
A meta-learning based framework
for building algorithm 
recommenders:
An application for educational arena

Diego Garcı́a-Saiz∗ and Marta Zorrilla
Department of Computer Science and Electronics, University of Cantabria, Santander, Spain

Abstract. The task of selecting the most suitable classification algorithm for each data set under analysis is still today a
unsolved research problem. This paper therefore proposes a meta-learning based framework that helps both, practitioners
and non-experts data mining users to make informed decisions about the goodness and suitability of each available technique
for their data set at hand. In short, the framework is supported by an experimental database that is fed with the meta-features
extracted from training data sets and the performance obtained by a set of classifiers applied over them, with the aim of
building an algorithm recommender using regressors. This will allow the end-user to know, for a new unseen data set, the
predicted accuracy of this set of algorithms ranked by this value. The experimentation performed and discussed in this paper
is addressed to evaluate which meta-features are more significant and useful for characterising data sets with the end goal
of building algorithm recommenders and to test the feasibility of these recommenders. The study is carried out on data sets
from the educational arena, in particular, targeted to predict students’ performance in e-learning courses.

Keywords: Meta-learning, regression, student performance, educational data mining

1. Introduction

In this new era of so-named datification [26], there
is an urgent need of both data scientists and tools
addressed to make data management and analysis eas-
ier. Even though new technologies are arising in the
data mining field, the automation of the Knowledge
Discovery Process (KDD) is still an open problem.
As it is well-known, the KDD process [28], which
aims at identifying valid, novel, potentially use-
ful, and ultimately understandable patterns in data,
comprises several phases: preprocessing, modeling,
mining and testing, and each one, in turn, includes
a large number of tasks which must be performed.

Most of these steps can be chained by means of sci-
entific workflows but the choice of the most suitable
techniques and algorithms to be utilised is not yet
automatised. In particular, this work is a step towards
the dynamic selection of the classifier to be applied
on a certain data set at hand. As derived from the
no-free-lunch theorem, no learning algorithm outper-
forms better than others for the set of all real-world
problems [10], mechanisms that help data miners to
select the most appropriate technique must be there-
fore developed.

Rice [15] was the one who first formulated this
issue and since then different approaches have been
proposed, for instance: a) a traditional approach based
on a costly trial-and-error procedure; b) the use of
ensemble methods to obtain better predictive perfor-
mance; or c) an approach based on meta-learning,
able to automatically provide guidance on the best
alternative from a set of meta-features.

The final publication is available at IOS Press through http://dx.doi.org/10.3233/JIFS-169141



The proposed framework follows this last approach
since the characterisation of data sets and the analysis
of the behaviour of different machine learners applied
on them have shown to be suitable and efficient (see
Section 1). Although there are several works about
meta-learning, only a few have focused on the algo-
rithm recommendation and even fewer have studied
which meta-features are the most suitable for this
goal. This paper thus advances in both research lines
with the following contributions:

– The explanation of how to build algorithm
recommenders supported by an experimental
database.

– The description of the set of meta-features that
can be used for data sets’ characterization.

– A sounded case study that analyses the
behaviour of different sets of meta-features on
data sets from the educational arena and their
suitability for the building of algorithm recom-
menders.

This framework could be well utilised by prac-
titioners in order to create and feed their own
experimental database and use it as benchmark [16]
as well as to build recommenders that help non-expert
data miners to take advantage of mining techniques
but hiding their choice and setting [19]. This is the
case of teachers involved in virtual education, that due
to the lack of face-to-face contact, require to analyse
the activity performed in the e-learning platform to
guide learners [9].

This work is a widely extended version of [19] in
which the framework and the experimental database
have been more clearly described and a new exper-
imental study has been carried out using a higher
number of algorithms and some different data sets
in the training phase. Moreover, instead of one, two
algorithms recommenders have been built and next
compared to draw conclusions about the feasibility
of the proposal, one based on linear regression and
the other one on Multilayer Perceptron. Related work
has been also reviewed.

This paper is organised as follows: Section 2 briefly
describes the different elements which comprise our
framework, previously introducing the meta-learning
field and the set of meta-features that can be used.
Section 3 describes the methodology followed in the
case study and the setting of the experiments per-
formed. Section 4 presents and discusses the results
obtained showing the feasibility of the proposal.
Finally, conclusions and future works are outlined
in Section 5.

2. Background and an overview of our
framework

Meta-learning is a subfield of machine learn-
ing which aims at applying learning algorithms
on meta-features extracted from machine learning
experiments in order to better understand how these
algorithms can become flexible in solving different
kinds of learning problems, hence to improve the per-
formance of existing learning algorithms [25] or to
assist the user to determine the most suitable learning
algorithm(s) for a problem at hand [1], among others.

In this paper, meta-learning is used with the aim of
learning the relationship between the meta-features
extracted from the data sets and the algorithms perfor-
mance applied on them. Therefore, a meta-learning
system consists of two main stages: a training phase
and a prediction phase. In the training stage, data sets
are first characterised by a set of measurable meta-
features and then, a set of classifiers are executed
on them. The performance of these models generally
measured by their accuracy (although other measures
can be used such as f-measure, error rate, etc.) is next
linked to the meta-features of each data set involved.
Later, a learning algorithm is trained on the collected
meta-features yielding a model which will be used to
predict which the best algorithm to be applied on a
new data set is. On other occasions, instead of select-
ing an algorithm, a ranking of algorithms is provided
[7]. Different approaches for building the predictor
are found, mainly based on classification [18, 21, 22]
and regression [5, 23].

Recently, a new approach called meta-learning
template [24] has arisen with the aim of recommend-
ing a hierarchical combination of algorithms. On the
other hand, Britto et al. [2] studied the classification
problem complexity using multiple classifier systems
based on the dynamic selection of classifiers.

Regarding the type of meta-features, many have
been proposed and applied, being commonly cate-
gorised in:

– Simple meta-features, such as the number of
attributes, the number of instances, the type of
attributes (numerical, categorical or mixed), the
number of values of the target attribute and
dimensionality of the data set, i.e., the ratio
between the number of attributes and the number
of instances.

– Statistical meta-features, like skewness, kurtosis
among others which characterise data distribu-
tion [25, 27].



– Information theoretic meta-features used for
characterising data sets containing categorical
attributes such as class entropy or noise to signal
ratio [20].

– Model-based meta-features, which collect the
features of the mining model built, for instance,
the structural shape and size of a decision tree
trained on the data sets [30].

– Landmarkers, which are meta-features calcu-
lated as the performance measures achieved by
using simple classifiers [4].

– Complexity meta-features, that characterise the
apparent complexity of data sets for supervised
learning. These are provided by DCoL (data
complexity library) [29]. They have been used
in several metalearning works [7, 12, 13, 18]
and, recently, Herrera et al. [14] applied them to
obtain the domains of competence of a classi-
fier, which allows to predict if any data set will
be suitable for such learning method or not.

– Contextual meta-features, i.e., characteristics
related to data set domain [7, 18].

For the sake of a better understanding, a modu-
lar schema of the proposed framework is depicted in
Fig. 1. As can be observed, this framework basically
makes use of four workflows in the training phase:
one for extracting meta-features of the data sets
(WF1); another one, for generating models with each

classifier under study (WF2); a third one, responsible
for loading the descriptive information of each exper-
iment performed on each data set into the database
(WF3); and the fourth one, in charge of building a
regressor for each type of algorithm used in the train-
ing phase establishing as class the value of the type
of measure desired (accuracy, f-measure, and so on)
(WF4), being accuracy the most frequently utilised
[6]. Regarding the predictive phase, only a workflow
is required. This is responsible for reading each new
data set, extracting its meta-features, applying this
meta-data set to the regressors previously built and
showing the algorithms ranked according to the value
of accuracy (or whatever evaluation measure chosen)
predicted by themselves.

The database schema used to gather the experi-
ments is depicted in Fig. 2. This was designed based
on the one proposed in [16] which collects machine
learning experiments. But this schema had to be
extended to store meta-features extracted from each
data set (Fields and DatasetMetaFeatures classes) and
the set of meta-features which describes each mining
model built (MiningModels and Measures classes).

2.1. Meta-learning in educational arena

Meta-learning is a subfield of machine learning
which has not been yet well-explored to be applied

Fig. 1. Overview of the metalearning framework proposed.



Fig. 2. UML database schema for storing meta-features of mining experiments.

on the educational arena, despite the huge quantity
of data available in learning platforms and also the
urgent need of analysing and improving the learn-
ing processes to improve the academic performance
and avoid the worrying dropout. Although many
issues have been addressed according to these surveys
[3, 8, 9], few works relied on a metalearning based
solution. Romero et al. [21] proposed the use of met-
alearning for the automatic setting of two parameters
of the J48 algorithm with the aim of increasing the
model accuracy for predicting student’s performance.
Later, this research group built a recommender for
selecting the best classifier using a nearest neigh-
bor (1-NN) approach on statistical, complexity and
domain meta-features [7] and next, applied a multi-
label learning algorithm [13] for the same goal. On
the other hand, Zorrilla et al. [19] evaluated the pos-
sibility of building a recommender to be wrapped in a
data mining service using only the classifier that out-
performed in the training phase of the meta-learning
process. The results were positive but limited because
the number of algorithms could not be increased due
to the reduced number of training data sets available.

Some authors like [17] solved this issue first clus-
tering algorithms based on behaviour similarity and,
then recommending a set of algorithms, instead of
an algorithm whereas others followed an approach
based on regression [19, 23]. According to Lemke
et al. [6], this last approach has been barely studied,
thus the experimental study carried out in this work
is addressed to fill this gap.

3. Experiment design

This mining experiment aims at studying the
relevance and advantages that each group of meta-
features provides for the building of algorithm
recommenders as well as assessing the predictive
power of these recommenders. The process followed
is the one detailed in Fig. 1.

All data sets included in the experiment came from
thirty different blended and virtual learning courses
hosted in a Moodle platform. These gather the activ-
ity carried out by the students measured by means
of metrics defined at course level and at tool level



which are available in the course such as the total
number of sessions opened by each student in the
course, time spent per session, number of self-tests
performed, number of messages posted and answered
in the forum, among others. All attributes are numeric
except the class attribute which collects whether the
learner failed (positive class) or passed (negative
class) the course.

Once training data sets were loaded, their meta-
features were extracted. Concretely, the following
ones were used: a) the number of instances, the
number of attributes and the dimensionality as sim-
ple meta-features; b) the minimum, the maximum
and the average value of the skewness and kurto-
sis of all attributes of the data set calculated as
statistical meta-features, by means of the MATH3-
apache Java library; c) the fourteen complexity
meta-features offered by DCoL software [29] that
are, the maximum Fisher’s discriminant ratio (F1),
the directional-vector maximum Fisher’s discrimi-
nant ratio (F1v), the overlap of the per-class bounding
boxes (F2), the maximum (individual) feature effi-
ciency (F3), the collective feature efficiency (sum of
each feature efficiency)(F4), the fraction of points
on the class boundary (N1), the ratio of average
intra/inter class nearest neighbor distance (N2), the
training error of a linear classifier (N3), the frac-
tion of maximum covering spheres (T1), the average
number of points per dimension (ratio of the num-
ber of examples in the data set to the number of
attributes)(T2), the leave-one-out error rate of the
one-nearest neighbor classifier (L1), the minimized
sum of the error distance of a linear classifier (L2)
and the nonlinearity of a linear classifier (L3); d) the
accuracy achieved by the following weak classifiers
as landmakers: LinearDiscriminant (LD), BestNode
with gain-ratio criterion (BN), RandomNode (RN),
Naı̈veBayes (NB) and 1-NN, all available in Weka or
RapidMiner.

As a consequence of the fact that the data sets only
had numeric features, no information-theory mea-
sures were used. Likewise, due to the great variability
of algorithms used in the training phase, model based
meta-features were discarded. Table 1 shows that the
meta-features extracted from training data sets take a
wide range of values.

Next, eighteen classifiers from different
approaches were run on these thirty data sets using
their default setting. The implementations chosen
were AdaBoostM1, ADTree, Bagging, BayesNet,
BFTree, J48, Jrip, Logistic, MultiBoostAB, Multilay-
erPerceptron, NNge, OneR, RandomForest, Ridor,

Table 1
Range of values of the meta-features

Type Name Range

Simple N# attributes 2-21
N# instances 13-502
dimensionality 0.025-0.647

Statistical skewness-avg (-)1.48-4.69
skewness-min (-)8.124-3.227
skewness-max 1.425-18.01
kurtosis-avg 1.42-50.83
kurtosis-min (-)1.51-15.22
kurtosis-max 4.56-339.88

Complexity F1 0.09-7.26
F1v 0.00-387.84
F2 0.00-0.16
F3 0.02-0.88
F4 0.03-1.00
L1 0.24-0.97
L2 0.09-0.47
L3 0.05-0.50
N1 0.05-0.65
N2 0.25-0.94
N3 0.00-0.40
N4 0.00-0.36
T1 0.60-1.00
T2 1.70-47.25

Landmarkers BestNode 1.54-87.88
RandomNode 40-97.50
NaiveBayes 48.96-100
LinearDiscriminant 23.33-97.50

SimpleCart, SMO and VotedPerceptron, all of them
available in Weka. The accuracy achieved by each
classifier on each data set was stored in the data base.
The validation process followed was leave-one-out.

Then, eighteen meta-data sets were generated, one
for each classifier. Each data set contained the meta-
features of the training data sets along with the
accuracy achieved by that specific classifier. For the
sake of studying the behaviour of each group of meta-
features, we built different linear regression models
by using different combinations of meta-features:

1. Using all the meta features available.
2. Using only the meta-features which belong to

each group (simple, statistical, complexity or
landmarkers) separately.

3. Using only the most relevant meta-features cho-
sen by a feature-selection algorithm.

For this last task, the ClassifierSubSet algorithm
offered by Weka was executed. This was config-
ured with the BestFirst algorithm as search method
and LinearRegression as base classifier. The leave-
one-out method was used for its evaluation. In order
to choose features according to their relevance, ten
thresholds were defined: 10%, 20%, 30%, 40%, 50%,
60%, 70%, 80%, 90% and 95%.



All the linear regression models (meta-learners)
were generated using the leave-one-out strategy
as evaluation process. The accuracy and the root-
mean-square error (RMSE) of each regression model
computed were both stored in the experimental
database. Later, the same task was repeated but, this
time, the MultilayerPerceptron algorithm was used
as base classifier. The analysis and discussion of the
results are written in Section 4.

Finally, one algorithm recommender was built with
the best setting chosen from the analysis of meta-
features previously performed. Next, two new data
sets were loaded to the system with the aim of uncov-
ering the ranking of algorithms that the recommender
offered as outcome and check how good this recom-
mendation was. The results and conclusions drawn
are written in the next section.

4. Results and discussion

This section is organised in twofolds: first, the anal-
ysis of meta-features is presented and discussed, and
next, the feasibility and suitability of meta-learning
based recommenders is demonstrated.

4.1. Meta-feature analysis

With the aim of studying and comparing the
behaviour of each group of meta-features, two dif-
ferent regressors were used: LinearRegresion and
MultilayerPerceptron. Table 2 displays the RMSE

obtained in the building of each linear regression
model for each algorithm by using all meta-features
(“all”), only the complexity ones (“comp”), only the
simple ones (“simp”), only the statistical ones (“stat”)
and, finally, only the landmarkers (“land”). The last
column, labelled “Avg. Acc.” gathers the average
RMSE computed as the mean of the RMSE achieved
for each classifier on each data set. This will be used as
base value in our experiment. Columns with * denote
the RMSE obtained when a feature selection process
was applied on all meta-features (“all”) or a set of
them (“comp*”, “stat*”, “simp*”, “land*”) with a
threshold of 95%. The value in bold points out the
set of meta-features for each classifier that builds the
best meta-learner, that means, the one with the lowest
RMSE.

The reason why this threshold was chosen can be
found in Fig. 3, which shows the average RMSE
as result of applying the feature selection process
on all meta-features with different thresholds for the
eighteen classifiers. As can be observed, the RMSE
decreases when the threshold increases, being 95%
thus selected. This is a consequence of the fact that,
by using Linear Regression, the ClassifierSubSetEval
process tends to assign very high values of relevance
to most of the meta-features, so that the improve-
ment is barely significative. Suffice it to show that the
RMSE is lower than 0.08 with a threshold of 90%,
and 0.061 with 95%.

Back to the results shown in Table 2, it can
be stated that the feature selection process notably
improves the RMSE of all linear regression models

Table 2
RMSE of meta-learners built with LinearRegression for each classifier. The lowest RMSE noted in bold

all all* comp comp* land land* simp simp* stat stat* Avg. Acc.

AdaboostM1 0.153 0.036 0.091 0.093 0.053 0.048 0.126 0.107 0.143 0.112 0.103
ADTree 0.138 0.033 0.087 0.084 0.043 0.040 0.123 0.113 0.114 0.104 0.097
Bagging 0.179 0.043 0.132 0.057 0.043 0.042 0.117 0.097 0.118 0.099 0.093
BayesNet 0.254 0.118 0.134 0.116 0.102 0.100 0.194 0.181 0.205 0.178 0.154
BFTree 0.181 0.063 0.169 0.061 0.065 0.063 0.141 0.118 0.145 0.122 0.114
J48 0.121 0.038 0.114 0.063 0.044 0.044 0.122 0.099 0.129 0.103 0.095
Jrip 0.145 0.079 0.179 0.072 0.061 0.059 0.137 0.112 0.145 0.114 0.106
LogisticReg 0.071 0.058 0.079 0.043 0.054 0.051 0.097 0.086 0.097 0.090 0.084
Multiboost 0.151 0.062 0.129 0.064 0.057 0.053 0.133 0.125 0.145 0.125 0.108
MultilayerPerceptron 0.196 0.077 0.218 0.061 0.066 0.063 0.131 0.121 0.118 0.103 0.111
Nnge 0.110 0.040 0.075 0.039 0.053 0.051 0.112 0.099 0.105 0.097 0.096
OneR 0.140 0.056 0.148 0.066 0.071 0.066 0.129 0.117 0.157 0.114 0.110
PART 0.137 0.044 0.118 0.092 0.047 0.047 0.106 0.087 0.111 0.094 0.084
RandomForest 0.199 0.050 0.137 0.052 0.055 0.054 0.114 0.101 0.122 0.099 0.098
Ridor 0.163 0.053 0.153 0.049 0.052 0.051 0.129 0.112 0.146 0.124 0.108
SimpleCart 0.202 0.088 0.215 0.125 0.095 0.090 0.170 0.143 0.171 0.146 0.138
SMO 0.228 0.065 0.126 0.123 0.106 0.095 0.131 0.112 0.176 0.123 0.120
VotedPerceptron 0.229 0.092 0.114 0.107 0.121 0.118 0.162 0.162 0.175 0.141 0.140

Average 0.166 0.061 0.134 0.076 0.066 0.063 0.132 0.116 0.140 0.116 0.109
T# best 0 9 0 5 0 4 0 0 0 0 0



Fig. 3. RMSE of meta-learners built with LinearRegression after
applying the feature selection process.

built independently of the classifier or the set of meta-
features chosen. It is worth noting the improvement
in the prediction of the accuracy of classifiers such as
VotedPerceptron that reduces the RMSE from 0.229
to 0.092. Moreover, there are some linear regres-
sion models which achieve a RMSE lower than 0.05
and even 0.04 by applying feature selection on all
the meta-features. That is the case of AdaboostM1,
ADtree and J48, with a RMSE of 0.036, 0.033 and
0.038 respectively. Furthermore, nine out of the eigh-
teen algorithms built the best linear regression models
when using feature selection on all the meta-features.
The same conclusions can be drawn when the results
obtained by using feature selection on the complexity
meta-features are observed, where the average RMSE
decreases from 0.134 to 0.076. In fact, in five times,
this setting is the best.

The linear models built from simple and statisti-
cal meta-features are quite worse than previous ones
with RMSE higher than 0.1 independently of using
feature selection or not. However, the behaviour of
landmakers must be highlighted since they achieved
models with very low RMSE. In fact, the average
improvement as result of applying the feature selec-
tion process is smaller than in the other cases as can
be better visualized in Fig. 4.

Finally, it is worth noting that the average RMSE
for predicting the accuracy of an algorithm using
meta-learnig is far lower than the RMSE base (see
column “Avg. Acc.”). This error is higher than 0.1
in eleven out of eighteen algorithms, and higher than
0.08 in the rest, meanwhile this value using all meta-
features, or only the complexity ones or only the
landmarkers is quite lower (0.061, 0.076 and 0.063
respectively). Moreover, the p value of the two-paired
t-test performed to compare these values with respect

Fig. 4. Comparative of the average RMSE obtained by Linear
Regression with (fs) and without (no fs) feature selection.

to the ones in the column “Avg. Acc.” is, for all cases,
lower than 0.01, so that it can be concluded that the
meta-learning process does not only achieve better
results, but the difference is very significative.

Next, Table 3 summarises how many times (in
percentage) each meta-feature was selected when
the feature selection with a threshold of 95% was
performed. As can be observed, there are four land-
markers, BestNode, RandomNode, Naı̈veBayes and

Table 3
Selection of each meta-feature with FS 95% - LinearRegression

Type Name % selected

Simple N# attributes 55.56
N# instances 33.33
dimensionality 27.78

Statistical skewness-avg 16.67
skewness-min 22.22
skewness-max 22.22
kurtosis-avg 16.67
kurtosis-max 16.67
kurtosis-min 27.78

Complexity F1 44.44
F1v 72.22
F2 38.89
F3 22.22
F4 27.78
L1 38.89
L2 27.78
L3 27.78
N1 50.00
N2 33.33
N3 27.78
N4 50.00
T1 22.22
T2 0.00

Landmarkers BestNode 50.00
RandomNode 83.33
NaiveBayes 50.00
LinearDiscriminant 33.33
1-NN 55.56



Table 4
RMSE of meta-learners built with MultilayerPerceptron for each classifier. The lowest RMSE noted in bold

all all* comp comp* land land* simp simp* stat stat* Avg. Acc.

AdaBoost 0.058 0.054 0.091 0.137 0.076 0.070 0.120 0.111 0.141 0.115 0.103
ADTree 0.095 0.037 0.134 0.091 0.071 0.047 0.124 0.107 0.121 0.144 0.097
Bagging 0.062 0.042 0.181 0.105 0.052 0.040 0.125 0.099 0.124 0.151 0.093
BayesNet 0.070 0.127 0.127 0.136 0.191 0.121 0.176 0.169 0.273 0.184 0.154
BFTree 0.103 0.076 0.199 0.153 0.125 0.082 0.157 0.122 0.174 0.150 0.114
J48 0.067 0.053 0.118 0.071 0.057 0.051 0.140 0.107 0.128 0.119 0.095
Jrip 0.110 0.056 0.237 0.171 0.086 0.074 0.167 0.116 0.122 0.154 0.106
RMSE 0.071 0.058 0.124 0.078 0.065 0.065 0.111 0.093 0.138 0.106 0.084
Multiboost 0.079 0.051 0.099 0.105 0.081 0.061 0.125 0.125 0.171 0.133 0.108
MultilayerPerceptron 0.144 0.096 0.124 0.076 0.086 0.086 0.149 0.115 0.111 0.115 0.111
Nnge 0.098 0.072 0.135 0.057 0.078 0.062 0.129 0.101 0.077 0.086 0.096
OneR 0.138 0.060 0.133 0.099 0.074 0.058 0.139 0.133 0.170 0.160 0.110
PART 0.062 0.049 0.115 0.091 0.075 0.056 0.129 0.087 0.112 0.110 0.084
RandomForest 0.075 0.052 0.176 0.067 0.103 0.056 0.128 0.102 0.107 0.109 0.098
Ridor 0.110 0.059 0.154 0.053 0.055 0.059 0.134 0.124 0.130 0.143 0.108
SimpleCart 0.170 0.195 0.201 0.132 0.170 0.147 0.203 0.143 0.183 0.172 0.138
SMO 0.178 0.104 0.163 0.106 0.123 0.116 0.176 0.141 0.164 0.148 0.120
VotedPerceptron 0.185 0.184 0.196 0.144 0.155 0.108 0.211 0.145 0.194 0.165 0.140

Average 0.104 0.079 0.150 0.104 0.096 0.076 0.147 0.119 0.147 0.137 0.109
T# best 1 9 0 4 0 4 0 0 0 0 0

1-NN, and three complexity measures,F1v, N1 and
N4, that were chosen at least a 50% of times, high-
lighting RandomNode with a 83.33%. This fact
explains why landmarkers achieve, alone, a good
RMSE in most of the linear regression models, even
when the feature selection process is not applied.
Nevertheless, simple and statistical meta-features are
not, in general terms, highly relevant. Only the num-
ber of attributes (N# attributes) shows a selection ratio
of 55.56%, being the rest of them below 30% and
even 20%.

Thus, these results show that building algorithm
recommenders based on linear regressors for pre-
dicting the accuracy of each classifier is viable and
furthermore highly suitable, since the error ratio is
very low. Landmarkers and complexity measures
have the highest predictive power, however, when
all meta-features are used, included simple and sta-
tistical, the best regression models are built for the
majority of the classifiers.

Next, the same analysis is performed for meta-
learners built with MultilayerPerceptron, a more
complex technique than linear regression. Table 4
and Figs. 5 and 6 show the results achieved. As can
be observed, the feature selection process, in this
case, has a minor effect on the improvement of the
RMSE. Moreover, the best results are obtained, on
average, with a threshold of 80%. In this scenario,
the best average RMSE is achieved by using only
landmarkers after applying the feature selection, with
a RMSE of 0.076, nearly followed by the average

Fig. 5. RMSE of meta-learners built with MultilayerPerceptron
after applying the feature selection process.

Fig. 6. Comparative of the average RMSE obtained by Multilay-
erPeceptron with (fs) and without (no fs) feature selection.



RMSE obtained by using all meta-features, 0.079.
Unlike linear regression, complexity measures are
not so effective since the models have an average
RMSE of 0.104, although, if the results are anal-
ysed classifier by classifier, there are four of them,
MultilayerPerceptron, NNge, Ridor and SimpleCart,
whose results are the best.

Table 5 shows the percentage of times that each
meta-feature was selected when a feature selection
with a threshold of 80% was performed. These results
explain why the feature selection process in this
case does not achieve the same degree of improve-
ment that the one obtained when LinearRegression
was used and, furthermore, they also explain why
the RMSE obtained with MultilayerPerceptron is, in
general, higher. As can be observed, the only remark-
able meta-feature is a landmark, RandomNode, that
was selected 66.67% of times. The other landmarkers
and the complexity meta-features are barely selected,
a 27.78% and 22.22% of times respectively. In fact,
some complexity meta-features, such as F1v, F4 and
L3 that were relevant with LinearRegression, are
never included in these regression models. Regard-
ing simple and statistical meta-features, these are also
barely chosen no more than the 11.11% of times.

Table 5
Selection of each meta-feature with FS 80% -

MultilayerPerceptron

Type Name % selected

Simple N# attributes 11.11
N# instances 0.00
dimensionality 5.56

Statistical skewness-avg 11.11
skewness-min 5.56
skewness-max 0.00
kurtosis-avg 0.00
kurtosis-max 0.00
kurtosis-min 0.00

Complexity F1 5.56
F1v 0.00
F2 5.56
F3 5.56
F4 0.00
L1 11.11
L2 22.22
L3 0.00
N1 22.22
N2 11.11
N3 16.67
N4 16.67
T1 5.56
T2 0.00

Landmarkers BestNode 5.56
RandomNode 66.67
NaiveBayes 22.22
LinearDiscriminant 27.78
1-NN 22.22

Table 6
N# of times that LinearRegression (LR) and

MultilayerPerceptron (MLP) obtained a lower RMSE after
applying a feature selection process

all* comp* land* simp* stat*

LR 14 16 15 13 17
MLP 4 2 3 5 1

Finally, Table 6 is shown with the aim of compar-
ing the number of times that LinearRegression and
MultilayerPerceptron algorithms obtained a lower
RMSE after applying a feature selection process, that
means, they built a better model. It is worth not-
ing that LinearRegression achieves a better model in
fourteen out of eighteen classifiers when all meta-
features are used. This fact is even more remarkable
when only complexity meta-features or landmarkers
are selected. In the light of these results it can be
stated that using a simple technique as LinearRegres-
sion for building meta-learners leads to better models
than when more complex techniques like Multiplay-
erPerceptron are applied. In both cases, the feature
selection process makes improvements and thus, it
should be always performed.

4.2. Predictive power of algorithms
recommenders

Next, the predictive power of an algorithm rec-
ommender built with LinearRegresion after having
applied a feature selection process with a threshold
of 95% is demonstrated. For that, two unseen data sets
were loaded to the system and their recommendation
compared with the best real model built. Columns
“P. Acc.” and “R. Acc.” in Tables 7 and 8 contain the
predicted or expected accuracy and the real accuracy
obtained for the classifier respectively, and columns
“Rank” and “R. Rank” gather their position in the
ranking. As can be observed, the recommended clas-
sifier for the first data set, SMO, achieves the second
highest real accuracy among all classifiers, 85.94%.
Moreover, the classifiers with the third, fourth and
fifth higher accuracies are ranked in the second, third
and fourth position. However, the best real classifier,
NNge, is ranked in the fifth place. It is true that the
system has not recommended the best classifier, how-
ever, it has been able to recommend the second one
and rank some of the better classifiers at the top. Fur-
thermore, the worst sixth classifiers are ranked at the
lowest places in the list.

The results for the second data set can be observed
in Table 8. The first and the second classifier reach



Table 7
Ranking of classifiers for the first unseen data set

Classifier P. Acc. R. Acc. Rank R. Rank

SMO 84.19 85.94 1 2
Multiboost 83.40 82.81 2 3
LogisticRegression 81.52 79.69 3 4
BayesNet 81.25 78.13 4 5
NNge 79.92 89.06 5 1
MultilayerPerceptron 79.73 85.94 6 2
RandomForest 79.61 78.13 7 5
ADtree 79.21 78.13 8 5
BFtree 77.06 78.13 9 5
SimpleCart 76.78 78.13 10 5
PART 76.37 76.56 11 6
Ridor 76.25 76.56 12 6
Bagging 76.23 73.44 13 8
J48 75.66 75.00 14 7
Jrip 74.60 73.44 15 8
Adaboost 73.94 73.44 16 8
OneR 71.98 73.44 17 8
VotedPerceptron 70.52 45.31 18 9

Table 8
Ranking of classifiers for the second unseen data set

Classifier P. Acc. R. Acc. Rank R. Rank

RandomForest 94.85 85.92 1 3
Adaboost 90.15 85.92 2 3
Multiboost 88.69 88.73 3 1
Bagging 87.16 88.73 4 1
ADtree 85.67 85.92 5 3
J48 85.54 83.10 6 5
OneR 85.41 88.73 7 1
Ridor 85.34 87.32 8 2
SimpleCart 85.15 83.10 9 5
Jrip 84.86 88.73 10 1
MultilayerPerceptron 84.03 85.92 11 3
Nnge 82.61 85.92 12 3
LogisticRegression 82.37 83.10 13 5
BayesNet 81.98 84.51 14 4
BFTree 81.97 77.46 15 7
SMO 78.40 77.46 16 7
PART 77.06 80.28 17 6
VotedPerceptron 76.30 77.46 18 7

the third higher real accuracy, meanwhile two of the
classifiers with the best real accuracy, Bagging and
MultiBoost, are classified in the third and fourth posi-
tion. The reason why Adaboost and RamdonForest
are ranked in the two first positions is due to the fact
that the error rate in the prediction of the accuracy
is higher than in the rest. For example, the predicted
accuracy for Multiboost is 88.69% and the real accu-
racy is 88.73%, having thus a prediction error of
only 0.04%, whereas RandomForest is 8.93%. On
the other hand, the four worst classifiers, BFTree,
PART, SMO and VotedPerceptron are indeed at the
bottom of the ranking, so it can be concluded that
the meta-learner, as happened previously, works fine
on detecting algorithms with low performance, and

thus it does not recommend them. Moreover, the dif-
ference between the accuracies of the fourth worst
classifier, PART, with 80.28% and one of the best
classifiers, such as Multiboost with 88.73%, is higher
than an 8%, meanwhile the difference between the
real accuracy of one of the recommended classifiers,
RandomForest, with 85.92%, and Multiboost is lesser
than 3%. Hence, it can be stated that the system works
suitably ranking those that performed better in the
first places and the worst ones in the last positions.

Another important conclusion that this experiment
draws is the need of working with a wide variety of
algorithms because depending on the meta-features
of the data set, an algorithm as SMO can be the best
(first data set) or the worst (second data set) choice.
This leads to corroborate that if the data mining pro-
cess for non-expert miners want to be automated
with a certain degree of quality, a metalearning-based
algorithm recommender is a feasible solution.

5. Conclusions

This paper describes a meta-learning based frame-
work which allows practitioners to discover what
algorithm is the most suitable for applying on cer-
tain bi-classs data set. Unlike the previous works [6],
in this paper, regressors have been used as meta-
learners to offer a ranking of algorithms instead of
only the best, since most times the difference in accu-
racy is pretty inappreciable. Likewise, a thorough
study about what meta-features are more useful for
this end has been carried out on data sets from edu-
cational arena. In the light of the results analysed, the
landmakers are the most informative meta-features
independently of what meta-regressor is used,
although the best meta-learners are achieved when all
meta-features are utilised and a feature selection pro-
cess is previously run on them. Another interesting
point is that a simpler algorithm such as LinearRegre-
sion behave better as meta-learner than more complex
ones, such as MultilayerPerceptron. Finally, the suit-
ability and feasibility of the framework have been
tested and very satisfactory results on data sets from
the educational arena have been achieved.

In the near future, the framework will be
extended to address multi-class problems and nomi-
nal attributes where there are still many issues opened
[11]. Likewise, other regressors, based on decision
trees or rules will be tested and compared with the
aim of determining which one is the most suitable
for the educational domain. In order to increase the



number of training sets, the artificial generation of
data sets will be also assessed.

Acknowledgments

This work has been partially funded by the Span-
ish Government under grant TIN2014-56158-C4-2-P
(M2C2).

References

[1] A. Kalousis and M. Hilario, Model selection via meta-
learning: A comparative study, In Proceedings of the 12th
IEEE International Conference on Tools with Artificial
Intelligence, 2000, pp. 406–413.

[2] A.S. Britto Jr, R. Sabourin and L.E.S. Oliveira, Dynamic
selection of classifiers-a comprehensive review, Pattern
Recognition 47(11) (2014), 3665–3680.

[3] A. Peña Ayala, Review: Educational data mining: A survey
and a data mining-based analysis of recent works, Expert
Systems with Applications 41(4) (2014), 1432–1462.

[4] B. Pfahringer, H. Bensusan and C. Giraud-Carrier, Met-
alearning by landmarking various learning algorithms,
In Proceedings of the 17th International Conference on
Machine Learning, Morgan Kaufmann, 2000, pp. 743–750.

[5] C. Köpf, C. Taylor and J. Keller, Meta-analysis: From data
characterisation for meta-learning to meta-regression, In
Proceedings of the PKDD-00 Workshop on Data Mining,
Decision Support, Meta-Learning and ILP, 2000.

[6] C. Lemke, M. Budka and B. Gabrys, Metalearning: A survey
of trends and technologies, Artificial Intelligence Review
44(1) (2013), 117–130.

[7] C. Romero, J.L. Olmo and S. Ventura, A meta-learning
approach for recommending a subset of white-box classi-
fication algorithms for Moodle datasets, In Proceedings of
the 6th Int. Conference on Educational Data Mining, 2013,
pp. 268–271.

[8] C. Romero and S. Ventura, Educational data mining: A
review of the state of the art, IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews)
40(6) (2010), 601–618.

[9] C. Romero and S. Ventura, Data mining in education, Wiley
Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 3(1) (2013), 12–27.

[10] D.H. Wolpert, The supervised learning no-free-lunch theo-
rems, In Proceedings of the 6th Online World Conference on
Soft Computing in Industrial Applications, 2001, pp. 25–42.

[11] E. Leyva, A. González and R. Pérez, A set of complexity
measures designed for applying meta-learning to instance
selection, IEEE Transactions on Knowledge and Data Engi-
neering 27(2) (2015), 354–367.

[12] G. Cavalcanti, T. Ren and B. Vale, Data complexity mea-
sures and nearest neighbor classifiers: A practical analysis
for metalearning, In Proceedings of the IEEE 24th Inter-
national Conference on Tools with Artificial Intelligence,
2012, pp. 1065–1069.

[13] J.L. Olmo, C. Romero, E. Gibaja and S. Ventura, Improving
meta-learning for algorithm selection by using multi-label
classification: A case of study with educational data sets,

Int J Computational Intelligence Systems 8(6) (2015),
1144–1164.

[14] J. Luengo and F. Herrera, An automatic extraction method
of the domains of competence for learning classifiers using
data complexity measures, Knowledge Information Systems
42(1) (2015), 147–180.

[15] J. Rice, The algorithm selection problem, Advances in Com-
puters 15 (1976), 65–118.

[16] J. Vanschoren, H. Blockeel, B. Pfahringer and G. Holmes,
Experiment databases, Machine Learning 87(2) (2012),
127–158.

[17] J.W. Lee and C. Giraud-Carrier, Automatic selection of clas-
sification learning algorithms for data mining practitioners,
Intelligent Data Analysis 17(4) (2013), 665–678.

[18] M.E. Zorrilla and D. Garcı́a-Saiz, Meta-learning: Can it be
suitable to automatise the KDD process for the educational
domain? In Proceedings of the Second International Con-
ference on Rough Sets and Intelligent Systems Paradigms,
2014, pp. 285–292.

[19] M.E. Zorrilla and D. Garcı́a-Saiz, Meta-learning based
framework for helping non-expert miners to choice a
suitable classification algorithm: An application for the
educational field, In Proceedings of the 7th International
Conference on Computational Collective Intelligence,
2015, pp. 431–440.

[20] M. Hilario and A. Kalousis, Building algorithm profiles
for prior model selection in knowledge discovery systems,
Engineering Intelligent Systems 8 (2002), 180–183.

[21] M.M. Molina, J.M. Luna, C. Romero and S. Ventura, Met-
alearning approach for automatic parameter tuning: A case
study with educational datasets, In Proceedings of the 5th
International Conference on Educational Data Mining,
2012, pp. 956–961.

[22] M. Reif, A. Leveringhaus, F. Shafait and A. Dengel, Pre-
dicting classifier combinations, In Proceedings of the 2nd
International Conference on Pattern Recognition Applica-
tions and Methods, 2013.

[23] M. Reif, F. Shafait, M. Goldstein, T. Breuel and A. Den-
gel, Automatic classifier selection for non-experts, Pattern
Analysis and Applications 17(1) (2014), 83–96.

[24] P. Kordı́k and J. Cerný, On performance of meta-learning
templates on different datasets, In Proocedings of the
IEEE World Congress on Computational Intelligence, 2012,
pp. 1–7.

[25] R. Vilalta and Y. Drissi, A perspective view and survey
of meta-learning, Artificial Intelligence Review 18 (2002),
77–95.

[26] S. Newell and M. Marabelli, Strategic opportunities (and
challenges) of algorithmic decision-making: A call for
action on the long-term societal effects of ’datification’, The
Journal of Strategic Information Systems 4 (2015), 3–14.

[27] S. Segrera, J. Pinho and M.N. Moreno, Information-
theoretic measures for meta-learning, In Proceedings of the
3rd international workshop on Hybrid Artificial Intelligence
Systems, 2008, pp. 458–465.

[28] U. Fayyad, G. Piatetsky-Shapiro and P. Smyth, The kdd
process for extracting useful knowledge from volumes of
data, Commun ACM 39(11) (1996), 27–34.

[29] T.K. Ho, Geometrical complexity of classification prob-
lems. CoRR, cs. CV/0402020, 2004.

[30] Y. Peng, P. Flach, C. Soares and P. Brazdil. Improved
dataset characterisation for meta-learning. In S. Lange,
K. Satoh and C. Smith, editors, Discovery Science, vol-
ume 2534 of Lecture Notes of Computer Science. Springer
Berlin/Heidelberg, 2002, pp. 193–208.


