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Future projections of coastal erosion, which are one of the most demanded climate
services in coastal areas, are mainly developed using top-down approaches. These
approaches consist of undertaking a sequence of steps that include selecting emission
or concentration scenarios and climate models, correcting models bias, applying
downscaling methods, and implementing coastal erosion models. The information
involved in this modelling chain cascades across steps, and so does related
uncertainty, which accumulates in the results. Here, we develop long-term multi-
ensemble probabilistic coastal erosion projections following the steps of the top-down
approach, factorise, decompose and visualise the uncertainty cascade using real data
and analyse the contribution of the uncertainty sources (knowledge-based and intrinsic)
to the total uncertainty. We find a multi-modal response in long-term erosion estimates
and demonstrate that not sampling internal climate variability’s uncertainty sufficiently
could lead to a truncated outcomes range, affecting decision-making. Additionally, the
noise arising from internal variability (rare outcomes) appears to be an important part of
the full range of results, as it turns out that the most extreme shoreline retreat events
occur for the simulated chronologies of climate forcing conditions. We conclude that,
to capture the full uncertainty, all sources need to be properly sampled considering the
climate-related forcing variables involved, the degree of anthropogenic impact and time
horizon targeted.

Keywords: multi-ensemble, probabilistic, coastal erosion projections, uncertainty cascade, climate change

INTRODUCTION

Mean sea level, wave conditions, storm surges and tides are shaping coasts worldwide (Wong et al.,
2014). These coastal drivers are altered by global and regional climate change, bringing additional
uncertainty to present conditions that grows toward the end of the century and beyond (Kopp
et al., 2017). The way this uncertainty propagates from different levels of radiative forcing in the
form of emission and concentration scenarios (RCPs) through global and regional climate models
(GCMs and RCMs, respectively), and coastal regional forcing and erosion models is primarily
assessed using top-down approaches (Ranasinghe, 2016; Toimil et al., 2020a), which require bias
correction and downscaling procedures (Zscheischler et al., 2018). Top-down approaches involve
undertaking a sequence of steps through which information and uncertainty cascade from one step
to the next, leading to an expansion of the envelope of uncertainty, widely referred to as the cascade
of uncertainty (Mitchell and Hulme, 1999; Wilby and Dessai, 2010) in the literature.
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When it comes to develop coastal erosion projections, the
uncertainty that arises from top-down approaches can be
classified as intrinsic or knowledge-related (Toimil et al., 2020a).
Intrinsic uncertainty is inherent to the climate change problem
and irreducible (Giorgi, 2010) and includes uncertainty in
emission scenarios and in the internal variability of the climate
system. Conversely, knowledge uncertainty, which is said not to
exist in the “real world” (Mankin et al., 2020), is rooted in our
imperfect knowledge of atmospheric, biogeochemical, physical,
dynamic and coastal processes and could be decreased by
advancing science understanding and increasing computational
resources. Knowledge uncertainty comprises concentration
scenario uncertainty, GCM–RCM uncertainty, bias uncertainty,
downscaling uncertainty, and (epistemic) coastal erosion model
(CEM) uncertainty. Such uncertainty sources can dominate one
another (Giorgi, 2010) and their importance depends on many
factors that encompass the climate-related variable, the time
horizon of the projection, the region, and the geographic scale
(Hawkins and Sutton, 2009; Fernández et al., 2019).

It will never be possible to quantify very accurately the
likelihood that future climate change will reach a particular
magnitude, although some quantitative bounds can be assessed
and potentially narrowed (Sutton, 2019). And even when
uncertainty is large and irreducible and hampers communication,
its characterisation remains the means to effective risk-informed
decision-making (Mankin et al., 2020). To date, there have been
many attempts to address uncertainty in climate projections, but
little attention has been really paid to impacts and risks (IPCC,
2013, 2018), which require considering at least two important
aspects that could bring additional challenges. Risk assessment
seeks to account for the full range of potential unwanted or “bad”
outcomes even when they are very uncertain (and very unlikely)
(Sutton, 2019). The second aspect is associated with practical
and conceptual barriers in how to approach uncertainty sampling
across the entire top-down approach. Existing studies limit
exploration to knowledge uncertainty and single dimensions,
involving one or two steps in the top-down approach, for
example, by considering different representative concentration
pathways or RCPs, GCM, or GCM–RCM ensembles with a
single realisation, a variation range of mean sea-level rise
(SLR), or CEM ensembles (Toimil et al., 2020a). Accounting
for these uncertainty sources in an aggregated manner, however,
would help to identify what is the step in the top-down
process contributing the most and where to focus efforts to
reduce uncertainty. Internal variability uncertainty, which is due
to the natural variations in the climate system, by contrast
cannot be reduced and has been demonstrated to be large
and persistent, having the potential to impoverish decision-
making if disregarded (e.g., Mankin et al., 2020). In the same
manner different GCMs and RCMs give different responses
about future climate, so does different realisations of the same
GCMs or RCMs (under the same assumptions) due to their
stochastic nature. This noise arisen from internal variability can
be a very valuable source of information for the assessment
of coastal erosion, where the chronology of the climate-related
forcing conditions could be determinant, especially on short-
term timescales (Toimil et al., 2017).

Just as important as it is considering the cascade of uncertainty
is to visualise it, and this is crucial because visualisation is usually
the prelude to understanding. However, to our knowledge,
very few studies to date have tried to visualise this cascade
using real data, all of which focused on climate variables.
For instance, Hawkins (2014) pioneered the visualisation of
the uncertainty cascade in global mean surface temperature
projections considering three pyramid levels (RCPs–GCMs-
realisations). Following the same visualisation, Swart et al. (2015)
analysed of the influence of internal variability on Arctic sea-ice
extent (RCPs–GCMs-realisation) and, more recently, Fernández
et al. (2019) presented a research work on seasonal precipitation
and temperature changes and their dependence on GCMs and
RCMs, realisations, emission scenarios or RCPs, and resolution.
While studies on projections of coastal impacts and, in particular,
of coastal erosion, have shown progress in the quantification
of the relative contribution of uncertainty dimensions to the
total uncertainty (e.g., Le Cozannet et al., 2019; Athanasiou
et al., 2020), they mainly focus on the application of variance-
based decomposition methods and mostly limit the top-down
approach-related sources of uncertainty considered to RCPs, SLR,
and CEMs, and do not provide neither a conception nor a
visualisation of the full cascade.

In this paper, we develop coastal erosion projections following
each of the steps of the top-down procedure and sampling the
associated knowledge and intrinsic uncertainty. We decompose
and factorise the cascade of uncertainty going from RCPs down to
future coastal erosion estimates. Our approach combines the fully
implementation of probabilistic SLR projections and dynamic
projections of waves and storm surges in an ensemble of two
CEMs for different RCPs and GCMs, including bias correction
and the hybrid downscaling of waves to nearshore. In addition,
we sample uncertainty in climate variability by generating
thousands of synthetic multivariate time series of projected
nearshore waves and storm surges, leading to chronologies
different from the dynamic projections’ original realisation. Using
a real beach as an illustration and looking at long-term shoreline
recession and non-stationary extreme retreat events, we analyse
the dependence of far-future coastal erosion projections on RCPs
and GCMs, climate variability, SLR percentiles, and CEMs.

The paper is structured as follows. Section “Study Area”
provides a brief description of the study area where the
analysis is performed. Section “Development of Coastal
Erosion Projections” describes the approach proposed for
the development of coastal erosion projections. Section
“Visualisation and Communication of Uncertainty in Coastal
Erosion Projections” analyses uncertainty in coastal erosion
projections and discusses ways of visualisation. Finally, section
“Conclusion” provides some concluding remarks.

STUDY AREA

The analysis is performed in San Lorenzo Beach, a pocket urban
beach located in Gijon (Asturias), northern Spain. It has a
macrotidal semidiurnal regime (2–5 m of spring tidal range) and
fine (0.2–0.3 mm) quartz sand. The most energetic waves come
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from the Northwest to the North-Northwest sectors. During
extreme weather events, these waves can reach up significant
wave heights of 10 m and peak periods of 20 s. San Lorenzo
response to coastal climate forcing is cross-shore dominated
as has negligible alongshore gradients in longshore sediment
transport and does not experience significant rotation. It has
homogenous grain size and composition along its whole cross
section and has a constant berm height along its length. Toimil
et al. (2017) derived these parameters from field surveys.

DEVELOPMENT OF COASTAL EROSION
PROJECTIONS

We develop long-term multi-ensemble probabilistic coastal
erosion projections for the period 2081–2100 in San Lorenzo
Beach following the steps of the top-down approach to
sufficiently quantify the associated uncertainty. Such steps are
shown in Figure 1. We first compile dynamic projections of
waves and storm surges developed for 2 RCPs (RCP4.5 and
RCP8.5, box A) and 6 GCMs each (box b1). In a second step,
we correct their bias (box b2) and downscale wave projections to
the coast using a hybrid approach that combines statistical and
numerical modelling and incorporates the effects of projected
mean sea level on nearshore waves (box b3). We generate
1,000 synthetic multivariate time series of GCM-driven projected
wave conditions and storm surges (box b4). Additionally, we
obtain 3 SLR trajectories corresponding to three percentiles from
probabilistic local SLR projections for the radiative forcings
RCP4.5 and RCP8.5, and reconstruct the astronomical tide
(boxes c2, D, respectively). Finally, we apply 2 CEMs that
provide the beach response to cross-shore forcing (box e1).
As a result (2 RCPs × 6 GCMs × 1,000 realisations × 3

SLR percentiles × 2 CEMs), we obtain 72,000 hourly time
series of projected shoreline evolution (box e2). As can be
seen, boxes a (RCP ensemble), b2 (GCM ensemble), b5 (climate
variability uncertainty sampling, denoted as CLIM VAR), c2 (SLR
percentiles), and e1 (CEM ensemble) correspond to the different
levels of the cascade of uncertainty. Note that actions displayed
in grey are the projections of waves, storm surge and SLR, which
have not been developed in this study but used as input for the
following steps.

Projections of Mean Sea-Level Rise
Projections of global mean SLR provide insufficient information
to support climate change adaptation, as local decisions require
local projections that accommodate different risk tolerances
(Kopp et al., 2014). In this study, we use complete probability
distributions of regional mean SLR considering Antarctic ice-
sheet (AIS) simulations (DeConto and Pollard, 2016), including
ice-shelf hydrofracturing and ice-cliff collapse (DP16, Kopp et al.,
2017). The use of explicit physics has led to a significant upward
shift in central projections for the RCP4.5 and RCP8.5 scenarios
with respect to its predecessor Kopp et al. (2014), which relies
on expert assessment and elicitation. While DP16 projections are
only based on a single AIS model and need further development
to increase confidence (Hinkel et al., 2019), they allow expanding
the space of the physically coherent and can be a useful tool to
explore the uncertainty in future extreme outcomes.

We obtain probabilistic SLR projections at Gijon tide-gauge,
using the code provided by Kopp et al. (2017), for the RCP4.5 and
RCP8.5 scenarios. For both RCPs, we account for SLR uncertainty
by considering the 5, 50, and 95th percentiles of the simulated
frequency distributions. As can be observed in Figure 2, the
projected 50th percentile increases from 0.59 to 0.90 m, and from
0.87 to 1.46 m from 2081 to 2100 under the RCP4.5 and the

FIGURE 1 | Flowchart describing the methodology proposed for the development of coastal erosion projections. Boxes A–E represent different components of the
top-down approach and, in particular, boxes A (RCP ensemble), b2 (GCM ensemble), b5 (internal climate variability sampling denoted as CLIM VAR), c2 (SLR
percentiles), and e1 (CEM ensemble) relate to the different levels of the cascade of uncertainty. Actions displayed in grey colour involve actions not undertaken in this
study although used as input for other steps.
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FIGURE 2 | Probabilistic projections of local-mean sea-level rise at Gijon tide-gauge for RCP4.5 and RCP8.5 from 2070 to 2100 using Kopp et al. (2017) framework.
Solid lines indicate 50th percentile; dashed lines indicate 5 and 95th percentiles; shaded areas represent the 0.5 and 99.5th percentiles of the SLR distribution for
2100.

RCP8.5, respectively. While assuming constant acceleration of ice
loss leads to an increase in forcing sensitivity, the central 90% of
simulations by 2100 for the RCP4.5 (0.36–1.63 m) and the RCP8.5
(0.76–2.55 m), respectively, overlap near the mid-low RCP8.5
percentiles. The highest RCP8.5 percentiles spread significantly
from the mean values.

Projections of Waves and Storm Surges
IHCantabria (2020) has recently generated dynamic multi-
model projections of wave conditions and storm surge. Wave
projections were developed for the Northeast Atlantic Ocean
using the WaveWatch III third generation wave model (Tolman
and The WaveWatch III R© Development Group, 2014). In the
model, three regional grids (Artic, Atlantic and Spain-Atlantic
with resolutions of 1◦ × 1◦, 0.5◦ × 0.5◦, and 0.1◦×0.1◦,
respectively) were nested to a global grid with a resolution
of 1◦×1◦. The global grid was forced with winds and ice
coverage from 6 GCMs.

Storm surge projections were produced for the Atlantic and
Mediterranean coast of Spain using the ROMS ocean circulation
model (Shchepetkin and McWilliams, 2005) with a 0.08◦ × 0.06◦
resolution grid. The grid was forced with winds and sea level
pressure from 6 GCMs.

Ensemble of Climate Models and Dynamic
Downscaling
The wave and ocean models were forced with the outputs of the
GCMs described in Supplementary Table 1. The selection of
the GCMs (with spatial resolution between 0.75◦ and 2.5◦) was
based on the provision of the variables of interest at the required
temporal resolution (3-hourly), time periods (1985–2005, 2026–
2045, and 2081–2100) and concentration scenarios (RCP4.5 and
RCP8.5), and on if these variables were derived from the same
GCM realisation and initialisation. For this study, we consider
the model simulations for both RCPs, 6 GCMs (ACCESS1.0,

CMCC-CC, CNRM-CM5, HadGEM2-ES, IPSL-CM5A-MR, and
MIROC5) from the Coupled Model Intercomparison Project 5
(CMIP5), and two time periods, the long-term future (2081–
2100) and the historical reference (1985–2005).

The wave model was run following a multigrid configuration
as for the development of the global ocean wave database GOW2
(Pérez et al., 2017). Earth2014 (Hirt and Rexer, 2015) and
GSHHG (Global Self-consistent Hierarchical High-resolution
Geography) databases were used to define the bathymetry and the
coastlines, respectively. The bathymetric information for ROMS
came from the EMODnet database. The GCM variables used to
force the wave and ocean models were wind fields at 10 m over
the sea surface level and concentrations of ice coverage (from 0
to 1), and surface wind fields and sea level pressure, respectively.
GCM-derived variables were in both cases interpolated at each
node of the computational grid at an hourly scale for the complete
simulated periods.

Bias Correction
GCM outputs contain important biases when compared to
observations, which need to be corrected before using them
for impact studies. As these outputs are not synchronised with
reanalysis or hindcast data, bias correction cannot be applied
on an hourly basis but on the distributions or statistics of
the variables to be corrected (Maraun, 2016). In recent years,
different methods for bias correction have been developed. These
range from simple techniques based on the delta method (Hay
et al., 2000) that are convenient for monthly or annual data,
to more sophisticated approaches based on quantile–quantile
mapping that are more suitable when working at daily scales
(Gutiérrez et al., 2018).

In this study, we apply the empirical quantile mapping
(EQM) method. The EQM consists of analysing the distribution
of observed values and adjusting some characteristics of the
empirical probability distribution function with projected values
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by means of identifying quantiles. This adjustment applies to
the wave and storm surge projections in the historical period
(1986–2005) and in the future period (2081–2100) to correct the
simulations (Dequé, 2007). The EQM is given by the following
equation:

z = CDF−1
obs

(
CDFmod

(
y
))

(1)

where z and y are the corrected and original values of the
model, respectively; and CDFobs and CDFmod are the empirical
cumulative distribution functions of the observations and the
model, respectively.

We define the quantiles following linear spacing(
qi = 1, 5, 10, . . . , 90

)
and Gumbel distribution fitting

(for quantiles over the 90th percentile). For each quantile, we
obtain the correction term and interpolate linearly between
them. Then, we extrapolate the data outside the predefined
quantile range using the same correction term found for the
first and last quantiles (Lemos et al., 2020). Additionally, we
define bias as a time-invariant component of a model error. For
the historical period (reference), we use the GOW2 database to
correct the wave climate simulations (significant wave height,
Hs, and peak period, Tp) and the GOS dataset (Cid et al., 2014)
to correct the storm surge.

In order to validate the EQM-based bias correction, we
compare the GOW2 and GOS distribution functions with the

climatic data from the GCMs using the PDFscore (probability
density function score), as proposed by Perkins et al. (2007).
The PDFscore measures the degree of similarity of two probability
density functions, allowing the comparison of entire time series
without the limitation of having non-simultaneous climatic data
over time (it takes value 1 when the functions are similar, and 0
when there is no overlap between them). Further details on the
validation are provided in the Supplementary Material.

Figure 3 shows the comparison of the distribution function of
Hs for each GCM in the historical period (1985–2005) with the
GOW2 historical distribution. The CMCC model, which is the
GCM with the highest spatial resolution, is the ensemble member
that better reproduces the hindcast simulations. The other
members of the GCM ensemble underestimate Hs. Figure 3A
illustrates the distribution function of Hs at deep water from
the GOW2 hindcast and the climatic data from the ensemble
members (ACCESS1.0, CMCC-CC, CNRM-CM5, HadGEM2-
ES, IPSL-CM5A-MR, and MIROC5) with the corresponding
PDFscore. Figure 3B shows the Q–Q plot of the original
(uncorrected) Hs per ensemble member against GOW2 Hs. Five
ensemble members show a consistent underestimation, especially
at the upper quantiles (i.e., extreme values, over the 99th
percentile). Figures 3C,D display the distribution function and
the Q–Q plot for the corrected Hs, showing how bias correction
leads to a better agreement between each ensemble member

FIGURE 3 | (A) Probability distribution function of Hs at deep waters from the hindcast GOW2 database and the uncorrected climatic data from each ensemble
member (i.e., ACCESS1.0, CMCC-CC, CNRM-CM5, HadGEM2-ES, IPSL-CM5A-MR, and MIROC5) with the corresponding PDFscore. (B) Q–Q plot of the original
uncorrected Hs, per ensemble member. (C) Probability distribution functions of GOW2 Hs and corrected Hs associated with each ensemble member. (D) Q–Q plot
of the original uncorrected Hs, per ensemble member.
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and GOW2. The improvement in representing the most extreme
events is due to the Gumbel distribution fitting for quantiles
over the 90th percentile. Supplementary Figure 1 presents the
equivalent analysis for the storm surge.

Hybrid Downscaling of Waves Projections
Despite the dynamic projections present very high resolution
along the Spanish coast, we nest a coastal wave propagation
model to capture wave transformations that result from
interactions with the bathymetry and future sea level (SLR,
projected storm surge and astronomical tides). Since downscaling
hourly wave conditions for 2 RCPs and 6 GCMs considering
3 SLR trajectories requires a huge computational effort, hybrid
downscaling techniques can offer advantage. We apply the
hybrid downscaling technique developed by Camus et al. (2011),
which combines mathematical tools (i.e., a selection algorithm
and a multidimensional interpolation method) with numerical
simulations to obtain the future wave forcings of the CEMs.
The steps of the hybrid downscaling approach are: (1) selection
of the closest node to the study beach from dynamical wave
projections at 0.1◦ resolution along the Spanish coast and the
closest wind node from the corresponding GCM, and collection
of the time series of the state parameters Hs, Tp and mean
direction, as well as the wind velocity and direction for the target
time period (2081–2100) and from the 6 GCMs; (2) selection of a
limited number of cases (500), which are the most representative
of all possible future wave conditions at 0.1◦ resolution; (3)
propagation of the selected cases using a wave transformation
model for each scenario considered at four sea levels (0.0, 2.5, 5.0,
and 8.0 m) that cover the whole casuistry of storm surge, tide,
and SLR by the end of the century; and (4) reconstruction of the
time series of sea state parameters near the beach (but outside the
active sediment transport extent) for each RCP and SLR scenario,
and for each GCM independently at the corresponding hourly sea
level. These steps are illustrated in Supplementary Figure 2.

In order to select the subset of sea states that best represent
wave conditions at 0.1◦ and wind, we apply the maximum
dissimilarity algorithm (MDA). We use this subset of conditions
as boundary conditions to the SWAN model (Booij et al., 1999)
nesting three grids to achieve a spatial resolution of 20 m in
the area of San Lorenzo Beach. During the simulations, wave
amplification due to non-linear interactions between waves and
projected sea level is accounted for as in Camus et al. (2019).
For the reconstruction of the nearshore wave time series, we use
a multidimensional interpolation method based on radial basis
functions (RBF). RBFs allow to define a statistical relationship
between the offshore wave parameters and nearshore conditions,
which are the output of the SWAN model.

Generation of Multivariate Synthetic Time Series
In nature, wave conditions and storm surges are random. This
means that while each GCM simulation is a precise rendering
of the future climate, no GCM projection will happen (Mankin
et al., 2020). Internal climate variability is an intrinsic uncertainty
inherent to the climate problem (Giorgi, 2010), which could
be addressed through using ensembles of transient and credible
simulations starting at different times in the control period

(Toimil et al., 2020a), also known as initial condition ensembles
(Mankin et al., 2020). Here, we build upon already elaborated
multi-model projections that may undersample internal climate
variability uncertainty. For this uncertainty to be accounted
for, we apply a vector autoregressive (VAR) model (Solari
and van Gelder, 2012) that considers empirical functions to
stochastically generate 1,000 multivariate hourly time series of
waves and storm surges for each (RCP-)GCM over the time
periods 1986–2005 and 2081–2100. Similar to an initial condition
ensemble, this allows to produce a distribution of outcomes
consistent with the same assumptions underlying the original
GCM-driven runs.

Vector autoregressive models are extensions of autoregressive
models for multivariate data. Autoregressive models provide the
present value of an observation as a linear function of past
observations. A similar VAR model based on GEV functions was
applied in Toimil et al. (2017) to obtain multivariate hourly time
series of waves and storm surges in San Lorenzo Beach using
historical data.

The statistical analysis of the persistence regimes allows to
verify that the VAR model is able to reproduce the temporal
dependence structure of the original time series. Supplementary
Figure 3 shows the persistence regimes of Hs over different
thresholds and the joint probability distribution of sea state
parameters and storm surge. The persistence regimes can be
especially relevant when it comes to apply equilibrium models
to reproduce the shoreline response to cross-shore forcing since
their nature is such that a larger portion of the potential erosion
(or accretion) can be attained for conditions which remain over
long periods (Miller and Dean, 2004).

Coastal Erosion Modelling
The last step in the top-down approach is the coastal erosion
modelling. CEMs can be sensitive to multiple factors, highly
dependent on empirical parameters and present limitations to
simulate physical processes realistically (Montaño et al., 2020;
Toimil et al., 2020b). For this reason, we consider epistemic
uncertainty in erosion modelling by performing an ensemble
of CEMs. We set-up and apply two equilibrium models that
couple short-term coastal dynamics and long-term SLR. The two
models have been calibrated in the study beach over the period
1979–2020 using nearshore waves downscaled from GOW2,
updated storm surges from GOS, and the reconstruction of
the astronomical tide as forcing conditions, as well as aerial
photographs and survey data as described in Toimil et al.
(2017).

We run each CEM with 36,000 combinations of the projected
forcing variables for the period 2081–2100 that result from 2
RCPs, 6 GCMs, and 1,000 synthetic multivariate hourly time
series of waves and storm surges for each GCM and 3 alternative
hourly SLR trajectories related to three percentiles. Additionally,
we perform 6,000 extra runs with the forcing variables driven by
the 6 GCMs over the period 1985–2005.

Ensemble of Cross-Shore Erosion Models
The CEMs we implement rely on the classical equilibrium or
linear relaxation in which the difference with respect to an
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equilibrium term drives shoreline evolution (Eq. 2). This short-
term shoreline response, which can be induced by time-varying
water levels or breaking waves combines with a long-term
response due to SLR in a coupled fashion.

dy(t)
dt

= VG1D(t) (2)

where y(t) is the shoreline position at time t; V is a constant
governing the rate at which the shoreline approaches the
equilibrium; G is a modulating function; and 1D(t) is the
disequilibrium term that forces shoreline evolution.

The first CEM we implement (CEM1) is the shoreline
evolution model proposed by Toimil et al. (2017), which is
composed of the equilibrium shoreline evolution model of
Miller and Dean (2004) and a SLR-induced shoreline recession
model that seeks to reproduce the landward displacement of
the coast due to SLR, also known as the Bruun effect (Bruun,
1962). In this case, the shoreline change rate can adopt two
values, one for erosion V = k− and another one for accretion
V = k+. The modulating function G is equal to one and the
disequilibrium term responds to 1D (t) = yeq (t)− y(t). The
equilibrium shoreline position thus combines short- and long-
term effects following:

yeq (t) = 1y0 −W∗b (t)
(

0.106Hb (t)+ SS (t)+ AT (t)
B+ 2Hb (t)

)
−W∗ (t)

SLR(t)
B+ h∗

(3)

where 1y0 is an empirical parameter; W∗b is the active surf zone

width determined from the break point by W∗ =
(

Hb
/
γA

)1.5
,

in which A is the profile scale parameter (Dean, 1991); Hb is the
breaking Hs obtained using γ = 0.55 spectral breaking criteria;
SS is the storm surge; AT is the astronomical tide; B is the berm
height; W∗ is the active beach profile width; and h∗ is the depth
of closure calculated using the empirical formula of Birkemeier
(1985).

The second CEM we implement (CEM2) is an equilibrium
energy-based model modified from Yates et al. (2009) to consider
SLR effects. The shoreline change rate is approximated to be the
same for erosion and accretion events V = C, the modulating
function is V = E1/2 (where E means the wave energy), and the
disequilibrium term is 1D (t) = E (t)− Eeq(t). The equilibrium
energy term Eeq(t) accounts for the Bruun effect, which is treated
as a long-term trend following Jaramillo et al. (2020):

Eeq (t) = a
(

y(t)+W∗ (t)
SLR (t)
B+ h∗

)
+ b (4)

CEM1 and CEM2 are forced with wave-breaking parameters,
which we estimate from nearshore waves. Considering the large
number of VAR-based realisations, we apply a simple propagation
technique based on wave energy conservation, the Snell’s law of
refraction, and a constant depth-breaking criterion.

Multi-Ensemble Probabilistic Projections of Shoreline
Evolution
As a result of the thousands of CEM simulations, we obtain
three different simulation packages (SP). The first SP (SP1)
corresponds to 72,000 projected hourly shoreline evolutions
from 2081 to 2100. These time series of shoreline change
account for the uncertainty sampled at the steps of the top-
down approach by considering 2 RCPs, 6 GCMs, 1,000 synthetic
multivariate chronologies of future waves and storm surges
for each RCP–GCM, 3 RCP–SLR trajectories related to three
percentiles, and 2 CEMs. The second SP (SP2) includes 12,000
reference shoreline evolutions on hourly basis for the historical
period 1985–2005, based on 6 GCMs, 1,000 synthetic multivariate
chronologies of future waves and storm surges for each GCM,
and 2 CEMs. Finally, the third SP (SP3) contains 72 projected
hourly shoreline evolutions from 2081 to 2100 that differ from
those of SP1 in that they do not consider climate variability
uncertainty. The time series of shoreline change of SP3 account
for 2 RCPs, 6 GCMs, 3 RCP–SLR trajectories related to three
percentiles, and 2 CEMs.

Figure 4 displays the 72,000 simulations of SP1: 36,000 for
the RCP4.5 (Figure 4A) and 36,000 for the RCP8.5 (Figure 4B).
In each panel, shaded bands represent the 99% confidence levels
related to the 5, 50, and 95th percentiles of SLR (colour code),
superimposed by the simulations of SP3 (grey solid lines). The
grey dashed line indicates the physical boundary of the beach
(beyond this limit it would have disappeared). The blue and
red dashed lines define the mean plus/minus standard deviation
space associated with CEM1 and CEM2, respectively. As can
be observed, such space is overall wider (higher upper-bound
and lower lower-bound) for CEM2, especially resulting in larger
erosion over time for the RCP–SLR combinations considered.
Another aspect worth mentioning is the influence of GCMs
internal climate variability in shoreline change. There is a hint
that SP3 time series virtually never reach the 99% confidence
levels of SP1, so not considering chronologies alternative to each
GCM simulation could translate into the exclusion of potential
outcomes. Importantly, these outcomes are more likely to be
associated with erosion than with accretion phases, and this
is more apparent for the RCP8.5. This may be because the
exploration of different chronologies, even though they maintain
the same pdf as the original GCM-driven simulations, may allow
detecting different extreme retreat events that could result from
cumulative effects such as less storm spacing or calm conditions
over shorter periods of time.

For both RCPs, results are strongly clustered by the SLR
percentiles. In the case of the SLR 50th percentile, SP1 mean
shoreline retreats increase from 52 to 64 m and from 75 to
103 m between 2081 and 2100 for the RCP4.5 and the RCP8.5,
respectively. As expected, the greatest dispersion of the results
occurs by 2100, where SP1 and SP3 shoreline retreats roughly
range, respectively, between 9–138 and 25–115 m for the RCP4.5,
and between 37–200 and 52–177 m for the RCP8.5. These
ranges cover all possible outcomes from the lower bound of
the 99% confidence level associated with the SLR 5th percentile
to the upper bound of the 99% confidence level for the
SLR 5th percentile.
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FIGURE 4 | Shoreline evolution projections for the period 2081–2100 in San Lorenzo Beach. Shoreline position retreat (positive values) and advance (negative
values) with respect to the present position. Coloured shaded bands and dashed lines are related to the 72,000 simulations of SP1 generated for 2 RCPs (RCP4.5
and RCP8.5, A,B, respectively), 6 GCMs (ACCESS1.0, CMCC-CC, CNRM-CM5, HadGEM2-ES, IPSL-CM5A-MR and MIROC5), 3 SLR percentiles (5, 50, and
95th), climate variability (1,000 multivariate realisations per each RCP-GCM) and 2 CEMs. The 72 simulations of SP3 (without considering climate variability) are
represented by the grey solid lines. The grey dashed line represents the threshold beyond which the beach would have disappeared.

Using the complete time series, we compute an indicator
of the long-term or structural shoreline recession in 2081 and
2100 relative to 2005 (hereinafter R2081 and R2100, respectively)
by subtracting the 2-year average initial position from the 2-
year average final position of the shoreline from each model
simulation. Additionally, we analyse changes in (episodic)
extreme retreat events over the period 2081–2100 by fitting
annual maxima shoreline retreats to non-stationary extreme
value distributions. These outcomes are further described and
analysed in section “Visualisation and Communication of
Uncertainty in Coastal Erosion Projections”.

VISUALISATION AND COMMUNICATION
OF UNCERTAINTY IN COASTAL
EROSION PROJECTIONS

Based on SP1, SP2, and SP3 shoreline evolution time series,
we develop four analyses that provide different although
complementary ways of visualising and communicating
uncertainty in coastal erosion projections. We decompose
the uncertainty cascade down to coastal erosion projections
using real data, factorise long-term erosion estimates by the
uncertainty dimensions deemed and determine their relative
importance, and explore non-stationary extreme retreat events
and the influence of climate variability on them.

The Cascade of Uncertainty
The paradigm of the cascade of uncertainty (Mitchell and Hulme,
1999; Wilby and Dessai, 2010) has been used in the literature to
illustrate theoretically both the information and the uncertainty
cascading across the modelling chain of the top-down approach,
from the RCPs to coastal impact estimates, whether in the form
of a triangle (e.g., Toimil et al., 2020a,b) or as a sequential
diagram (e.g., Ranasinghe, 2016). However, more challenging is
moving from theory to practice, particularly when the cascade
extends down to impact models’ response. Figure 5 attempts
to visualise the real cascade of uncertainty in coastal erosion
projections in San Lorenzo Beach built upon actual data (SP1),
expanding from the RCPs (upper tip where all lines converge;
top layer) to the R2100 indicator (bottom layer). From top
to bottom, the second layer shows an ensemble of 6 GCMs
(ACCESS1.0, CMCC-CC, CNRM-CM5, HadGEM2-ES, IPSL-
CM5A-MR, and MIROC5) forced by 2 future concentration
pathways (RCP4.5 and RCP8.5). The following layer illustrates
the role of uncertainty sampling in internal climate variability
(denoted as CLIM VAR in the vertical axis). 1,000 multivariate
realisations of potential chronologies of future wave conditions
and surges for each RCP-GCM account for the stochastic nature
of these dynamics. The fourth layer represents the combination
of the multiple realisations of projected waves and storm surges
with 3 different RCP-induced SLR trajectories (5, 50 and 95th
percentiles) to force the CEMs. Next, each line splits into 2 CEMs,
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FIGURE 5 | Visualisation of the cascade of uncertainty in coastal erosion projections by 2100. The cascade is built upon SP1 simulations. From top to bottom: first
layer shows the 2 RCPs, second layer shows the ensemble of 6 GCMs, third layer shows climate variability, fourth layer shows the 3 SLR percentiles, fifth layer
shows the ensemble of 2 CEMs and the last layer shows the R2100 indicator (actual values displayed on the horizontal axis). (A–D) illustrate the cascade under four
factorisations that highlight the uncertainty spread due to the choice of RCPs, GCMs (considering climate variability realisations), SLR percentiles, and CEMs. For the
sake of visibility, we plot 720 SP1 simulations (out of 72,000) covering the full range of 2100 and distribute RCP, GCM, CLIM VAR, SLR, and CEM levels evenly in
space.

each of which delivers its corresponding R2100 value. For the
sake of visibility and to avoid overplotting, we only plot 720
simulations (out of 72,000), although covering the full R2100
range, and distribute RCP, GCM, CLIM VAR, SLR, and CEM
levels evenly in space, with R2100 reaching real values along
the horizontal axis. Likewise, we neither depict the threshold
beyond which the beach would have disappeared and that would
be placed in 110 m (horizontal axis).

Figures 5A–D illustrate the cascade of uncertainty in R2100
under four different factorisations. These factorisations seek
to disentangle the uncertainty in R2100 estimates based on
the choice of RCP (Figure 5A), GCM including the associated
climate variability realisations (Figure 5B), SLR percentile
(Figure 5C), and CEM (Figure 5D). As such, the range of
R2100 values is the same in all panels, extending roughly from
0 to 200 m. In Figure 5A, each colour shows a different RCP-
driven R2100 pathway (RCP4.5-blue and RCP8.5-red). Thus, the
ensemble of GCM forced by the same RCP are coloured alike, and
the same applies to the subsequent layers down to coastal erosion
projections. In Figure 5B, we start decomposing by GCM and
each colour represents a different GCM-driven R2100 pathway

(ACCESS1.0-blue, CMCC-CC-cyan, CNRM-CM5-green,
HadGEM2-ES-yellow, IPSL-CM5A-MR-orange, and MIROC5-
red). Likewise, in Figure 5C, SLR percentiles are decomposed
next and coloured according to the R2100 pathway they
drive (P5%-blue, P50%-yellow, and P95%-red). Finally,
Figure 5D shows R2100 factorised by the CEM dimension
(CEM1-blue and CEM2-red).

Looking at the bottom layer, the dashed lines thus inherit
their colour from the choices of RCP, GCM, SLR percentile,
and CEM and allow to visualise the uncertainty range in R2100
that can be attributed to them at a glance. For instance, R2100
roughly range from 0 to 120 m for the RCP4.5 and from 30
to 200 m for the RCP8.5 (Figure 5A). As we focus on the
long term (2100), GHG concentration differences are high and
the different scenarios clearly represent two different R2100
populations that cannot be easily merged, which is further
emphasised by the choice of SLR percentile (colour differentiated
in Figure 5C). This results in a strong multi-modal response
in R2100 induced by RCP–SLR with 4 different clusters: (1)
P5% RCP4.5–SLR, (2) P50% RCP4.5–SLR and P5% RCP8.5–SLR,
(3) P95% RCP4.5–SLR and P50% RCP8.5–SLR, and (4) P95%
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RCP8.5–SLR. This could be explained by the facts that we
concentrate in a far future and that DP16 projections provide
SLR extreme outcomes (e.g., a rise of 2.55 m for the RCP8.5 by
2100 in Gijon). Such multi-modal response gets weaker as we
move into close time horizons. Supplementary Figure 4 shows
the equivalent cascade of uncertainty for R2081 (also calculated
using SP3 data). As it illustrates, not only are the clusters more
diffuse by 2081, but the uncertainty spread in coastal erosion
projections has narrowed and shifted toward smaller values on
the horizontal axis.

Figure 5D reinforces the idea that, in general, CEM2 (wave
energy-based including SLR trend) provides more extreme
values, widening the range and thus, the uncertainty, in R2100.
The GCM dimension (Figure 5B) does not appear to dominate
the spread in the simulated projections. However, that does
not mean that the additional simulations derived stochastically
do not play an important role. Figure 6 shows the same
plots as in Figure 5 but with the superimposition of SP3
R2100 (72 simulations) represented by solid black lines, which
cover shoreline retreats roughly ranging from 15 to 185 m.
R2100 uncertainty spread is thus increased by nearly 20% when
considering a more complete sampling of climate variability
compared to the more common approach of using a single

realisation of GCM-driven wave and storm surge projections.
This could be because, while it is known that the chronology
can highly influence short-term shoreline changes (Toimil
et al., 2017), certain chronologies may eventually affect long-
term erosion (R2100), which if disregarded may lead to the
misallocation of adaptation resources.

Factorisation of Uncertainty Sources
The R2100 cascade of uncertainty shows a clear multi-modal
response dominated by the choice of the RCP and the SLR
percentile. To isolate the effects of each uncertainty source
over the coastal erosion projections, Figure 7 illustrates R2100
values factorised by the dimensions considered in absolute terms
(column on the right) and nondimensionalised by SLR (column
on the left). These R2100 values are based on SP1 (72,000
simulations accounting for climate variability) and SP3 (72
simulations not considering climate variability) data, which are
represented using coloured and black symbology, respectively.
R2100 values are factorised by their driving RCPs (Figures 7A,B),
GCMs (Figures 7C,D) and CEMs (Figures 7E,F), all of which are
in turn disaggregated by the SLR percentiles (5, 50, and 95th).

One of the most apparent features of Figure 7 is the role
of climate variability in the R2100 spread range. While SP3

FIGURE 6 | Visualisation of the cascade of uncertainty in coastal erosion projections by 2100 using SP1 and SP3 simulations. SP1 data (720 simulations out of
72,000) is displayed as in Figure 5 and SP3 data (72 simulations) are superimposed and represented by solid black lines. From top to bottom: first layer shows the 2
RCPs, second layer shows the ensemble of 6 GCMs, third layer shows climate variability, fourth layer shows the 3 SLR percentiles, fifth layer shows the ensemble of
2 CEMs and the last layer shows the R2100 indicator (actual values displayed on the horizontal axis). (A–D) illustrate the cascade under four factorisations that
highlight the uncertainty spread due to the choice of RCPs, GCMs (considering climate variability realisations), SLR percentiles, and CEMs.
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FIGURE 7 | R2100 values factorised by their driving RCPs (A,B), GCMs (C,D) and CEMs (E,F), all of them disaggregated in turn by the SLR percentiles (5, 50, and
95th). R2100 factorisation is provided in absolute terms (m) on the right column and nondimensionalised by SLR on the left column. SP1 (72,000 simulations
considering climate variability) and SP3 (72 simulations without considering climate variability) are represented using coloured and black symbology, respectively.
Note that in B, D and F the grey dashed line represents the threshold beyond which the beach would have disappeared.
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mean values can be either above or below SP1 mean values,
SP3 maximum and minimum values are far (or very far in
nondimensionalised panels) from the same statistics of SP1,
highlighting the fact that not quantifying internal variability’s full
extent sufficiently could be critical from a decision standpoint.
As can be observed in Figure 7D, the variability inter-GCM for
any SLR percentile is low for SP3 data, and very low for SP1.
This could be expected because the multi-model projections of
waves and storm surges show very little change in the signal
and among GCMs, and due to the fact that we have corrected
their bias (this can be deemed some sort of standardisation) and
generated thousands of realisations with the VAR model under
the same assumptions.

The highest the SLR percentile, the most the R2100 spread
range is reduced when nondimensionalised, a reduction that is
more significant for the RCP8.5 (Figure 7A) and longer-term
horizons (Supplementary Figure 5). This could be explained
because the higher the SLR, the more it dominates the central
values of the R2100 distribution and, although the variability
range is similar regarding the SLR percentile in absolute terms,
when nondimensionalised by SLR, this variability is reduced
the higher the SLR value. This decrease is sharper for the
25–75th percentiles of CEM2-driven R2100 than for CEM1-
related outcomes (Figure 7E). However, CEM2 minimum and
maximum values are shown to be more extreme than those from
CEM1, whether or not nondimensionalised, as partly seen in
Figures 5, 6.

Fraction of the Total Uncertainty
To further quantify the dominant drivers of uncertainty in these
projections of coastal erosion and their relative contribution
to R2100 uncertainty, we apply a four-factor, ANOVA-based
variance decomposition to three experiments where RCPs,
GCMs, SLR percentiles and CEMs are the uncertainty sources.
The first experiment (A) consists of comparing the variance
partitioning between SP1 72,000 simulations and SP3 72
simulations (A1 and A2, respectively). The second experiment
(B) compares this variance partitioning between SP1 and
SP3, both excluding the SLR 95th percentile (48,000 and 48
simulations, and B1 and B2, respectively). Finally, the third
experiment (C) concentrates on the RCP8.5 and the SLR 50th
percentile of SP1 and SP3, which reduces the simulations
involved to 12,000 and 12 (C1 and C2), respectively.

Figure 8 shows for the experiments A–C the contribution
of the uncertainty sources and their interaction to R2100 total
uncertainty. The findings are consistent with the results obtained
from previous analyses. Overall, we find a strong dominating
influence of the SLR and RCP dimensions, which could be
attributable to the horizon considered (2100), where RCPs
diverge significantly, and the extreme SLR projections used.

Experiment A highlights the virtually negligible influence of
GCM uncertainty (∼0%) compared with RCP’s (∼18%) and SLR’s
(>80%) when considering the full range of R2100 (SP1, A1).
This could be explained by the fact that the 1,000 additional
realisations per each RCP–GCM to sample intrinsic uncertainty

FIGURE 8 | Contribution of each uncertainty source (RCPs, GCMs, SLR percentiles, and CEMs) and their interactions to total R2100 uncertainty. The variance
partitioning is based on a four-factor ANOVA-based decomposition method. Experiment A compares SP1 72,000 simulations, with SP3 72 simulations (A1 and A2,
respectively); experiment B compares SP1 48,000 simulations and SP3 48 simulations, both excluding the SLR 95th percentile (B1 and B2, respectively); and
experiment C compares SP1 12,000 simulations and SP3 12 simulations, both constrained to RCP8.5 and SLR 95th percentile (C1 and C2, respectively).
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hide the variability of the GCMs themselves (Figure 7D), to
which bias correction has also been applied. In A2, while SLR
(∼75%) and RCP (∼20%) uncertainty continue to dominate,
there is some (although little) room for GCM uncertainty
contribution (∼1%).

As DP16 projections provide extreme SLR outcomes,
experiment B seeks to analyse how the contributions would
change if the SLR upper bound were the 50th percentile.
Compared to experiment A, RCPs’ uncertainty contribution
increases (∼36 and ∼37% for B1 and B2, respectively), SLR’s

decreases (∼64 and ∼60% for B1 and B2, respectively) and,
as could be expected, GCMs’ increases its relative importance
(up to 3%) as for B2.

Finally, experiment C leaves RCP and SLR out of the equation.
As a result, GCM uncertainty dominates but its contribution
is still weaker in C1 than in C2 (∼84 and ∼97%, respectively)
because of the effect of climate variability uncertainty. In C1 there
is new room for the contribution of CEM uncertainty (∼16%).
In any case, the contribution of the pairwise (RCP–GCM,
RCP–SLR, RCP–CEM, GCM–SLR, GCM–CEM, and SLR–CEM)

FIGURE 9 | Effective return levels corresponding to 10, 25, and 50 years under the non-stationary assumption for the period 2080–2100 and for the SLR trajectories
(associated with the 5, 50, and 95th percentiles) under the RCP4.5 (blue panels) and the RCP8.5 (red panels). Grey solid lines represent the return periods calculated
from the GCM-driven simulations of SP3 (without climate variability). Coloured shaded areas show the 99% confidence bands of the non-stationary GEV fit to the
annual maxima shoreline retreats derived from SP1 simulations.
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triple (RCP–GCM–SLR, RCP–GCM–CEM, RCP–SLR–CEM,
and GCM-SLR-CEM) and quadruple (RCP–GCM–SLR–CEM)
interactions to R2100 uncertainty is <3%.

Non-stationary Extreme Value Analysis
and Influence of Climate Variability
Extreme shoreline positions are characterised by return levels
of erosion, which can provide very valuable information
for decision-making, as risk-reduction actions (e.g., beach
nourishment design) often take place in response to unusually
large shoreline recession. The analysis of the variability of
extreme erosion events, however, is a complex issue as processes
at two different time scales occur simultaneously: the interannual
variability due to the combined effect of waves and storm surges,
and the slow-onset SLR and its long-term effect, which leads
to the gradual, persistent landward and upward displacement
of the coastline. SLR, thus, introduces a positive and persistent
erosive trend that can only be properly addressed by conducting
non-stationary extreme-value analysis.

In this study, we use the Non-stationary Extreme Value
Analysis (NEVA) package (Cheng et al., 2014) to estimate
effective return levels, which indicate the return level that should

be considered to have the same probability of occurrence over
time. In NEVA, non-stationarity is based on the assumption
that the location parameter of the Generalised Extreme Value
(GEV) distribution is linearly time dependent according to the
trend. We apply the non-stationary GEV distribution to annual
maxima shoreline retreats. We obtain the effective return levels
corresponding to 10, 25, and 50 years over the period 2081–
2100 for the SP1 and SP3 time series of shoreline evolution.
Figure 9 illustrates the time evolution of mean effective return
levels (SP3, grey solid lines) and 99% confidence levels (SP1,
coloured shaded areas) disaggregated by SLR percentiles and
RCPs, where only time series with significant SLR trend are
shown. There is more overlap among the RCP4.5 results (upper
panels), especially for the SLR 50 and 95th percentiles and longer
return levels. For the RCP8.5 (red panels), the mean effective
return level of a 10-year extreme erosion in 2080 is 58.9, 92.8, and
140.7 m, while in 2100 is 78.8, 127.1, and 202.6 m for the 3 SLR
percentiles, respectively. As can be observed, the time evolution
of the effective return levels for the 6 GCMs of SP3 simulations
has significant variability, which increases considerably for SP1
outcomes (with VAR-based simulations). The 99% confidence
bands become wider as the corresponding year of the return
level gets higher. These bands are asymmetric, with the higher

FIGURE 10 | Time series of annual maxima shoreline retreat corresponding to the IPSL-CM5A-MR model (solid grey line) and the simulations #74 (A), #294 (B),
#314 (C), and #345 (D) of SP1 associated with this GCM (solid black line). Dashed lines represent the annual maxima shoreline retreat trends. Effective 25-year
return levels under the non-stationary assumption over 2080–2100 for the SLR 95th percentile and for the RCP8.5. The pink solid line shows the results of the SP1
simulation; and the pink dashed line represents the results associated with the original GCM simulation (SP3).
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spread of the return levels with respect to the mean for the
high percentiles rather than for the low ones. Overall, RCP4.5’s
exhibit higher variability and this could be explained by the
lesser influence of SLR, which leads to chronology having greater
impact on the results.

Figure 10 shows the time series of annual maxima shoreline
retreat for the IPSL-CM5A-MR model (solid grey line), where
we compare its original run (SP3) and four different VAR-based
simulations (#74, #294, #314, and #345 of SP1, represented by
solid black lines) for the RCP8.5. We calculate the shoreline

FIGURE 11 | Scatter plot of the annual maxima shoreline retreat compared to the annual number of storms (left column). Time series of the normalised annual
maxima shoreline retreat and normalised annual number of storms for the simulations #74 (A), #294 (B), #314 (C), and #345 (D) of SP2 associated with the
IPSL-CM5A-MR model in the historical period (1985–2005) (right column).
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retreat annual maxima trend for each simulation (dashed lines).
The trends of the SP3 run and the simulation #74 are similar
(Figure 10A). However, the trends of the other three VAR-based
simulations (Figures 10B–D) are higher than the SP3 run due to
more erosive shoreline retreat evolution over the period 2081–
2100. These higher trends reflect a higher increase of effective
return levels of 25 years by 2100 compared to those from the
SP3 run (pink lines). In addition, we find that shoreline retreat in
2081 influences the effective return levels over the following years.
Take the case of simulation #314 (Figure 10C), where shoreline
retreat is significantly lower than for the SP3 run, constraining
the return level reached in 2100, although with a higher trend.
The return level of the simulation #294 (Figure 10B) reflects
by 2100 a combination of large shoreline recession in 2081 and
a high erosion trend. The interannual variability of this return
levels thus explains the wide extension of the confidence bands of
the effective return levels, especially as for the upper bound. This
confirms the influence of sampling climate variability uncertainty
using the VAR model in the R2100 indicator identified in the
previous analysis.

It seems that the chronology of the sea state parameters and
storm surge is the factor that most influences the interannual
evolution of shoreline retreat, rather than the magnitude of these
dynamics during storms. To further verify the effect of climate
variability in short-term erosion, we analyse the relationship
between the number of storms per year and the annual maxima
shoreline retreat over the historical period of several IPSL-
CM5A-MR simulations of SP2 (Figure 11). We define storm
events as independent 3-day events over the threshold of Hs
that guarantees an average of 3 storms per year. For instance,
the largest shoreline retreat in simulation #74 (Figure 11A)
exceeds 42 m and happens in 1993 due to the cumulative effect
of more than 10 storms over that year. Another example is
the maximum shoreline retreat in simulation #294 (Figure 11B,
higher in magnitude than in #74), which roughly reaches 52 m
in 1999 because of the combined effect of many storms and a
positive erosive trend over the previous years. In simulations
#314 and #345 (Figures 11C,D, respectively), the largest annual
maxima shoreline retreat occurs due to the significant erosion
over the two preceding years (the beach is not able to recover
in summer) induced by the large number of storms per year.
In the original IPS-CM5A-MR run, the maximum shoreline
retreat does not exceed 37 m and occurs in 1994, when
also the highest number of storms happened (Supplementary
Figure 6). From this analysis, we can conclude that the most
extreme shoreline retreats are generated by “extreme” synthetic
chronologies of wave and storm surge conditions simulated
by the VAR model.

CONCLUSION

Climate projections have brought into focus the imperative
need to adapt coastal areas to a changing climate under
conditions of deep uncertainty. Positioning decision-making in
the best situation requires substantial efforts to better attribute
uncertainty in impact assessments. This involves identifying and

sampling sources of uncertainty and considering their nature,
spreading and cumulative effect. The visualisation of this whole
process can help understand the relative importance of the steps
of the top-down approach to full uncertainty in impact estimates
and where to concentrate energy and resources.

In this paper, we developed long-term multi-ensemble
probabilistic coastal erosion projections following the steps of the
top-down approach with the primary objectives of decomposing
and visualising the cascade of uncertainty using real data and
analysing the contribution of each step to the total uncertainty.
For that purpose, we compiled dynamic projections of waves and
storm surges (for 2 representative concentration pathways and
6 global climate models), corrected their bias and transferred
projected offshore waves to nearshore by applying a hybrid
downscaling technique that allows to consider sea-level effects
on wave propagation. Next, we stochastically generated 1,000
additional multivariate realisations of projected waves and storm
surges per each combination of representative concentration
pathway and global climate model to account for different
chronologies potentially driven by climate variability. We
combined these 12,000 time series of future nearshore waves
and storm surges with three mean sea-level rise trajectories
corresponding to 3 percentiles of the simulated frequency
distributions for the radiative forcing scenarios considered.
Finally, we forced 2 coastal erosion models and derived 72,000
future time series of shoreline evolution. Based on these time
series we calculated long-term and episodic (non-stationary)
erosion, which could be useful tools to inform decision-makers
on the shoreline future mean position and its variance.

It is noteworthy to mention that our choice to have applied
bias correction before the hybrid downscaling in this study is
based on the availability of reliable historical wave data in deep
water. Besides, we consider that it is more realistic to propagate
every hourly sea state at each corrected sea level, and this
implies to correct the storm surge bias before downscaling waves.
However, these two steps could be exchanged if robust historical
nearshore data are available to apply the correction.

By means of this approach, we considered both knowledge
uncertainty and intrinsic uncertainty. The first was characterised
by using ensembles of representative concentration pathways,
global climate models, and coastal erosion models, and a range
of mean sea-level rise trajectories. Intrinsic uncertainty was
accounted for by performing multiple multivariate realisations
of projected waves and storm surges that were based on
the same assumptions that the original projections but
provided alternative chronologies that allowed to consider
an overall larger range of variability and different extreme retreat
events. Further developments of this approach could consider
additional uncertainty sources such as coastal erosion model
parameterisations (e.g., model coefficient adjustments would be
needed as the 1979–2020 model structure will not necessarily
remain unaltered in the future) or the application of different
bias correction methods.

Two aspects that highly conditioned the results were our
focus on the far future (2081–2100) and the use of projections
of mean sea-level rise using Antarctic ice-sheet simulations.
A justification for these choices is that risk assessments usually
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consider far-future lead times (i.e., 2100) and always require
the full range of potential damaging outcomes, including low-
probability high-impact scenarios. In the visualisation of the
cascade of uncertainty, this resulted in a multi-modal response
that was stronger in 2100 than in 2081, and where we identified
four different clusters combining representative concentration
pathways and mean sea-level rise percentiles. Both the cascade
and the subsequent factorisation of long-term coastal erosion
values highlighted that not quantifying internal variability’s full
extent sufficiently could lead to a truncated range of outcomes,
and adverse implications for decision-making. Another key
feature relates to the influence of climate models uncertainty
to the total uncertainty, which we found virtually negligible
for the simulations that consider climate variability uncertainty
sampling, partly due to the climate variables considered and bias
correction (necessary for impact assessments), and because of the
thousands of multivariate realisations we produced stochastically.
Such realisations have the same underlying assumptions but
provide alternative chronologies of wave conditions and storm
surges. This noise itself has proven to be an important part
of the full range of outcomes, as we found that the most
extreme annual maxima shoreline retreats occurred for synthetic
chronologies simulated by the stochastic model. These findings
show that in order to capture the full uncertainty in coastal
erosion projections, all uncertainty sources need to be adequately
sampled considering case-specific aspects such as the climate
variables, the degree of anthropogenic impact (e.g., radiative
forcing or Antarctic ice-sheet contribution) and time horizon.
In the near future (e.g., 2021–2050), the small differences in
greenhouse gas concentration between radiative forcing scenarios
could show greater inter-model variability, which would be
similar to a random sample of realisations from the same climate
model (e.g., as in Fernández et al., 2019). Further, projected
changes in wave conditions and storm surge are relatively small
in the study area. However, in other regions where future
changes are more significant and the deviation in the ensemble
projections is wider, climate model uncertainty could certainly
account for a larger fraction of the total uncertainty.

Importantly, this study should be viewed as a way to
expand scientific understanding of uncertainty treatment in
coastal erosion projections when using the top-down approach,
rather than providing the best projections of what coastal
erosion in San Lorenzo Beach will be like. In particular, we
tried to make progress on the incorporation, visualisation and
analysis of the sources of uncertainty involved. For the sake
of facilitating a better explanation of our final aim, namely
visualising the uncertainty we used a pilot site for which data and

models were at hand. The combination of better suited climate
projections, improved downscaling methods and more detailed
coastal erosion models (including more sophisticated wave-
breaking propagation) would presumably result in a different
range of shoreline recession values, and extreme retreat events of
different magnitude and frequency. However, the approach and
the uncertainty treatment herein proposed applies in any case.
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