2100) over the entire Europe

based on DL models —CNN10 for temperature and CNN1 for precipitation.— DeepESD is

publicly available from the Earth System Grid Federation (ESGF) node at the University

of Cantabria3.

To produce DeepESD, the CNN10 and CNN1 models were trained based on ERA-

3https://data.meteo.unican.es/thredds/catalog/esgcet/collections/CORDEX-DeepESD-
EE/catalog.html
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Interim and E-OBS (as predictor and predictand datasets, respectively) during the period

1979-2008. Once trained, the two CNNs were applied to downscale the historical (1975-

2005) and RCP8.5 (2006-2100) scenarios of the eight CMIP5 GCMs shown in Table 3.1.

A previous study by Brands et al. (2013) has demonstrated that CMIP5 exhibits good

skill to reproduce the key large-scale circulation and thermodynamics over Europe —as

represented by reanalysis data— once the seasonal mean is removed from the time-series.

Therefore, for this experiment, we post-process all the GCM predictor variables considered

according to the two-step process (harmonization+standardization) described in section

5.3). The only difference with respect to Chapter 5 is that here we have removed from the

predictor set all the variables at 1000 hPa since this vertical level was not available for all

the GCMs listed in Table 3.1.
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Figure 7.3: Inter-annual time-series —spatially averaged over the entire Europe— for R01,
SDII, P98Wet (precipitation) and P02, the mean and P98 (temperature), as obtained from
deterministic, stochastic and deterministic-stochastic projections —see the colors in the
legend— based on our CNNs (CNN1 for precipitation and CNN10 for temperature; see
the text for details). In all cases, solid lines correspond to the multi-model ensemble mean
whilst the shadows encompass the eight downscaled GCMs. For comparison purposes, the
black lines show the results obtained for E-OBS.

To better understand the trade-off between the gain in prediction accuracy attained

by deterministic methods and the loss of spatio-temporal structure of stochastic ones, we

start by producing both deterministic and stochastic projections for CNN10 and CNN1 as
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described in section 4.4. Figure 7.3 allows to examine the differences that emerge in the

downscaled fields when using 1) deterministic projections, 2) stochastic projections and

3) for the particular case of precipitation, a combination of deterministic projections for

rainfall occurrence and stochastic ones for rainfall amount. In particular, this is done here

by looking at the inter-annual time-series for R01, the SDII and the P98Wet (the P02, the

mean and the P98) for precipitation (temperature). In all cases, interannual time-series

for the spatially averaged —across the whole Europe— indicators are shown. Whilst the

solid lines correspond to the multi-model ensemble mean, the shadows encompass the eight

downscaled GCMs. For comparison purposes, the E-OBS reference values for the period

1979-2005 are also given.

Beyond the emerging future trends (which will be later analyzed in more detail), it

is important to note that deterministic-stochastic (stochastic) projection yield nearly un-

biased results for the historical period for all the precipitation (temperature) indicators

considered.

For temperature, deterministic and stochastic implementations provide very similar

results in all cases. Moreover, all the indicators analyzed are projected to increase, which

is consistent with previous studies assessing the future warming signals over Europe (Giorgi

et al., 2016; Sørland et al., 2018; Boé et al., 2020).

For the case of precipitation, stochastic projections underestimate slightly (as com-

pared to E-OBS for the 1979-2005 period) the SDII and P98Wet. This is explained by

the small fraction of wet days which are incorrectly given as dry ones when precipitation

occurrence is stochastized. Nevertheless, and more importantly, deterministic projections

underestimate clearly the P98Wet, which is in agreement with the results from Figures

6.4 and 7.1. As argued in section 6.1, this is presumably due to a lack of informativeness

in the large-scale predictors considered to explain the variability of local precipitation.

Taking into account that SDII and P98Wet are two key indicators, the previous re-

sults suggest the importance of counting on stochastic projections of rainfall amount,

which can be easily produced by sampling out from the daily conditional Gamma dis-

tributions learnt by the CNN —for rainfall occurrence, deterministic values should be

considered.— However, since the sampling is done at a gridbox-level from univariate dis-

tributions, introducing this stochastic component implies a certain loss of spatio-temporal

structure in the downscaled fields. This situation is illustrated by Figure 7.4, which shows,

for a given day (21-February-1975), the precipitation (top row) and temperature (bottom

row) fields provided by the CanESM2’s raw outputs (left column), together with the cor-

responding downscaled fields. In particular, the middle (right) column corresponds to

the deterministic (stochastic) implementation of CNN1 and CNN10 (for precipitation and

temperature, respectively). Note that for the precipitation fields, the rainfall occurrence
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Figure 7.4: Precipitation (top row) and temperature (bottom row) fields for 21-February-
1975, as given by the CanESM2’s raw outputs (left column), together with the corre-
sponding downscaled values. In particular, the middle (right) column corresponds to the
deterministic (stochastic) implementation of CNN1 and CNN10 (for precipitation and
temperature, respectively). Note that for the precipitation fields, the rainfall occurrence
has been computed in a deterministic manner for both middle and right columns. The
black frames identify the implementation finally used to produce DeepESD.

has been computed in a deterministic manner for both middle and right columns.

Beyond the obvious gain in spatial detail achieved by the CNN models, this figure

shows that deterministic projections yields smooth spatial patterns which keep a good

correspondence with the driving GCM. However, stochastic projections give place to more

discontinuous spatial patterns whilst provide higher values than deterministic ones for

some particular gridboxes (this is especially evident for precipitation).

Based on the results from Figures 7.3 and 7.4, and taking into account that extreme

events are expected to considerably impact a large number of socio-economic activities in

a changing climate, we decided to use the deterministic-stochastic implementation of the

CNN1 method to produce the high-resolution precipitation fields delivered with DeepESD,

even at cost of losing some spatio-temporal consistency at the daily scale. For temperature,

however, the deterministic version of the CNN10 was considered to build DeepESD.

The procedure to validate DeepESD is similar to the one adopted in section 7.1. For
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1975-2005 (historical scenario), the downscaled fields are directly compared against E-

OBS. Differently, for 2005-2100 (RCP8.5) the plausibility of our high-resolution fields is

assessed by comparing them against the driving CMIP5 GCMs —which are interpolated

to the target 0.5◦ grid based on conservative remapping (Jones, 1999),— which are con-

sidered as “pseudo-reality”. Moreover, a subset of RCMs from EURO-CORDEX 44 (see

Table 5.3), re-gridded from their original spatial resolution (0.44◦) to the target 0.5◦ grid

by means of nearest interpolation— is also considered as “pseudo-reality” for the same

purpose. As explained at the beginning of the chapter, deciding whether or not RCMs are

able to provide more plausible climate change scenarios than GCMs is nowadays a hot re-

search topic. Note therefore that it is important to consider both to assess the plausibility

of the future projections delivered with DeepESD.

The top (bottom) panel in Figure 7.5 shows the results obtained for precipitation (tem-

perature), as given by the multi-model ensemble mean for the GCMs, the RCMs and for

DeepESD (in columns from left to right) for the period 1975-2005. In particular, the first

row displays the corresponding climatologies whereas the second one shows the absolute

biases with respect to the observational reference, E-OBS. Obviously, both the RCMs and

DeepESD provide much finer spatial details than the GCMs, which yield smoother clima-

tology maps for the two target variables. For precipitation, RCMs show a spatial structure

which is directly linked to the orography, finding the highest rainfalls in mountainous re-

gions such as the Pyrenees or the Alps. However, orography-driven precipitation is rather

nonexistent in the GCMs and softened in DeepESD. For temperature, a general North-

to-South positive gradient —driven by solar radiation— is found, with regional-to-local

variations due mostly to the orography, which are more pronounced in the RCMs and in

DeepESD.

In terms of biases with respect to E-OBS, the physical models (i.e., GCMs and RCMs)

provide clearly worse results than DeepESD, which exhibits nearly negligible errors for

both precipitation and temperature over the entire continent. This suggests that the PP

assumption of having predictors which are well reproduced by the GCM —as compared to

reanalysis— is overall not violated for the predictors/GCMs considered to produce Deep-

ESD. In this case, both GCMs and RCMs —which show a similar pattern of biases—

overestimate mean daily precipitation by about 1.5-2 mm in most regions of the conti-

nent (with the exception of the Western coast of Scandinavia, some parts of the United

Kingdom and Croatia). Presumably, this is due to the drizzle effect, which is known to

increase the number of rainy days in the climate models (more details in Figure 7.8).

Differently, for temperature, whilst the GCMs alternate positive and negative biases, the

RCMs systematically underestimate this variable across the whole Europe, especially in

the Iberian Peninsula and Scandinavia. The results found are consistent with previous
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Figure 7.5: Top (bottom) panel: The first row shows the mean climatology for precipita-
tion (temperature), as given by the multi-model ensemble mean for the GCMs, the RCMs
and for DeepESD for the period 1975-2005. The second row displays the absolute biases
of these climatologies with respect to the observational reference, E-OBS.

studies which have analyzed the ability of GCMs and RCMs to reproduce the European
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climate (Christensen et al., 2008; Jacob et al., 2020). Although bias-corrected versions of

both GCMs and RCMs over Europe have been developed (Dosio, 2016), previous works

have shown that this type of post-processing can potentially alter the climate change sig-

nals projected by the climate models (Casanueva et al., 2019, 2020). Therefore, since

GCMs and RCMs are here used as “pseudo-reality” to assess the plausibility of the future

projections delivered with DeepESD, we rely on the raw models outputs with the idea of

preserving the original change signals from the models.

As opposite to GCMs and RCMs, DeepESD has proved to produce unbiased high-

resolution fields of daily precipitation and temperature over the entire continent for the

period 1975-2005 (under the historical scenario). To assess how plausible the future pro-

jections (up to 2100, based on the RCP8.5 scenario) delivered with DeepESD are, the

left (right) panel in Figure 7.6 shows the climate change signals obtained for precipitation

(temperature) from the multi-model ensemble mean of GCMs, RCMs and DeepESD —

in columns— for the near (2006-2040), mid (2041-2070) and far (2071-2100) future —in

rows.— In all cases, absolute differences with respect to 1975-2005 (see the first row in

Figure 7.5) are shown. Recall that the idea here is to use the changes projected by the

GCMs and the RCMs as “pseudo-reality”.

The projected pattern of changes for precipitation gets intensified as we move from the

near- to the far-future. In fact, notable changes do not appear until the mid-future, with

an increase (decrease) of about 0.25-0.5 mm/day in Northern Scandinavia (Western region

of the Iberian Peninsula). By the end of the century, a latitudinal dipole is found, with the

Northern (Southern) part of the continent receiving increased (decreased) rainfall. Giorgi

and Lionello (2008) justifies this decrease in precipitation in the Mediterranean arch due to

a northward shift of the Atlantic storm tracks, which at the same time results into higher

rainfall in the Northern European regions (Hanssen-Bauer et al., 2005). Despite the three

ensembles show similar spatial mean patterns, some differences exist. In particular, as

compared to GCMs and RCMs, DeepESD projects stronger increases over certain parts

of Scandinavia and Central and Eastern Europe, and weaker decreases over the Iberian

Peninsula for the far-future. For temperature, a generalized increase —which is intensified

as we move from the near future (0.5-2◦C) to the far-future (3-6◦C)— is projected all over

the continent. Whilst the strongest warming is expected to occur over Scandinavia and

the Mediterranean basin, the smallest warming would be found over the British Islands

and Central Europe. In addition, regional-to-local signals of change are projected by

the RCMs and DeepESD in mountainous regions, especially the Alps and the Balkans.

Moreover, as compared to the GCMs, RCMs and DeepESD project a smaller warming

(with differences of about 1-1.5◦C over Central and Eastern Europe for the far-future).

This difference between GCMs and RCMs has been reported in previous studies over



108 7. DOWNSCALING FROM GLOBAL CLIMATE MODELS

CC. signal wrt 1975−2005

2
0

0
6

 -
 2

0
4

0
2

0
4

1
-2

0
7

0
2

0
7

1
-2

1
0

0

2.01.51.00.0 0.5-0.5-1.0-1.5-2.0
mm/day

Ensemble mean 

CC. signal wrt 1975−2005 CC. signal wrt 1975−2005

RCMGCM DeepESD

CC. signal wrt 1975−2005 CC. signal wrt 1975−2005 CC. signal wrt 1975−2005

ºC
0 1 2 3 4 5 6

RCMGCM DeepESD

Figure 7.6: Climate change signals obtained for precipitation (temperature) from the
multi-model ensemble mean of GCMs, RCMs and DeepESD —in columns— for the near
(2006-2040), mid (2041-2070) and far (2071-2100) future —in rows— under the RCP8.5
scenario. In all cases, absolute differences (with respect to the historical scenario: 1975-
2005) are shown.

Europe (see, e.g., Boé et al. (2020) and references therein). In particular, Gutiérrez et al.

(2020) reports a reduction in surface solar radiation —which is directly related to surface

temperature— over Central and Eastern Europe, as projected by RCMs which were not

driven with time-varying anthropogenic aerosols. Despite further studies are needed to

robustly explain the differences exhibited by both GCM and RCM ensembles, nowadays

the literature reinforces the plausibility of the warming signals exhibited by GCMs for

these particular regions and justifies the use of both RCMs but also GCMs as “pseudo-

reality” in this experiment. With regards to DeepESD, further analyses mostly focused

on the stationarity assumption have to be conducted, to characterize the differences in

their climate signals (especially for temperature) with respect to those simulated by their

driving GCMs.

Besides the spatial results shown in Figures 7.5 and 7.6, Figures 7.8 and 7.9 show the

yearly time-series for the precipitation and temperature indicators (see Table 5.6), aver-

aged over the eight PRUDENCE regions (Figure 7.7), which are broadly representative

of the different European climate regimes. For every indicator, the ensemble of GCMs

(red), RCMs (blue) and DeepESD (yellow) for the total period 1975-2100, plus the obser-
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Figure 7.7: The eight PRUDENCE regions defined in Christensen and Christensen (2007):
British Islands (BI), France (FR), Iberian Peninsula (IP), Alps (AL), Mid-Europe (ME),
Mediterranean (MD), Scandinavia (SC), and Eastern Europe (EA).

vational reference, E-OBS (black), for the period 1979-2008, are shown. In all cases, the

solid lines represent the multi-model ensemble mean whilst the shadows encompass all the

models contributing to the ensemble. For a more detailed analysis, we also include a 5-fold

cross-validated time-series (green) for 1979-2008 —obtained in “perfect conditions”, that

is, using ERA-Interim and E-OBS as predictor and predictand datasets, respectively,—

which is used as reference to assess the performance of DeepESD to reproduce these indica-

tors over that period. Moreover, these figures allow to qualitatively assess the plausibility

of the projections provided by DeepESD by comparing them with those returned by the

GCMs and the RCMs, which are considered as “pseudo-reality.”

In particular, Figure 7.8 shows the results obtained for the R01, SDII and P98Wet

indicators of precipitation (in different panels from top to bottom). Lower R01 values are

found for the Southern European regions (IP, MD) than for the Northern (BI, ME) and

the mountainous ones (AL, SC). DeepESD provides unbiased estimates of this indicator

both in “perfect conditions” and for the historical scenario across the eight PRUDENCE
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Figure 7.8: Yearly time-series for R01, SDII and P98Wet, averaged over the eight PRU-
DENCE regions. For every indicator, the ensemble of GCMs (red), RCMs (blue) and
DeepESD (yellow) for the total period 1975-2100, plus the observational reference, E-OBS
(black), for the period 1979-2008, are shown. In all cases, the solid lines represent the
multi-model ensemble mean whilst the shadows encompass all the models contributing
to the ensemble. For a more detailed analysis, we also include a 5-fold cross-validated
(obtained in “perfect” conditions) time-series (green) for 1979-2008.
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regions. However, both GCM and RCM ensembles (especially the latter) overestimate the

frequency of wet days, which is consistent with the drizzle effect. In terms of changes,

the three ensembles project similar signals, with an increase (decrease) in the Northern

(Southern) regions, and no noticeable variations in Mid- and Eastern-Europe. Regarding

the reproduction of rainfall amount, the GCMs underestimate both SDII and P98Wet,

especially over the Alps —where biases of about -3 and -10 mm/day, respectively, are found

for these two indicators,— due to the miss-representation of orographic convection. As

compared to GCMs, the added value of RCMs to reproduce mean precipitation is reflected

by their ability to provide better estimates of the SDII in all regions. Nevertheless, extreme

precipitation is still quite challenging for RCMs, which clearly overestimate the P98Wet

in some regions, especially over the Southern part of the continent (IP and MD zones).

In contrast to GCMs and RCMs, DeepESD provides in general more robust estimates for

both SDII and P98Wet under the historical scenario. In particular, nearly unbiased results

are found for these two indicators in all regions with the exception of the Iberian Peninsula

and the Alps, where P98Wet is underestimated. Nevertheless, this effect is not seen in the

cross-validated time-series, which suggests that some inconsistency between ERA-Interim

and the GCMs may exist for some of the predictor variables considered over these regions

—recall from section 6.2.2 that CNNs are able to automatically take advantage of site-

dependent windows of information from the predictor field.— Beyond these differences,

the three ensembles project an increase in both the SDII and P98Wet indicator across all

regions.

Figure 7.9 is the equivalent to 7.8 but for temperature. In this case, the indicators

assessed are P02, the mean and P98. As reflected by the E-OBS curves, the regions located

at the highest latitudes (BI, SC) or in mountainous areas (AL) present the lowest observed

records for the three indices (in between -10 and 22◦C for P02, 0-10◦C for the mean and

15-20◦C for the P98). On the contrary, the Southern regions (IP, MD) exhibit the highest

ones (1-5◦C for P02, 12-15◦C for the mean and 23-28◦C for P98). This latitudinal gradient

in temperatures is induced by the solar radiation received by these regions across the year,

but it is also related to the orography and local processes such as land-sea contrasts, among

others. In general, the three ensembles perform similarly for the three indicators and across

all regions. In particular, whilst the GCM ensemble alternates positive (MD, EA) with

negative (AL, SC) biases in the historical scenario, the RCM ensemble underestimates

the three indicators considered across all regions. This is consistent with the maps shown

in Figure 7.5 and proves that the results from that figure are not due to a particular

climate model, since all of them behave similarly. In contrast to GCMs and RCMs,

DeepESD exhibit unbiased results for the three indicators and across all regions under the

historical scenario. Indeed, note that the cross-validated time-series follow precisely the
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Figure 7.9: As Figure 7.8 but for temperature. In this case, the indicators analyzed are
P02, the mean and P98.

E-OBS curves, and this behaviour does not worsen when passing from the reanalysis to

the GCMs world. As per the projected signals of change, the three ensembles point out

to a (quasi) linear increase for the three indicators studied along the century and across

all regions, with warming values of about 4-6◦C for the far-future in most of cases.
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Overall, our results show that DeepESD reliably reproduce the observed precipitation

and temperature fields over Europe in the historical period which gives certain confidence

on the plausibility of the future projections developed within this new dataset, as signifi-

cant deviations —on average for the eight PRUDENCE zones— from the “pseudo-reality”

provided by GCMs and RCMs are not encountered. Nevertheless, DeepESD projects lower

warming signals for the far-future than the ensemble of the driving GCMs. This aspect has

to be analyzed in future studies to assess whether these differences are consequence of a

better reproducibility of the local scale or to violations in the stationarity assumption. The

main contribution of DeepESD is the dataset itself, which represents the first of its kind at

a continental-scale, and is expected to fasten the analysis of SD-based climate projections

with views to a possible integration of these products in climate impact studies.

To close this chapter, we assess the contribution of various factors to the uncertainty

of the future projections (Hertig and Jacobeit, 2008; San-Mart́ın et al., 2017; Manzanas

et al., 2020a). To do this, we first measure the overall spread of the different ensembles

that were represented with shadows in Figures 7.8 and 7.9. This is done by calculating

the average value of the year-to-year spreads —understood as the standard deviation

across all contributing climate models— for the period 2071-2100. The bottom row in

Table 7.1 (7.2) shows the results obtained for the different precipitation (temperature)

indicators analyzed: R01, SDII and P98Wet (P02, mean and P98). These values provide

an estimation for the uncertainty that is due to the use of different climate models (either

GCMs or RCMs). Note that the comparison between the DeepESD and RCM ensembles

is not totally rigorous since, whilst the former includes eight GCMs, the latter is formed

by eleven RCMs. Differently, DeepESD and GCM ensembles are based on exactly the

same climate models and therefore the comparison is fairer in this case.

For completeness, three additional sources of uncertainty were also analyzed for the

case of DeepESD. These are related to different details of the particular CNN setup consid-

ered for downscaling which can affect the spread of the future projections, namely: 1) the

use of different predictor configurations, 2) the use of different versions of the same network

topology, differing only in the values of their parameters, and 3) the choice of different

realization from the stochastic sampling. In particular, 1) is addressed by selecting three

different predictor sets from those available in Table 5.2, 2) is addressed by training ten ver-

sions of the CNN1 and CNN10 models —for precipitation and temperature, respectively,—

and 3) is addressed by sampling ten times from the Bernoulli-Gamma(Gaussian) condi-

tional distributions estimated with the CNN1(CNN10) topologies. For this analysis, we

focus on one single GCM, the EC-Earth (which was already analyzed in detail in section

7.1) and form a different ensemble for each of the uncertainty sources analyzed —referred

previously to as 1), 2) and 3).— The spread of each of these ensembles is then calculated
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as the average value of its year-to-year standard deviations for the period 2071-2100.

Precip. GCM DeepESD RCM

Source of uncertainty R01 SDII P98Wet R01 SDII P98Wet R01 SDII P98Wet

Predictor
conf.

- - - 0.00 0.12 0.57 - - -

Model
training

- - - 0.00 0.15 0.52 - - -

Conditional
sampling

- - - 0.00 0.01 0.10 - - -

Ensemble 0.05 0.73 2.78 0.02 0.24 1.18 0.04 0.50 3.44

Table 7.1: For the three ensembles analyzed (GCMs, RCMs and DeepESD), the bottom
row shows the average value of the year-to-year spreads —understood as the standard
deviation across all contributing climate models— for the period 2071-2100 for R01, SDII
and P98Wet. These values provide an estimation for the uncertainty that is due to the
use of different climate models (either GCMs or RCMs). For DeepESD, three additional
sources of uncertainty, which are related to different details of the particular CNN setup
considered for downscaling, are also analyzed (see the text for details). In this case, a
single climate model is considered, the EC-Earth. The R01 values are expressed in %/100
whilst SDII and P98Wet in mm/day.

Temperature GCM DeepESD RCM

Source of uncertainty P02 Mean P98 P02 Mean P98 P02 Mean P98

Predictor
conf.

- - - 0.10 0.26 0.59 - - -

Model
training

- - - 0.11 0.07 0.17 - - -

Conditional
sampling

- - - 0.01 0.00 0.00 - - -

Ensemble 1.52 1.36 2.26 1.10 0.85 2.03 1.60 1.20 1.71

Table 7.2: As Table 7.1 but for temperature. In this case, the indicators analyzed are
P02, the mean and P98. All values are expressed in ◦C.

For precipitation, the ensemble spread is substantially lower for DeepESD than for

the GCMs and the RCMs —less than the half— for the three indicators analyzed. With

regards to the additional sources of uncertainty analyzed for DeepESD, the choice of

predictor configuration and network re-training are similarly important. However, the un-

certainty due to the choice of realization from the stochastic sampling is almost irrelevant.

For temperature, the uncertainty due to the choice of climate model is lower for Deep-

ESD than for the GCM and RCM ensembles for the three metrics. For the particular

case of P98, the RCM ensemble exhibits the lowest spread, followed by DeepESD and the

GCMs. More in detail for DeepESD, the uncertainty related to the parameters variability

is lower than that due to the choice of predictor configuration (particularly for the mean
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and P98). As per precipitation, the uncertainty due to the conditional sampling is almost

negligible.
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Concluding Remarks
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CHAPTER 8

Conclusions, Achievements and Future Work

8.1 Main Conclusions

Building on the experimental frameworks defined in the COST action VALUE (Maraun

et al., 2015) and EURO-CORDEX ESD (Jacob et al., 2020) we have designed in this

Thesis a series of analysis that allow to comprehensively assess the potential benefits and

limitations of CNNs for climate downscaling tasks. The main conclusions obtained are

next summarized in relation to the objectives posed in section 2.2 (in italics).

1. To test the applicability and performance of CNNs for climate downscaling in “per-

fect” conditions —i.e. based on reanalysis predictors.— In this regard, one of the key

features to examine will be their ability to deal with high-dimensional input spaces.

As compared to classical GLMs, we have proved that CNNs provide better valida-

tion results in “perfect” conditions. In particular, among the different topologies

intercompared, CNN1 (based on three convolutional layers of fifty, twenty-five, and

one feature maps, respectively) and CNN10 (same CNN1, but with ten feature maps

in the last hidden layer instead of one) were shown to be the best-performing con-

figurations for the downscaling of temperature and precipitation, respectively. The

superiority of CNNs over GLMs is due to 1) their ability to learn complex and non-

linear patterns from data — which has been found to be particularly relevant for

the case of precipitation— and 2) their ability to efficiently handle high-dimensional

input spaces. The latter constitutes a clear advantage over traditional SD methods

since tedious and human-guided dimensionality reduction techniques —which may

entail a loss of relevant information for the downscaling— are no longer needed.

119
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2. To evaluate the benefits and disadvantages of CNN multi-site topologies, as compared

to the equivalent single-site versions. We will analyze for this aim the implicit reg-

ularization that occurs in multi-site architectures.

We have seen that, whereas single-site CNNs are prone to overfitting in certain loca-

tions, the equivalent multi-site topologies perform an implicitly regularization which

allows the network to treat simultaneously the high-dimensional predictor space,

avoiding overfitting and leading to improved forecast accuracy.

3. To gain understanding about the internal functioning of CNNs, which are typically

seen as “black-box” models. To do this, we will focus on the study of the predictor-

predictand link (i.e., influence of every input feature in the downscaling model out-

puts).

By studying the connection between the last hidden layer and the output space, we

have demonstrated that the largest weights are found over an area of approximately

5x5 gridboxes surrounding the location of interest, with (quasi) zeroed-values else-

where. This indicates that the network automatically neglects the regions which are

not of interest for downscaling, taking advantage thus of site-dependent windows

of information. Moreover, based on saliency maps, we have proved that CNNs are

able to extract useful knowledge from the most informative predictors at each site,

neglecting those whose influence for downscaling is scarce.

4. To study the suitability of CNNs to downscale future climate change scenarios. To

do so, we will first evaluate the ability of CNNs to reproduce the observed climate

based on the historical scenario of a GCM. Then, we will explore their potential for

moderate and coherent extrapolation under one emission scenario, based on various

GCMs.

For a single GCM, the EC-Earth, we have proved that our CNNs produce unbi-

ased high-resolution fields of daily precipitation and temperature over Europe for

the period 1979-2008 (under the historical scenario). Moreover, the climate change

signals obtained with our CNNs when downscaling the RCP8.5 scenario (for the far

future 2071-2100) are notoriously more compatible with EC-Earth’s raw outputs —

considered as “pseudo-reality”— than those provided by classical GLMs. Based on

this promising result, we used our CNNs to downscale a subset of eight GCMs from

CMIP5, producing DeepESD, the first ensemble of high-resolution projections (up

to 2100) of daily precipitation and temperature over Europe based on DL. Based

on this new dataset, we have demonstrated that CNNs allow for moderate extrapo-

lation, providing projections which are broadly compatible with those given by the

driving CMIP5 GCMs and a subset of RCMs from EURO-CORDEX.
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8.2 Key Achievements

8.2.1 Publications

The main results of this Thesis (Part III) have led to a series of publications in international

journals and conference proceedings of relevance in the fields of atmospheric sciences and

artificial intelligence. In particular,

• Section 6.1 in Chapter 6 is based on J. Baño-Medina, R. Manzanas, and J. M.

Gutiérrez, “Configuration and intercomparison of deep learning neural models for

statistical downscaling”, Geoscientific Model Development, vol. 13, pp. 2109–2124,

2020, DOI: 10.5194/gmd-2019-278 (1st decile in JCR1)

• Section 6.2.1 in Chapter 6 is based on J. Baño-Medina and J. M. Gutiérrez, “The

importance of inductive bias in convolutional models for statistical downscaling”,

Proceedings of the 9th International Workshop on Climate Informatics: CI 2019,

2019, DOI:10.5065/y82j-f154

• Section 6.2.2 in Chapter 6 is based on J. Baño-Medina and J. M. Gutiérrez, “Deep

convolutional networks for feature selection in statistical downscaling”, Proceedings

of the 8th International Workshop on Climate Informatics: CI 2018, 2018, DOI:

10.5065/D6BZ64XQ

• Section 6.2.2 in Chapter 6 is based on J. Baño-Medina, “Understanding deep

learning decisions in statistical downscaling models”, Association for Computing

Machinery, New York, NY, USA, p 79–85, 2020, DOI: 10.1145/3429309.3429321

• Section 7.1 in Chapter 7 is based on J. Baño-Medina, R. Manzanas, and J. M.

Gutiérrez, “On the suitability of deep convolutional neural networks for downscaling

climate change projections”, Climate Dynamics, 2021, DOI: 10.1007/s00382-021-

05847-0 (1st quartile in JCR).

• Section 7.2 in Chapter 7 is based on J. Baño-Medina, R. Manzanas, and J. M.

Gutiérrez, “DeepESD: An Ensemble of Regional Climate Change Projections over

Europe based on Deep Learning Downscaling”, Submitted to Nature Scientific Data.

(1st quartile in JCR)

Additionally, as a result of the activities carried out in parallel to the development of

this Thesis at the Santander Meteorology Group (SMG), two more publications related to

software development have been released:

1Journal Citation Reports (JCR) is a tool that permits to measure the relative importance of a journal
within its corresponding thematic based on the number of citations its papers receive.
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• Section 8.2.2 in Chapter 8 is based on M. Iturbide, J. Bedia, S. Herrera, J. Baño-

Medina, J. Fernández, M.D. Fŕıas, R. Manzanas, D. San-Mart́ın, E. Cimadevilla,

A.S. Cofiño and J.M. Gutiérrez, “The R-based climate4R open framework for repro-

ducible climate data access and post-processing”, Environmental Modelling Soft-

ware, vol. 111, pp. 42-54, 2019, DOI: 10.1016/j.envsoft.2018.09.009 (1st quartile in

JCR).

• Section 8.2.2 in Chapter 8 is based on J. Bedia, J. Baño-Medina, M.N. Legasa, M.

Iturbide, R. Manzanas, S. Herrera, D. San-Mart́ın, A.S. Cofiño and J.M. Gutiérrez,

“Statistical downscaling with the downscaleR package (v3.1.0): Contribution to

the VALUE intercomparison project”, Geoscientific Model Development, 2019, DOI:

10.5194/gmd-2019-224 (1st decile in JCR)

Furthermore, the following contributions have been presented in national and interna-

tional conferences:

• “downscaleR: An R-based package for statistical downscaling and bias correction

within the climate4R framework”, 2nd Workshop on Bias Correction in Climate

Studies, Santander, Spain (poster)

• “Deep convolutional networks for feature selection in statistical downscaling”, 8th

International workshop on Climate Informatics (CI), Colorado, EE.UU (poster)

• “Climate research reproducibility with the climate4R R-based framework”, 8th In-

ternational workshop on Climate Informatics (CI), Colorado, EE.UU (poster)

• “Deep neural networks for statistical downscaling of climate change projections”,

XVIII Conference of the Spanish association for Artificial Intelligence (CAEPIA),

Granada, Spain (oral)

• “The influence of inductive bias in convolutional models for statistical downscaling”,

9th International workshop on Climate Informatics (CI), Paris, France (oral & poster)

• “Statistical downscaling with deep learning: A contribution to CORDEX-CORE”,

International Conference for Regional Climate ICRC-CORDEX, Beijing, China (oral)

• “On the suitability of convolutional neural networks for climate downscaling”, 1st

Artificial Intelligence for Copernicus Workshop, Reading, England (oral)

• “Understanding deep learning decisions in statistical downscaling models”, 10th In-

ternational Conference on Climate Informatics (CI), Oxford, UK (oral)
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Note also that this Thesis has won the 3rd prize award at the doctoral consortium

of the “Asociación Española de Inteligencia Artificial (AEPIA)”, that took place at the

XVIII Conference on Artificial Intelligence in Granada, Spain (2018).

Finally, building on the methodological knowledge gained during the realization of this

Thesis, we have produced DeepESD (see section 7.2), the first dataset based on DL that

provides downscaled daily projections (up to 2100) of precipitation and temperature for

an ensemble of eight GCMs, covering the entire Europe at a resolution of 0.5◦. DeepESD

is publicly available through the Earth System Grid Federation (ESGF), at the Univer-

sity of Cantabria’s node (https://data.meteo.unican.es/thredds/catalog/esgcet/

collections/CORDEX-DeepESD-EE/catalog.html2).

8.2.2 Software

This Thesis builds on (and contributes to) climate4R (C4R), a bundle of R packages devel-

oped at the Santander Meteorology Group (SMG) which allow to meet the particularities

and requirements of (almost) every climate data application —Fig.8.1 shows schematically

the role of every C4R library within a typical workflow in a climate experiment.— In partic-

ular, in this Thesis we make an extensive use of loadeR (data access), transformeR (data

manipulation; e.g., re-gridding), downscaleR (statistical downscaling), climate4R.value

(validation) and visualizeR (visualization of results). We refer the reader to the ref-

erence manuscript (Iturbide et al., 2019) and/or to the GitHub repository (https://

github.com/SantanderMetGroup/climate4R) for more details about C4R.

Despite the collaboration in different core libraries —especially in downscaleR (Be-

dia et al., 2020), which provides functions to carry out every step of the downscaling

workflow from model setup to model training and prediction (see Fig.8.2),— the main

contribution of this Thesis to C4R is downscaleR.keras, which provides an interface

to Keras (Chollet et al., 2015), an extremely popular high-level API for building and

training deep learning models. Keras supports arbitrary network architectures and is

seamlessly integrated with TensorFlow (Abadi et al., 2016). downscaleR.keras has al-

lowed to incorporate sophisticated convolutional or recurrent neural networks (among

others), to the set of classical SD methods included in downscaleR —for instance, the

GLMs used in this Thesis.— More information about this package can be found in https:

//github.com/SantanderMetGroup/downscaleR.keras.

2This URL is temporal, since the paper describing DeepESD is currently under review. Once the paper
is published, a final version of the dataset will be released.

https://data.meteo.unican.es/thredds/catalog/esgcet/collections/CORDEX-DeepESD-EE/catalog.html
https://data.meteo.unican.es/thredds/catalog/esgcet/collections/CORDEX-DeepESD-EE/catalog.html
https://github.com/SantanderMetGroup/climate4R
https://github.com/SantanderMetGroup/climate4R
https://github.com/SantanderMetGroup/downscaleR.keras
https://github.com/SantanderMetGroup/downscaleR.keras
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Figure 8.1: Diagram illustrating the climate4R framework (figure taken from Iturbide
et al. (2019)).

Figure 8.2: Schematic representation of the key functions included in downscaleR, which
are used at different steps of the downscaling process (figure taken from Bedia et al. (2020))
.

8.2.3 Reproducibility

Transparency and reproducibility are key ingredients to develop high-quality science.

Recently, the community has gathered to define a set of FAIR (Findability, Accesibil-
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ity, Interoperability and Reuse) principles that provide guidelines for users to promote

re-usability of their data and code (Wilkinson et al., 2016). In alignment with these

principles, we created a GitHub repository (https://github.com/SantanderMetGroup/

DeepDownscaling) which hosts a series of (R) Jupyter notebooks (Pérez and Granger,

2007) which allow the user not only to fully reproduce the results presented in this Thesis,

but also to adapt our original code to his/her particular needs. Every notebook (see Table

8.1) is associated with a published paper. To ease compatibility, we have “freezed” the

specific versions of the C4R libraries used within each notebook, which can be installed

simply via conda (see https://github.com/SantanderMetGroup/climate4R for details

on the installation of C4R).

Section Manuscript Notebook C4R version

Chap.6, Sec.6.1
Configuration and Intercomparison
of Deep Learning Neural Models
for Statistical Downscaling

2018 Bano CI.ipynb v1.3.0

Chap.6, Sec.6.2.1
The Importance of Inductive Bias
in Convolutional Models
for Statistical Downscaling

2019 Bano CI.ipynb v1.5.0

Chap.6, Sec.6.2.2
Deep Convolutional Networks
for Feature Selection in
Statistical Downscaling

2020 Bano GMD.ipynb v1.5.0

Chap.6, Sec.6.2.2
Understanding Deep Learning
Decisions in Statistical
Downscaling Models

2020 Bano CI.ipynb v1.5.0

Chap.7, Sec.7.1

On the Suitability of Deep
Convolutional Neural Networks
for Downscaling climate
change projections

2020 Bano CD.ipynb v1.3.0

Chap.7, Sec.7.2
DeepESD: An Ensemble of Regional
Climate Change Projections over Europe
based on Deep Learning Downscaling

2021 Bano NSD.ipynb v1.5.0

Table 8.1: Information regarding the reproducibility of the results presented in this
Thesis, which are based on different published manuscripts, each with a correspond-
ing (R) Jupyter notebook. These notebooks can be found in the SMG GitHub repos-
itory (https://github.com/SantanderMetGroup/DeepDownscaling, DOI: 10.5281/zen-
odo.3461087), and build on specific C4R versions of the libraries (conda installation avail-
able).

All the results presented along this Thesis have been produced with a virtual machine

with the following technical specifications:

• Operating system: Ubuntu 18.04.3 LTS (64 bits)

• Memory: 60 GiB

• Processor: 2x Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz (16 cores, 32 threads)

https://github.com/SantanderMetGroup/DeepDownscaling
https://github.com/SantanderMetGroup/DeepDownscaling
https://github.com/SantanderMetGroup/climate4R
https://github.com/SantanderMetGroup/DeepDownscaling
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Nonetheless, note that some of the notebooks listed in Table 8.1 can be perfectly run

in machines with lower memory capacities.

8.3 Research Stays

During the realization of this Thesis two research stays have been done at international

centres of reference in the fields of climate research and deep learning:

• January 2019, Institute of Data Science of the German Aerospace Agency (DLR) in

the Climate Informatics Group, in Jena (Germany). The focus of this stay was to

gain experience in the development of deep architectures designed for climate-related

applications.

• March-April 2021, Centre National de Recherches Météorologiques (CNRM), in

Toulouse (France), Under the umbrella of the CORDEX-FPS convection project

(see https://www.hymex.org/cordexfps-convection/), we started a collabora-

tion with CNRM (which is still on-going) aimed at building statistical emulators3

based on DL models.

8.4 Future Work

Part of the results from this Thesis have opened the door for the development of new

works which constitute the natural continuation of some of the analysis presented here.

For instance, we plan to assess the suitability of CNNs for the rest of CORDEX do-

mains (beyond Europe) with the idea of providing a world-wide dataset of high-resolution

climate change scenarios based on DL. Likewise, we also plan to move to finer than 0.5◦

spatial resolutions. The adaptation of CNNs to other domains and resolutions will re-

quire to introduce variations with respect to the configurations presented herein (e.g.,

fully-convolutional networks, batch normalization layers). This study will allow us to gain

more knowledge on the potential benefits and limitations of different CNN topologies for

climate downscaling tasks.

Also, we have seen in this Thesis that the lack of informativeness power in the predictors

results in a limited representation of extremes in the downscaled fields. To date, this is

solved by sampling out from the conditional distributions learnt at a gridbox level, which

leads to a loss of temporal and spatial structure. However, DL may offer alternatives to

3Statistical emulators based on DL have recently emerged as a potential alternative to mimic the work
done by a RCM, avoiding thus the associated long simulation times and high computational requirements.
This can be done either by 1) using the GCM-RCM fields as input-output pairs to construct the DL model,
or by 2) upscaling the circulation RCM variables to a coarser spatial resolution (predictors) and use the
original high-resolution RCM fields as “pseudo-reality” (predictands).

https://www.hymex.org/cordexfps-convection/


8.4. FUTURE WORK 127

cope with this issue such as Variational Autoencoders (VAE, Kingma and Welling (2013))

or Generative Adversarial Modeling (GAN, Goodfellow et al. (2014)). Another interesting

approach to tackle this problem may be related to the quantification of the uncertainty in

the estimation of the model parameters. In this regard, Bayesian Deep Learning (BDL,

Gal (2016)) may help to build more robust models for downscaling at all time-scales, not

only climate change projections but also weather and seasonal forecasts.

Furthermore, despite this has been partially addressed in this Thesis (see section 6.2),

advancing towards a better understanding of the internal functioning of DL is crucial to

make these models more appealing to the research community. Efforts in this direction

are yet to be done, not only for building better DL models, but also for their adoption in

a wider number of applications.

Finally, in the framework of an international collaboration between the SMG and

CNRM, started during one of the research stays above described, we contemplate to open

a new research line focused on the use of DL models as statistical emulators. This line will

try to answer some of the key questions which have been posed by the CORDEX Flagship

Pilot Study on convection4: 1) is a DL model capable to learn the non-linear system of

differential equations that characterize a particular RCM? 2) if this relationship is learned

for a particular GCM-RCM pair, is it applicable to downscale other GCMs? and 3) is

this relationship able to extrapolate to other emission scenarios different to those used for

learning? In this regard, the first results obtained during the stay in CNRM5 indicate that

the CNNs proposed in this Thesis show promising capabilities to emulate RCMs.

4See https://www.hymex.org/cordexfps-convection/wiki/doku.php?id=home for details about the
Flagship Pilot Study (FPS) on convective phenomena at high resolution over Europe and the Mediter-
ranean, one of the 13 FPS endorsed by CORDEX (the full list can be visited at https://cordex.org/

experiment-guidelines/flagship-pilot-studies/endorsed-cordex-flagship-pilote-studies).
5Note that, since these results are very preliminary, we have decided to not include them in this

document.

https://www.hymex.org/cordexfps-convection/wiki/doku.php?id=home
https://cordex.org/experiment-guidelines/flagship-pilot-studies/endorsed-cordex-flagship-pilote-studies
https://cordex.org/experiment-guidelines/flagship-pilot-studies/endorsed-cordex-flagship-pilote-studies
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