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Abstract: The use of communication technologies, e.g., mobile phones, has increased dramatically
in recent years, and their use among drivers has become a great risk to traffic safety. The present
study assessed the workload and road ordinary violations, utilizing driving data collected from
39 young participants who underwent a dual-task while driving a simulator, i.e., respond to a call,
text on WhatsApp, and check Instagram. Findings confirmed that there are significant differences in
the driving performance of young drivers in terms of vehicle control (i.e., lateral distance and hard
shoulder line violations) between distracted and non-distracted drivers. Furthermore, the overall
workload score of young drivers increases with the use of their mobile phones while driving. The
obtained results contribute to a better understanding of the driving performance of distracted young
drivers and thus they could be useful for further improvements to traffic safety strategies.

Keywords: mobile; phone; distractions; traffic; violations; workload; young; drivers

1. Introduction

Traffic accidents account for 1.35 million deaths a year on 2018 and keep being a
significant cause of injuries and fatalities [1]. This has led countries all around the world to
give the highest priority to improve road safety and devote considerable efforts to manage
the injury profiles for traffic accidents and develop a safer road traffic system, such as
vehicle safety, road infrastructures improvement, enhancement of drivers’ care, traffic rules
and regulations, awareness campaigns, etc.

As a matter of fact, statistics on traffic accidents and related injuries have shown
that 80–90% of traffic incidents are caused by drivers’ operational mistakes, errors and
misbehaviors, inattention, fatigue, and distraction [2–6].

Although there are numerous potential in-vehicle sources of distraction, extensive
research has reported that the use of mobile phones is among the major factors that lead
to traffic accidents [7–10]. In this regard, researchers reported that, in 2015, there were 4.7
billion people using mobile phones and that this number was expected to reach 5.6 billion
by 2020 [11]. Furthermore, the development of the telecommunications industry and this
increasing number of subscribers would make the use of mobile phones among drivers
very common.

Taken together, there is a recent trend and growing interest in technology-based
distractions (particularly the use of mobile phones) and a substantial body of research
has investigated the risk factors related to their use on the drivers’ performance and road
safety. A survey conducted in Australia found that driver distraction contributed to 13.6%
of serious traffic crashes [12]. Analogously, in 2019, the Department of Transportation’s
National Highway Traffic Safety Administration estimated that distracted driving has
claimed around 3142 lives in the US [13]. Moreover, an observational study in the US
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reported that out of 3265 observed drivers, 32.7% had distracted driving and talking on
the phone, and that texting/dialing a phone were among the most frequently observed
distractions (i.e., 31.4% and 16.6%, respectively) [14]. As regards predictors for such
secondary tasks, an investigation of the observable distractions while driving in the UK
found that age emerges as a significant predictor for most of the observed secondary tasks,
including mobile phone use [15]. Moreover, this study pointed out that young drivers
are more likely to be distracted. Indeed, young people keep using and interacting with
their mobile phones too frequently. A naturalistic study found that young people aged
between 17–22 years old touch their mobile phones while driving 1.71 times per minute, on
average [16]. Similarly, a study involving 254 young participants aged between 17–23 years
old found that they touch their mobile phones 1.6 times per minute, and more than half
are performed while the vehicle is in motion and half of the screen-touches are to use
WhatsApp [17]. Another study involving 114 young people (aged between 17–25 years old)
specified that young people have greater use of social media platforms while driving [18].
The descriptive results of this study showed that fully 80.7% of them were chatting and
texting, 73.7% were talking on their mobile phones, 53.5% were using Facebook, 41.2%
were interacting on Snapchat, and 30.7% were checking their emails.

In Spain, a recent study reported a total of 410,974 traffic accidents occurred in the
last four years (2016, 2017, 2018, and 2019). According to this study, these traffic accidents
involved 666,504 drivers, of which 8.33% were involved in serious accidents and 12.82% of
them were young drivers (under 25 years old) [19]. Moreover, this study found that 4048
of the distracted drivers were using their mobile phones. Similarly, a week-long surveil-
lance campaign carried out in Spain by the DGT (the DGT is the Spanish General Traffic
Department) found that 2873 drivers were using their mobile phones while driving [20].

Likewise, out of 10 young people, eight admitted to having distracted driving, and
67% specified that they checked their mobile phones frequently while driving [21]. Another
study done in Spain by Linea Directa Foundation in collaboration with the Institute of
Traffic and Road Safety (Intras) in 2019, estimated an average mobile phone usage to be 6 h
and 48 min and particularly at traffic lights, traffic jams, and when they think “the road is
safe” [22]. As regards the use of mobile phones in Spain, it was reported that WhatsApp
and Instagram were among the top three applications downloaded and on which the
subscribers were more active [23].

It is well established in the literature that distracted driving takes drivers’ eyes off
the road, switches their consciousness from driving to other tasks, and results in false
perceptions. Indeed, traffic accidents take place when the drivers’ performance is below the
required levels for the traffic environment [24]. In this regard, a recent study confirmed that
safer driving requires an assessment of driver mental states [25]. Furthermore, the authors
have explained that the capacity of humans’ mental resources that could be used to process
information received (i.e., mental workload) is limited and the use of mobile phones claims
further cognitive resources. Therefore, the margin of the driver’s attentional capacity
decreases as long as the amount of information being processed increases. In-depth studies
investigated such mental mechanisms have put in light the deployment of numerous
approaches and different measures to assess the cognitive load. These approaches could be
grouped into four main groups [26]: (i) physiological such as electroencephalogram (EEG),
electrocardiography (ECG), galvanic skin response (GSR), and respiration, (ii) eye tracking,
(iii) performance-based vehicle speed, and (iv) subjective, e.g., NASA TLX (National
Aeronautics and Space Administration Task Load Index) which is the most commonly used
assessment tool in the literature

The present study is designed to provide an integrated framework to assess the
influence of technology-based distractions (particularly, the use of mobile phones behind
the wheel) on driving performance. For this purpose, first, a simulation experiment was
conducted using a driving simulator to collect data on driver infractions under the influence
of mobile phone distractions. Driving simulators are widely used in human factors, driver
behaviors, driver perception, and driver distraction studies as they offer a safe, efficient,
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and controllable environment. Thus the driving simulator is proved to be a valid substitute
for different aspects of real driving experience [27–29]. This study was then extended
to assess the workload associated with the use of mobile phones while driving. For this
purpose, the NASA TLX, which is a well-known subjective multidimensional method, was
used to rate six aspects of perceived workload, i.e., mental demand, physical demand,
temporal demand, performance, effort, and frustration. In addition to these scales, an
overall value of perceived workload was measured as well [30]. Finally, several studies
used machine learning techniques in road safety studies to address distracted driving
issues [31,32]. In this paper, a tree-based machine learning method was deployed for
classification and regression problems.

The rest of the paper is organized as follows: Section 2 describes the design and
methodology of the study. Section 3 provides the results, discusses the main findings,
summarizes the most relevant weaknesses, and suggests directions for future research.
Section 4 concludes the study.

2. Background and Related Work

Road safety literature is rich in research and studies that investigated the influence of
technology-based distractions on driving performance. A summary of the main findings
from 13 selected past studies is given in Table 1.

The selected past studies are reviewed with regard to the objective of the research, the
type of the study, and the methodology adopted.

Table 1 shows that mainly three types of research studies are interested in distracted
driving due to the use of mobile phones:

(i) survey studies that assess patterns and prevalence of distracted driving and analyze
the characteristics of the distracted drivers (e.g., gender and age);

(ii) naturalistic studies that observe behaviors of the drivers and record secondary tasks
(in particular, the use of mobile phones) over a period of time; and

(iii) experimental studies that employ driving simulators to design specific driving sce-
narios, close to a real driving environment, to collect data on the influence of the
distractions on the driving performance.

Although survey studies in their different forms (questionnaire, phone interviews, or
online), and naturalistic studies are two main approaches that utilize large samples made
up of hundreds of subjects to analyze the distracted driving phenomenon, these methods
suffer several limitations. First, the data used to conduct such studies involved subjective
responses from respondents and interviewees which are, generally, biased and lead to
inconsistent outputs. Second, in observational studies, data are collected at one particular
location.

Experiment studies, including the present study, are advantageous over other types as
they provide a safe and controllable environment for scholars to collect data on distracted
driving under specific conditions which are dangerous in the real world or difficult to
be reproduced.

Moreover, in comparison of experiment studies of Table 1, and in contrast to survey
studies, experiment studies consider typically small samples involving 20–80 participants,
and they mainly collect data either on: (i) speed infractions, (ii) lateral control, (iii) lane-
changing, and (iv) traffic accidents. Advantageously, the present study is designed to
collect several driving performance measures, such as traffic accidents, traffic rules, lateral
distance, speeding, and other violations. (Violations studied in this paper will be detailed
in Results and Discussions section).
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Table 1. Summary of similar past studies.

Paper Research Type
Dataset Characteristics Data Collected Instruments Distractions

Random Forest
Sample Size Age Group Workload Behavioral

Data
Workload

Assessment Tool
Data

Collection Tool
Mobile Phone
Distractions

Other
Distractions

[33] E 20
20

25–45
> 65 X

Crash rate
Acceleration
Lane position

NASA TLX Simulator - Challenging
road events -

[34] N 11
9

13–34
39–51 X

Task-related
interior
glances

NASA TLX - Texting - -

[35] E 20 20 (SD 3.1) X

Collision;
Aggressive

driving
Traffic rules
violations

Lane keeping

NASA TLX Simulator - Affective
states -

[36] E
16
16
20

19.2 (SD 2.3)
19.1 (SD 1.3)
19.9 (SD 1.1)

X Lateral
position NASA TLX Simulator - Road

conditions -

[37] E 50 18–59 - Lane
excursions - Simulator Texting - -

[38] E 34 18–30 X
Speed

Variance of
lane position

NASA TLX Simulator Calling Road
conditions

[39] S 200 39.5 (SD 10.2) X
Driving

accidents
Human errors

NASA TLX and
CFQ cognitive

failure
questionnaire

- - - -

[40] E 25
24

22.12 (SD 2.45)
37.62 (SD 7.22) X

Longitudinal
and lateral

controls
- Simulator Texting and

calling - -
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Table 1. Cont.

Paper Research Type
Dataset Characteristics Data Collected Instruments Distractions

Random Forest
Sample Size Age Group Workload Behavioral

Data
Workload

Assessment Tool
Data

Collection Tool
Mobile Phone
Distractions

Other
Distractions

[41] E 34

Male: 32.5 (SD
5.38)

Female:
30.46 (SD 4.2)

X Car-following EEG Simulator Calling - -

[42] S 475
232

≤30
>30 X

Situation
awareness

Driving
performance

SWAT - - High altitude
environment -

[43] N 20 57.8 (SD 2.7) X

Speed
variability

Reaction time
Number of

traffic
violations

NASA TLX &
EEG - -

Three
complexity
levels of the

situation

-

[44] E

18
18
18
18

18–25
31–40
55–65
70–80

- Braking
responses EEG Simulator -

Acoustic and
visual

distraction
stimuli

-

[45] E 41 18–61 -

Gap
acceptance at
intersections
Intersection

crossing
completion

time

- Simulator Texting - -

E: Experimental, N: Naturalistic (observational), S: Survey.
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Furthermore, primary methods used to analyze the data collected are the statistical
models, for instance, Logistic regressions and Logit models. However, the large number
of factors and parameters collected from police reports as regards the traffic accidents
challenges the statistical methods to handle all of these variables. Thus, statistical modeling
is generally effective in the case of a smaller dataset with fewer attributes, otherwise
they end up over-fitting. To address these shortcomings of the statistical models, machine
learning techniques have emerged for classification and regression problems. They are more
adequate for learning from large datasets with a high number of attributes and observations,
for example, Bayesian Networks and Artificial Neural Networks [46], Decision Trees [47],
Random Forests [48], etc.

Therefore, in this paper, a tree-based machine learning method (Random Forest) is
deployed for classification and regression problems. This method has been previously
used to identify when a driver is distracted based on driving behavior data [49], and to
establish the relevance of the variables affecting the driving behavior [50], and is found to
be a robust and competitive method in both tasks, especially when a limited sample size
is available. Despite the differences between the objectives and approaches of the cited
studies, the results are consistent with those obtained in this paper, although we extend the
analysis to a more general overview of the driving behavior leading to an increment of the
traffic infractions.

As part of the underlying causes of distracted driving and resulted impairments,
much previous research given in Table 1 used either subjective measures to evaluate the
mental workload, such as the NASA TLX and RSME (the Rating Scale Mental Effort), or
physiological measures, such as variability in heart rate or changes in brain activity using,
for instance, the EEG. Likewise, this study specifically assesses the cognitive workload and
efforts of processing auditory and visual information related to the secondary task (i.e., the
use of the mobile phone, particularly for calling and texting) using NASA TLX. This design
is very convenient to expand the context of previous studies and contribute to the body of
literature on technology-based distracted driving.

3. Materials and Methods
3.1. Participants

In the beginning, a total of 44 subjects participated in the experiment. Nevertheless,
five of them were discarded: two participants were eliminated due to age (48 and 56 years
old), two others due to missing information on NASA-TLX, and one additional participant
was not considered in the study as the recordings of the simulator were corrupted. Finally,
only 39 participants successfully completed the experiment. This sample size is consistent
with published literature (as discussed in the previous section), and large enough to
conduct the study.

The study sample was made up of 12 females and 27 males, aged between 19 and 32
years old (µ = 21.5 and SD = 2.6), and had a valid Spanish driving license. The average
number of years since the participants got their driving licenses was 2.84 (SD = 2.38) ((a) of
Figure 1). On average, most of the participants drove around 5000 Km per year or less ((b)
of Figure 1) and 82% of them drove at least weekly ((c) of Figure 1). Finally, the participants
were asked about how much they like to drive and responses showed that most of them
liked or liked very much to do so ((d) of Figure 1).

Young people were selected as they use their mobile phones more regardless of road
and traffic conditions, are more likely to underestimate the difficulty of driving, and are
less likely to understand the risks associated with multitasking [38,51–53].
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Figure 1. Descriptive of the study sample: (a) Frequency of the license years; (b) Km driven per year; (c) Driving frequency
between daily, weekly, monthly and yearly; (d) How much the participants love to drive.

3.2. Apparatus

For the experiment, an adapted DriveSim simulator located at the University of
Burgos, Spain was used. It is a high-quality driving training-based simulator that contains
three big screens to yield a high immersive environment, a steering wheel (Logitech G27),
pedals, gear lever, and real car controls and signals (ignition key, turn lights, etc.) for more
realism (Figure 2).

The simulator screens are 39” with a 1920 × 1080 resolution each. The simulator can
record driving data between 40 and 60 Hz depending on the elements in the environment
and the interior of the car, i.e., dashboard and mirrors, as key elements.

The simulator includes artificial intelligent traffic and pedestrian agents to better
mimic a real driving experience. A mobile phone was placed to the right of the steering
wheel which is commonplace for mobile phones nowadays.

3.3. Experimental Design

A specific trajectory was created to perform the experiment. It covered rural roads
and urban areas and included several roundabouts, stops, traffic lights, and pedestrian
crossings (Figure 3). The entire trajectory could be run within about 15 min depending
on the traffic and status of the traffic lights. The simulation was configured to have a
sunny day with medium traffic and pedestrian density. Both traffic and pedestrians were
randomly generated, and the trajectory was complex enough to avoid the learning effect
during the laps.
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Figure 2. Simulator with three screens used in the study.

Figure 3. The trajectory of the experiment.

During the experimental phase, two laps were run. The first lap was run with normal
conditions in the simulator and no distractions were applied. Into the second lap, the
distractions were introduced in the form of several secondary tasks using the mobile phone.
The objective was to estimate the effect of mobile phone-related distractions and measure
the resulting workload due to multitasking. Accordingly, the participants had to respond
to a call, reply to several WhatsApp messages, and use Instagram. These tasks had to be
done with a specific mobile phone provided for the experiment placed on the simulator
cockpit in a specific position to the right of the steering wheel. The mobile phone had
particular contacts on the agenda who should be contacted during the experimental phase.

3.4. Experimental Procedure

At their arrival, the participants were introduced to the experimental procedure
and asked to sign the bioethical consent. After that, they did a test into the simulator
in a free driving scenario for 5–10 min. The aim was to check any potential motion or
simulator sickness that could generate a big dropout during the experimental phase. In
case the participants felt the motion sickness associated with driving simulators, they were
rejected [54–56]. Furthermore, the test contributed to making the participants more familiar
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with the simulator and feel more comfortable during the experiment [57]. Whenever the
first test was successfully completed, the participant fulfilled the socio-demographic survey
and proceeded with the experiment. Additionally, the participants were informed that they
could quit the simulation, at any moment, if they felt any motion sickness or discomfort.

During the experimental phase, two laps were run. In the first lap, the participants
got the instructions to drive like they are used to doing in real life with normal conditions
on the simulator and no distractions. Following a successful first drive, the participants
immediately completed the NASA-TLX.

The NASA-TLX is a well-known tool used to self-evaluate the subjective workload of
the volunteer in a task. It rates the overall workload of the task and six other subscales [30]:

• Mental Demand: How much mental and perceptual activity was required? Was the
task easy or demanding, simple or complex?

• Physical Demand: How much physical activity was required? Was the task easy or
demanding, slack or strenuous?

• Temporal Demand: How much time pressure did you feel because of the pace at
which the tasks or task elements occurred? Was the pace slow or rapid?

• Overall Performance: How successful were you in performing the task? How satisfied
were you with your performance?

• Effort: How hard did you have to work (mentally and physically) to accomplish your
level of performance?

• Frustration Level: How irritated, stressed, and annoyed versus content, relaxed, and
complacent did you feel during the task?

Each subscale ranges from “very low” to “very high” respectively, except for the
Overall Performance that uses two bipolar descriptors, “success” or “failure”. It also implies
the need to fulfill a workload comparison of 15 questions to evaluate the contribution of
each dimension to the workload of a specific task.

In the second drive, the participants had to drive and perform several secondary tasks.
Nevertheless, they were instructed not to perform the distractions when stopped in red
light or similar situations. Particularly, secondary tasks were to respond to a call, replay
several WhatsApp messages and later use Instagram.

In case, the participant was not able to perform all the secondary tasks, the data
regarding their driving performance were discarded. Immediately, after completing the
second drive, the participants completed the NASA-TLX again.

3.5. Data Collection

The simulator recorded the telemetry data for each experiment in an SQLite database
allowing the collection of a large amount of valuable data related to the simulation. Par-
ticularly, telemetry data were associated with the user/simulation and violations. They
covered 28 types of records, most of which were focused on the conditions of the vehicle at
any given time: speed, control status, accelerations, etc., but also included other valuable
data, for instance, the speed limit of the road on which the user was running along. More-
over, the simulator detected inappropriate driving and determined the penalties. In fact,
there were up to 87 different conditions in which the simulator registered a penalty, such
as exceed the speed limits, flashlights, incorrect use of lights, cross over continuous lines,
or go to the side of the road, etc.

As regards data collected from NASA-TLX after the two simulated drives, participants
completed physical forms which were later copied into a csv-file (CSV-Comma Separated
Value) to be processed easily later.

3.6. Study Variables and Data Analysis

Violations were organized in a similar way to a previous study [58] which is consistent
with recent research on mobile phone distractions and driving performance [59]. Among
87 types of violations recorded by the simulator, 32 were eliminated as they did not fit the
simulation conditions; for instance, switch on the light when driving at night or into the
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tunnel, park in inadequate places, etc. Out of 55 types of violation left, the participants
committed 36 of them, which were grouped into five groups: (i) Lateral Distance: cross
over continuous lines, do not respect the distance from the curb, etc.; (ii) Traffic Rules: do
not stop at the red traffic light, at a pedestrian crossing or stop sign, incorrect use of turn
signals; (iii) Speed: speed violations, i.e., do not respect the speed limits; (iv) Accident:
collisions or serious traffic accident; and, finally, (v) Others: drive with the handbrake on,
use the clutch incorrectly, etc.

3.7. Data Analysis Methods

In order to analyze the main factors contributing to the drivers’ violations, two ap-
proaches were considered. On the one hand, the contribution of each feature to the variabil-
ity if the target variable was estimated by means of an Analysis of Variance (ANOVA). On
the other hand, a Random Forest, a tree-based ensemble method, was considered to obtain
the importance of each feature to model the target variable [60,61]. Finally, for illustrative
purposes, classification and regression trees were used to model the occurrence (Number
of violations > 0) and number of violations committed by the participants. In this sense,
both regression and classification problems were considered in this work.

3.7.1. Decision Trees

Tree-based methods [62–65] define a tree as a structure by recursively splitting the
features’ space. Each division is obtained by calculating the best predictor split determined
by a chosen purity criterion over the target variable. In particular, the Gini Index and
the Sum of the Squared residuals (RSS) were considered for classification (Equation (1))
and regression models, respectively. Note that, as a result, a disjoint partition of the
features’ space based on the purity criterion is obtained. In the resulting tree, each node
corresponds to a test on an attribute (i.e., mobile phone use), each branch corresponds to
an attribute value (i.e., mobile use = Yes or No), and each leaf (terminal node) represents
a final class/value (i.e., violation = Yes) which is assigned to the subsample fulfilling the
different conditions defining the path to reach the leaf node from the top of the tree.

GINI = 1 − ∑n
i=1 p2

i (1)

These methods have several well-known advantages and drawbacks. First, the trees
have a graphical representation that is easy to be assimilated and interpreted. Compared
to other methods, decision trees can be constructed relatively fast and they do not require
a very big sample to obtain competitive results [64]. Second, some attributes could not
be selected to grow the tree as they are secondary in terms of the increment of the global
purity of the partition obtained. For this reason, they can be used as a feature selection
in a pre-process for other learning algorithms. Third, they work with both quantitative
and qualitative (i.e., discrete) predictors. Finally, for a sufficiently complex (i.e., large or
deep) tree, all instances could be correctly classified although this commonly leads to
over-fitted models.

3.7.2. Random Forest

Random forest [66,67] is a tree-based bagging (Bootstrap Aggregating) method that
constructs N independent trees considering, on the one hand, a random selection of the
predictors, and a new sample obtained utilizing a bootstrap over the original one, on the
other hand. As a result, N predictions are obtained (one for each tree of the forest) which
are combined to obtain the final one.

For the classification and regression, the majority vote class and the mean are com-
monly used. Note that despite the overfitting of each particular tree, the average of multiple
independent trees prevents the overfitting of the random forest. However, the graphical
representation of the random forest is not possible and, consequently, its interpretation
is more difficult than in the case of the trees. To partially overcome this problem, the
importance of each variable, in terms of the error reduction obtained when this feature is
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chosen in a node, can be obtained as an estimation of the contribution of each feature to the
target one.

For this work, the Random Forest has been built considering N = 150 trees, based on
cross-validation up to 300 trees, and randomly chosen at most half of the variable features.
Based on the results obtained with the tree model, the maximum number of leaf nodes was
established in 10, maintaining in some ways the coherence between both approaches.

4. Results and Discussions
4.1. ANOVA

ANOVA analysis, summarized in Table 2, provides several findings related to the
number of violations considering the mobile phone-related distractions.

Table 2. ANOVA test for the number of violations.

Violations Sum Sq Mean Sq F Value Pr (>F)

Lateral Distance 73.220 73.221 14.169 0.000 ***
—Crossing over a hard
shoulder line 12.732 12.733 6.138 0.015 *

—Crossing over a solid line 13.190 13.190 13.486 0.000 ***

Traffic Rules 3.800 3.800 0.011 0.915

Speed 128.700 128.707 1.526 0.220
—Speed limit 20 Km/h 6.222 6.222 6.773 0.011 *

Accident 2.101 2.101 1.170 0.283
—Accident out of the road 0.609 0.609 4.321 0.041 *

Others 2.300 2.297 0.115 0.736

* p-value < 0.05 *** p-value < 0.001.

Results of Table 2 show that data of most of the violations are statistically significant.
Indeed, Lateral Distance violations have the highest significance level (p-value < 0.001)
which is consistent with the literature related to mobile phone distractions and lateral
distance violation.

Indeed, outputs of the analysis of a literature review [59] suggested that there are
significant differences in the driving performance, in terms of lane position and headway,
between distracted and non-distracted drivers. Furthermore, many past studies [68–72]
confirmed that several factors that arise from mobile conversations while driving could
increase the risk of crashes, for instance, lateral movement, steer speed, steer deviation,
and perception-reaction time. While using the mobile phone, the driver stops focusing on
the driving task and keeps only one hand on the steering wheel leading to a deterioration
in lateral control of the vehicle and potential for a serious traffic accident [73,74].

The simulator used in the experiment does not compute directly the lateral distance.
Thus, it is impossible to compute the differences in the lateral distance. Nevertheless,
several other violations related to the position of the driver in the road (i.e., cross over hard
shoulder line, cross over a continuous line, and do not respect the minimum distance from
the curb) were used to estimate the lateral distance.

Two other significant results are found after a deeper analysis of each specific violation.
First, the accidents categorized into the simulator as “You have had a serious accident: you
have run off the road” is a violation that could be included in the Accident category as well
as Lateral Distance. Thus it reinforces previous findings. The second significant violation is
related to the speed limit of 20 Km/h.
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4.2. NASA-TLX Results

ANOVA analysis, summarized in Table 3, provides findings related to the different
factors in the workload NASA-TLX considering the mobile phone-related distractions.

Table 3. ANOVA Test summary of NASA-TLX sources of workload.

NASA TLX Sum Sq Mean Sq F Value Pr (>F)

Mental Demand 155,478 155,478 13,365 0.000 ***
Physical Demand 84,298 84,298 12,794 0.001 ***

Temporal Demand 22,908 22,908 18,464 0.178
Effort 134,221 134,221 14,336 0.000 ***

Performance 33,466 33,466 46,122 0.035 *
Frustration level 39,524 39,524 23,094 0.133

Overall Workload Score 6596 6596 38,997 1.851 × 10−8 ***

* p-value < 0.05; and *** p-value < 0.001.

Results of Table 3 show that, according to the F values, five dimensions of the NASA-
TLX were found to have statistically significant performance differences associated with
the use of the mobile phone while driving, namely, Mental Demand, Physical Demand,
Effort, Performance, and Overall Workload Score (p-value < 0.001).

The results of the analysis of the NASA-TLX of the workload and the influence
of the mobile phone distractions on the violations during the two drives are given in
Tables 4 and 5. Results of Table 4 show that the mobile phone-related distractions influence
most of the violations and more significantly in the case of Lateral Distance violations
and speeding (p-value 0.002 and 0.015, respectively). Similarly, results of the NASA-TLX
workload in Table 5 show that scores of the overall workload and some subscales are
statistically significant. The dimensions Temporal Demand and Frustration of the NASA-
TLX did not discard the null hypothesis. In fact, in the case of Temporal Demand, the
non-significance could be explained by the fact that in both drives the trajectory run is the
same and, consequently, the time necessary to perform the task is quite similar.

Moreover, high significances (p-value < 0.001) are found in the case of Mental De-
mand, Physical Demand, Effort, and the Overall Workload. The participants reported a
high workload when using a mobile phone while driving. Furthermore, the dimension
Performance of the NASA-TLX is found statistically significant (p-value < 0.05), and the
participants reported lower scores which could be explained by the fact that the task is
much more complex so they, themselves, feel that they drive worse than while driving
without using the mobile phone (without distractions).

4.3. Random Forest

As the results showed, mobile phone distractions had paramount importance on
Lateral Distance Violations. In terms of importance, this variable has the second contribu-
tion in the case of the classification problem with nearly 100% together with the Physical
Demand. This is also reflected by the results of the ANOVA test (Table 3) in which the
contribution of this variable is statistically significant at 99%.

As regards the regression tree of the Lateral Distance violations, Figure 4 shows the
fraction of the sample falling on each end node. Note that the mobile distractions appear
in the first nodes reflecting the capability of this variable to isolate homogeneous samples
in terms of purity and significant differences in terms of the number of penalizations
among both subsamples with and without mobile phone distractions. Moreover, this
variable shows paramount importance (~99%) as given by the random forest extending
this regression tree.
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Table 4. Comparison of driving performance of the drivers during the two drives.

No Distractions Distractions Differences

Variable µ SD C.I. (95%) µ SD C.I. (95%) µ SD C.I. (95%) T-Student p-Value

Lateral Distance 2.54 2.10 (1.86; 3.22) 4.28 2.70 (3.40; 5.16) −1.74 0.55 (−2.84; −0.65) −3.18 0.00
LD: crossing over a hard

shoulder line 1.13 1.15 (0.76; 1.50) 1.97 1.69 (1.43; 2.52) −0.85 0.33 (−1.50; −0.19) −2.58 0.01

LD: crossing over a solid line 0.69 0.69 (0.47; 0.92) 1.49 1.21 (1.10; 1.88) −0.80 0.22 (−1.24; −0.35) −3.56 0.00
Speed limit 20 Km/h 1.46 0.94 (1.16; 1.77) 2 0.97 (1.68; 2.32) −0.54 0.22 (−0.97; −0.11) −2.48 0.02

Accident out of the road 0.03 0.1 (−0.03; 0.08) 0.21 0.52 (0.04; 0.37) −0.18 0.09 (−0.35; −0.01) −2.05 0.04

µ: Mean, SD: Standard Deviation, and C.I: Confidence Interval.

Table 5. Comparison of the results of NASA-TLX dimensions during the two drives.

No Distractions Distractions Differences

Variable µ SD C.I. (95%) µ SD C.I. (95%) µ SD C.I. (95%) T-Student p-Value

Mental Demand 238.20 97.12 (206.72; 269.69) 326.03 115.71 (288.52; 363.54) −87.82 24.19 (−135.99; −39.64) −3.63 0.001
Physical Demand 35.64 45.91 (20.76; 50.52) 102.18 106.50 (67.66; 136.7) −66.54 18.57 (−103.52; −29.55) −3.58 0.001

Effort 144.49 83.07 (117.56; 171.41) 222.31 109.21 (186.90; 257.71) −77.82 21.97 (−121.58; −34.06) −3.54 0.001
Performance 152.82 96.61 (121.51; 184.14) 326.03 115.71 (288.52; 363.54) −87.82 24.19 (−135.99; −39.64) −3.63 0.001

Overall Workload Score 0.56 97.12 (206.72; 269.69) 102.18 106.50 (67.66; 136.7) −66.54 18.57 (−103.52; −29.55) −3.58 0.001

µ: Mean, SD: Standard Deviation, and C.I: Confidence Interval.
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Figure 4. Regression tree related to the number of violations of Lateral Distance.

It is important to note that the rest of the features which contribute to the following
nodes lead to deeper branches and correspond to particular cases (the value 0.01205
corresponds to one individual) and are therefore pruned to avoid overfitting issues.

Other interesting results are found as regards one of the specific violations related to
Lateral Distance, i.e., the violation “You have crossed over the hard shoulder line”. This
means that at least one of the car wheels was over the hard shoulder line of the road.

The first node is the global score of the NASA-TLX that can split the tree with 71% of
the cases with a score less than 75.5 (Figure 5). Additionally, it can be noticed that, in the
whisker diagram (Figure 6), more than 75% of the values are fewer than 75.5 of the score
when there are no mobile phone distractions.

As regards the hard shoulder line violations, the results of Figure 5 show that, unlike
in the case of Lateral Distance, mobile phone distractions do not appear in the Random
Forest. Nevertheless, distractions associated with the use of mobile phones are a key factor
in the general forest with an importance score higher than 60% (Figure 7).

Generally, in the Random Forest method, variables compete. Moreover, Overall
Workload Score and mobile phone distractions are so related. Consequently, the presence
of one variable in the Random Forest is sufficient. In other terms, the presence of mobile
distractions in the Random Forest would not provide more information or division of the
sample nor explain a residual part. Hence, one variable appears in the Random Forest, the
other variable is absent.

The analysis of the importance graphs of the different violations and their related
groups shows that the Overall Workload score and mobile phone distractions are found
among the two more important factors in the case of 22 specific violations and three groups
of violations. Moreover, although these factors do not appear in the Random Forests, their
importance is still quite relevant (Table 6).
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Figure 5. The Regression tree related to crossing over the hard shoulder line violations.

Figure 6. NASA-TLX scores with and without mobile phone distractions.
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Figure 7. Importance graph related to crossing over the hard shoulder line violations.

Table 6. Summary of violations in which the importance of the Overall Workload Score and mobile phone distractions is
among the three more relevant.

Violations Overall Workload Importance Mobile Phone Distractions Importance

Group of Lateral Distance Violations 2

Group of Speed Violations 2

Group of Other Violations 2

Go through the amber light 1

Do not stop at a red signal light 2

Failure to yield correctly 1

Do not stop at a stop signal 1

Drive in a forbidden direction 1

Cross over a solid line 1

Do not stop at a pedestrian crossing 2

Stopover an intersection with yellow crossing lines 1 2

Do not respect the minimum distance from the curb 1

Exceed the speed limit of 20 km/h 2

Exceed the speed limit of 40 km/h 1 2

Exceed the speed limit of 70 km/h 2

Exceed the speed limit of 90 km/h 2 1

Exceed the speed limit of 100 km/h 1

Bump another vehicle 2
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Table 6. Cont.

Violations Overall Workload Importance Mobile Phone Distractions Importance

Bump an object 2

Hit another vehicle 1

Serious accident: you have run off the road 2

Hit a cyclist 2

Stall the vehicle 1

Do not fasten the seat belt 1

Incorrectly use the clutch 2

The findings of the present study come in line with previous research that reported
unsafe driving behaviors of young drivers who constitute a high-risk group for traffic
accidents, for instance, unsafe driving behaviors of unlicensed young drivers [75,76], risk
perception and driving behaviors of young drivers [77,78], and use of mobile phones
and infotainment technologies by young drivers while driving [79]. Furthermore, many
researchers confirmed that by using their mobile phones, the drivers were more likely to
engage in risky driving behaviors, and were less effective in controlling their lane position,
managing their brake reaction time, speed, and headway deviation [80–82].

In fact, safely driving a motor vehicle requires a permanent monitoring of the road and
quick and adequate responses to unexpected changes in the driving environment which
depend mainly on the drivers’ manual, visual, and cognitive abilities. However, the use of
mobile phones for texting, surfing the web, responding to a call, and checking notifications
from social media apps is confirmed to distract the drivers, reduce their attentions, and
increase the risk of a crash. In this paper, and using the NASA-TLX, the driver workload
was measured and the influence of mobile phone-related distractions was examined. The
results obtained confirmed that multitasking (i.e., interacting with the mobile phone while
driving) increases the driver’s overall workload. This finding supports the conclusion of
many traffic safety studies investigated the driver’s workload in a wide range of driving
conditions. For instance, an examination of the effects of road geometry and secondary task
modality of the driver’s workload reported that a visually demanding secondary task leads
to a significant variance in the driver’s workload [83]. Likewise, a study was conducted
to estimate the impact of distractor tasks on the driving performance and driver’s control
over the vehicle and workload [84]. Results of this study suggested that the performance
of a secondary distractor task increases the workload which influences the variability in
steering wheel movements and lane-keeping. Moreover, previous studies used NASA-TLX
to investigate the effect of different uses of mobile phones on the drivers’ workload while
driving and interestingly found that all the dimensions of the workload are significantly
higher in the case of mobile phones use [85,86].

Mobile phone-related distractions are a potential risk to traffic safety and a growing
problem that has the biggest impact on driving performance. Even though, the use of
mobile phones without a hands-free device is already illegal in many countries, including
Spain, eliminating their use seems to be difficult and legislation alone is ineffective in
addressing distracted driving. This is because catching offenders is not an easy mission, as
with speed. Moreover, the decrease in the use of mobile phones after law enactment does
not last long and their use increases immediately following the first decrease.

Therefore, raising public awareness through adoption of behavioral strategies and
instruction of positive road safety culture seems to be a promising solution. Indeed, as in
the case of seatbelt use and drink-driving, creation of social norms will contribute to chang-
ing minds, modifying attitude and behaviors, increasing risk perception, and correcting
acceptable risk definition. Particularly, many studies pointed out that young drivers fail to
understand the effects of mobile phone use while driving and underestimate the associated
risks [87]. Therefore, it is highly important to increase the number of campaigns targeting
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young drivers through targeted advertising using appropriate communication means and
social media platforms, such as Facebook, Instagram, and YouTube.

Furthermore, a recent cross-sectional study conducted in Spain pointed out that older
drivers affect their children’s driving attitudes and behaviors. Therefore, another trend
to improving traffic safety education consists in enhancing parents’ road behaviors to
influence positively the way their children, i.e., young drivers, perceive traffic safety and
behave at the wheel [88].

Another equally important awareness program to minimize technology-based dis-
tractions, especially among young drivers, is the use of video game simulation methods.
Researchers who applied these methods reported a reduction in mobile phone use among
participants in the simulation experiment and confirmed that video game simulations were
practical and cost-effective programs for training young drivers [89].

In terms of limitations, the nature of the present study, which used a driving sim-
ulator, considered only one driving scenario (i.e., a sunny day with medium traffic and
pedestrian density), consequently, the results could not capture all possible violations in a
real-driving environment.

Another possible limitation is the fact that the study sample was not representative
and contained more males than females, as a result, the differences between the driving
performance of distracted females and distracted male drivers (i.e., the influence of gender)
were not investigated.

Further studies could move towards assessing the influence of technology-based
distractions on driving performance in different conditions and consider analyzing the
gender effects.

In this study we focused on young drivers. We also recommend studying the effect of
mobile phone use among other age groups on driving behaviors.

5. Conclusions

The explosive development of communication means and infotainment technologies
affects the driving performance of young drivers, particularly. Indeed, the use of mobile
phones while driving has been identified among principal contributors to traffic accidents.

This study analyzed, experimentally, changes in the workload and vehicle control
(such as lateral distance and hard shoulder line violations) of distracted and non-distracted
young drivers. The findings of the present study confirmed the impairments associated
with the use of mobile phones among young drivers leading to poor control of the vehicle.
Thus, decision-makers need to consider raising awareness of young drivers of mobile
phone use risk behind the wheel and encourage the implementation of active measures
to mitigate this risk. Actually, some mobile phones are starting to have a driving mode
on their operating systems that, when detecting that the user is driving, turns their phone
operation into easy-use, or restricted, mode. Moreover, the incorporation of the eye-tracker
system as a passive safety measure in vehicles would notify drivers whenever they engage
in other activities which distract their attention from the roadway. Meanwhile, educational
campaigns targeting young drivers on mobile phone use while driving must be reinforced
to minimize risks.

Author Contributions: Conceptualization, C.A.C.O. and S.G.-H.; methodology, S.H. and C.A.C.O.;
software, C.A.C.O.; validation, S.H., C.A.C.O. and S.G.-H..; formal analysis, S.H. and C.A.C.O.;
investigation, S.H., C.A.C.O., J.M.E. and W.B.; resources, M.A.M.; data curation, S.H. and C.A.C.O.;
writing—original draft preparation, C.A.C.O. and W.B.; writing—review and editing, W.B., C.A.C.O.,
M.A.M., S.H., J.M.E. and S.G.-H.; supervision, M.A.M. and S.G.-H.; project administration, S.G.-
H..; funding acquisition, S.G.-H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by FEDER European Regional Development Fund (Fondo
Europeo de Desarrollo Regional-Junta de Castilla y León), grant number BU300P18.



Int. J. Environ. Res. Public Health 2021, 18, 7101 19 of 22

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Ethics Committee of Burgos University (protocol code
IR 17/2020 on 28 May 2018).

Informed Consent Statement: Informed consent has been obtained from all subjects involved in
the study.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. World Health Organization (WHO). Global Status Report on Road Safety; WHO Press: Geneva, Switzerland, 2018.
2. Wang, J.; Li, K.; Lu, X.-Y. Effect of human factors on driver behavior. In Advances in Intelligent Vehicles; Elsevier: Amsterdam, The

Netherlands, 2014; pp. 111–157. ISBN 978-0-12-397199-9.
3. Koesdwiady, A.; Soua, R.; Karray, F.; Kamel, M.S. Recent trends in driver safety monitoring systems: State of the art and

challenges. IEEE Trans. Veh. Technol. 2017, 66, 4550–4563. [CrossRef]
4. Jørgensen, F.; Hanssen, T.-E.S. Implications for traffic safety from car drivers’ secondary task engagement—An economist’s view.

Econ. Transp. 2019, 20, 100136. [CrossRef]
5. Xing, Y.; Lv, C.; Cao, D. State of the art of driver lane change intention inference. In Advanced Driver Intention Inference; Elsevier:

Amsterdam, The Netherlands, 2020; pp. 21–51. ISBN 978-0-12-819113-2.
6. Jazayeri, A.; Martinez, J.R.B.; Loeb, H.S.; Yang, C.C. The impact of driver distraction and secondary tasks with and without other

co-occurring driving behaviors on the level of road traffic crashes. Accid. Anal. Prev. 2021, 153, 106010. [CrossRef] [PubMed]
7. Horberry, T.; Anderson, J.; Regan, M.A.; Triggs, T.J.; Brown, J. Driver distraction: The effects of concurrent in-vehicle tasks, road

environment complexity and age on driving performance. Accid. Anal. Prev. 2006, 38, 185–191. [CrossRef]
8. Sullman, M.J.M. An observational study of driver distraction in England. Transp. Res. Part. F Traffic Psychol. Behav. 2012, 15,

272–278. [CrossRef]
9. Lee, V.K.; Champagne, C.R.; Francescutti, L.H. Fatal distraction: Cell phone use while driving. Can. Fam. Physician 2013, 59,

723–725.
10. Xiao, Y.; Shi, J. Analyzing the influence of mobile phone use of drivers on traffic flow based on an improved cellular automaton

model. Discret. Dyn. Nat. Soc. 2015, 2015, 573090. [CrossRef]
11. Rashid, A.; Zeb, M.A.; Rashid, A.; Anwar, S.; Joaquim, F.; Halim, Z. Conceptualization of smartphone usage and feature

preferences among various demographics. Clust. Comput. 2020, 23, 1855–1873. [CrossRef]
12. McEvoy, S.P.; Stevenson, M.R.; Woodward, M. The prevalence of, and factors associated with, serious crashes involving a

distracting activity. Accid. Anal. Prev. 2007, 39, 475–482. [CrossRef]
13. National Highway Traffic Safety Administration (NHTSA). Overview of Motor Vehicle Crashes in 2019; U.S Department of

Transportation: Washington, DC, USA, 2020.
14. Huisingh, C.; Griffin, R.; McGwin, G. The prevalence of distraction among passenger vehicle drivers: A roadside observational

approach. Traffic Inj. Prev. 2015, 16, 140–146. [CrossRef]
15. Sullman, M.J.M.; Prat, F.; Tasci, D.K. A roadside study of observable driver distractions. Traffic Inj. Prev. 2015, 16,

552–557. [CrossRef]
16. Luria, G. The mediating role of smartphone addiction on the relationship between personality and young drivers’ smartphone

use while driving. Transp. Res. Part. F Traffic Psychol. Behav. 2018, 59, 203–211. [CrossRef]
17. Albert, G.; Lotan, T. How many times do young drivers actually touch their smartphone screens while driving? IET Intell.

Transport. Syst. 2018, 12, 414–419. [CrossRef]
18. Gauld, C.S.; Lewis, I.; White, K.M.; Fleiter, J.J.; Watson, B. Smartphone use while driving: What factors predict young drivers’

intentions to initiate, read, and respond to social interactive technology? Comput. Hum. Behav. 2017, 76, 174–183. [CrossRef]
19. García-Herrero, S.; Febres, J.D.; Boulagouas, W.; Gutierrez, D.; Mariscal, M.Á. Assessment of the influence of technology-based

distracted driving on drivers’infractions and their subsequent impact on traffic accident severity. Int. J. Environ. Res. Public Health
2021, in press.

20. Dirección General De Tráfico. Resultados Campaña de Vigilancia y Concienciación. Available online: www.dgt.es/Galerias/
prensa/2020/09/NP-Resultados-campana-distraccion-septiembre2020.pdf (accessed on 25 September 2020).

21. Gutiérrez, A. 8 De Cada 10 Jóvenes Admite Distraerse Al Volante. Available online: https://revista.dgt.es/es/noticias/nacional/
2018/06JUNIO/0625distracciones-jovenes-telefono-movil.shtml (accessed on 22 June 2018).

22. Nicolas, C. Móviles: 390 Muertes al Año por Uso Indebido. Available online: https://revista.dgt.es/es/noticias/nacional/2019
/09SEPTIEMBRE/0923-Distraciones-moviles-Linea-Directa.shtml (accessed on 13 June 2021).

23. Rivero, F. Informe Ditrendia: Mobile en España y en el Mundo. Available online: https://ditrendia.es/informe-mobile-2020/
(accessed on 13 June 2021).

24. Yamada, K.; Minakami, Y.; Suzuki, K. Analytical study of human errors causing traffic accidents from the view point of
consciousness transition. IFAC Proc. Vol. 2008, 41, 8526–8531. [CrossRef]

http://doi.org/10.1109/TVT.2016.2631604
http://doi.org/10.1016/j.ecotra.2019.100136
http://doi.org/10.1016/j.aap.2021.106010
http://www.ncbi.nlm.nih.gov/pubmed/33611082
http://doi.org/10.1016/j.aap.2005.09.007
http://doi.org/10.1016/j.trf.2012.01.001
http://doi.org/10.1155/2015/573090
http://doi.org/10.1007/s10586-020-03061-x
http://doi.org/10.1016/j.aap.2006.09.005
http://doi.org/10.1080/15389588.2014.916797
http://doi.org/10.1080/15389588.2014.989319
http://doi.org/10.1016/j.trf.2018.09.001
http://doi.org/10.1049/iet-its.2017.0208
http://doi.org/10.1016/j.chb.2017.07.023
www.dgt.es/Galerias/prensa/2020/09/NP-Resultados-campana-distraccion-septiembre2020.pdf
www.dgt.es/Galerias/prensa/2020/09/NP-Resultados-campana-distraccion-septiembre2020.pdf
https://revista.dgt.es/es/noticias/nacional/2018/06JUNIO/0625distracciones-jovenes-telefono-movil.shtml
https://revista.dgt.es/es/noticias/nacional/2018/06JUNIO/0625distracciones-jovenes-telefono-movil.shtml
https://revista.dgt.es/es/noticias/nacional/2019/09SEPTIEMBRE/0923-Distraciones-moviles-Linea-Directa.shtml
https://revista.dgt.es/es/noticias/nacional/2019/09SEPTIEMBRE/0923-Distraciones-moviles-Linea-Directa.shtml
https://ditrendia.es/informe-mobile-2020/
http://doi.org/10.3182/20080706-5-KR-1001.01441


Int. J. Environ. Res. Public Health 2021, 18, 7101 20 of 22

25. Chihara, T.; Kobayashi, F.; Sakamoto, J. Evaluation of mental workload during automobile driving using one-class support vector
machine with eye movement data. Appl. Ergon. 2020, 89, 103201. [CrossRef]

26. He, D.; Donmez, B.; Liu, C.C.; Plataniotis, K.N. High cognitive load assessment in drivers through wireless electroencephalogra-
phy and the validation of a modified n-back task. IEEE Trans. Hum. Mach. Syst. 2019, 49, 362–371. [CrossRef]

27. Chang, K.-H. Motion analysis. In e-Design; Elsevier: Amsterdam, The Netherlands, 2015; pp. 391–462. ISBN 978-0-12-382038-9.
28. Zhang, Y.; Guo, Z.; Sun, Z. Driving simulator validity of driving behavior in work zones. J. Adv. Transp. 2020,

2020, 4629132. [CrossRef]
29. Wynne, R.A.; Beanland, V.; Salmon, P.M. Systematic review of driving simulator validation studies. Saf. Sci. 2019, 117,

138–151. [CrossRef]
30. Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In

Advances in Psychology; Elsevier: Amsterdam, The Netherlands, 1988; Volume 52, pp. 139–183. ISBN 978-0-444-70388-0.
31. Alotaibi, M.; Alotaibi, B. Distracted driver classification using deep learning. Signal. Image Video Process. 2020, 14,

617–624. [CrossRef]
32. AlShalfan, K.; Zakariah, M. Detecting driver distraction using deep-learning approach. Comput. Mater. Contin. 2021, 68,

689–704. [CrossRef]
33. Bélanger, A.; Gagnon, S.; Yamin, S. Capturing the serial nature of older drivers’ responses towards challenging events: A simulator

study. Accid. Anal. Prev. 2010, 42, 809–817. [CrossRef]
34. Owens, J.M.; McLaughlin, S.B.; Sudweeks, J. Driver performance while text messaging using handheld and in-veicle systems.

Accid. Anal. Prev. 2011, 43, 939–947. [CrossRef]
35. Jeon, M.; Yim, J.-B.; Walker, B.N. An Angry Driver Is Not the Same as a Fearful Driver: Effects of Specific Negative Emotions on Risk

Perception, Driving Performance, and Workload; ACM Press: New York, NY, USA, 2011; p. 137.
36. Van Leeuwen, P.M.; Happee, R.; de Winter, J.C.F. Changes of driving performance and gaze behavior of novice drivers during a

30-min simulator-based training. Procedia Manuf. 2015, 3, 3325–3332. [CrossRef]
37. Rumschlag, G.; Palumbo, T.; Martin, A.; Head, D.; George, R.; Commissaris, R.L. The effects of texting on driving performance in

a driving simulator: The influence of driver age. Accid. Anal. Prev. 2015, 74, 145–149. [CrossRef]
38. Tractinsky, N.; Ram, E.S.; Shinar, D. To call or not to call—That is the question (while driving). Accid. Anal. Prev. 2013, 56,

59–70. [CrossRef]
39. Reza Kazemi, S.; Karimpour, M.; Shahriyari, S.; Noredin, H. A Survey of the relationship between the mental workload and

cognitive failure in taxi drivers. J. Health Sci. Surveill. Sys 2017, 5, 5.
40. Choudhary, P.; Velaga, N.R. Effects of phone use on driving performance: A comparative analysis of young and professional

drivers. Saf. Sci. 2019, 111, 179–187. [CrossRef]
41. Zokaei, M.; Jafari, M.J.; Khosrowabadi, R.; Nahvi, A.; Khodakarim, S.; Pouyakian, M. Tracing the physiological response

and behavioral performance of drivers at different levels of mental workload using driving simulators. J. Saf. Res. 2020, 72,
213–223. [CrossRef]

42. Wang, X.; Bo, W.; Yang, W.; Cui, S.; Chu, P. Effect of high-altitude environment on driving safety: A study on drivers’ mental
workload, situation awareness, and driving behaviour. J. Adv. Transp. 2020, 2020, 7283025. [CrossRef]

43. Abd Rahman, N.I.; Md Dawal, S.Z.; Yusoff, N. Driving mental workload and performance of ageing drivers. Transp. Res. Part. F
Traffic Psychol. Behav. 2020, 69, 265–285. [CrossRef]

44. Karthaus, M.; Wascher, E.; Getzmann, S. Distraction in the driving simulator: An event-related potential (ERP) study with young,
middle-aged, and older drivers. Safety 2021, 7, 36. [CrossRef]

45. Li, X.; Oviedo-Trespalacios, O.; Rakotonirainy, A. Drivers’ gap acceptance behaviours at intersections: A driving simulator study
to understand the impact of mobile phone visual-manual interactions. Accid. Anal. Prev. 2020, 138, 105486. [CrossRef]

46. Alkheder, S.; Taamneh, M.; Taamneh, S. Severity prediction of traffic accident using an artificial neural network: Traffic accident
severity prediction using artificial neural network. J. Forecast. 2017, 36, 100–108. [CrossRef]

47. Chong, M.M.; Abraham, A.; Paprzycki, M. Traffic accident analysis using decision trees and neural networks. Int. J. Inf. Technol.
Comput. Sci. 2014, 6, 22–28. [CrossRef]

48. Dogru, N.; Subasi, A. Traffic Accident Detection Using Random Forest Classifier; IEEE: Piscataway, NY, USA, 2018; pp. 40–45.
49. Osman, O.A.; Hajij, M.; Karbalaieali, S.; Ishak, S. A hierarchical machine learning classification approach for secondary task

identification from observed driving behavior data. Accid. Anal. Prev. 2019, 123, 274–281. [CrossRef]
50. Xing, Y.; Lv, C.; Zhang, Z.; Wang, H.; Na, X.; Cao, D.; Velenis, E.; Wang, F.-Y. Identification and analysis of driver postures for

in-vehicle driving activities and secondary tasks recognition. IEEE Trans. Comput. Soc. Syst. 2018, 5, 95–108. [CrossRef]
51. Cazzulino, F.; Burke, R.V.; Muller, V.; Arbogast, H.; Upperman, J.S. Cell phones and young drivers: A systematic review regarding

the association between psychological factors and prevention. Traffic Inj. Prev. 2014, 15, 234–242. [CrossRef]
52. Ehsani, J.P.; Ionides, E.; Klauer, S.G.; Perlus, J.G.; Gee, B.T. Effectiveness of cell phone restrictions for young drivers: Review of the

evidence. Transp. Res. Rec. J. Transp. Res. Board 2016, 2602, 35–42. [CrossRef]
53. Dénommée, J.A.; Foglia, V.; Roy-Charland, A.; Turcotte, K.; Lemieux, S.; Yantzi, N. Cellphone use and young drivers. Can. Psychol.

2020, 61, 22–30. [CrossRef]
54. Brooks, J.O.; Goodenough, R.R.; Crisler, M.C.; Klein, N.D.; Alley, R.L.; Koon, B.L.; Logan, W.C.; Ogle, J.H.; Tyrrell, R.A.; Wills, R.F.

Simulator sickness during driving simulation studies. Accid. Anal. Prev. 2010, 42, 788–796. [CrossRef]

http://doi.org/10.1016/j.apergo.2020.103201
http://doi.org/10.1109/THMS.2019.2917194
http://doi.org/10.1155/2020/4629132
http://doi.org/10.1016/j.ssci.2019.04.004
http://doi.org/10.1007/s11760-019-01589-z
http://doi.org/10.32604/cmc.2021.015989
http://doi.org/10.1016/j.aap.2009.07.010
http://doi.org/10.1016/j.aap.2010.11.019
http://doi.org/10.1016/j.promfg.2015.07.422
http://doi.org/10.1016/j.aap.2014.10.009
http://doi.org/10.1016/j.aap.2013.03.017
http://doi.org/10.1016/j.ssci.2018.07.009
http://doi.org/10.1016/j.jsr.2019.12.022
http://doi.org/10.1155/2020/7283025
http://doi.org/10.1016/j.trf.2020.01.019
http://doi.org/10.3390/safety7020036
http://doi.org/10.1016/j.aap.2020.105486
http://doi.org/10.1002/for.2425
http://doi.org/10.5815/ijitcs.2014.02.03
http://doi.org/10.1016/j.aap.2018.12.005
http://doi.org/10.1109/TCSS.2017.2766884
http://doi.org/10.1080/15389588.2013.822075
http://doi.org/10.3141/2602-05
http://doi.org/10.1037/cap0000175
http://doi.org/10.1016/j.aap.2009.04.013


Int. J. Environ. Res. Public Health 2021, 18, 7101 21 of 22

55. Matas, N.A.; Nettelbeck, T.; Burns, N.R. Dropout during a driving simulator study: A survival analysis. J. Saf. Res. 2015, 55,
159–169. [CrossRef]

56. Smyth, J.; Birrell, S.; Mouzakitis, A.; Jennings, P. Motion sickness and human performance—Exploring the impact of driving
simulator user trials. In Advances in Human Aspects of Transportation; Stanton, N., Ed.; Springer International Publishing: Cham,
Switzerland, 2019; Volume 786, pp. 445–457. ISBN 978-3-319-93884-4.

57. Liebherr, M.; Schweig, S.; Brandtner, A.; Averbeck, H.; Maas, N.; Schramm, D.; Brand, M. When virtuality becomes real: Relevance
of mental abilities and age in simulator adaptation and dropouts. Ergonomics 2020, 63, 1271–1280. [CrossRef]

58. Horrey, W.J.; Lesch, M.; Melton, D.F. Distracted driving: Examining the effects of in-vehicle tasks. Prof. Saf. 2010, 55, 34–39.
59. Oviedo-Trespalacios, O.; Haque, M.M.; King, M.; Washington, S. Understanding the impacts of mobile phone distraction on

driving performance: A systematic review. Transp. Res. Part. C Emerg. Technol. 2016, 72, 360–380. [CrossRef]
60. Ji, X.; Zhang, Q. Risk Assessment and influencing factors of pupils’ school commuting accident risk in school district scale. J.

Transp. Syst. Eng. Inf. Technol. 2021, 21, 221–226.
61. Li, Y.; Zhang, X.; Wang, W.; JU, X. Factors affecting electric bicycle rider injury in accident based on random forest model. J.

Transp. Syst. Eng. Inf. Technol. 2021, 21, 196–200.
62. Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; Chapman & Hall: London, UK, 1984; ISBN

978-0-412-04841-8.
63. Ripley, B.D. Pattern Recognition via Neural Networks; Cambridge University Press: Cambridge, UK, 1996; Chapter 5.
64. Shaikhina, T.; Lowe, D.; Daga, S.; Briggs, D.; Higgins, R.; Khovanova, N. Decision tree and random forest models for outcome

prediction in antibody incompatible kidney transplantation. Biomed. Signal. Process. Control 2019, 52, 456–462. [CrossRef]
65. Lei, T.; Peng, J.; Liu, X.; Luo, Q. Crash prediction on expressway incorporating traffic flow continuity parameters based on

machine learning approach. J. Adv. Transp. 2021, 2021, 8820402. [CrossRef]
66. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
67. Beryl Princess, P.J.; Silas, S.; Rajsingh, E.B. Performance comparison of machine learning models for classification of traffic injury

severity from imbalanced accident dataset. In Intelligence in Big Data Technologies—Beyond the Hype; Peter, J.D., Fernandes, S.L.,
Alavi, A.H., Eds.; Springer: Singapore, 2021; pp. 361–369.

68. Törnros, J.E.B.; Bolling, A.K. Mobile phone use—effects of handheld and handsfree phones on driving performance. Accid. Anal.
Prev. 2005, 37, 902–909. [CrossRef] [PubMed]

69. Caird, J.K.; Willness, C.R.; Steel, P.; Scialfa, C. A meta-analysis of the effects of cell phones on driver performance. Accid. Anal.
Prev. 2008, 40, 1282–1293. [CrossRef] [PubMed]

70. Papadakaki, M.; Tzamalouka, G.; Gnardellis, C.; Lajunen, T.J.; Chliaoutakis, J. Driving performance while using a mobile phone:
A simulation study of Greek professional drivers. Transp. Res. Part. F Traffic Psychol. Behav. 2016, 38, 164–170. [CrossRef]

71. Ortiz, C.; Ortiz-Peregrina, S.; Castro, J.J.; Casares-López, M.; Salas, C. Driver distraction by smartphone use (WhatsApp) in
different age groups. Accid. Anal. Prev. 2018, 117, 239–249. [CrossRef]

72. Phuksuksakul, N.; Kanitpong, K.; Chantranuwathana, S. Factors affecting behavior of mobile phone use while driving and effect
of mobile phone use on driving performance. Accid. Anal. Prev. 2021, 151, 105945. [CrossRef]

73. Choudhary, P.; Velaga, N.R. Analysis of vehicle-based lateral performance measures during distracted driving due to phone use.
Transp. Res. Part. F Traffic Psychol. Behav. 2017, 44, 120–133. [CrossRef]

74. Choudhary, P.; Velaga, N.R. Mobile phone use during driving: Effects on speed and effectiveness of driver compensatory
behaviour. Accid. Anal. Prev. 2017, 106, 370–378. [CrossRef]

75. Fu, J.; Anderson, C.L.; Dziura, J.D.; Crowley, M.J.; Vaca, F.E. Young unlicensed drivers and passenger safety restraint use in U.S.
fatal crashes: Concern for risk spillover effect? Ann. Adv. Automot Med. 2012, 56, 37–43.

76. Boulagouas, W.; García-Herrero, S.; Chaib, R.; Febres, J.D.; Mariscal, M.Á.; Djebabra, M. An investigation into unsafe Bbehaviors
and traffic accidents involving unlicensed drivers: A perspective for alignment measurement. Int. J. Environ. Res. Public Health
2020, 17, 6743. [CrossRef]

77. Ulleberg, P.; Rundmo, T. Risk–taking attitudes among young drivers: The psychometric qualities and dimensionality of an
instrument to measure young drivers’ risk–taking Attitudes. Scand. J. Psychol. 2002, 43, 227–237. [CrossRef]

78. Machin, M.A.; Sankey, K.S. Relationships between young drivers’ personality characteristics, risk perceptions, and driving
behaviour. Accid. Anal. Prev. 2008, 40, 541–547. [CrossRef]

79. Lee, J.D. Technology and teen drivers. J. Saf. Res. 2007, 38, 203–213. [CrossRef]
80. Fitch, G.M.; Soccolich, S.A.; Guo, F.; McClafferty, J.; Fang, Y.; Olson, R.L.; Perez, M.A.; Hanowski, R.J.; Hankey, J.M.; Dingus, T.A.

The Impact of Hand-Held and Hands-Free Cell Phone Use on Driving Performance and Safety-Critical Event Risk; U.S. Department of
Transportation: Washington, DC, USA, 2013.

81. He, J.; Chaparro, A.; Nguyen, B.; Burge, R.J.; Crandall, J.; Chaparro, B.; Ni, R.; Cao, S. Texting while driving: Is speech-based text
entry less risky than handheld text entry? Accid. Anal. Prev. 2014, 72, 287–295. [CrossRef]

82. Zhang, L.; Cui, B.; Yang, M.; Guo, F.; Wang, J. Effect of using mobile phones on driver’s control behavior based on naturalistic
driving data. Int. J. Environ. Res. Public Health 2019, 16, 1464. [CrossRef]

83. Jeong, H.; Liu, Y. Driver workload and secondary task modality while driving on horizontal curves. Proc. Hum. Factors Ergon. Soc.
Annu. Meet. 2017, 61, 1763–1767. [CrossRef]

http://doi.org/10.1016/j.jsr.2015.08.004
http://doi.org/10.1080/00140139.2020.1778095
http://doi.org/10.1016/j.trc.2016.10.006
http://doi.org/10.1016/j.bspc.2017.01.012
http://doi.org/10.1155/2021/8820402
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1016/j.aap.2005.04.007
http://www.ncbi.nlm.nih.gov/pubmed/15946638
http://doi.org/10.1016/j.aap.2008.01.009
http://www.ncbi.nlm.nih.gov/pubmed/18606257
http://doi.org/10.1016/j.trf.2016.02.006
http://doi.org/10.1016/j.aap.2018.04.018
http://doi.org/10.1016/j.aap.2020.105945
http://doi.org/10.1016/j.trf.2016.11.002
http://doi.org/10.1016/j.aap.2017.06.021
http://doi.org/10.3390/ijerph17186743
http://doi.org/10.1111/1467-9450.00291
http://doi.org/10.1016/j.aap.2007.08.010
http://doi.org/10.1016/j.jsr.2007.02.008
http://doi.org/10.1016/j.aap.2014.07.014
http://doi.org/10.3390/ijerph16081464
http://doi.org/10.1177/1541931213601923


Int. J. Environ. Res. Public Health 2021, 18, 7101 22 of 22

84. Hurwitz, J.B.; Wheatley, D.J. Using driver performance measures to estimate workload. Proc. Hum. Factors Ergon. Soc. Annu.
Meet. 2002, 46, 1804–1808. [CrossRef]

85. Matthews, R.; Legg, S.; Charlton, S. The effect of cell phone type on drivers subjective workload during concurrent driving and
conversing. Accid. Anal. Prev. 2003, 35, 451–457. [CrossRef]

86. Lansdown, T.C.; Brook-Carter, N.; Kersloot, T. Distraction from multiple in-vehicle secondary tasks: Vehicle performance and
mental workload implications. Ergonomics 2004, 47, 91–104. [CrossRef]

87. Jannusch, T.; Shannon, D.; Völler, M.; Murphy, F.; Mullins, M. Smartphone use while driving: An investigation of Young Novice
Driver (YND) behaviour. Transp. Res. Part. F Traffic Psychol. Behav. 2021, 77, 209–220. [CrossRef]

88. Alonso, F.; Useche, S.A.; Valle, E.; Esteban, C.; Gene-Morales, J. Could Road Safety Education (RSE) help parents protect children?
Examining their driving crashes with children on board. Int. J. Environ. Res. Public Health 2021, 18, 3611. [CrossRef]

89. Saqer, H.; de Visser, E.; Strohl, J.; Parasuraman, R. Distractions n’ driving: Video game simulation educates young drivers on the
dangers of texting while driving. Work 2012, 41, 5877–5879. [CrossRef]

http://doi.org/10.1177/154193120204602206
http://doi.org/10.1016/S0001-4575(02)00023-4
http://doi.org/10.1080/00140130310001629775
http://doi.org/10.1016/j.trf.2020.12.013
http://doi.org/10.3390/ijerph18073611
http://doi.org/10.3233/WOR-2012-0980-5877

	Introduction 
	Background and Related Work 
	Materials and Methods 
	Participants 
	Apparatus 
	Experimental Design 
	Experimental Procedure 
	Data Collection 
	Study Variables and Data Analysis 
	Data Analysis Methods 
	Decision Trees 
	Random Forest 


	Results and Discussions 
	ANOVA 
	NASA-TLX Results 
	Random Forest 

	Conclusions 
	References

