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Abstract: In recent decades, cities have been experiencing accelerated population growth, associated
with an increase in the scales of production and consumption. This fact, combined with deficient
management of resources and waste, has led to the loss of biological diversity, compromising
the generation of ecosystem services, with disastrous consequences for human health and well-
being, but also for the economic system. In the field of civil engineering, the predominance of
artificialisation and impermeabilization of cities (called “grey engineering”) is being questioned to be
replaced or complemented with new types of infrastructures that represent a transformative change
to achieving more sustainable cities. Through system dynamics applied to the economic modelling
of the city of Santander (Spain), the aim of this study is to analyse the profitability of investment
in ecosystem restoration and in both green and blue infrastructure, and of the implementation
of environmental policies based on the relationships of affection established in the model, which
represent the interactions between the main actors in urban dynamics. As a main conclusion, it is
found that investing in green infrastructures and ecosystem restoration, and environmental policies
is highly profitable: EUR 1 spent can produce up to EUR 100 as a benefit.

Keywords: system dynamics; green and blue infrastructure; ecological restoration; profitability
analysis; urban modelling

1. Introduction

Currently, more than half of the world’s population lives in cities, and by 2030, this
figure is expected to reach 60% [1,2]. Cities are complex ecosystems governed by socio-
economic activities and natural processes simultaneously, and therefore urban ecosystems
need integrated, effective, comprehensive, and multifunctional ecological infrastructures [3,4].
The vertiginous process of urbanisation in recent decades has meant that the decisions
of the human population living in cities affect the resilience of the entire planet [5]. The
urbanisation of cities faces fundamental challenges, but also an unprecedented opportunity
to achieve resilience and ecological functioning of urban systems [6].

As a consequence of current population growth, cities have experienced, over the last
50 years, an increasing demand for services such as energy, food, water, materials and land
use, which has placed a significant cost on planetary systems [7].

The increasing production from non-renewable resources generates new global chal-
lenges such as climate change and biodiversity loss [8]. According to the World Economic
Forum’s Global Risks Perception Survey [9], five of the top ten most likely major risks
facing society today belong to the environmental category: extreme weather, failure of
climate action, natural disasters, loss of biodiversity and anthropogenic environmental
disasters.

Current trends of excessive global population growth suggest that by 2050, the Earth’s
land area free from the impact of anthropogenic activities will have shrunk to one-tenth of
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the planet [10]. Climate change, land-use change, ecosystem fragmentation and habitat
loss, overexploitation of natural resources, high levels of pollution and the presence of
invasive species are the main threats to biodiversity in today’s cities [11].

According to the Millennium Ecosystem Assessment, most of the actions developed
in the past decades to attenuate or reverse the degradation of ecosystems have yielded
significant benefits; however, these improvements have generally not kept pace with
growing pressures and demands [12].

Both problems, the growth of urban population and the need to preserve ecosys-
tems, show the relevance of cities as emerging areas where further study on the correct
management of nature areas is clearly needed.

The relationship between ecosystem services and human quality of life is revealed
through the influence that ecosystem disturbances have on the various components of
human well-being, such as the basic material needs for a good life, health, good social rela-
tions, security, and freedom of choice and action, in addition to their significant contribution
to global employment and the economic activity [12].

Nature-based solutions, which imply bringing nature back into cities, can include
retrofitting green and blue infrastructure, creating and conserving green spaces and water
bodies, promoting urban agriculture, implementing sustainable urban drainage systems,
and providing ample and accessible vegetation cover in urban and peri-urban areas. Ac-
cording to [13], increased use of green infrastructure and other ecosystem-based approaches
advances the development of urban sustainability, while also serving to strengthen climate
mitigation and adaptation. Furthermore, as defined by the European Union, nature-based
solutions should be “cost-effective, simultaneously provide environmental, social and
economic benefits and help build resilience” [14].

The design and management of this green infrastructure aim to harness nature’s self-
capacity to provide the full range of ecosystem services and the protection of urban and
rural biodiversity [15]. Several studies such as the one developed by Elmqvist et al. [6] show
that increased investment in green infrastructure in the urban landscape can be a potential
source of both monetary and non-monetary benefits for society and the common good,
contributing to the conservation of biodiversity and the development of more resilient
urban areas. The presence of trees, parks and gardens, wetlands, green roofs, forests
and other natural spaces increases the generation of ecosystem services, improving the
urban environment, contributing to the mitigation of the effects of climate change and
maintaining ecological balance [16]. Some research has found that the cost of investing in
green infrastructure can be considerably lower than traditional grey infrastructure, whilst
highlighting its multi-functional nature and lower maintenance requirements [3].

Ecological restoration, considered as the process by which the re-establishment of an
ecosystem that has been degraded, damaged or destroyed is promoted [17] is aimed at
optimising biodiversity and ecological processes, and the generation of ecosystem services,
taking into account the ecological, socio-economic and cultural framework. According
to [18], the multiple benefits of ecosystem restoration include protection against extreme
meteorological events, prevention of erosion, carbon sequestration, habitat restoration,
etc. Moreover, according to this report, the benefits of ecosystem restoration are likely
to outweigh the costs of implementation, particularly in the case of wetland, grassland,
inland and coastal forest restoration [18,19]. Other recent studies estimate the cost of
environmental impacts of human activities in trillions of US dollars annually in loss of
goods and services [20]. Although proper maintenance, conservation and the sustainable
use of biodiversity and ecosystems have been stated to be cheaper, given the present state
of ecosystem degradation, restoration is currently considered an imperative [21].

While multiple studies identify and highlight the importance of urban ecosystem
services and natural capital and the environmental threats they face [22,23], fewer studies
address the understanding of the complex dynamics of ecosystems in urban environments.
In this group, the most relevant examples apply a system dynamics approach [24–26], and
particularly, in terms of the economic impact of restoring these services through investment
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in green infrastructure and ecosystem restoration [6,19]. It is crucial to emphasise the
importance in this study of economic quantification and valuation of ecosystem services
and natural capital, beyond the mere ecological criteria [22,27–29] introducing the concept
of ecological economics [30,31].

The main objective of the work presented in this article is to test the favourable
influence of increased investment in nature-based solutions on the economy and the
quality of life of the inhabitants of the city of Santander (Spain), by means of a system
dynamic model.

Although the development of a dynamic model of a city is not an entirely novel
idea [25,32–35], the idea of using it to study the effects of investment on green infrastructure,
as a solution to the environmental threats that cities face today, is a more recent approach,
which is not sufficiently settled in the literature [24,36–38]. For this purpose, in this study,
a cost-benefit analysis of investment nature-based solutions has been carried out, as well as
the implementation of new environmental policies (i.e., reduction of pollutant emissions,
waste management, etc.).

2. Materials and Methods

The following sections aim to present the data used in the elaboration of the economic
system dynamics modelling of Santander, as well as to describe the methodological process
that has been carried out for its elaboration. First, a short description of the software used is
presented. Then, the study area to be modelled using VENSIM and whose urban dynamics
are to be analysed is described. Lastly, the theory of system dynamics (SD) is introduced,
with a detail description of the economic SD model of Santander, the development of which
is presented later.

2.1. VENSIM Software

The VENSIM PLE (Ventana Systems Inc., Harvard, MA. USA) software by Ventana
Systems is a simulation software that allows the set of equations that make up a complex
dynamic system to be easily solved. VENSIM is a widely used system dynamics modelling
system for simulation applications due to its intuitive user interface. In addition, VENSIM
offers a flexible way to dynamically visualise and communicate the complexity of how
systems and ideas work by constructing a wide variety of simulation models from causal
loops or flow and balance diagrams [39].

System dynamics software have broadly expanded in the last 20 years. The selection
of VENSIM as analytical framework is based on four reasons: first, its computational
efficiency is out of discussion; second, the accessible PLE version allows easily replicating
the model for further research; third, the simplicity of the interface invites to easily adopt
it for newcomers; and finally, the existence of a dynamic community that supports open
training resources invites to use it as a reference. These circumstances are not unique for
VENSIM but globally observed VENSIM is well ranked in all of them.

2.2. Study Area

The city of Santander is the capital and the main population centre of the province
of Cantabria (Spain). This study area has been selected as case study for several reasons.
First, coastal cities are settled in direct connection with coastal environment. Therefore,
the urban density—environmental quality—urban conditions feedback loops are visible
and accessible for the society subject to it. The decision-making process will be sensible to
the situation when, for example, beaches are affected by pollution and individuals cannot
enjoy from them.

Second, even when climate change is involved (and the impact is not direct), coastal
cities are good examples of exposed areas to environmental impacts. In this sense, the
situation of Santander, located in a coastal area, near a cape and creating a bay, creates
space scarcity that generates social debates on how to handle the emerging issues as the
“send it further” option does not exist in this case.
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Lastly, the reasonable size of the municipality and the availability of data [40,41] for
the analysis support the decision to focus the analysis on Santander.

Based on these, the study area was considered to be the municipality of Santander
itself and, and the surroundings of the Bay, partially made up of the localities of Somo and
Pedreña (Figure 1). This area represents up to 35% of the inhabitants of Cantabria [42].
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The economic structure of the study area is closely linked to its geographical location,
between the bay and the Cantabrian Sea. It is for this reason that the economic development
of the city of Santander is parallel to the development of its port and the urban area of the
city [40]. Around its port, the growth of maritime transport of goods has taken place with
an upward trend from 1962 to the present day [43] and passengers, highlighting its regular
shipping lines with connections to the United Kingdom and Ireland, and the local shipping
lines between the shores of the bay.

According to data from the CORINE Land Cover [44], 85.65% of the study area is
made up of water bodies; 10.8% is agricultural land; artificialized land comprises 3.05%,
while the urban fabric covers 1.95% of the studied area; and the land area occupied by
forests and semi-natural areas, and urban green spaces accounts for only 0.5% of the total
area analysed. The percentage of natural and semi-natural areas is a minority (0.41% of the
study area), as are urban green areas (0.09%). Concerning the total urban area of the city of
Santander, the percentage of urban green areas is only 4.7%, being the remaining 95.30%
built-up and impervious areas, while regarding the total artificialized area, the percentage
of green spaces is only 2.95%.

Although the bay area includes a site of community importance (SCI) located on the
eastern shore, called ES 1300005 Dunas del Puntal and Estuario del Miera [45], and a special
protection area for birds (Isla de Mouro) [46], both included in the Natura 2000 Network,
the bay is surrounded by a wide range of anthropogenic activities, with consequent effects
on the bay’s ecosystem.

The study area must cope with several risks affecting both the physical, natural and
socio-economic environment. The Bay of Santander has suffered for decades from the high
levels of pollution generated in the inner part of the bay from the predominant industrial
activities. At present, despite a decrease in pollution levels as a result of the ceasing of
some of these activities, there are still many problems that require management. The most
relevant issues are the control of ballast water from ships that frequent the bay, which is
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one of the main sources of invasive species, and pollution derived from the use of heavy
hydrocarbons in navigation [43].

For the identification of the environmental units with an influence on the study area,
the area of the Bay of Santander has been considered. This area includes environmental
units identified as ecosystem services’ providing elements capable of providing the popu-
lation with resources are broadleaved forests, heathlands, and areas of sparse vegetation;
crop fields and areas used for agriculture; coastal ecosystems: beaches, dunes and cliffs;
wetlands and estuaries; meadows and pastures.

From an environmental perspective, the bay and its surroundings are an important
source of resources and ecosystem services, both for supporting, provisioning, regulating
and cultural services (Tables 1 and 2). Among the provisioning services, the bay stands out
as a habitat for a multitude of edible species: fish, shellfish, crustaceans that not only serve
as food for humans but also other fish and poultry species. Conversely, grasslands and
pastures are the main sources of food for livestock species, from which food for human
consumption such as dairy or meat products are obtained. In addition, animal materials
such as leather and wool are obtained from livestock farming. Meanwhile, the main
purpose of croplands (predominantly small agricultural areas scattered throughout the
territory, such as orchards, nurseries, and intensive crops [47] is to supply food through the
priority cultivation of vegetables and fruit. In terms of regulating services, the environment
of the Bay of Santander has the potential to contribute to the city’s climate regulation,
as large bodies of water such as wetlands and estuaries are important carbon sinks, as
well as the surrounding vegetation that contributes to carbon sequestration and storage.
Consequently, these ecosystems offer the capacity to absorb atmospheric pollutants, leading
to an improvement in air quality. Forests, heathland, and grasslands present in the area
allow the regulation of the hydrological cycle, favouring water infiltration and the recharge
and maintenance of aquifers, while favouring evapotranspiration, preventing soil erosion,
and playing a fundamental role in the prevention of flooding caused by extreme weather
events. Forests, grasslands, and riparian vegetation, as well as the crops present in the
study area, play an essential role as food for pollinating species, providing an optimal
environment for the promotion of pollination. It is also worth highlighting the function of
the ecosystems around the bay as a habitat for a wide variety of animal and plant species.
The ecosystems present also have a high value in terms of the cultural services they offer,
not only due to the high landscape value of places such as the Bay of Santander itself, the
beaches of El Sardinero, the Menor and Mayor capes, or the peninsula of La Magdalena,
among others, but also for the potential recreational use of these natural areas.

Table 1. Ecosystems present in the study area and its associated ecosystem services (based on [43]).

Forests and
Heathland Croplands Coastal

Ecosystems
Inland Waters, Wetlands

and Estuaries
Grasslands

and Pastures

Food X X X X X
Materials X X X

Extreme events X X X
Air quality X X X X X

Water purification X X X X
Climate regulation X X X X
Hydrological cycle

management X X X X X

BioControl X X X X X
Pollination X X X

Recreational use X X X X X



Int. J. Environ. Res. Public Health 2021, 18, 10994 6 of 24

Table 2. Green Infrastructure present in the study area and its associated ecosystem services (based on [43]).

Green Urban Areas SUDS Urban Gardens Green Corridors

Food X
Materials X

Extreme events X X X
Air quality X X X

Water purification X X X X
Climate regulation X X X X
Hydrological cycle

management X X X X

BioControl X X X X
Pollination X X X X

Recreational use X X X

2.3. Dynamic Modelling

System dynamics (SD) is a well-established system simulation methodology intro-
duced by Jay Forrester in the 1960s, aimed at understanding, visualising, and analysing
complex dynamic feedback systems [48]. Through SD, it is possible to analyse a set of
cause-effect relationships between the different factors involved in the system and, through
computer simulation, to perform a quantitative analysis of the structure of the information
feedback system and the dynamic relationship between the variables and the behaviour of
the system [25].

In a system dynamics analysis, it is essential to understand the interactions among
many related social, economic, environmental, managerial, regulatory and lifestyle fac-
tors [24]. The difficulty of these interactions lies both in their simultaneous effect on various
components of the system, and in their temporal variation. System dynamics is considered
a useful tool for predicting and analysing the outcomes that result from the interactions
between system components, and for analysing the implications of policy implementation.

2.3.1. System Dynamics Modelling of Santander

The SD model of Santander and the Bay Area comprises five main systems that
constitute the principal dimensions involved in urban dynamics (Figure 2). Each of
these systems and the set of variables and relationships that constitute them are shown
individually below.

The main logic of the model is represented in Figure 3. This figure represents the
casual loop for the main systems of the model. An increase on population translates into
an increase on emissions and waste production, which implies a reduction of population
by the increase of diseases. On the contrary, better and more ecosystems implies a better
environment for the population. Investment on green infrastructure and policies translate
into a reduction of pollutants and waste, and an increase of ecosystems, which derives
into an increase of GDP (via more ecosystem services), which can be assumed to be a good
indicator for population quality of life.

Population System

The population of the study area is modelled through a level variable that represents
the balance between the flows of births and deaths in the city, dependent on the respective
birth and death rates. Moreover, since the population dynamics of a city are dependent
on multiple variables which, in turn, depend on other factors, a wide number of auxiliary
variables with an effect on the temporal behaviour of the population in the study area and
vice versa has been included.

As shown in Figure 4, the mortality rate is related to the morbidity rate, and this de-
pends on the sedentary-related disease rate (linked with the disposal of natural spaces) and
on the pollution-related disease rate (linked with the pollutant emissions balance). More-
over, the population balance is also affected by the residential stock of change, dependent
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on the risk of poverty rate, being this variable inversely proportional to the employment
rate of the city.
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Pollution System

As a fundamental part of the model, it was considered essential to analyse the effects
of pollution on the development of the city’s ecosystems, population, and economy. The
main sources of pollution in cities have been considered to be the balance of pollutant
emissions and, conversely, uncontrolled waste dumping. Each of these sources of pollution
has been represented as an individual system by Forrester diagrams (Figure 5).
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Pollution generation depends on emissions per capita and emissions per vehicle.
This distinction has been made according to the source of emissions to be able to analyse
afterwards the effects of, for example, the reduction of transport by private cars. Conversely,
the absorption of pollution depends on the absorption rate of the system, depending, in
turn, on the absorption capacity of ecosystems present in the area.

The balance of greenhouse gas pollutant emissions is represented as tonnes of CO2
equivalent, based on data from the Air Emissions Accounts [49]. Nevertheless, the total
emissions accounted for are made up of different types of pollutants such as nitrogen
oxides (NOX), sulphur oxides (SOX), methane (CH4), PM2.5 and PM10 particles, volatile
organic compounds (VOC), carbon dioxide (CO2), etc.

The pollution resulting from the production and dumping of waste has been modelled
based on a level variable, waste pollution, which receives the flow coming from the
generation of waste, calculated as the waste per capita per population of the study area,
of which a part is destined to waste management, determined by the waste treatment
rate, and another part is made up of uncontrolled dumping into the environment, which
depends on the dumping rate.

Area Distribution System

A system has been developed that establishes the relationships between the areas
occupied by ecosystems, green and blue infrastructure, impervious surface, and free surface
(Figure 6). Each of these surface typologies is modelled as level variables, which receive
inflows or outflows that imply a growth in the surface area occupied by each one, or its
degradation or transformation into another typology. These transformations are governed
by the respective rates of degradation, impermeabilization, etc., which in turn, depend on
other systems participating in the model, such as pollution levels, population, etc.
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Ecosystems and Ecosystem Services System

The area of ecosystems shown in the Forrester diagram of area distribution can be
subdivided according to the type of ecosystem it occupies in forests and shrublands,
crops, coastal ecosystems, inland waters, wetlands and estuaries, and grasslands and
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pastures (Figure 7). The area occupied by green and blue infrastructure is also classified
into the following categories: sustainable urban drainage systems; urban gardens and
community green spaces; urban green areas; and green corridors. Having defined the
types of ecosystems and green infrastructure present in the study area and identified the
ecosystem services they provide, they have been included in the model using auxiliary
variables and parameters that represent the estimated economic value of the ecosystem
service per surface area per month, for each of them, according to the database “The TEEB
Valuation Database” drawn up by Van del Ploeg and de Goot [50].
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Economy System

Finally, the economic dimension, represented by the gross domestic product variable,
is introduced into the model (Figure 8). To model the influence of nature-based solutions
on the city’s economy, a set of relationships have been established that simulate the effect
of the variation of the surface area occupied by ecosystems in the city and its effect on the
generation of ecosystem services and, finally, quantify the contribution of these services to
the city’s economy, that is, to its GDP. Thus, we would be considering a GDP understood
as a welfare function, in other words, a GDP adjusted by the economic contribution of
ecosystem services.

The economic welfare indicator, as shown in the following equation:

GDP adjusted = GDP per capita × population + ecosystem services,

is calculated from the computation of direct GDP, and the economic benefits and savings
derived from ecosystem services for families, quantified monetarily based on the values
estimated by Van del Ploeg and de Groot [50].

Additionally, a direct relationship between GDP per capita and the employment rate
has been considered, such that an interdependence is established between the variation
in employability as a consequence of investments in nature-based solutions and the im-
plementation of employment policies, and their repercussion on the per capita income of
citizens.
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Furthermore, the monetary quantification of the savings for families in the production
of certain ecosystem services has been reflected in the variable “expenditures per capita”,
which simulates, for example, the reduction in household food expenditure because of
an increase in local food production, which would reduce the costs of acquiring the
product, or the own cultivation in urban gardens, which would reduce this cost completely
for certain products. Other considerations include energy savings in heating and air-
conditioning due to the increased climate regulation capacity provided by ecosystems and
green infrastructures.
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2.3.2. Investment and Policy Implementation Proposals

The investment and policy implementation proposals to be simulated in the alternative
scenarios to the base case, and whose feasibility and cost-effectiveness—economically and
in terms of quality of life—are to be analysed, as follows. First, according to the United
Nations Environment Programme [51], “a green investment of just 2% of global GDP would
be able to generate as much long-term growth in the period 2011–2050 as would occur
under an optimistic business-as-usual scenario while reducing the negative impacts of
climate change, water scarcity and the loss of ecosystems and their services”. Therefore, it
is considered to invest 1% of Santander’s GDP per year in the regeneration of the city’s
ecosystems and 1% in the implementation of green and blue infrastructure.

In terms of environmental policies, a 55% reduction of pollutant emissions into the
atmosphere has been established considering the objective of reducing CO2 emissions by
40–70% by 2050 set by the United Nations Environment Programme [51]. Conversely, to
reduce pollution and the degradation of existing ecosystems due to uncontrolled waste
dumping, it is established that 100% of the waste generated is treated.

Concerning policies related to transport and mobility, EU common policy principles
based on the pursuit of the “sustainable mobility” model have been considered, particularly
in the context of the sector’s growing green house gas (GHG) emissions, which constitute
a threat to climate objectives. A 36% reduction in CO2 emissions from cars is therefore
established.

Finally, employment promotion policies have been established, increasing the em-
ployment rate by 10%, as an additional measure to the previous ones in the framework
of goal number 8 of the 2030 Agenda for Sustainable Development “Decent work and
economic growth”.
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2.3.3. Scenario Definition

To analyse different strategies and policies, three scenarios have been defined to be
simulated within the model.

Scenario 0: The main assumption is zero investment in the regeneration and conserva-
tion of ecosystems and in the development and implementation of green infrastructure.
This scenario represents the most unfavourable situation, and the consequences are likely
to be negative for the system.

Scenario 1: This second scenario assumes an investment in the restoration and conser-
vation of ecosystems and the promotion of green and blue infrastructure in the study area.
An investment of 2% of Santander’s GDP has been considered (following [51]), both in the
regeneration of ecosystems and in the design and implementation of green infrastructure to
create a resilient city capable of coping with the effects of climate change. For this purpose,
the variables “investment in GI” and “investment in ecosystem restoration” have been
introduced in the model.

Scenario 2: In the third simulation scenario, the effects of the application of a set of
policies or measures affecting some of the fundamental parameters in the sustainable de-
velopment of a city have been implemented into the system, together with the investments
established in the previous scenario. The policies implemented are:

• Emission reduction policies: a constant reduction of 55% during the period of study
has been considered, based on the UN’s [51], proposed target for the reduction of CO2
emissions by 40–70% between 2010 and 2050, aiming to be zero by 2070.

• Waste management policies: uncontrolled landfills: in order to reduce pollution
from uncontrolled dumping of waste that is highly harmful to ecosystems, especially
to bodies of water, the modifications to the simulation will consider a scenario in
which 100% of the waste generated is treated, eliminating uncontrolled dumping into
the environment.

• Employment policies: an increase of 10% of the employment rate is simulated, accord-
ing to the eighth goal of the 2030 Agenda for Sustainable Development is “Decent
work and economic growth”.

• Transport management policies: The number of vehicles has been reduced in a 25%,
simulating the effects of pedestrianisation and other policies of this kind. Conversely,
emissions derived from traffic have also been reduced in a 36%, according to the
European Union’s common transport policy [52].

2.3.4. Parameter Calibration and Validation

The main purpose of model calibration is to adapt the economic model of the city of
Santander to the reality to be simulated, by adjusting the values of the different parameters,
either by using real data or by using optimisation techniques (commonly used in empirical
models). The values taken by the parameters and variables of the model after the calibration
process must be consistent such that the model not only has a predictive value of reality
for the set of data used in the calibration but also has an explicative capacity and the
application of the model can be extrapolated to other scenarios. In addition, a validation
process must be also carried out to verify that the model can be used to predict the future
values of the parameters. Complementary, carrying out a sensibility analysis of the model
parameters it is possible to assess the influence of the variation of certain parameters on
the fundamental variables (i.e., the influence of a ±1% in the pollutant emissions in the
GDP) and, therefore, to verify that the calibration of the model is satisfactory.

For the calibration of the population system, real data provided by the ICANE [53] for
the 2000–2020 period has been used. The variables used includes total population, birth
rates, mortality rate, population at risk of poverty rate and employment rate.

The active, unemployed, and employed population average values were calculated
from the data provided by the INE [54]. It has been considered that sedentary lifestyles
influence the evolution of labour activity, such that, with the increase in the sedentary popu-
lation, the employment rate decreases, and the unemployment rate increases proportionally.
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For the sick population, the values used to calibrate ratios are based on data provided
in the 2017 INE Hospital Morbidity Survey [55], considering that 20% of the main diagnoses
are related to a sedentary lifestyle.

According to the Spanish National Health Survey [56] the sedentary population as a
percentage of the total population is 44%. It has been considered that a greater availability
of surface area occupied by ecosystems, natural areas and green and blue infrastructure
can reduce this figure by up to half.

The representative pollution system has been calibrated based on emissions and
waste generation data provided by the Air Emissions Account of the INE [57]. Emissions
generated per capita and per vehicle have been distinguished for modelling separately,
such that the influence of reduced vehicle use as a consequence of the implementation of
transport policies, or the creation of green corridors can be taken into account.

For the modelling of waste pollution, waste per capita has been obtained from statis-
tical data on waste collection and treatment provided by INE [58], with a value of 535.1
kg/person/year. It has been considered that 80% of the waste is destined for treatment,
while the remaining percentage is uncontrolled dumping of this waste, which has been
related to the implemented waste management policies.

The system modelling the different surface categories of the study area has been
calibrated according to the initial area occupied by each category, which was defined based
on data provided by CORINE Land Cover 2018 [44].

The erosion rate has been established considering that, according to the National
Inventory of soil erosion [59], the erodible surface constitutes 96.16% of the surface area of
Cantabria. If we disregard the percentage of area susceptible to zero erosion, and extrap-
olating this calculation to the study area, we could consider that the area of ecosystems
susceptible to erosion in Santander is 91.91%, this being reduced by the erosion prevention
effect exerted by the restoration and conservation of certain ecosystems.

The average GDP per capita in the municipality of Santander, calculated from data
provided by the ICANE [60], is EUR 15,717.44 per person. A direct dependence between
GDP per capita and the employment rate has been considered. The values for annual per
capita expenditure have been obtained from the Household Budget Survey (HBS) data [61].
These data are EUR 3829.54/person for expenditure on housing, energy, and water and
EUR 1,785.44/person for food, considering the average of the values for the time period
2006–2019. The 10% of expenditure on housing, energy and water has been found to
vary inversely with the ecosystem services “climate regulation”, “water purification” and
“management of the hydrological cycle”.

Validation Results

Once the model has been calibrated, the reliability of the results obtained from the
comparison of the demographic evolution in the modelled study area with the future
projections (up to the year 2039) for the population of the municipality of Santander has
been checked [62]. Figure 9 shows the results obtained in the model for the evolution of
the population, influenced by the rest of the parameters involved in the simulation. It
shows that population is satisfactorily adjusted to these predictions, with both showing a
decreasing trend, and errors being less than 10%.
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3. Results and Discussion

This section presents the results derived from the developed model. First, the results
are presented and discussed, and second, an economic assessment (based on GDP estimates)
to assess the profitability of implementing nature-based solutions is provided.

3.1. Comparison between Scenarios

The results obtained from the model are presented for the three simulation scenarios
previously described representative of the different actions in terms of investment and
implementation of economic, environmental, and social policies. The results obtained are
represented in graphs showing the evolution of the main variables of the model, within the
established time frame.

3.1.1. Distribution of Surface Areas

First, representative graphs of the distribution of the surfaces of the study area are
shown, in which the progression of the different surfaces can be seen.

As shown in Figure 10a, ecosystems, which presented a strong degradation in Scenario
0, soften their tendency to disappear through the annual investment of 2% of GDP in their
restoration, and it is for Scenario 2, with the addition of a set of environmental policies,
when their tendency becomes positive, experiencing a slight growth towards the year
2050. The evolution of the free surface area is complementary to that of the ecosystems,
which means that part of this free surface area becomes part of the ecosystems through the
proposed interventions. Conversely, the impervious surface (Figure 10.b), which undergoes
a significant expansion in the base case, becomes relatively constant through investment
in green and blue infrastructure, and for Scenario 2, it decreases, being replaced by urban
green infrastructure (Figure 11).
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3.1.2. Population

Demographic changes in the population are more pronounced for Scenario 2 compared
to the previous ones. In this case, births increase due to the influence of employment
policies, assuming a 10% increase in the employment rate in the study area (Figure 12).
Mortalities, in contrast, are below their previous levels, due to the decrease in the hospital
morbidity rate as a result of the drastic reduction in air pollution and its associated diseases,
due to the emission control policies established.

3.1.3. Ecosystem Services

The evolution of the production of ecosystem services shows a parallel progression to
that of the ecosystems in the study area, highlighting its evident strong dependence on the
latter (Figure 13). Only in Scenario 2, through the investment in ecosystem restoration and
green and blue infrastructure, an increase in the generation of these services is possible.
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3.1.4. Economic System

The repercussions of the implementation of policies at various levels in this simulation
on the main economic indicators (GDP and GDP per capita) are a much steeper down-
ward curve for the progression of adjusted GDP between 2000–2050, due to the economic
contribution to Santander of the production of ecosystem services (Figure 14).

3.1.5. Pollution

Pollution levels due to greenhouse gases emissions show a decrease compared to the
baseline scenario due to the increase in the absorption capacity of ecosystems
(Figure 15). However, it is in Scenario 2, due to the implementation of environmental
policies to reduce emissions, that the drastic reduction in atmospheric pollution, trending
towards zero, means that the trend in the rate of degradation of ecosystems is reversed
towards a decreasing trend.
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3.1.6. Quality-of-Life Indicators

Concerning the quality-of-life indicators, the graphs presenting the dimensions related
to this study, and set out in the Stiglitz–Sen–Fitoussi report, are presented. As an indicator
of the material living conditions dimension, first, the evolution of the rate of the population
at risk of poverty has been modelled (Figure 16a), which in Scenario 0 experiences exponen-
tial growth up to 2050, while investment in Scenario 1 manages to stabilise this growth and,
in Scenario 2, due to the complementary action of investment and the policies implemented,
it is possible to obtain lower values for this rate and a decreasing trend. Conversely, as it is
shown in Figure 16b the variable “expenditure per capita”, which represents the savings
that the production of certain ecosystem services represents in household expenditure
in Santander, shows an upward trend in the non-action scenario, while its evolution is
parallel to that of ecosystem services in the other scenarios, i.e., the higher the produc-
tion of ecosystem services such as food supply or climate regulation capacity, the lower
the expense.
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Regarding the dimension related to the health state of the population the model pro-
vides a graph of the sick population in which can be observed (Figure 17a) how, compared
to the growing trend of Scenario 0, investment in ecosystems and green infrastructure
implies a decrease in the rate of hospital morbidity (Figure 17b) caused fundamentally by
the decrease in the rate of illness due to sedentary habits as a result of the change in the
lifestyle of the population due to the availability of more natural spaces which promote
physical activity; and, conversely, due to the decrease in the rate of pollution-related ill-
nesses (Figure 18), as a result of the reduction in emissions of certain polluting substances
into the atmosphere, such as SSs, NOx, SOx, etc. For Scenario 2, the complementarity of
the proposed investment with the set of environmental policies on emissions reduction is a
key factor in improving the health status of the inhabitants of the study area.
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the sedentary-related disease rate for the three cases of study modelled, in the period 2000–2050.

The dimension related to leisure and social relations is represented in this model
through the variable corresponding to the ecosystem service “recreational use”, which
shows, as it can be seen in Figure 19, the evolution for the different scenarios, parallel
to that undergone by the ecosystems. For Scenario 2, the spaces allocated to the social
and recreational activities of ecosystems and green infrastructures undergo a positive
progression, bringing an increased economic benefit to the city.
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Figure 19. The progression of the ecosystem service “recreational use” for the three simulated
scenarios over the period 2000–2050.

In terms of the quality-of-life indicators relating to the surroundings and the envi-
ronment, the following results are obtained. The rate of noise pollution is reduced due to
investment in ecosystem restoration and the incorporation of green infrastructures in the
city, which act as natural barriers to acoustic pollution, but it is in Scenario 2, in conjunction
with transport policies that reduce the noise pollution emitted by vehicle traffic, that this
rate shows a downward trend. The heat island effect (Figure 20b) in the city of Santander
shows a similar progression to the evolution of the impervious surface and is dependent on
the heat regulation capacity of the city due to the implementation of green infrastructure
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and the presence of ecosystems, achieving a reduction, by the year 2050, of up to half the
value predicted for the most unfavourable scenario.
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3.2. Economic Assessment

The following tables show the numerical values of investments and adjusted GDP
for different years within the study period 2000–2050 for scenarios 1 and 2, provided by
VENSIM for each simulation.

Tables 3 and 4 show the investment in green infrastructures and policies and its effect
on Santander’s GDP compared to a base case (Scenario 0), for different years within the
study period. With minor investments (less than EUR 35 million per year), the increase of
GDP is relevant. These results show that EUR 1 spent as green infrastructure and policies
translates into EUR 100 increase in GDP during all the period considered.

Table 3. Numerical results of investment values and adjusted GDP variation for Scenario 1.

2010 2020 2030 2040 2050

Investment (EUR mill.) 35.03 33.00 30.77 28.38 25.89
GDP (EUR mill.) 3503.01 3300.23 3077.48 2838.98 2589.35

Table 4. Numerical results of investment values and adjusted GDP variation for Scenario 2.

2010 2020 2030 2040 2050

Investment (EUR mill.) 35.51 34.14 32.78 31.46 30.19
GDP (EUR mill.) 3551.24 3414.10 3278.43 3146.13 3019.27

From the results shown in Table 5, based on the non-action scenario, the investment of
an annual 2% of Santander’s GDP in ecosystem restoration and green infrastructure implies
an increase in GDP by 2050 of 13.24%, whereas, for Scenario 2, the complementation of the
investment with the set of environmental and socio-economic policies implies an increase
in adjusted GDP of 32.04%.

Based on these results, and the assumptions considered in the modelling, the cost-
effectiveness of the investment and policies implemented can be considered to be favourable.
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Table 5. Percentages of the increase in adjusted GDP as a result of the actions carried out in each
simulation scenario.

2010 2020 2030 2040 2050

Case 0–Case 1 2.13 4.53 7.18 10.08 13.24
Case 0–Case 2 3.54 8.14 14.18 21.99 32.04
Case 1–Case 2 1.38 3.45 6.53 10.82 16.60

4. Conclusions

The model presented in this work exemplifies the feasibility of representing, by means
of an SD model, the complex dynamics of a region as Santander Bay, covering economic,
social, and environmental spheres. The results obtained from this work allow visualising
the complex feed-back mechanisms connecting direct income factors with quality of life
through environmental and health drivers.

Nevertheless, as quantitative and qualitative limitations have emerged in the calibra-
tion process, that may limit the exploitation of the model for further analysis, additional
research is required to improve the accuracy of the parameters.

The model itself can greatly benefit from the extensive review of variables interaction
and their inherent degrees of freedom. This approach may result, not only in results that
are more accurate, but also on a more general model, applicable to different scenarios
and study sites. The precise quantification of the phenomena can greatly benefit from
additional fieldwork, but at the present state, the consistent analysis developed for the
alternatives allow understanding the existing mechanisms may drive the evolution.

Finally, it is concluded that, under the assumptions considered in the modelling and
its calibration and derived from the results obtained for the three simulation scenarios,
conservation and regeneration of ecosystems and green and blue infrastructure, and the
implementation of environmental and socio-economic policies, is economically, environ-
mentally, and socially profitable. Results show that EUR 1 spent in these policies and
projects could produce up to EUR 100 as a benefit provided as an increase in GDP. The
annual investment of 2% of Santander’s GDP leads to the progress of the local economy in
up to 32%, while resulting in an improvement in the quality of life of the inhabitants of the
study area.

Although these results are limited by the constraints defined above, this study shows
that SD models are a tool to be considered by government managers to analyse their actions
and policies. In this sense, SD models allow to analyse potential actions from a multiple
point of view (economic, social, environmental) considering the different systems that
share the city (population, economy, ecosystems, etc.). Moreover, the model can be easily
transfer to a different urban area where the fieldwork may help to characterise the problems
associated to the site.

The main advantage of SD models over other tools currently being considered for the
socioeconomic analysis of actions and policies is that they allow for the incorporation of
the behaviour of different systems and their interactions, analysing in a more complete
way, the effects of actions and policies on each of them.

The application shown in this study shows that SD models cannot only have a place
in the management of urban areas, but it also raises possibilities for use in other areas and
current risks. For example, the use of dynamic systems can also be considered as a good
option for the analysis of climate change adaptation actions in areas that may be at risk.
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