
1. Introduction
Predictions of streamflow and available water resources are important scientifically and operationally. Such 
predictions are typically obtained using hydrological models of varying degrees of complexity. Scientifically, 
models help to understand and communicate catchments functioning and internal process dynamics (e.g., 
Wheather et al., 1993; Beven, 2010; Gupta et al., 2012). Operationally, hydrological models are used to man-
age water resources (including designing mitigation measures in anticipation of projected changes in the 
environment, e.g., due to changes in climate and/or land use), to implement flood early warning systems, 
and to help design and manage hydraulic structures, among others (e.g., Wagener et al., 2010; Montanari 
et al., 2013; Srinivasan et al., 2017; Prieto et al., 2020).

In order for a hydrological model to adequately represent catchment function, it must adequately represent 
the underlying hydrological processes occurring in the catchment. Here, we define a “hydrological process” 
as the physical phenomenon occurring in a catchment, for example, surface runoff generation. Within a 
model, hydrological processes are approximated using “hydrological mechanisms,” i.e., sets of equations in-
tended to describe that process. A single hydrological model represents a combination of mechanisms (one 
per hydrological process). In this sense, models represent working hypotheses of the catchment they are 
applied to, and mechanisms represent working hypotheses of the hydrological processes they are intended 
to represent.

Abstract In hydrological modeling, the identification of model mechanisms best suited for 
representing individual hydrological (physical) processes is of major scientific and operational interest. We 
present a statistical hypothesis-testing perspective on this model identification challenge and contribute 
a mechanism identification framework that combines: (i) Bayesian estimation of posterior probabilities 
of individual mechanisms from a given ensemble of model structures; (ii) a test statistic that defines a 
“dominant” mechanism as a mechanism more probable than all its alternatives given observed data; 
and (iii) a flexible modeling framework to generate model structures using combinations of available 
mechanisms. The uncertainty in the test statistic is approximated using bootstrap sampling from the 
model ensemble. Synthetic experiments (with varying error magnitude and multiple replicates) and real 
data experiments are conducted using the hydrological modeling system FUSE (7 processes and 2–4 
mechanisms per process yielding 624 feasible model structures) and data from the Leizarán catchment in 
northern Spain. The mechanism identification method is reliable: it identifies the correct mechanism as 
dominant in all synthetic trials where an identification is made. As data/model errors increase, statistical 
power (identifiability) decreases, manifesting as trials where no mechanism is identified as dominant. The 
real data case study results are broadly consistent with the synthetic analysis, with dominant mechanisms 
identified for 4 of 7 processes. Insights on which processes are most/least identifiable are also reported. 
The mechanism identification method is expected to contribute to broader community efforts on 
improving model identification and process representation in hydrology.
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This paper focuses on hydrological model development from the perspective of using observed data to iden-
tify individual process mechanisms rather than complete models, using inference and hypothesis-testing 
techniques capable of reflecting the inherent data and model uncertainty. The presentation is illustrated 
using models that represent the temporal dynamics of rainfall-runoff processes.

The selection of processes and mechanisms to be included in models has been a perennial challenge in hy-
drological and broader environmental sciences. Important questions in hydrological process understanding 
and representation relate to hydrological laws emergent at the catchment scale, causes of spatial heteroge-
neity in streamflow, evaporation, groundwater and other environmental fluxes, processes that control sur-
face water–groundwater interactions and catchment connectivity, mechanisms by which climate and land 
use change impact on the hydrology of arid and semiarid regions, and many others (e.g., see Beven, 1989; 
McDonnell et al., 2007; Wagener et al., 2007; Clark et al., 2011b; Ehret et al., 2014; Gupta et al., 2014; Blöschl 
et al., 2019, and many others).

Reliable identification of hydrological mechanisms is important for multiple purposes, including improving 
predictive performance and gaining insight into catchments’ internal functioning, with the latter important 
in order for the model to “get the right answers for the right reasons” (Kirchner, 2006). The selection of 
hydrological mechanisms is also generally expected to respect the principle of parsimony, which favors 
simpler over complex model representations (Jakeman & Hornberger, 1993).

There is a growing interest in approaching hydrological modeling from a hypothesis-testing perspective, 
using the method of “multiple working hypotheses” (Chamberelin,  1965; Krueger et  al.,  2010; Clark 
et al., 2011a; Fenicia et al., 2011; Beven et al., 2012; Coxon et al., 2014; Fenicia et al., 2016; Pfister & Kirch-
ner, 2017, and others). Within this perspective, mechanism identification itself represents hypothesis test-
ing, targeted at specific model components rather than complete models (e.g., Clark et al., 2011a; Fenicia 
et al., 2011; Clark et al., 2015; Hrachowitz & Clark, 2017; Pfister & Kirchner, 2017, and others). The hypoth-
esis-testing perspective applies to a wide range of “physically motivated” models, including lumped and 
spatially distributed models, as well as “conceptual” and “physically based” models.

Hypothesis testing in hydrology and broader environmental sciences has been hampered by several chal-
lenges, which complicate hypothesis testing both for complete models and individual mechanisms (see, 
e.g., Clark et al., 2011a; Gupta et al., 2012; Clark et al., 2015 the series of debates papers in Blöschl, 2017; 
Beven, 2018, 2019; Höge et al., 2019). Notable challenges include lack of access to the true process (e.g., 
flow through an aquifer), the “uniqueness of place” paradigm (Beven, 2000), broader heterogeneity and 
variability of environments (Carrera et al., 2005; McDonnell et al., 2007), and resulting uncertainties/scar-
city of observation data (Gupta et al., 2008; Wagener & Montanari, 2011). In addition, as noted by Nearing 
et al. (2016, 2020), model hypothesis testing is necessarily constrained by the Duhem–Quine thesis (Du-
hem, 1991), which refers to the difficulty or even impossibility of separating individual model hypotheses 
from their “surrounding” model environment.

The adage “All models are wrong but some are useful” (Box, 1979) is particularly salient in environmental 
modeling. From this perspective, it may be more constructive to seek “better” and/or “quasi-true” rath-
er than “true” models, where “quasi-true” models are sets of equations that reproduce the entire system 
or an individual system component with suitable “accuracy” at the scale of interest (Beven, 2018; Gupta 
et al., 2012; Höge et al., 2019).

Then, how to identify mechanisms representative of specific hydrological processes given that we only have 
incomplete and inexact information? Hypothesis testing and model selection/development in hydrology 
have progressed along several directions.

The “fixed modeling approach” seeks a complete model structure that reproduces the observed data (gen-
erally streamflow series or hydrological indices) across a wide range of catchments (e.g., PDM, Moore & 
Clarke, 1981; Moore, 2007; HVB, Lindström et al., 1997, Seibert & Vis, 2012; GR4J, Perrin et al., 2003; Van 
Esse et  al.,  2013). Well-performing fixed models can be developed through systematic model compari-
son (e.g., see the GR4J development history). However, the intermediate analyses conducted as part of 
these developments are not necessarily structured to provide systematic hypothesis testing of individual 
components.
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The “flexible modeling” approach seeks to formalize the process of constructing (possibly multiple) com-
plete models from basic building blocks, for example, components of existing models and generic ele-
ments (e.g., RRMT, Wagener et al., 2001; Framework for Understanding Structural Errors (FUSE), Clark 
et al., 2008; 2011a; SUPERFLEX, Fenicia et al., 2011; CFM, Kraft et al., 2011; SUMMA, Clark et al., 2015; 
MARRMoT, Knoben et al., 2019; RAVEN, Craig et al., 2020, and others). Flexible models enable a more 
targeted approach for comparing different hypotheses about catchments’ inner working, because the model 
hypotheses can be altered “one component at a time” (e.g., Clark et al., 2011a; Wrede et al., 2015; Fenicia 
et al., 2016).

Bayesian approaches offer a number of important techniques for model selection and hypothesis testing. 
The well-known Bayes Factor (Raftery, 1993; Kass & Raftery, 1995) quantifies the strength of evidence in 
favor of one model over another model (Kass & Raftery, 1995; Jeffreys, 1998), which in turn allows assigning 
“degrees of belief” to the proposed models. Approximations such as the Bayesian Information Criterion 
(BIC) and Kashyap Information Criterion (KIC) can be used to avoid computationally costly Monte Carlo 
integration of the likelihood function when computing Bayesian Model Evidence (BME) and Bayes Factors 
(Ye et al., 2008; Schöniger et al., 2014). Bayesian model selection has seen multiple applications across hy-
drology, including the selection of rainfall-runoff models based on observed streamflow data (e.g., Marshall 
et al., 2005), improvement of model predictions (e.g., Vrugt & Robinson, 2007), evaluation of the worth of 
different types of observations for the selection of crop models (Wöhling et al., 2015), evaluation of uncer-
tainty in posterior model weights due to measurement error in soil plants models (Schöniger et al., 2015); 
quantification of information provided by a regionalization or hydrological model (Prieto et al., 2019), and 
many others (see Höge et al., 2019 for a recent review). To our knowledge, previous studies using Bayesian 
methods have focused primarily on model selection at the level of complete models, and not yet at the level 
of individual mechanisms.

Statistical hypothesis testing is a method of inference that allows comparing two or more models (hypoth-
eses) describing systems with random (uncertain) behavior (Lumley, 2000; Burnham & Anderson, 2002). 
Typically, the “lack” of a discovery is taken as the “null” hypothesis (benchmark), for example, “the subsur-
face flow process is not represented by a Fickian diffusion mechanism,” and rejection of the null hypothesis 
indicates a “discovery” (here, that “subsurface flow is Fickian”). Due to the presumed inherent uncertainty 
in the system being modeled, statistical hypothesis testing is formulated to include a confidence level (e.g., 
95%), such that the corresponding significance level (e.g., 5%) represents the chance of reaching erroneous 
conclusions, notably Type I errors (false positives, i.e., incorrectly rejecting a true null hypothesis). It is 
also known that stringent control of Type I errors will generally translate into increased frequency of Type 
II errors (false negatives, i.e., failing to accept a true null hypothesis) (Smith & Bryant, 1975). The initial 
selection of hypotheses can also bias test results, for example, if some model components/mechanisms are 
overrepresented in the ensemble under consideration (see, e.g., Elkan, 2001; Saerens et al., 2002).

Many other new approaches for model selection and improvement are emerging in the field of data ana-
lytics, including the information-theoretic approach envisioned by Nearing and Gupta (2015, 2018) and 
Nearing et al. (2020). The approach uses information theory and machine learning to test and refine model 
hypotheses (e.g., if a data-driven model can extract more information from the data than a conceptual mod-
el, then the conceptual model can be improved).

This study develops new Bayesian methods for mechanism identification in hydrology taking advantage of 
flexible modeling frameworks. A key emphasis is on the identification of process mechanisms rather than 
complete models, and on the use of statistical techniques to reflect the inherent uncertainty in testing hy-
potheses related to hydrological mechanisms.

The study aims are as follows:

1.  Develop a systematic hypothesis-testing approach for the identification of dominant hydrological mech-
anisms, using a combination of flexible models, Bayesian inference, and methods for multiple hypoth-
esis testing.

2.  Investigate the performance of the proposed mechanism identification method in the presence of error 
(low, medium, and high magnitude) using synthetic data and using detailed performance metrics com-
puted under replication.
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3.  Investigate the performance of the proposed method in a real catchment.

The case studies are implemented using the FUSE hydrological modeling system (Clark et al., 2008; 2011a) 
and daily hydrological data from the Leizarán catchment in northern Spain.

The paper is organized as follows. Section 2 presents theoretical developments, including the derivation of 
the posterior probability of mechanisms and their use within a hypothesis-testing framework. Section 3 de-
scribes the case study setup. Section 4 presents the case study results, which are then discussed in Section 5. 
Section 6 summarizes the key conclusions.

2. Theoretical Development
2.1. Key Concepts and Terminology

This section defines the key concepts and terminology underlying the proposed method for identifying 
dominant hydrological mechanisms. Here, it is important to distinguish concepts related to the physical 
catchment itself from concepts related to its mathematical model.

The term hydrological process refers to a physical phenomenon occurring in a catchment, for example, sur-
face runoff generation. The term hydrological model process, , then refers to a single hydrological process 
intended to be represented by a hydrological model (irrespective of the accuracy of this representation).

A key concept in this study is a hydrological model mechanism, m , which we define as a set of model equa-
tions intended to represent a hydrological model process . Note that a mechanism may or may not contain 
calibrated model parameters; for this reason, we use it in preference to the term “process parameterization” 
often used in calibration contexts to denote process equations and associated parameter values.

Given these definitions, a hydrological model structure is a specific combination of hydrological model 
mechanisms intended to represent a number of (preselected) hydrological model processes. For example, 
the SACRAMENTO and PRMS models are examples of hydrological model structures.

An ensemble of hydrological model structures comprises multiple hydrological models that differ in their 
selection of hydrological model processes and/or in the selection of hydrological model mechanisms used 
to represent these processes.

A multihypothesis framework (MHF) is defined as a framework for generating ensembles of model struc-
tures, i.e., a framework for generating model structures from a pool of available hydrological process mech-
anisms. In this work, the MHF is given by the flexible modeling framework FUSE (Clark et al., 2008; 2011a).

A hydrological model mechanism is defined as dominant if, conditionally on the study method and as-
sumptions, it is “substantially” (according to a quantitative criterion) more likely to represent a particular 
hydrological process than all alternative mechanisms under consideration in that analysis. A dominant 
mechanism should be not confused with a dominant process, which is a process that contributes substantial-
ly to the overall catchment water balance.

In terms of mathematical behavior, model structures may be deterministic or probabilistic. In this study, we 
propose methods for general probabilistic models and illustrate them for the common case in current hydro-
logical practice where probabilistic models comprise a deterministic model (intended for process representa-
tion) augmented by a relatively simple error model (intended for predictive uncertainty representation).

2.2. Hydrological Model

Consider a probabilistic model of streamflow at time t, with model structure G representing a function of 
parameters θ, forcing data 1:tx  (up to time t), and initial conditions 0s ,

  1: 0; ,t t tQ G θ x s (1)

In Equation 1, tQ  is a random variable with probability distribution 1: 0( | , ; , )t tp q Gθ x s .
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To illustrate a typical construction of a probabilistic model in hydrology, consider a deterministic hydrolog-
ical model h that computes a (deterministic) estimate of streamflow,

 1: 0( ; , )h
t t h tq hθ θ x s (2)

If an additive Gaussian error model is used in transformed space, the probabilistic model is given by

z Q z qt t
h

t( ) ( )   (3)

  2(0, )t  (4)

with additional assumptions that the normalized residuals t are independent and identically distributed 
(i.i.d.) Gaussian with zero mean and constant variance 

2 (e.g., McInerney et al., 2018). The transformation 
z is typically used to account for the heteroscedasticity and skew of the residual errors (e.g., see Section 3.3).

For the probabilistic model in Equations 2–4, the parameters can be partitioned as  ( , )hθ θ θ , where hθ  
are the “hydrological model” parameters and θ  are the “error model” parameters. Here,   2θ , though in 
general it can include other error parameters such as autocorrelation of residuals, skew, and transformation 
parameters. For completeness, we denote the parameter domain as Ω.

2.3. Parameter Inference for a Hydrological Model Structure

Here, we consider the inference of model parameters in a given model structure from observed data. Let 
  ( ; 1,..., )t tq t Nq  denote a time series of observed flows of length tN , and let   ( ; 1,..., )t tx t Nx  denote 

the corresponding observed model inputs.

The posterior parameter distribution ( | , )p Gθ q  is given by Bayes equation,

Ω

( | , ) ( | ) ( | , ) ( | )( | , )
( | ) ( | , ) ( | )d

p G p G p G p Gp G
p G p G p G

 


q θ θ q θ θθ q
q q φ φ φ

 
  (5)

where ( | , )p Gq θ  is the likelihood function associated with the probability model, ( | )p Gθ  is the prior distri-
bution of its parameters over the feasible domain Ω, and ( | )p Gq  is referred to as Bayesian Model Evidence 
(BME) or Marginal Likelihood. To reduce clutter, the conditioning on observed forcing data x and initial 
conditions 0s  is not indicated explicitly in the terms ( | , )p Gθ q , ( | , )p Gq θ , etc., because in this study these 
quantities are treated as fixed. The BME term is generally not required for model parameter inference but 
will be required for model structure inference.

For the illustrative probabilistic model in Equations 3 and 4, the likelihood function is

  


      2

1
( | , ) ( | , , ) ( ) ( ( ); ( ), )

Nt
h

h t t t
t

p G p G z q f z q z qθq θ q θ  (6)

where    ( ) / |q qz q z q  is the Jacobian of the transformation ( )z q  evaluated at  q q. The notation 
  2( ; , )f x  denotes the Gaussian pdf with mean  and variance  2. The complete specification used in the 

case study is given in Section 3.3.

2.4. Posterior Probability of a Model Structure

We now turn our attention to the estimation of the posterior probability of a model structure within an 
ensemble of model structures given by an MHF.
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Consider the posterior probability ( )( | , )kp G q G  of a model structure ( )kG , conditional on observed flows 
q and a model structure ensemble  ( ){ ; 1,..., }i

GG i NG  comprising GN  model structures. Let ( )( | )ip G G  

denote the prior of model structure ( )iG  within this ensemble.

Bayes equation yields (see Raftery, 1995; Hoeting et al., 1999; Hsu et al., 2009)

   
   
     

     

( ) ( )
( )

( ) ( )
1

( ) ( ) ( ) ( ) ( ) ( )

( )Ω
( ) ( ) ( ) ( ) ( ) ( )

1
( )Ω

| |
( | , )

| |

| , | d |

| , | d |

k k
k

N i iG
i

k k k k k k

k

N i i i i i iG
i

i

p G p G
p G

p G p G

p G p G p G

p G p G p G













 

q G
q G

q G

q θ θ θ G

q θ θ θ G










 (7)

where the notation from Section 2.3 is augmented to explicitly link a model structure ( )iG  to its model pa-
rameters ( )iθ . The model structure represents a discrete random variable; hence, the denominator is a sum 
of discrete probabilities.

The probability ( )( | , )kp G q G  should be interpreted as  true ( ) true( | , )kp G G Gq G , which highlights the 
fundamental assumption that the “true” (or at least “quasi-true”) model is in the ensemble. In Equation 7, 
this assumption is reflected in the scaling of the Bayesian Evidence of model ( )kG  by the sum of BMEs of all 
models in the ensemble.

The computation of BME and related terms has long been a challenge in Bayesian model selection (e.g., see 
Ye et al., 2008; Schöniger et al., 2014, for analyses in hydrological contexts). Several approaches are availa-
ble, including “semianalytical” approximations (often referred to as “information criteria”) and numerical 
approximations (e.g., using Monte Carlo samples from the parameter posterior).

The Bayesian Information Criterion (BIC) offers an attractive avenue to approximate the BME terms in 
Equation 7. The BIC is computed directly from the likelihood function evaluated at the maximum a pos-
teriori parameter set (which given uniform parameter priors coincides with the maximum likelihood pa-
rameter set) and includes a so-called “Occam Razor” term to penalize model complexity (quantified by the 
number of parameters). The use of BIC to approximate Equation 7 is described in Appendix A, which also 
includes a brief discussion of potential alternatives.

It is emphasized that the treatment of the BME term in Equation 7 is independent from subsequent deri-
vations, which work solely with ( )( | , )kp G q G . As such, the modeler is free to compute ( )( | , )kp G q G  using 
methods/approximations suitable for their specific application.

2.5. Posterior Probability of a Hydrological Mechanism

We now consider the estimation of probabilities of hydrological process mechanisms, rather than the prob-
abilities of complete models (which represent combinations of mechanisms).

Let the model ensemble G comprises models that attempt to represent a total of N  hydrological model 
processes, using hydrological model mechanisms     { ; 1,..., ; 1,..., }i mm i N N . The notation 

mN  indicates 
the number of mechanisms available for process ℘. As per earlier definition in Section 2.1, we assume that 
this model structure ensemble is generated using an MHF.

Let  ( | , )e kp m q G  denote the “ensemble-specific” posterior probability of mechanism 
km  given observed 

streamflow q and the ensemble of probabilistic hydrological models G. This posterior probability can be 
expressed using total probability as follows:
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p m p m G p G

m

e k
i

NG

k
i i

i

NG

k

( | , ) ( | , , ) ( | , )
( ) ( )

















  q G q G q G
1

1

 ,, | ,

| ,

( ) ( )

; ,

( )

G p G

p G

i i

i S k

i

   
  

  






q G

q G

G

 (8)

where ( ; , )S k G  contains the indices of the subset of model structures within ensemble G that represent 

process  using mechanism km ; let ,k
GN  denote the number of models within this subset. The intermediate 

step in Equation 8 makes use of the indicator function  ( )( , )i
km G , which takes the value 1 if model ( )iG  

contains mechanism km  and takes the value 0 otherwise.

The use of total probability to obtain Equation 8 requires two assumptions:

 (i)  The MHF provides a “sufficiently” complete coverage of the space of possible model structures. Analo-
gous assumptions are common in model selection methods (e.g., see Hirabayashi et al., 2013; Arnell & 
Gosling, 2014, in the context of climate modeling).

 (ii)  The mechanisms are mutually exclusive, i.e., a single model structure cannot use two mechanisms 
for the same process. This assumption yields the identity    ( ) ( ) ( )( | , , ) ( | ) I ( , )i i i

k k kp m G p m G m Gq G ,  

i.e., conditionally on ( )iG  being the “true” model structure, mechanism 
km  has posterior probability 1 

if it is contained in ( )iG  and has posterior probability 0 otherwise. Note that the conditioning on the ob-
served streamflow q and ensemble G does not contribute any additional information to this probability.

In practice, the model structures within the MHF ensemble G will be selected in an “unbalanced and op-
portunistic” way (e.g., Saerens et al., 2002). In other words, the MHF will generally not provide uniform 
and unbiased—let alone complete—coverage of the “universe” of possible hydrological models and mech-
anisms. For example, different processes may have a different number of available mechanisms, and some 
mechanisms for separate processes may be mutually incompatible. As a result, some mechanisms will ap-
pear more frequently than others across the model structures provided by the MHF ensemble. In addition, 
the selection of mechanisms themselves may be biased toward the modeler's expertise, general community 
preferences, etc.

The inherently subjective (implicit) nature of mechanism selection within any realistic MHF impacts on the 
estimation of both prior and posterior probabilities of process mechanisms.

For example, the imbalance in the frequency of mechanisms included in an MHF makes the underlying 
prior distribution of mechanisms nonuniform, with an “effective” (“ensemble-specific”) prior distribu-
tion of a mechanism 

im  being   ,( | ) /k
e k G Gp m N NG . This prior differs from the genuine uniform prior 

 unif ( | ) 1 /k mp m NG .

The unbalanced mechanism frequency also affects the posterior probabilities in Equation 8, for example, 
as shown by Elkan (2001) and Saernes et al. (2002). In particular, due to the probabilities being summed, 
posterior estimation will be biased toward mechanisms that appear more frequently in the model ensemble.

In order to account for these imbalances, we employ the correction proposed by Saernes et al. (2002), which 
yields the posterior probabilities  ( | , )kp m q G  corresponding to the prior probabilities ( | )kp m G  actually 
desired by the modeler (e.g., 

unif ( | )kp m G  or any other distribution).

The “corrected” posterior probabilities  ( | , )kp m q G  are obtained by weighting the “ensemble-specific” pos-
terior probabilities  ( | , )e kp m q G  by the ratio of “desired” prior probabilities ( | )kp m G  over the “ensem-
ble-specific” priors ( | )e kp m G ,
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 (9)

If we set uniform priors in the mechanism space,    unif( | ) ( | ) 1 /k k mp m p m NG G  and substitute 
 ( | , )e kp m q G  from Equation 9 into Equation 8, we obtain

 
 

 
 

    ( )
, ,

; ,

1 1( | , ) ( | , ) ( | , )i
k e kk k

G G i S k

p m p m p G
N N G

q G q G q G (10)

Equation 10 is used to compute the “unnormalized” posterior probabilities of all mechanisms for process 
; these quantities are then normalized to sum up to 1, yielding  { ( | , ); 1,..., }k mp m k Nq G . This normal-
ization follows from the earlier assumptions that a hydrological process is represented by a single model 
mechanism and that the true model (and hence the true mechanism) is present in the ensemble.

Equation 10 is intuitive in that the sum of posterior probabilities of model structures with a given mecha-
nism is now scaled by the corresponding number of model structures, i.e., the sum of posteriors is replaced 
by the average of posteriors. The implied assumption is that, on average, model structures that include high-
ly probable mechanisms have higher posterior probability than model structures that include less-probable 
mechanisms. This assumption is generally reasonable but can be compromised by interactions between 
model mechanisms for multiple processes.

Given the considerations presented in this section, Equation 10 will be used in lieu of Equation 8 to compute 
posterior probabilities of mechanisms in this work. In light of its assumptions, the use of Equation 10 with 
practical MHF ensembles represents an approximation to the probability of a given mechanism rather than 
a “general” statement of probability theory. For this reason, it is important to embed Equation 10 in a robust 
hypothesis-testing framework (Sections 2.6–2.9) and to undertake a rigorous verification of its empirical 
performance (e.g., Section 3.4). We provide additional discussion of these aspects in Sections 5.1.1, 5.2.1, 
and 5.3.2.

2.6. Multiple Hypothesis-Testing Setup

The posterior probabilities of mechanisms can be used for hypothesis testing. For example, for a given 
process, we could just search for the mechanism with the highest posterior probability. However, we devel-
op a more comprehensive and reliable hypothesis-testing process, which recognizes the model ensemble 
uncertainty associated with Equation 10, includes the specification of a prescribed significance level   and 
reflects the potentially large number of hypothesis tests being carried out (which raises the probability of 
Type I errors, i.e., false identification of a mechanism as dominant).

The building blocks of the proposed hypothesis-testing method are described next. The method is designed 
to identify the dominant mechanism for a given process . Multiple processes are accommodated by apply-
ing the hypothesis-testing method separately to each individual process.

An individual comparison (or hypothesis test) is defined as an individual test of whether a mechanism km  is 
“dominant,” i.e., substantially more likely than all other alternative mechanisms available in G to represent 
process . The quantitative definition of “substantially” will be introduced shortly.

The null hypothesis for an individual test, H0k , is “mechanism km  is not dominant for process .”

The family of comparisons is then the set of individual comparisons to identify the dominant hydrological 
model mechanism for model process . In this work, given a set of mechanisms, a “family of comparisons” 
comprises the set of individual tests of each mechanism against all other mechanisms available to describe 
that process. Note that each mechanism is only tested for dominance once.
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The null hypothesis for a family of comparisons, H0 , is defined as “None of the hydrological mechanisms 
 { ; 1,..., }k mm k N  in G is dominant, i.e., substantially more likely than the set of alternative mechanisms 
 
 { ; 1,..., }i k mm i N  to describe a particular hydrological process .” If an individual null hypothesis H0k  in 

the family of comparisons  {H0 ; 1,..., }k mk N  is rejected, then mechanism 
km  is identified as “dominant” 

for process . In other words, the dominant hydrological model mechanism is the mechanism for which 
the individual null hypothesis is rejected. Note that it is also possible for no mechanism to be identified as 
dominant.

The family wise error rate (FWER) is the probability of making one or more Type I errors in a family of multi-
ple tests, i.e., the probability of incorrectly identifying a mechanism as dominant for the given process (after 
testing all proposed mechanisms). Note that to keep FWER below a prescribed significance level  , stricter 
significance levels  must be imposed in individual tests. In this study, the (conservative) Bonferroni cor-
rection is employed for this purpose (Hochberg, 1988).

Hypothesis testing is implemented by defining a test statistic t for the individual null hypothesis (Sec-
tion 2.7). The empirical probability of the computed test statistic exceeding a prescribed threshold   is esti-
mated using a bootstrap approach (Section 2.9) and compared to the prescribed significance level  (Sec-
tion 2.8). This approach follows the principles of classical hypothesis testing (Lehmann & Romano, 2005; 
Triola, 2001).

A flowchart of the hypothesis-testing approach is provided in Figure 1, and detailed descriptions are pro-
vided in the following sections.
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Figure 1. Flowchart of the mechanism identification method. General steps (e.g., “estimate BME of all models”) and their specific implementations in this 

work (e.g., “use BIC approximation”) are indicated. The function 
1freq v count v
N

 returns the fraction of true elements in Boolean set v of length N. BME, 
Bayesian Model Evidence; BIC, Bayesian Information Criterion.
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2.7. Test Statistic Providing the Definition of a “Dominant” Process

The test statistic kt  for (rejecting) the individual null hypothesis H0k  is taken as the posterior probability of 
mechanism km . A mechanism is considered dominant if the test statistic exceeds a threshold value  ,

  ( | , )k kt p m q G (11)

The selection of   represents a modeling choice that, jointly with the significance level   introduced in Sec-
tion 2.8, controls the stringency of the hypothesis test. For example,   0.5 represents the weakest require-
ment, where a mechanism is considered dominant even if it is barely more probable than its alternatives. In 
this work, we select   0.75, which requires a mechanism to be at least 3 times more probable than all its 
alternatives. This choice is subjective and may be application specific.

Note that the statistic kt  could be formulated equivalently as   
   ( | , ) ( | , )k k ii kt p m p mq G q G  or as 

  
  ( | , ) / ( | , )k k ii kt p m p mq G q G , with corresponding thresholds    2 1 and      / 1 , re-

spectively. However, Equation 11 is simpler and hence preferred in this work.

2.8. Hypothesis Testing Using the Test Statistic

The test statistic defined in Equation 11 depends on the model ensemble G. As noted earlier, this model en-
semble on its own cannot be expected to provide complete coverage (sampling) of the total space of models 
and mechanisms. For this reason, we treat kt  as a realization of a random variable kT , with cumulative dis-
tribution function  , ( )T kF t . The variability (randomness) in kT  is assumed to arise due to limited sampling 
of model structures within G.

H0k  is rejected if the test statistic kt  has a probability of exceedance  
  ( , )1 ( )k T k kF t  larger than the 

prespecified significance for that individual test,

    Bonf1k (12)

where   Bonf / mN  is the Bonferroni correction to the overall significance level   (Hochberg, 1988).

Note that the overall confidence level of the family of comparisons (overall mechanisms) is 1 . In this 
paper, we set   0.05 and test the sensitivity of conclusions to this choice.

The next section describes the estimation of the distribution of the test statistic, i.e., the empirical probabil-
ity of exceedance k .

2.9. Bootstrap Estimation of the (Empirical) Distribution of the Test Statistic

In order to estimate the uncertainty in the test statistic computed from models generated using a MHF, we 
distinguish the MHF model space from the hypothetical total model space. The MHF model space is given 
by the set of all distinct model structures available within the framework, i.e., all combinations of mech-
anisms available within that framework. As defined earlier, this sample space is G. In contrast, the total 
model space totalG  is conceptualized as the set of all possible distinct model structures, i.e., all combinations 
of all mechanisms that might exist “in principle.”

Our implementation estimates the uncertainty in the test statistic (more precisely, its probability of exceed-
ance) numerically by applying bootstrapping (Efron & Tibshirani,  1993) to the model ensemble G. The 
bootstrap approximation is based on the assumption that the uncertainty introduced when the total model 
space totalG  is reduced to G is “similar” to the uncertainty introduced when G is replaced by a resampled 
subset. This assumption is typical of bootstrap approximations (e.g., Press et al., 1992; see also; Efron & 
Tibshirani, 1993; Varian, 2005), except here it is applied in the space of model structures.
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More specifically, the null hypothesis H0k  that mechanism km  is not dominant for process , with signifi-
cance level   (e.g., 0.05), is tested using the following procedure:

1.  Generate a “bootstrapped” ensemble of model structures ( )bG  by sampling with replacement ,k
GN  model 

structures with mechanism km , where ,k
GN  is the number of models with mechanism km  in the sample 

space G.
2.  Calculate   ( )( | , )b

kp m q G  using Equation 10.
3.  Calculate   ( )( | , )b

ip m q G  for all other mechanisms for process ,  1, , mi N  (and i k), also using 
Equation 10.

4.  Repeat steps 1–3 for  boot1,...,b N , i.e., construct bootN  bootstrapped (random) model ensembles. For 
example, in this study, we set boot 10,000N .

5.  Calculate ( )b
kt  for each bootstrap model ensemble   boot1, ,b N  using Equation 11.

6.  Compute the empirical frequency of  kt  across all bootstrapped model ensembles

     ( ) boot
boot
1 count{ ; 1, , }b

k kt b N
N

 (13)

 where the function count v is defined as the number of true elements in a Boolean set v.
7.  Reject H0k , i.e., identify km  as dominant, if

    Bonf1k (14)

 where   Bonf / mN  is the Bonferroni correction to the prescribed significance level  .
 Otherwise H0k  is not rejected.

The original ensemble G may be selected randomly one or more times like any other bootstrap ensemble 
and is not given any special treatment. Due to sampling with replacement, any given bootstrapped ensemble 

( )bG  may (and almost always will) contain multiple instances of one or more model structures at the expense 
of excluding one or more other model structures. This setup is analogous to classic bootstrapped data sets, 
which exchange some of the observed data points with multiple instances of other observed data points.

Steps 6–7 are repeated for all mechanisms  { ; 1,..., }k mm k N  proposed for process . If none of the individ-

ual null hypotheses  {H0 ; 1,..., }k mk N  are rejected, then the null hypothesis H0  for the entire family of 
comparisons is not rejected. In this case, no mechanism is identified as dominant, i.e., the dominant mech-
anism is "not identified" or "undefined".

The same hypothesis-testing procedure is then applied to estimate the dominant mechanisms for all other 
model processes   1, , N .

3. Case Study Description
This section details the synthetic and real data case studies used to investigate the fundamental properties 
of the proposed mechanism identification method. A major focus is on the ability of the method to identify 
dominant mechanisms in the presence of data/model error. In the synthetic case study, the “true” dominant 
mechanisms are assumed to be known, and the error is added in a controlled way from a distribution that 
matches the assumed error model, in order to provide a controlled experiment. Multiple (synthetic) data 
replicates are used to quantify the performance of the mechanism identification method using metrics of 
statistical reliability and power. In contrast, the real data study investigates the method under conditions 
when the error assumptions are not met exactly. The following sections provide technical details of the case 
study procedures. Flowcharts of the synthetic and real data analyses are given in Figure 2.

3.1. Catchment and Data

The case studies use data from Leizarán catchment (c8z1) located in Basque Country in northern Spain. The 
catchment has an area of 114 km2 and drains into the Cantabrian Sea. It is a humid catchment (Arora, 2002), 
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with an annual average rainfall of 1,794 mm, annual potential evapotranspiration of 684 mm, and annual 
runoff of 1,076 mm (see Prieto et al., 2019 for more details).

Daily time series of precipitation, PET, and streamflow were provided by the Diputación Foral de Guipúz-
coa. The annual averages reported above are estimated by arithmetic averaging of daily data.

Data from October 1, 1995 to September 30, 2002 are used for model calibration and mechanism identifi-
cation, and data from October 1, 1995 to September 30, 1996 are used for model warm-up (to reduce the 
impact of unknown model initial conditions).

3.2. Modeling Framework for Hypothesizing Hydrological Mechanisms and Deterministic 
Hydrological Model Structures

The hydrological models and mechanisms for hypothesis testing are generated using the FUSE, a multihy-
pothesis hydrological modeling system designed to facilitate work on model representation and improve-
ment (e.g., Clark et al., 2008; 2011a; Konapala et al., 2020).

FUSE provides a choice of multiple model mechanisms to represent each model process. A total of seven 
processes are considered in this paper, namely: (1) architecture of the upper soil layer for the storage of 
water occurring in the unsaturated zone; (2) architecture of the lower soil layer for the storage of water 
occurring in the saturated zone; (3) evapotranspiration; (4) interflow for the lateral movement of the water 
into the soil; (5) percolation for the vertical movement of water from the unsaturated zone (upper soil lay-
er) to the saturated zone (lower soil layer); (6) surface runoff generation; and (7) routing for the evolution 
(shape and time) of the surface runoff hydrograph as the water moves through the river. The total number 
of mechanisms is 19; see Table 1 for details.
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Figure 2. Flowchart of the procedure employed in the empirical case studies: (a) synthetic data analysis (Scenarios 
1–3) and (b) real data analysis (Leizarán catchment).
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The FUSE mechanisms are represented by components of existing models, namely, PRMS, SACRAMENTO, 
TOPMODEL, and ARNO/VIC. Each FUSE model structure is a combination of 7 hydrological mechanisms, 
with a single mechanism specified for each hydrological process. A total of 624 deterministic model struc-
tures are thus considered.

The inputs into FUSE are the (daily) time series of catchment-average observed rainfall and potential evap-
otranspiration, and the outputs are the (daily) time series of simulated streamflow.

3.3. Probabilistic Model and Parameter Estimation (Single Model Structure)

The probabilistic hydrological model in this work is given by FUSE Equations 3 and 4, in combination with 
the Box–Cox transformation and the Gaussian error model. The Box–Cox power parameter, , is fixed to 0.2; 
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Processes Mechanisms

Architecture of the upper soil layer: processes occurring in the unsaturated 
zone

1
1m : single state variable
1
2m : 1 tension storage + 1 free storage

1
3m : cascading buckets: tension storage subdivided into recharge and excess

Architecture of the lower soil layer: processes occurring in the saturated zone 2
1m : 1 baseflow storage of fixed size

2
2m : 1 tension storage + 2 parallel tanks

2
3m : 1 baseflow storage of unlimited size, frac rate

2
4m : 1 baseflow storage of unlimited size, power recession

Evapotranspiration 3
1m : root weighting. Evapotranspiration in each soil layer depends on the 

relative root fraction in the upper and lower soil layers
3
2m : sequential evaporation model. Evapotranspiration in the upper and 

lower layers, where evapotranspiration in the lower layer is restricted by 
the potential evapotranspiration satisfied in the upper layer

Interflow: lateral movement of water in the upper soil layer. 4
1m : interflow absent

4
2m : interflow present. Linear function of free storage in the upper layer

Percolation: vertical movement of the water from upper soil layer to lower 
soil layer

5
1m : water from field capacity to saturation is available for percolation

5
2m : percolation defined by moisture content in lower layer (SAC)

5
3m : saturated zone control: water from wilting point to saturation is available 

for percolation

Surface runoff generation 6
1m : saturated area is related to storage in the unsaturated zone via a Pareto 

distribution (ARNO/Xzang/VIC)

6
2m : saturated area is a linear function of tension storage in the 

unsaturated zone (PRMS variant)
6
3m : saturated area is related to storage in the saturated zone via the 

topographic index (TOPMODEL- only valid for TOPMODEL)

Routing: evolution (shape and time) of surface runoff hydrograph as water 
moves through the river

1
7m : routing absent

7
2m : routing present, using Gamma distribution with shape 

parameter = 2.5

Table 1 
Hydrological Processes and Mechanisms in the FUSE Framework. The processes selected as “true” in the synthetic experiments are indicated in bold in the second 
column
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the offset parameter, A, is fixed to 0.035. The parameter prior in Equation 5 is specified as uniform over the 
feasible ranges. The corresponding likelihood function and prior are presented in Appendix B.

For pragmatic considerations, the estimates of hydrological and residual model parameters in Equation 5, 

 )ˆ (ˆ , ˆhθ θ , are obtained using a computationally efficient “hybrid” least squares/method-of-moments (LS-
MoM) approach, similar to the approach presented by McInerney et al. (2018).

The hybrid approach is summarized below:

Stage 1. The estimated hydrological model parameters, ˆ hθ , are obtained using the least squares method, by 
minimizing the sum of squared errors in Box–Cox space. The robust Gauss–Newton optimization algorithm 
with 10 multistarts is used (Qin et al., 2018). The estimates are then refined using a quasi-Newton optimi-
zation method with higher resolution finite difference gradient estimation and tight convergence tolerance 
(Kavetski & Clark, 2010).

Stage 2. The estimated standard deviation of normalized residual errors, ̂ , is obtained using the method of 
moments from the time series of normalized residuals η̂ (computed using the optimum hydrological model 
parameters ˆ hθ ).

This approach is equivalent to joint optimization of ˆ
hθ  and ̂  but is computationally faster (McInerney 

et al., 2018). The assumption of negligible posterior parameter uncertainty is consistent with the use of the 
BIC to approximate posterior model probabilities (Section 2.4 and Appendix A). The reduced computation-
al cost is important given the number of model calibrations (parameter estimations) required for the case 
studies in this paper (Section 3.6).

3.4. Empirical Analysis Using Synthetic Data

The synthetic study enables a thorough investigation (verification) of the fundamental properties of the 
proposed mechanism identification method. A major focus is on the ability of the method to identify dom-
inant mechanisms in the presence of error. This error is intended to represent the effects of data and model 
structural errors. Multiple replicates of synthetic data are used to quantify the empirical performance of the 
inference using metrics of statistical reliability and power.

A flowchart of the synthetic data study is given in Figure 2a; technical details are given in the following 
sections.

3.4.1. Synthetic Data Generation and Error Scenarios

The synthetic “observed” data are obtained by assuming a set of true mechanisms (yielding a “true” model) 
and “true” parameter values, shown in Table 1, using the procedure detailed in Appendix C. To achieve a 
degree of “realism” (representativeness of real conditions), the set of true mechanisms and parameters is 
taken from a model structure that was well performing in the real case study. The synthetic “observed” data 
are obtained from the synthetic “exact” data by adding Gaussian noise with variance 

2 in Box–Cox trans-
formed space with   0.2 and  0.035A . This synthetic error model is consistent with the assumed error 
model (Section 3.3) and can be interpreted as representing combined “data/model” error.

The following scenarios of data/model errors are considered:

Scenario 1. Low errors:   0.025

Scenario 2. Medium errors:   0.1

Scenario 3. High errors:   0.25

In each scenario, 50 synthetic replicates are generated, shown in Figure 3. The replicates are treated as  
“statistical trials” when computing the performance metrics detailed in the following section.

3.4.2. Performance Attributes and Metrics for the Hypothesis-Testing Method

The following performance attributes and quantitative metrics are considered:
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1.  How reliable (“trustworthy”) is the mechanism identification 
method?

In other words, if the method identifies a mechanism as dominant, what 
is the probability that this mechanism is the true (dominant) mechanism?

We define (empirical) reliability R as



TP

TP FP

NR
N N (15)

where TPN  is the number of trials where the true mechanism is identified 
as dominant and FPN  is the number of trials where the wrong mechanism 
is identified as dominant. This quantity has also been termed “Positive 
Prediction Value” (Tharwat, 2020). The definition of trials based on the 
replicates is given in Section 3.4.3.

R ranges from 0 to 1, with higher values indicating better reliability. Given 
the definition of FWER in Section 2.6, with prescribed significance level 
of   5%, a method can be considered “reliable” if  0.95 1R , as the 
frequency of false positives is below the imposed significance level.

 2.  What is the “statistical power” of the method?

Statistical power is defined as the probability of (correctly) rejecting the 
null hypothesis when it is indeed false (Dekking, 2005; Neyman & Pear-
son, 1928). For our experimental setup, an empirical estimate of power 
is given by

  FN

trials
1 NP

N (16)

where FNN  is the number of trials where a dominant mechanism was not 
identified and trialsN  is the total number of trials.

P ranges from 0 to 1, with higher values indicating better power. Low 
values of P correspond to the method being “indecisive” and hence of 
little value to a modeler. In the hypothesis-testing literature, a method is 
generally considered “powerful/decisive” if  0.8 1P  (e.g., Ellis, 2010).

Note that in general there are trade-offs between the reliability and pow-
er of a test: as the probability of making Type I errors (false positives/

discoveries) decreases, the probability of making Type II errors (false negatives/rejections) increases (Smith 
& Bryant, 1975). In the context of hydrological process analysis, it is preferable to be indecisive (i.e., do not 
identify a dominant mechanism) than wrong (i.e., identify a wrong mechanism as dominant), because iden-
tifying a wrong mechanism as dominant is misleading and confuses our catchment understanding.

3.4.3. Use of Performance Metrics Across the Synthetic Error Scenarios

The performance metrics are used to analyze the method for three different stratifications/pooling setups.

1.  Scenario-specific metrics: metrics listed in Section 3.4.2 computed separately for each data/model error 
scenario defined in Section 3.4.1. We pool together the results of identifying all model processes, so that 
the number of synthetic trials per scenario is scen

trialsN  = 350 (7 processes × 50 replicates). This analysis tells 
us how the performance of the hypothesis-testing method depends on the error magnitude.

2.  Process/scenario-specific metrics: metrics computed separately for the identification of each process in 
each scenario. In this case, the number of (synthetic) trials is process

trialsN  = 50 (50 replicates). This analysis 
provides an indication of how the hypothesis-testing method performs for the identification of different 
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Figure 3. Synthetic streamflow data used in Scenarios 1–3. Red: synthetic 
“exact” streamflow. The black lines refer to the 50 replicates of synthetic 
“observed” streamflow.
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processes, which processes are the most/least identifiable (i.e., for which processes are the true mecha-
nisms identified as dominant with highest/lowest reliability), and what is the statistical power of these 
identifications.

3.  Overall metrics: metrics computed by pooling together the results of identifying all processes in all sce-
narios, so that the number of total trials is overall

trialsN  = 1,050 (3 scenarios × 7 processes × 50 replicates). 
These metrics can be used to compare the overall performance of the hypothesis-testing method.

The analysis above is carried out for a significance level   0.05. In addition, we report results obtained 
when   is relaxed to 0.1 and when   is tightened to 0.01. This analysis provides an indication into the sen-
sitivity of the inference to the significance level.

3.5. Empirical Analysis Using Real Data

The performance of the proposed method is illustrated in a real data case study using observed data from 
the Leizarán catchment (see Section 4.2). Since the “true” mechanisms in this catchment are not known, 
our analysis here is limited to the following:

•  Evaluation of broad similarities in the behavior of the mechanism identification method under synthetic 
versus real conditions. In particular, we compare how the number and type of dominant mechanisms 
identified using real observations compared to the number and type of dominant mechanisms identified 
using synthetic data.

•  Comparison of findings regarding dominant mechanisms to the existing knowledge of the hydrology of 
the Leizarán catchment.

•  Appraisal of consistency of mechanism identification based on 6 and 12 years of data, and sensitivity to 
the choice of significance level  .

A flowchart of the real data study is given in Figure 2b.

3.6. Computational Platform and Costs

The numerical experiments carried out in this study are computationally expensive.

In total, across all scenarios, replicates, error magnitude levels, and FUSE model structures, (approximate-
ly) 95,000 individual calibrations were required, each implemented using 10 optimizations (corresponding 
to 10 initial seeds). The complete analysis consumed approximately 13 months of CPU time on the IHCan-
tabria supercomputer cluster Neptuno.

4. Results
4.1. Synthetic Data Experiments

This section reports the performance of the mechanism identification method in Scenarios 1–3 as the mag-
nitude of (synthetic) error is increased. Given the synthetic nature of the analysis, the true mechanisms are 
known; hence, we can compute the reliability and power metrics.

Figure 2 shows the synthetic “exact” streamflow and the synthetic “observations” of streamflow generated 
in Scenarios 1–3 (see Section 3.4.1). The true mechanisms are highlighted in bold in Table 1. Figure 4 shows 
the estimated empirical reliability and power of the method for Scenarios 1–3 (low, medium, and high error, 
respectively). The performance metrics are shown both for each process individually and averaged across 
all processes (upper row). In addition, we report mechanism identifiability averaged across all processes 
(right-most column).

We begin by considering reliability and power achieved for the “default” significance level of 0.05. The sen-
sitivity to this specification is examined in Section 4.1.5.

4.1.1. Scenario 1: Low Errors

Figure 4 shows that, in the presence of low errors, the mechanism identification method achieves a reliabil-
ity Rscen1 = 1 and Pscen1 = 0.92. In other words, a determination is made in 92% of the scen

trialsN  = 350 replicates 
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(yielding P = 0.92), and the true mechanism is (correctly) identified as dominant in 100% of these trials 
(yielding R = 1).

Looking at each process independently, Figure 4 also shows “perfect” mechanism identification for 5 pro-
cesses: processes related to the storage in the upper and lower soil layers, evapotranspiration, surface runoff 
generation, and routing. For these 5 processes, the dominant mechanisms are identified correctly in all 50 
replicates ( process

trialsN  = 50), i.e., R = 1 and P = 1.

For the remaining 2 processes, interflow and percolation, the dominant mechanisms are identified with 
perfect reliability (Revapotranspiration1 = Rinterflow1 = Rpercolation1 = 1). However, these mechanisms are identified 
with lower power, Pinterflow1 = 0.78 and Ppercolation1 = 0.66.
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Figure 4. Reliability and power of mechanism identification in synthetic Scenarios 1–3. Process-averaged and 
scenario-averaged metrics are shown in Row 1 and Column 4, respectively. Reliability shown with black bars and power 
shown with gray bars. Results reported for significance levels α = 0.1, 0.05, and 0.01.
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4.1.2. Scenario 2: Medium Errors

Figure 4 (row 1) shows that, in the presence of medium errors, the mechanism identification achieves a 
reliability Rscen2 = 1 and Pscen2 = 0.84.

Looking at each process independently, Figure 4 shows that the reliability and power in Scenario 2 remain 
the same as in Scenario 1 for processes related to the storage in the upper and lower soil layers, surface run-
off generation and routing. For these 4 processes, the dominant mechanisms are identified correctly in all 
50 replicates ( process

trialsN  = 50), i.e., R = 1 and P = 1.

For the remaining 3 processes, perfect reliability is maintained, Revapotranspiration2 = Rinterflow2 = Rpercolation2 = 1, 
but once again with a notable reduction in power, for example, Pevapotranspiration2 = 0.9 and Pinterflow2 = 0.76. 
The identification of percolation suffers the largest loss of power, with Ppercolation2 = 0.22 (down from Pperco-

lation1 = 0.66 in Scenario 1).

4.1.3. Scenario 3: High Errors

Figure 4 (row 1) shows that, in the presence of high errors, the mechanism identification maintains same 
reliability as Scenario 2, Rscen3 = 1, while its power decreases from Pscen2 = 0.84 to Pscen3 = 0.8.

Looking at each process independently, Figure 4 shows that the method maintains perfect identifiability for 
processes related to the storage in the lower soil layer and for the routing process (Rlower soil layer3 = Rrouting3 = 1 
and Plower soil layer3 = Prouting3 = 1). These results are the same as in Scenario 2.

For the remaining processes, reliability remains perfect (Rupper soil layer3 = Revapotranspiration3 = Rsurface runoff3 = Rperco-

lation3 = 1), but there is a notable loss of power. For example, for the upper soil layer and evapotranspiration, 
Pupper soil layer3 = Pevapotranspiration3 = 0.88, and for surface runoff generation, Psurface runoff3 = 0.76. For percolation, 
the loss of mechanism identification power is almost complete, Ppercolation3 = 0.1.

4.1.4. Comparison Across the Processes for All Error Levels

Pooling the results across all scenarios and processes (Figure 4, upper right hand corner), mechanism iden-
tification achieves Roverall = 1 and Poverall = 0.86.

The most identifiable processes are those related to the storage in the lower soil layer and routing. For 
these processes, mechanism identification achieves perfect reliability and power in all three scenarios, i.e., 
regardless of streamflow errors.

In contrast, the least identifiable process is the percolation process, especially as streamflow errors increase. 
For this process, the power of mechanism identification deteriorates from P = 0.66 in Scenario 1 to P = 0.22 
in Scenario 2 and then to P = 0.1 in Scenario 3.

Interestingly, the identifiability of (mechanisms for) the interflow process decreases from P = 0.78 in Sce-
nario 1 to 0.76 in Scenario 2 but then increases to 0.92 in Scenario 3. This pattern of change is accompanied 
by several other processes becoming poorly identifiable. For example, the identification of mechanisms for 
the surface runoff generation process deteriorates to Psurface runoff generation3 = 0.76 (down from Psurface runoff genera-

tion2 = 1 in Scenario 2). A similar deterioration is seen in the identification of mechanisms for the storage in 
the upper soil layer. The concurrent increase of power in the identification of interflow mechanisms and the 
drop of power in the identification of mechanisms for other processes suggests a “compensatory/interaction 
behavior,” discussed in Section 5.4.

4.1.5. Sensitivity to the Prescribed Significance Level

We now consider the sensitivity of mechanism identification to the prescribed significance level  . Figure 4 
shows that the results are in general stable. For example, tightening   from 0.05 to 0.01 does not impact 
R in any of the scenarios and does not impact P in Scenarios 1 and 2 for processes in the unsaturated and 
saturated zones, surface runoff generation, and routing.

The value of   makes the most impact when errors are high. For example, in Scenario 3, tightening   from 
0.05 to 0.01 results in a degradation in the identification of interflow, with Pinterflow3 decreasing from 0.92 to 
0.84 (i.e., a loss in P of 0.08). For percolation, the loss in P is only 0.02; however, power is already very low 
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in the identification of this process, for example, Ppercolation3 = 0.1 when   0.05 which reduces further to 
Ppercolation3 = 0.08 when   0.01.

Conversely, the value of   has the least impact when errors are low. For example, in Scenario 1, tightening 
  from 0.05 to 0.01 does not impact the identification of the dominant mechanisms in the upper and lower 
soil layers, evapotranspiration, percolation, surface runoff generation and routing, where P = 1 both when 
  0.05 and when   0.01. Indeed, the only process affected substantially by the change in the signifi-
cance level is the interflow, where the tightening of α from 0.05 to 0.01 results in a reduction of P from 0.78 
to 0.72.

4.2. Real Data

Table 2 reports the mechanisms identified from real data in the Leizarán catchment. In this analysis, the 
true mechanisms are unknown and hence we cannot reliably establish whether the mechanisms identified 
as dominant are the “true” (or “quasi-true”) mechanisms. Estimates of reliability and power are unavaila-
ble, and we focus instead on qualitative results.

We begin by considering mechanism inference from 6 years of data, with significance level   0.05.

Dominant mechanisms are identified for 4 of the 7 processes represented in FUSE: storage in the unsatu-
rated zone (single state variable), storage in the saturated zone (tension storage plus two parallel tanks), 
evapotranspiration (proportional to the depth of the roots in each layer), and routing (routing present). 
No dominant mechanisms are identified for the remaining 3 processes, namely interflow, percolation, and 
surface runoff.

These process identification patterns are broadly similar to those found in the synthetic scenarios. In terms 
of identifiable processes/mechanisms: processes related to the storage in the lower soil layer and routing 
have well identifiable dominant processes—similar to synthetic Scenarios 2 and 3. In terms of nonidentifia-
ble mechanisms: notably percolation is not identifiable in the real catchment, just as it was in the synthetic 
study. This similarity is unsurprising given that the synthetic studies were set up using real data findings but 
does indicate that no unexpected artifacts are introduced by the inference.

Table 2 reports the sensitivity of mechanism identification to changes in the significance level  . For the 
6-year inference period, tightening   from 0.05 to 0.01 has no impact on mechanism identifiability for any 
of the processes. However, loosening   from 0.05 to 0.1 leads to a dominant mechanism being identified for 
the percolation process.
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6 years 12 years

  0.01   0.05   0.1   0.01   0.05   0.1

Architecture of the upper soil layer 1
1m 1

1m 1
1m – – –

Architecture of the lower soil layer 2
2m 2

2m 2
2m 2

2m 2
2m 2

2m

Evapotranspiration 3
1m 3

1m 3
1m 3

1m 3
1m 3

1m

Interflow – – – – – 4
1m

Percolation – – 5
1m – – –

Surface runoff generation – – – – 6
1m 6

1m

Routing 7
2m 7

2m 7
2m 7

2m 7
2m 7

2m

Table 2 
Dominant Mechanism Identification in the Leizarán Catchment (Real Catchment Case Study) Using 6 and 12 Years of 
Data, and Prescribed Significance Levels of 0.01, 0.05, and 0.1
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Table 2 also shows the impact of data length on mechanism identification. There are no direct contradic-
tions between the mechanisms identified using 6 and 12 years of data: in all processes for which a mech-
anism is identified in both periods, the same mechanism is identified in both periods. More specifically, 
mechanisms for processes in the saturated zone, evapotranspiration, and routing of surface runoff remain 
identifiable in both periods, and the same mechanisms are identified for these processes.

However, the change in data length does impact identifiability, with some switches in the processes for 
which dominant mechanisms are identified. In particular, there are switches in the identifiability of pro-
cesses in the unsaturated zone and processes for surface runoff generation. For the 6  years period, the 
dominant mechanism is identified for the process of storage in the saturated zone (singe state variable 
mechanism), whereas for the 12 years period, a dominant mechanism is not identified for this process. The 
opposite is found for the surface runoff generation process: a dominant mechanism is not identified from 
the 6 years period but is identified from the 12 years period (the mechanism where saturated area is related 
to the storage in the unsaturated zone via a Pareto distribution).

Finally, Figure 5 compares the observed and simulated hydrographs from a selected subset of FUSE model 
structures. The following 18 model structures are selected: (1) models with mechanisms identified as dom-
inant for processes in the upper and lower soil layer, evapotranspiration, and routing; and (2) models with 
all possible mechanisms for those processes where a mechanism is not identified as dominant (interflow, 
percolation, and surface runoff generation). Figure 5 shows that the FUSE models provide a generally accu-
rate approximation to the observed streamflow, with NSE values (not labelled) of around 0.82–0.88 (and as 
high as 0.91–0.93 when computed with BC0.2-transformed streamflow).

5. Discussion
The discussion section is organized as follows. Key insights from the synthetic and real data case studies are 
discussed in Sections 5.1 and 5.2, respectively. Broader concepts of mechanism identification in the pres-
ence of data and model error are discussed in Section 5.3. Future research directions to overcome present 
study limitations are outlined in Section 5.4.
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Figure 5. Observed (red) hydrograph in the Leizarán catchment and simulated (multiple colors) hydrographs 
generated by selected FUSE model structures. The following subset of FUSE model structures is shown: (1) models 
with mechanisms identified as dominant for processes in the upper and lower soil layer, evapotranspiration, and 
routing; and (2) models with all possible mechanisms for those processes where a mechanism is not identified as 
dominant (interflow, percolation, and surface runoff generation).
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5.1. Insights From the Synthetic Study

5.1.1. Higher Reliability Gives the Modeler Confidence in the Mechanisms Identified as 
Dominant

The mechanism identification method is “reliable”: if it identifies a mechanism as dominant, this mecha-
nism is the true (or, more generally, “quasi-true”) mechanism. Perfect reliability is achieved for all processes 
and scenarios, Roverall = 1 across a total number of trials overall

trialsN  = 1,050, which is obviously well within the 
imposed confidence level of 95%.

However, high reliability comes at the cost of lower power, i.e., ability to make an identification. The power 
when pooled over all scenarios is Poverall = 0.86, indicating that the method does not identify a dominant 
mechanism in 14% of the trials. However, for some processes and error levels, the power dropped to as low 
as 0.22 and 0.10 (see Section 5.1.3 for further discussion of process identifiability).

The trade-off between reliability (i.e., low frequency of false positives) and power (i.e., low frequency of 
false negatives) is known from theoretical considerations. In particular, tightening the significance level 
  reduces the probability of Type I errors but increases the probability of Type II errors (e.g., Smith & 
Bryant, 1975). It is important to note that such lack of identification power is at least not misleading to the 
modeler—in contrast to the case of lack of reliability where the wrong mechanism is identified as domi-
nant. A method with lower reliability, especially in conjunction with high power, has less practical value: the 
relatively high frequency of identifying a wrong mechanism will confound the modeler's interpretation of 
catchment functioning. It may also result in worse predictive performance when the identified mechanisms 
are used in predictive modeling contexts.

Overall, the high reliability of the mechanism identification method gives the modeler confidence in the 
identification of a mechanism as dominant, and cases where no mechanism is identified as dominant may 
point the modeler to seek more and/or higher quality data and/or to hypothesize new process mechanisms 
(see Section 5.1.3).

5.1.2. Performance in the Presence of Increased Errors in the Model/Data

Mechanism identification tends to deteriorate as the magnitude of data/model error is increased. In this 
synthetic study, this error represents a combined effect of data/model error (as the residual error model 
used to obtain the synthetic “observed” data does not distinguish multiple sources of error). While the 
deterioration in performance is unsurprising, the deterioration pattern is relatively “benign.” In particular, 
the deterioration manifests as a loss of power, i.e., an increased probability of Type II errors (here, not iden-
tifying any mechanism as dominant): no mechanism is identified as dominant in 8%, 16%, and 20% of the 
trials for Scenarios 1, 2 and 3, respectively. In line with earlier arguments, we consider a loss of power to be 
a lesser limitation than a loss of reliability.

5.1.3. Which Processes Are the Most and Least Identifiable?

Processes related to storage of water in the saturated zone, and routing, appear well identifiable. Dominant 
mechanisms for these processes can be identified with perfect reliability and power even from streamflow 
corrupted with high errors. In contrast, interflow and percolation processes are the least identifiable. Specif-
ically, no percolation mechanism is identified as dominant in as many as 78% and 90% of trials in Scenarios 
2 and 3, respectively.

Process identifiability necessarily depends on aspects such as the contribution of the process to the model 
response used for mechanism identification. For example, a mechanism for a process that contributes a 
negligible amount of streamflow is unlikely to be identified from streamflow alone. The degree of difference 
in the competing mechanisms is also of clear relevance. For example, distinguishing between three mecha-
nisms will be much harder if they employ similar equations (e.g., see earlier study by Gupta and Sorooshi-
an 1983). This effect can be seen for the percolation process, for which FUSE provides three options all of 
which are power functions of (different) model storages. Mechanism identification clearly suffers in these 
circumstances, with power dropping to as low as 22% and 10% for medium and high errors, respectively.

The dependence of identifiability on mechanism similarity is not surprising. As we consider more and more 
subtle differences between mechanisms, our ability to establish a mechanism as dominant will necessarily 
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become more limited, especially in the presence of error. Increasingly accurate data would be needed to 
continue refining process representation.

Other considerations of data uncertainty are also relevant here, for example, estimated values of low flows 
can be sensitive to data errors (Westerberg et al., 2016), complicating the identification of mechanisms op-
erating during low flow and ephemeral conditions.

5.2. Insights From Real Data Study (Leizarán Catchment)

5.2.1. Are Findings in the Real Data Study Similar to the Synthetic Scenarios?

In this section, we compare the findings in the synthetic and real case studies to look for broad similarities 
and differences. Section 4.2 indicates that process identifiability is generally consistent across the real data 
study and Scenarios 2 and 3. For example, the saturated zone process is always identifiable, with the dom-
inant mechanism being tension storage plus two parallel tanks, and the surface runoff routing process is 
also always identifiable, with the dominant mechanism being “routing present.” A minor exception is the 
evapotranspiration process, where a dominant mechanism is always identified in the real data study but is 
occasionally not identified in Scenarios 2 and 3 (P is 0.9 and 0.88).

5.2.2. Connection Between the Mechanisms Identified as Dominant and Existing Process 
Understanding in the Leizarán

The mechanisms identified as dominant can be interpreted from a process-oriented perspective that is avail-
able, albeit in a limited way, in the Leizarán (Basque Water Agency, personal communication, March 12, 
2020):

Storage in the upper soil layer. Approximated by a single state variable (i.e., without a tension storage). This 
mechanism, which presumes low tension storage, is plausible because Leizarán catchment has a low clay 
content (3%).

Storage of water in the saturated zone. Two parallel tanks and one tension storage. This mechanism might be 
plausibly linked to the combination of the geological and topographic conditions of the catchment, which 
favors a subsurface flow component. Geology is composed of 28% calcareous rocks, 28% sands, and 37% 
siliceous rocks; the catchment slope is high (elevation change over horizontal length is 0.42).

Evapotranspiration. Proportional to the depth of roots in each soil layer. This mechanism is plausible given 
the catchment has a riparian forest whose vegetation is oak and alder.

Routing. Present. The inference method finds that it is more probable that the surface runoff hydrograph is 
propagated through the river to the catchment outlet rather than being directly delivered to the outlet, i.e., 
the “routing mechanism is dominant.” This mechanism, which specifies a lag between precipitation and 
streamflow generation, is plausible because the catchment has meanders across its area of 114 km2.

For interflow, percolation, and surface runoff generation (the remaining processes), no mechanism is iden-
tified as dominant.

We note that these interpretations are necessarily tentative, in view of the currently limited understanding 
of the hydrology of the Leizarán catchment. These interpretations can be pursued in more depth in future 
work, along the research lines on the correspondence between models and catchments (Fenicia et al., 2014; 
Wrede et al., 2015; Carrer et al., 2019).

The general finding that the interflow and percolation processes are the hardest to identify aligns with 
previous work on hydrological process identification, where processes related to soil, geology, and vege-
tation were found harder to characterize than those related to climatic attributes (Beck et al., 2015; Addor 
et al., 2018). This raises the question of how to make the best use of soil and geological data, including 
signatures, for hydrological modeling (Gupta et al., 2008; Fenicia et al., 2018), and how to represent the 
continuum of response dynamics in the unsaturated and saturated zones (Silva et al., 2009).
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The sensitivity of the identified dominant mechanism to the choice of significance level   appears low: only 
a single additional mechanism becomes identifiable if   is relaxed to 0.1 (percolation for the 6 years period 
and interflow for the 12 years period). However, this finding is likely to be case specific.

Available data length is expected to impact mechanism identification, both by providing information for 
such identification and by potentially introducing variability into the identification if the catchment un-
dergoes hydrological change. In the real catchment case study using 6 and 12  years of data, 4 out of 7 
mechanisms are identified in both periods. An encouraging finding is that the mechanism inference is 
consistent: for those processes where a mechanism is identified as dominant with both lengths of data, the 
same mechanism is identified. In other words, there was no change in the estimation from one mechanism 
to another as more data were added—the only changes were from a mechanism being identified to a mech-
anism not being identified, and vice versa. Naturally the temporal consistency of mechanism identification 
also depends on the catchment not undergoing any genuine major changes. These findings also align with 
the previous literature on hydrological model component identification, including on the number of mod-
el components identifiable from a streamflow time series (e.g., Jakeman & Hornberger, 1993) and on the 
length of data needed to calibrate a model in a humid catchment (e.g., Gupta & Sorooshian, 1983; Sorooshi-
an et al., 1983; Yapo et al., 1996; Li et al., 2010).

5.3. Connection to Current Hypothesis Testing and Model Selection in Hydrology

5.3.1. Methods Proposed in This Work Focus on Individual Model Processes/Mechanisms, in 
Contrast to Existing Methods Which Focus on Complete Models

Flexible modular models have facilitated important advances for hypothesis testing in hydrology, enabling 
the decomposition of models into multiple testable hypotheses about mechanisms for individual process-
es (e.g., Clark et al., 2008; 2011a; 2015; Fenicia et al., 2011; Kraft et al., 2011; Wrede et al., 2015; Fenicia 
et al., 2016; Addor and Melsen, 2019; Knoben et al., 2019; Craig et al., 2020, and others).

Previous applications of Bayesian model selection in hydrology have focused on comparing models (or 
model parameters) but to our knowledge have not considered the question of individual mechanism iden-
tification. Our study builds on previous work on Bayesian model selection (e.g., Marshall et al., 2005; Vrugt 
& Robinson, 2007; Almeida et al., 2014; Schöniger et al., 2014; Wöhling et al., 2015; Prieto et al., 2019) and 
develops methods for the identification of dominant hydrological mechanisms by making hypotheses about 
the model mechanisms and their uncertainty. These advances are presented in Section 2 and represent the 
major contribution of this study.

The proposed mechanism identification method is general: it is derived for an ensemble of general probabil-
istic models without assuming a particular probabilistic model composition. For example, the case studies 
use a probabilistic model constructed from a combination of a deterministic model of hydrological process-
es and a residual error model for uncertainty characterization. This composition is typical in contemporary 
hydrological models. More general probabilistic (stochastic) models as well as probabilistic models con-
structed by forcing deterministic models with ensemble inputs could also be used, provided the probability 
density function of their outputs is known or can be approximated. As discussed next, the probabilistic 
model construction is less important than the coverage by the MHF of the space of mechanism hypotheses.

5.3.2. Toward Accounting for Uncertainty in the Identification of Dominant Hydrological 
Mechanisms

A key challenge in the hydrological community is to develop identification methods that perform reliably in 
the presence of incomplete and inexact information (i.e., uncertain streamflow observations, approximate 
model components and structures, limited coverage of hypothesis space, etc.).

Bayesian model selection, via posterior model probabilities (Hoeting et al., 1999), is well posed for process 
identification if a (quasi) true model is in the ensemble (Höge et al., 2019). Bayesian methods have been 
used for model selection, ranking, and elimination (Wöhling et al., 2015), as well as for model structure 
estimation (Bulygina & Gupta, 2011).
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In this paper, Bayesian model inference is applied in the distinct (though related) context of identification 
of dominant hydrological mechanisms rather than complete models. The cornerstone of this method is the 
ability to estimate the posterior probabilities of individual mechanisms, which is based on the posterior 
probabilities of models containing these mechanisms. Hence, the mechanism identification method pro-
posed in this work builds on previous applications of Bayesian inference to model selection in hydrology 
(Höge et al., 2019), including Bayes Factors (Marshall et al., 2005), and the use of information criteria in-
cluding Occam Razor terms to approximate the BME term (Ye et al., 2008; Schöniger et al., 2014).

The inference of the dominant mechanisms can be blurred by interactions between mechanisms used for 
(multiple) model processes. Hypothesis testing is necessarily constrained by the Duhem–Quine thesis (Du-
hem, 1991), which highlights the difficulty or even impossibility of separating individual model hypotheses 
from their “surrounding” model environment (Nearing et al., 2016, 2020). Conceptually, we see mechanism 
interactions as similar to parameter interactions in traditional inference: for example, two “poor” mecha-
nisms (parameter values) can compensate for each other's weaknesses and produce a model with similar 
or even higher posterior probability than a model with two “good” mechanisms (parameter values). Such 
interactions can be problematic, as seen from the derivation of the mechanism identification equations 
(Section  2.5). Scenario 3 presents some empirical evidence of mechanism interactions (see end of Sec-
tion 4.1.4), where they manifest in a loss of power—though strong interactions may eventually manifest in 
loss of reliability. As individual model hypotheses are (gradually) improved, we expect to see corresponding 
improvement in the identification of dominant mechanisms. Interactions between model mechanisms can 
also be reduced by using observations of model outputs other than streamflow, for example, actual ET and 
groundwater levels. The benefits of using multivariate data for model identification and refinement are 
vividly seen from previous studies (e.g., Fenicia et al., 2008; Gupta et al., 2008; Wagener & Montanari, 2011; 
Euser et al., 2013).

In terms of requirements for the MHF, a key requirement is sufficiently wide coverage of the mechanism 
hypothesis space, including a diverse range of simple and complex candidate mechanisms, so that the re-
sulting ensemble is more likely to include the true (or at least quasi-true) mechanisms. The presence of 
nested models and/or nested model mechanisms could lead to multiple models having the same likelihood 
function value, though the inclusion of Occam Razor terms in the computation of posterior model proba-
bilities can help steer the inference toward the simpler representation (see Appendix A). Another important 
consideration is to avoid the potential trap of all models in the ensemble being wrong for the same reason 
(Clark et al., 2011a).

Finally, important simplifications undertaken in the case studies are the exclusion of parametric uncertain-
ty within each model and the (related) use of the BIC to approximate the BME. These simplifications are 
motivated by computational considerations, with limitations and future work outlined next in Section 5.4.

5.4. Limitations and Future Work

Important directions for future research emerge in the application of the proposed mechanism identifi-
cation method to more complex modeling scenarios, both in the context of synthetic tests and real data 
applications. This section lists the most salient opportunities.

The case studies in this work did not consider parametric uncertainty in the hydrological model. This as-
sumption may be reasonable in many circumstances, for example, when the uncertainty associated with a 
(relatively) parsimonious hydrological model is represented using a simple residual error model, and a suit-
able long observational record is available for parameter inference (Kavetski, 2018; McInerney et al., 2018). 
However, there are many modeling situations where parametric uncertainty can be substantial, notably, 
in poorly identifiable models (e.g., Renard et al., 2010). An important and logical next step is to apply the 
mechanism identification method in a more complete Bayesian context that explicitly considers model pa-
rameter uncertainty, for example, using importance or Markov Chain Monte Carlo sampling.

The synthetic studies in this paper have used relatively simple error models to corrupt the synthetic “ob-
served” data, and, importantly, the true mechanisms were included in the model space. But what happens 
if a true mechanism is not included in the ensemble? It is well known that many statistical model identifi-
cation methods assume that the true model is present, which may not be realistic in practical hydrological 
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contexts. An important practical question is then how “good” should the “best available” mechanism/model 
representation be for it to be identified as “dominant” by the method?

Another important uncertainty-related consideration that remains largely unexplored in this study is the 
interaction between identified mechanisms (see Duhem, 1991; Nearing et al., 2016, 2020). In most catch-
ments, specialized measurements to test each hypothesis/mechanism (e.g., “observations” of storage of 
water in the unsaturated and saturated zone, percolation, actual evapotranspiration, etc.) are not available, 
and hypothesis testing is necessarily limited to tests against observed streamflow. Given the dependence of 
streamflow on multiple and often interacting hydrological processes, model predictions can be expected to 
depend on multiple interdependent hypotheses (Pfister & Kirchner, 2017). This aspect of mechanism iden-
tification also requires substantial further investigation.

Furthermore, as flexible frameworks continue to improve and expand their coverage, so will their ability to 
meet the mechanism identification requirements. However, as more candidate mechanisms are hypothe-
sized, it is likely that differences between them will become smaller. We anticipate a limit on the degree of 
mechanism detail that can be inferred from highly uncertain environmental data. But more research will be 
needed before meaningful quantitative statements can be made.

Future work will apply the method proposed in this paper to a more diverse range of catchments, as well 
as to a range of different time periods in the same catchment, analogous to split-sampling and cross-valida-
tion. These analyses can help elucidate the pattern, consistency, and variability of the identified dominant 
mechanisms and can help establish model performance when faced with data unseen during mechanism 
identification. Of particular interest are applications in experimental catchments, where more extensive 
fieldwork and multivariate data other than streamflow time series (e.g., storages of water) is available. Ap-
plication of Bayesian mechanism identification in experimental catchments could extend previous studies 
where model comparison was done on the basis of existing perceptual knowledge (Carrer et al., 2019; Fe-
nicia et al., 2014; Wrede et al., 2015). Such work could yield insights into correspondence of models and 
reality, as well as into the variability of hydrological mechanisms in space (across catchments, e.g., due to 
differences in topography, geology, and land use) and time (within catchments, e.g., across seasons).

Finally, the mechanism selection method will be extended to work with hydrological signatures, in order 
to enable the identification of dominant mechanisms in ungauged catchments (e.g., Sivapalan et al., 2003; 
Bulygina et al., 2012; Westerberg et al., 2016; McMillan et al., 2017; Prieto et al., 2019).

6. Conclusions
The development of hydrological models that provide an accurate representation of catchment dynamics 
and produce accurate streamflow predictions represents a formidable model identification challenge. In 
this work, we approach this model identification challenge with a focus on identifying individual model 
components (hydrological mechanisms) for each hydrological process that is included in the model.

The proposed hydrological mechanism identification method takes advantage of flexible hydrological 
models, Bayesian inference, and statistical hypothesis testing. A “dominant” mechanism is defined as a 
mechanism with (substantially) higher posterior probability than the sum of posterior probabilities of all 
other proposed mechanisms; here, we set the probability threshold at 0.75 (i.e., 3 times more a posteriori 
probable than any alternative mechanism). A test statistic is constructed for the null hypothesis that “none 
of the proposed mechanisms is dominant”, and its estimated probability is compared against an a priori 
confidence level (here, 95%, corresponding to the classic significance level of 5%).

The method is evaluated empirically using a synthetic and real data case study based on daily data from 
the Leizarán catchment (Basque Country, Spain). The hydrological modeling system FUSE is employed to 
represent seven hydrological processes using 2–4 mechanisms per process, yielding a total of 624 feasible 
model hypotheses. Synthetic scenarios with 3 levels of error magnitude (low to high) and 50 data replicates 
each are used to establish the performance of the proposed method in the presence of data/model error. 
Metrics of statistical reliability and power are used to quantify and then rate the method performance. Real 
data are used to investigate the generality of key qualitative findings of the synthetic experiments.
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The following conclusions are obtained:

1.  Hydrological mechanism identification can be based on posterior probabilities of mechanisms estimated 
from observed rainfall-runoff data using a Bayesian approach, with a correction to account for the un-
balanced frequency of mechanism occurrence in the multihypothesis-testing method. A key underlying 
assumption of the mechanism identification method is that, on average, models with highly probable 
mechanisms have a higher posterior probability than models with less-probable mechanisms. The un-
certainty in the test statistic arising from incomplete coverage of the mechanism hypothesis space is 
approximated by bootstrapping the ensemble of model structures.

2.  Empirical verification indicates that the mechanism identification method is statistically reliable: If the 
method identifies a mechanism as dominant, this mechanism is usually the true mechanism. Pooling 
the results across all processes and error levels, the method identifies the true mechanism in all synthet-
ic trials. As expected, the statistical power of the test (ability to make a determination) decreases when 
data/model errors are high, with no mechanism being identified as dominant in 14% of all trials.

3.  In the synthetic study, the following insights are obtained into process identification:
a)  The most identifiable processes, i.e., the processes for which dominant mechanisms are most identi-

fiable, are those related to storage of water in the lower soil layer (saturated zone) and the movement 
of surface water (i.e., routing). Dominant mechanisms for these processes can be identified with 
perfect reliability and power even from streamflow corrupted with high (synthetic) errors.

b)  The least identifiable processes, i.e., the processes for which dominant mechanisms are least iden-
tifiable, are those related to the movement of water into the soil (interflow and percolation). In 
particular, the dominant mechanism for percolation is identified with power as low as 22% and 10% 
when streamflow errors are medium and high, respectively. In addition, the mechanisms represent-
ing percolation in the FUSE model are comparatively similar, making them harder to distinguish.

4.  The real data study demonstrates how the proposed mechanism identification method is implemented 
in practice. Overall, the behavior in the real case study is comparable to the behavior in the synthetic 
case study. For example, a similar number and type of mechanisms were identified in both cases (e.g., 
the storage in the saturated zone is better approximated by a tension storage combined with two parallel 
tanks). This consistency provides a degree of confidence in the robustness of the findings as a proof-
of-concept demonstration. Generally consistent mechanism identification is obtained using inference 
based on 6 and 12 years of data, as well as when the significance level is tightened from 10% to 1%.

More generally, this study contributes to broader community efforts on improving model identification and 
catchment understanding, by combining ideas from flexible models, Bayesian inference, and statistical hy-
pothesis testing. Future research directions include a more complete treatment of uncertainty (in particular 
parameter uncertainty) in the context of hydrological mechanism identification, better understanding of 
the impact of the best models being “quasi-true” rather than “true,” detection and where possible mitiga-
tion of mechanism interactions, as well as applications to wider sets of catchments and modeling contexts 
(including ungauged catchments).

Appendix A: Simplification of Posterior Probability of a Model Structure 
Using Maximum A Posteriori Estimation
This appendix briefly discusses the approximation of the Bayesian Model Evidence (BME) in the context of 
the mechanism identification method developed in this study.

For a given model structure, BME is defined by the integral in the denominator of Bayes equation, namely

  ( ) ( ) ( ) ( ) ( ) ( )

( )Ω

( | ) ( | , ) ( | )dk k k k k k

k
p G p G p Gq q θ θ θ (A1)

Direct evaluation of this high-dimensional integral is a formidable computational task (Ye et  al.,  2008; 
Schöniger et al., 2014).

An attractive pragmatic alternative is to approximate Equation A1 using information from the most proba-
ble parameter set. Such approximations are appropriate when posterior parameter uncertainty is (relative-
ly) low, which is often the case in hydrological modeling applications when the effects of model and data 
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uncertainty are represented using a residual error model and long observed data time series are used (e.g., 
Kuczera et al., 2006; Yang et al., 2007; Sun et al., 2017; Kavetski, 2018).

The most probable parameter set is defined as the parameter set that maximizes the posterior distribution 
of model parameters in Equation 5,

 ( ) ( ) ( )

( )
arg max ( | , )ˆ k k k

k
p G

θ

θ θ q (A2)

Equation A1 can then be approximated using several analytical approaches.

The BIC, also known as the Schwarz Information Criterion (SIC), is defined as

    ( ) ( ) ( ) ( ) ( )BIC BIC( , ) 2 log ( | , ) logˆk k k k k
tG p G N Nθq q θ (A3)

where ( )kNθ  is the total number of model parameters in the probabilistic model ( )kG  (Ye et al., 2008; Schöni-
ger et al., 2014). The last term in Equation A3 is a so-called “Occam Razor” term, which penalizes model 
complexity (here measured by the number of parameters). Occam Razor terms are essential to distinguish 
between models (and eventually mechanisms) that yield comparable predictive performance but differ in 
their degree of complexity.

The BIC approximation of the BME in Equation 7 is then

 
  

   
     
    

   
     
   

 


( ) ( ) ( ) ( )
max

( )

( ) ( ) ( ) ( )
max1 1

1 1exp BIC ( | ) exp BIC BIC ( | )
2 2

( | , )
1 1BIC ( | ) exp BIC BIC ( | )
2 2

k k k k

k

N Ni i i iG G
i i

p G p G
p G

exp p G p G

G G
q G

G G
 (A4)

The last term in Equation A4 uses the shift by 


 ( )
max 1,... ,

max i

i NG
BIC BIC  to achieve a robust computational 

implementation that avoids numerical underflows or overflows.

Unless specific prior information is available, the prior over the hydrological models is set as uniform,

 ( )( | ) 1 /k
Gp G N kG (A5)

where GN  is the total number of models under consideration.

The BIC is derived by applying the Laplace approximation to the integral in Equation  A1 and only re-
taining the terms dependent on the data length tN , i.e., assuming the number of observations is large 
(Schwarz, 1978; Konishi & Kitagawa, 2008). There are several alternative information criteria. For example, 
the Akaike Information Criterion (AIC) is derived from information theory and penalizes the number of 
parameters according to ( )2 kN

θ
 instead of ( ) logk tN N

θ
 (Akaike, 1974). The Kashyap Information Criterion 

(KIC) is derived by assuming the parameter posterior is Gaussian and has additional Occam Razor terms, 
including a term containing the determinant of the Fisher information matrix (Fisher & Russell,  1922; 
Kashyap, 1982).

All three information criteria, AIC, BIC, and KIC, converge to the integral in Equation A1 as the number 
of observations used in the analysis increases, by the virtue of the likelihood term eventually dominating 
all other terms. The KIC approach is theoretically more accurate; however, the approximation of the Fisher 
matrix (e.g., using finite differences) is noisy, and it is difficult to ensure comparable numerical accuracy 
across many (hundreds to thousands) model structures as required in the mechanism identification frame-
work. For these reasons, the BIC approach offers a better balance of numerical accuracy and computational 
robustness in the specific context of this study.

It is also emphasized that the simplification in Equation A4 is separate from the derivation of the mecha-
nism identification equations, which requires solely ( )( | , )kp G q G . As such, the modeler is free to compute 

( )( | , )kp G q G  using methods/approximations suitable for their specific application.
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Appendix B: Probabilistic Model and Its Inference (Likelihood and Prior) for 
a Single Hydrological Model Structure
A single probabilistic hydrological model in this work is given by Equations 2–4. It is constructed using a 
given FUSE configuration (model structure) as the deterministic model in Equation 2 in combination with 
the Box–Cox transformation (Box & Cox, 1964) in Equation 3,

z q z q A

q A

q A

( ) ( ; , )

( )

log( )

 
 













 


 1
0when

otherwise

 (B1)

The transformation parameters are fixed a priori: the power parameter   0.2 and the offset parameter 
 0.035A . To reduce clutter, these fixed parameters are omitted from the equations.

The likelihood function for this probabilistic model is given in Equation 6 and makes use of the Jacobian of 

the Box–Cox transformation,    


   
1( ) ; ,z q z q A q A .

In order to improve numerical robustness in the computation of posterior model probabilities via Equa-
tions A3 and A4, the likelihood function is computed directly in log-space,

  


      2

1
( | ) ( | , ) ( ( ) ( ); ( ), )

Nt
h

h t t t
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 (B3)

and then used to compute the BIC as described in Appendix A.

The prior ( ) ( , )hp pθ θ  in Equation 5 is specified as uniform over the feasible parameter ranges (defined 
by min and max parameter bounds),

max min 1 max min 1
, ,

1
( ) ( , ) ( ) ( )

N h

h h i h i
i

p p      


    

θ
θ θ θ θ (B4)

where hNθ  is the number of parameters in the deterministic hydrological model h.

Appendix C: Generation of Data for Synthetic Experiments
C.0. Generation of Synthetic “Exact” Model and Data

The synthetic “exact” hydro mechanisms, synthetic “exact” hydrological parameters hθ


, and synthetic “ex-
act” streamflow time series q are generated as follows:

1.  Calibrate all models within the FUSE ensemble to observed streamflow from the Leizarán catchment. 
A hybrid parameter estimation method similar to the LS-MoM approach of McInerney et al. (2018) is 
used (Section 3.3).

2.  Set the synthetic “exact” model and mechanisms.

 (a)  The “exact” deterministic hydrological model, 

h, is set to the best-performing FUSE structure (highest 

posterior density at the optimal parameter set).
 (b)  The “exact” hydro mechanisms, m, are set to the mechanisms that comprise the exact model structure 

h.

 (c)  The “exact” parameters, hθ


, are set to the estimated parameters of the exact model 

h.
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3.  Generate “exact” streamflow q.

 A time series of 6 years (2,190 daily time steps) of synthetic “exact” daily streamflow q is generated by 
running the exact deterministic model (with exact parameters) forced with the observed daily precipita-
tion and potential evapotranspiration from the Leizarán catchment (see Section 3.1),

1: 0( ; , )t t h tq h θ x s



 (C1)

This procedure produces synthetic “exact” streamflow data that broadly resemble the real streamflow data 
from the Leizarán catchment.

C.1. Generation of Synthetic “Observed” Data in Scenarios 1–3

The synthetic replicates of “observed” streamflow for Scenarios 1–3 are generated using the following 
procedure.

In a given scenario, the magnitude of synthetic noise in the replicates is specified by  .

1.  Compute transformed “exact” streamflow  
 zγ q .

2.  Generate the ith replicate of “observed” streamflow, 
 ( )rq :

 

 (a)  Sample the replicate in transformed space


( ) 2( , )rγ γ (C2)

 (b)  Back-transform to streamflow space


 ( ) 1 ( )( )r rzq γ (C3)

3.  Generate multiple replicates, 
 ( ) rep{ ; 1,..., }r r Nq , where repN  is the total number of replicates.

The error levels are specified as follows: Scenario 1 uses   0.025, Scenario 2 uses   0.1, and Scenario 
3 uses   0.25.

The Box–Cox transformation parameters in the generation of synthetic data are set the same values as in the 
assumed probability model, namely   0.2 and  0.035A .

A total of rep 50N  synthetic replicates are generated.

Data Availability Statement
The data presented in this paper are deposited in https://doi.org/10.5281/zenodo.4744400.
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