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ABSTRACT The authors got the motivation for writing the article based on an issue, with which developers
of the newly developed nature-inspired algorithms are usually confronted today: How to select the test
benchmark such that it highlights the quality of the developed algorithm most fairly? In line with this,
the CEC Competitions on Real-Parameter Single-Objective Optimization benchmarks that were issued
several times in the last decade, serve as a testbed for evaluating the collection of nature-inspired algorithms
selected in our study. Indeed, this article addresses two research questions: (1) How the selected benchmark
affects the ranking of the particular algorithm, and (2) If it is possible to find the best algorithm capable of
outperforming all the others on all the selected benchmarks. Ten outstanding algorithms (also winners of
particular competitions) from different periods in the last decade were collected and applied to benchmarks
issued during the same time period. A comparative analysis showed that there is a strong correlation between
the rankings of the algorithms and the benchmarks used, although some deviations arose in ranking the best
algorithms. The possible reasons for these deviations were exposed and commented on.

INDEX TERMS Evolutionary algorithms, benchmark functions, differential evolution.

I. INTRODUCTION
The purpose of the article is searching for an answer to the
question how selection of the benchmark suite affects deter-
mining the quality of the newly developed nature-inspired
algorithms. Primarily, the motivation for this study was
caused by the comments of reviewers in journals in which
researchers wish to present their work, that usually demand
testing the quality of these algorithms on benchmarks of the
newest version. The question is how false are the results
obtained by violating the demand?

Nature-inspired algorithms have become standard for solv-
ing the hardest optimization problems, with which humans
are confronted in the real-world. These algorithms operate
with a population of solutions according to the principles
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of operation of some animals, floors, and even human soci-
ety. Observing the principles found in nature, like tracing
the ant trails, watching termites build their nests (mounds),
inspecting wolves and their hunting habits in deep forests,
investigating the flying traces of birds, and even admiring the
small lightning bugs, called fireflies, in the young summer
nights, have led to raising the development of nature-inspired
algorithms. All these inspirations can be treated as optimiza-
tion processes, while the mathematical formulation for their
description presents a basis for building the optimization
algorithms.

In general, there are two main families of nature-inspired
algorithms: Evolutionary Algorithms (EA) [1], and Swarm
Intelligence (SI) based algorithms [2]. Recently, we have
witnessed a noticeable increase of newly developed nature-
inspired algorithms, especially in the SI domain, where
authors usually hide the true novelty of the proposed
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algorithm behind a metaphor of some natural or man-made
process on which principle it works [3]. The only thing
that really counts is their performance. Obviously, the newly
developed nature-inspired algorithms can be tested on many
problem testbeds, such as, for example [4].

Unfortunately, the majority of proprietary testbeds are
devoted for solving continuous optimization problems and,
in general, do not present any problem for modern stochas-
tic nature-inspired algorithms. Indeed, there are two con-
ferences that promote the development of new algorithms
by issuing benchmark testbed problems and organizing the
competitions, in which they can even compete against each
other: The Genetic and Evolutionary Computation Con-
ference (GECCO), and The Conference of Evolutionary
Computation (CEC). The former organizes The Black Box
Optimization Competition (BBComp) [5], which tries to hide
the problem (thus the name black box) to be optimized from
the experimenter, while in the latter case, the original prob-
lems are known in advance, but, for the purpose of the com-
petition, the functions are modified using shifting, rotation,
hybridization, and composition of more functions, in order to
mask the original optimum and, thus, make searching for this
much harder. Interestingly, both mentioned problem testbeds
are changed from year to year to prevent experimenters
from tuning their algorithms in a specific way, and, thus,
outperforming the other algorithms. As speculated in [6],
both types of problem testbeds introduced at both mentioned
conferences are highly complex, and, therefore, the potential
possibility of cheating is minimal.

Although several papers exist analyzing the behavior of
different nature-inspired algorithms applied to different CEC
benchmarks [7], [8], these observe the subject more from the
algorithm’s point of view, i.e., how good algorithms solve the
benchmarks. To best of our knowledge, there are no papers
that choose an opposite point of view, i.e., how the bench-
marks influence the results of the algorithm in question. The
pioneer work in this direction was made by Fister et al. [6],
where the authors concluded that the contemporary bench-
marks are hard enough for determining the true value of the
algorithms. This means that the results obtained on the newest
benchmark would not be very different than those observed
on the older benchmarks.

The present article is an extension of the mentioned arti-
cle. Actually, it goes a step forward by introducing a met-
ric for comparing the rankings of algorithms achieved in
different competitions, and by extending the comparison of
the outstanding nature-inspired algorithms in solving the
different function benchmark suites that have been issued
in CEC Competitions on Single Objective Real-Parameter
Numerical Optimization [?], [9], [10] during the last decade
(i.e., from 2010 to 2020). The metric base on the Spear-
man rank correlation measuring the significance of the
connection between two non-normally distributed variables.
Ten algorithms were collected into this comparative study.
These belong to both families of stochastic nature-inspired
population-based algorithms. Themembers of the EAs family

base on the DE algorithm widened from its original version
throughout the self-adaptive versions jDE [11] and SaDE [12]
to the SHADE [13] and its improved variants LSHADE [14],
iL-SHADE [15], jSO [16] and LSHADE_RSP [17]. The
members of the SI-based family include the original Artifi-
cial Bee Colony (ABC) algorithm [18] and its self-adaptive
variant SSEABC [19]. All algorithms were applied to the
CEC’13 [9], CEC’14/’16 [9], and CEC’17/’18 [10] bench-
mark function suites.

Two research questions are set in this study: (1) Does
using different CEC benchmark function suites influence the
ranking of the specific algorithms, and (2) Does there exist
a best algorithm, capable of outperforming the results of all
the other algorithms on all the selected benchmarks. Thus,
we were focused on the winners of the particular competi-
tions. Unfortunately, among these less SI-based algorithms
can be found.

The structure of the remainder the article is as follows:
The descriptions of the algorithms in the comparative anal-
ysis are discussed in Section II. The characteristics of the
observed benchmark function suites are described in detail
in Section III. Section IV is devoted to illustrating the experi-
ments and results. The article is concluded with Section V,
where the performed work is examined and directions are
outlined for the future work.

II. ALGORITHMS IN THE COMPARATIVE STUDY
This section is devoted to describing the stochastic
population-based nature-inspired algorithms used in our
comparative study. There are ten algorithms that belong to
the EA and SI-based algorithm families. The following EAs
were taken into consideration in the study:
• Original DE (Storn and Price [20]),
• Self-adaptive DE (jDE) (Brest et al. [11]),
• Self-adaptive DE (SaDE) (Qin et al. [12], [21]),
• Success-History based Adaptive DE (SHADE) (Tanabe
and Fukunaga [13]).

Obviously, all the mentioned algorithms base on the origi-
nal DE. Recently, the SHADE algorithm attracted the DE
community extraordinarily due to its efficiency and imple-
mentation simplicity. Consequently, more variants of this
algorithms were proposed later, from which the following
were applied in our study:
• SHADE with Linear Population Size Reduction
(LSHADE) (Tanabe and Fukunaga [14]),

• Improved LSHADE (iL-SHADE) (Brest et al. [15]),
• Single objective real-parameter optimization algorithm
(jSO) (Brest et al. [16]),

• LSHADE algorithm with a Rank-based Selective Pres-
sure strategy (LSHADE-RSP) (Stanovov et al. [17]).

On the other hand, SI-based algorithms were usually
entered in the CEC Competitions on Real-Parameter Single-
Objective Optimization. In our study, we selected the follow-
ing members of this family:
• Artificial Bee Colony (ABC) (Karaboga and
Basturk [18]),
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TABLE 1. Collection of Algorithms in the Study.

• Self-adaptive Search Equation-based Artificial Bee
Colony (SSEABC) (Yavuz et al. [19]).

The main characteristic of the ABC is that it is one of the
few SI-based algorithms using the crossover operator. Inter-
estingly, this operator is used with probability of 1/D, where
D denotes the dimension of the problem. Such value enables
slow convergence on the one hand, and avoids getting stuck
into the local optima on the other.

Ten different stochastic nature-inspired population based
algorithms were included in this study, where the collec-
tion of these is illustrated in Table 1. As can be seen from
this table, all the observed algorithms have their origins in
two nature-inspired algorithms, as follows: (1) DE and (2)
ABC. The former belongs to the EAs, while the latter to the
SI-based family. Among the variants of DE algorithms, where
the original version with two self-adaptive variants jDE and
SaDE are taken into consideration, the following improved
branches of the SHADE variant are observed: LSHADE,
iL-SHADE, jSO, and LSHADE_RSP. The ABC was one of
themore efficient members of the SI-based algorithms, where
its hybrid version SSEABC was recognized as one of the best
SI-based algorithms in the 2016 CEC Competition on Real-
Parameter Single-Objective Optimization.

The motivation behind collecting these algorithms was
threefold: (1) To show the performance level that the original
algorithm can achieve by solving the contemporary CEC
benchmark suites, (2) To follow the evolution of themore suc-
cessful branches appearing in CEC competitions that base on
the SHADE algorithm, and (3) To compare the performance
of two of the more powerful algorithm’s families of nature-
inspired algorithms.

The mentioned algorithms are discussed in detail in the
remainder of the section.

A. DIFFERENTIAL EVOLUTION
DE was developed by Storn and Price in 1995 [20] and
attracted the attention of the evolutionary community quickly.

1Rank - #3 on CEC’16 Competition on real-parameter single-objective
optimization

2Rank - #2 on CEC’17 Competition on real-parameter single-objective
optimization

3Rank - #2 on CEC’18 Competition on real-parameter single-objective
optimization

It has proven to be an appropriate tool for solving discrete
as well as continuous optimization problems. Consequently,
many DE variants have emerged for solving different, real-
world problems. Indeed, DE belongs to a class of EA using
real-valued representation of solutions. In each generation,
these solutions undergo acting the operations of operators,
like mutation, crossover, and selection.

In place of natural evolution, variation operators in DE
(i.e., mutation and crossover) operate on vector differences
that modify two randomly selected vectors according to the
so-called mutation strategy. The basic mutation strategy, for
instance, selects two solutions randomly, while their scaled
difference is added to the third solution, in other words:

u(t)i = x(t)r0 + F · (x
(t)
r1 − x(t)r2), for i = 1, . . . ,NP, (1)

where F ∈ [0.0, 1.0] is the scaling factor regulating the rate
of modification, NP is the population size and r0, r1, r2
are randomly selected values in the interval 1, . . . ,NP. Let
us notice that, although Price and Storn proposed the slightly
different interval, i.e.,F ∈ [0.0, 2.0], the interval of values for
parameter F ∈ [0.1, 1.0] was enforced in the DE community
during the time.

The crossover parameter regulates how many parameter
values are copied to the trial vector either from the vec-
tor obtained after mutation (Eq. (1)), or from the parent
vector. However, the crossover can be performed binomi-
ally (denoted as ’bin’) or exponentially (denoted as ’exp’).
Actually, the binomial crossover operation can be expressed
mathematically as:

w(t)
i,j =

{
u(t)i,j , randj(0, 1) ≤ CR ∨ j = jrand ,

x(t)i,j , otherwise,
(2)

where CR ∈ [0.0, 1.0] controls the portion of parameters
copied to the trial solution from themutant vector. In addition,
the condition j = jrand ensures that almost one element in the
trial solution differs from the original solution x(t)i .

There are many mutation strategies in DE. Therefore,
a special notation has been introduced to describe their
operation. In the case of base mutation strategy ’rand/1/bin’,
for example, the base vector is selected randomly, then, one
vector difference is added to it, and, finally, the number of
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modified parameters in the trial/offspring vector follows a
binomial distribution.

The selection is expressed mathematically as follows:

x(t+1)i =

{
w(t)
i , if f (w(t)

i ) ≤ f (x(t)i ),

x(t)i , otherwise .
(3)

The DE selection is known under the name ’one-to-one’,
because the trial and the destination vector compete for sur-
viving in the next generation, where the better between these
according to the fitness function has more chance to survive
into the next generation.

B. jDE ALGORITHM
In 2006, Brest et al. [11] proposed an effective DE variant,
called jDE, where the DE control parameters F and CR are
self-adapted during the run. This means that these parameters
are added to the representation of individuals and undergo
acting as the variation operators. Consequently, a representa-
tion of the individual in jDE is modified as follows:

x (t)
i = (x(t)i,1, x

(t)
i,2, . . . , x

(t)
i,D,F

(t)
i ,CR

(t)
i ).

Additionally, the jDE parameters F and CR are modified
according to the following equations:

F (t+1)
i =

{
Fl + rand1 ∗ (Fu − Fl), if rand2 < τ1,

F (t)
i , otherwise ,

(4)

CR(t+1)i =

{
rand3, if rand4 < τ2,

CR(t)i , otherwise ,
(5)

where: randi=1,...,4 ∈ [0, 1] are randomly generated values
drawn from uniform distribution in the interval [0, 1], τ1 and
τ2 are learning rates,Fl andFu are the lower and upper bounds
of feasible values for parameter F , respectively.

C. SELF-ADAPTIVE DE
There are many mutation strategies in DE, where their appli-
cation depends on the problem to be solved. Typically, it is
not known in advance which DE mutation strategy performs
well on a particular problem. In line with this, the proposed
SaDE [12] selects between two different strategies according
to the feedback from the search process. More precisely,
the algorithm decideswhich of two strategies to select accord-
ing to probabilities p1 and p2 = 1 − p1 that were initialized
to the equal value 0.5. Then, the proper DE mutation strategy
is selected according to the equation:

u(t)i =


x(t)r0 + F · (x

(t)
r1 − x(t)r2), if U(0, 1) < p1,

x(t)i + F · (x
(t)
best − x(t)i )

+ F · (x(t)r0 − x(t)r1), otherwise,

(6)

where probabilities p1 and p2 are calculated using the
expressions:

p1 =
ns1 · (ns2 + nf 2)

ns2 · (ns1 + nf 1)+ ns1 · (ns2 + nf 2)
,

p2 = 1− p1, (7)

and ns1 and nf 1 denote the number of successful and unsuc-
cessful changes of trial solution using the first DE mutation

strategy, respectively, and ns2 and nf 2 designate the number
of successful and unsuccessful changes of the trial solution
using the second DE mutation strategy, respectively.

Additionally, the behavior of the DE algorithm is con-
trolled using three critical parameters: scale factor F ,
crossover rate CR and population size NP. While these
parameters remain fixed by the original DE, two of the three
parameters are self-adapted in SaDE. Thus, the Fi parame-
ter is changed for each i-th individual in the interval (0, 2]
according to the following rule:

Fi = 2 ·N (0.5, 0.3), for i = 1, . . . ,NP, (8)

where N (0.5, 03) denotes a random number drawn from the
Normal distribution with mean 0.5 and standard deviation
0.3. Modifying the crossover rate is more sophisticated in this
algorithm, since the mean value of this parameter CRm actu-
ally determines the characteristic of the Normal distribution,
from which the new value of CRi = N (CRm, 0.1) is drawn.
Let us mention that the value of variable CRm is updated after
each 25 generations, where the five last used values ofCRi are
averaged, and each value of the same variable is effective for
five generations.

D. SUCCESS-HISTORY BASED ADAPTIVE DE
For adapting the DE control parameters, the SHADE algo-
rithm memorizes a historical memory MCR and MF with
H entries for CR and F , respectively. At the beginning,
the content of MCRi and MFi for i = 1, . . . ,H is initialized
to 0.5. Then, the mentioned control parameters are adapted
according to the following equation:

CRi = N (MCR,ri , 0.1), Fi = C(MF,ri , 0.1), (9)

whereN (µ, σ ) describes the randomly selected value drawn
fromNormal distribution with meanµ and standard deviation
σ . C(µ, σ ) is the randomly selected value drawn fromCauchy
distribution with mean µ and standard deviation σ , while
ri is the randomly selected value drawn from the uniform
distribution in the interval [1,H ].

In order to update the historical memory, the number of
successfully changed individuals is recorded in the SCR and
SF success history, while the contents of the memories are
modified as follows:

M (t+1)
CR,k =

{
meanWA(SCR), if SCR 6= 0,

M (t)
CR,k , otherwise,

(10)

M (t+1)
F,k =

{
meanWL(SF ), if SF 6= 0,

M (t)
F,k , otherwise,

(11)

while k determines the position of the memory update. At the
beginning, the position is set to k = 1. Then, k is incremented,
until k ≤ H , and the position k = 1 is set, when k > H .
The function meanWA(SCR) in Eq. (10) denotes the weighted
arithmetic mean that is calculated as follows:

meanWA(SCR) =
|SCR|∑
k=1

wk · SCR,k , (12)

VOLUME 9, 2021 51169



I. Fister et al.: On Selection of a Benchmark by Determining the Algorithms’ Qualities

wk =
1fk∑|SCR|
k=1 1fk

, (13)

where 1fk = |f (u(t))− f (x(t))|. The weighted Lehmer mean
meanWL(SF ) in Eq. (11) is expressed as follows:

meanWL(SF ) =

∑|SF |
k=1 wk · S

2
F,k∑|SF |

k=1 wk · SF,k
. (14)

The SHADE algorithm applied the ’current-to-pbest/1/bin’
DE mutation strategy that is expressed as follows:

v(t)i = x(t)i + Fi · (x
(t)
pbest − x

(t)
i )+ Fi · (x(t)r0 − x

(t)
r1 ), (15)

where F (t)
i denotes the scaling factor corresponding to the i-th

vector, and x(t)pbest is a randomly selected value drawn from the
top NP × pi members in generation t . Thus, pi is calculated
as follows:

pi = rand[pmin, 0.2], (16)

where pmin is set such that the pbest individual can be selected
between two vectors, i.e., pmin = 2/NP.

E. SHADE WITH LINEAR POPULATION SIZE REDUCTION
To enhance the performance of the SHADE algorithm fur-
ther, the LSHADE introduced the Linear Population Size
Reduction (LSPR) that affects the third DE control parameter,
i.e., population size NP. This feature reduces the population
size according to a decreasing linear function with maturing
of the evolutionary search process. Although various adaptive
population size methods were proposed in the past (e.g.,
GAVaPS by Arabas et al. [22]) that are capable of decreasing
and increasing population size according to the feedback
from the evolutionary search process, it seems that the simple
LPSR is the most effective in improving EA performances by
solving the continuous optimization problems [23].

The LPSR was implemented within the LSHADE algo-
rithm according to the following equation:

NP(t+1) =
⌈(

NPmin − NPinit
MAX_NFE

· NFE + NPmin

)⌉
, (17)

where NPmin is set to the smallest feasible value that enables
it to perform the variation operation (e.g., NPmin = 4), NFE
is the current number of fitness function evaluations, NPinit
is the initial population size andMAX_NFE is the maximum
number of fitness function evaluations.

F. IMPROVED LSHADE
An extended version of LSHADE, called iL-SHADE, was
proposed for the CEC-16 Competition on real-parameter sin-
gle objective optimization. The latter incorporates four new
features into the original LSHADE algorithms, as follows:
• Initialization of the history memory: The initial value of
MCR = 0.8 was employed for each of the H elements
in place of MCR = 0.5 as set in the original algorithm.
Additionally, at least one element of the history memory
was set to MCR,k = MF,k = 0.8.

• Update of the history memory M (t)
CR: The Lehner mean

function meanWL(SCR) was applied in place of the
weighted arithmetic mean function meanWA(SCR),.

• Adaptation of values CR(t)i and F (t)
i according to an

evolutionary search process maturity: The higher values
of those parameters are not allowed at the beginning,
while the lower ones not at the end of the optimization
process.

• Calculation of the pi value for the DE mutation strategy
’current-to-pbest/1/bin’: The authors proposed the fol-
lowing equation for this calculation:

pi =
pmax − pmin
MAX_NFE

· NFE + pmin, (18)

where pmin and pmax denote the predefined minimum
and maximum constants, respectively.

Obviously, all the other features of the LSHADE, like
LPSR, remained unchanged in this algorithm.

G. SINGLE OBJECTIVE REAL-PARAMETER
OPTIMIZATION ALGORITHM
An extended version of the iL-SHADE, called jSO, was
proposed for the CEC’17 competition on real-parameter
single-objective optimization that introduced only one main
improvement to the original algorithm, as follows:
• Application of the new mutation strategy ’current-to-
pbest-w/1/bin’ that is expressed as:

v(t)i = x(t)i + Fw · (x
(t)
pbest − x(t)i )+ F · (x(t)r0 − x(t)r1), (19)

where

Fw =


0.7 · F, if NFE < 0.2 ·MAX_NFE,
0.8 · F, if NFE < 0.4 ·MAX_NFE,
1.2 · F, otherwise.

(20)

The motivation behind Eq. (20) was to allow the evo-
lutionary search process to make higher changes of an
individual’s position into the search space at the end of
the optimization, when the diversity of the population
starts to disappear gradually.

Although the change to the iL-SHADE is minor, the jSO
had a crucial impact on improving the results of the CEC’17
competition.

H. LSHADE ALGORITHM WITH A RANK-BASED SELECTIVE
PRESSURE STRATEGY
The extended version of LSHADE, called LSHADE-RSP,
is another variant of the same base algorithm that was devel-
oped for the CEC’18 competition on real-parameter single-
objective optimization. It proposes the so called rank-based
mutation scheme ’current-to-pbest/r/bin’ for avoiding the
premature convergence and losing the population diversity.
This strategy replaces the original ’current-to-pbest/1/bin’
and is defined similarly as in the jSO algorithm, i.e.,:

v(t)i = x(t)i + Fw · (x
(t)
pbest − x(t)i )+ F · (x(t)pr0 − x(t)pr1), (21)
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except that, in place of randomly selected vectors in the sec-
ond term of Eq. (21), these are selected using the rank selec-
tion typically used in Genetic Algorithms (GA) [24].

The rank-based selection in GAs operates as follows:
At first, solutions are sorted according to their fitness values.
This means that the individuals with the smaller fitness are
ordered before those with the larger ones. Then, the rank
values are assigned to each individuals according to the fol-
lowing expression:

rank i = k · (NP− i)+ 1, (22)

where variable k is a scaling factor set such that the largest
rank means the better solution according to the fitness func-
tion. Based on the rank values, the probability of selection is
calculated according to the following equation:

pr i =
rank(i)∑NP
i=1 rank i

. (23)

Finally, the proportionate selection operator is applied with
the ranked fitness values, and two parent solutions are
selected to enter into the mutation strategy.

I. ARTIFICIAL BEE COLONY ALGORITHM
The ABC algorithm was introduced in 2005, and it is inspired
by the natural behavior of bees. In the ABC algorithm,
the artificial bee colony consists of three bee groups, as fol-
lows: employed bees, onlookers, and scouts. The employed
bees discover food sources individually, in other words, only
one employed bee exists for each food source. The employed
bees share information about food sources with the onlooker
bees in their hive. Then, the onlooker bees can choose which
food sources to forage. The richer the food source with nectar,
themore probability for visiting by the onlooker bees. Finally,
employed bees whose food sources are exhausted by either
employed or onlooker bees, become scouts.

Formally, the ABC algorithm supports three types of bees
appearing sequentially within each search cycle:
• employed,
• onlooker,
• scout.

The purpose of the employed bees is to send them onto
the food sources and to evaluate their nectar amounts. The
onlooker bees are devoted to sharing the information about
food sources with the employed bees, selecting the proper
food source and evaluating their nectar amounts. Finally,
the scouts are determined that are necessary for discovering
the new food sources.

Before the ABC search process can take place, ini-
tialization is performed, while a termination condition is
responsible for termination of the search cycle. Typically,
the maximum number of function evaluations MAX_NFE is
used as the termination condition.

To generate a candidate food position from the old one,
the ABC uses the following expression:

v(t)i = x(t)i + φ
(t)
i,j · (x

(t)
i − x(t)k ), (24)

where φ(t)i,j is a scaling factor drawn randomly from the uni-

form distribution in the interval [−1.0, 1.0], x(t)k is a randomly
selected vector in the interval {1, . . . ,NP} and the relation i 6=
k holds. The onlooker bee chooses a food source according
to its associated probability calculated as follows:

pi =
f (xi)∑NP
j=1 f (xj)

, (25)

where f (xi) denotes the value of the fitness function.
Interestingly, Eq. (24) is used for each of the employed

bees and those onlookers with probability higher than the
probability assigned to the particular food source. Only one
element of solution is changed in each modification opera-
tion. On the other hand, all individuals that do not change
their fitness function values for predetermined limit cycles,
become scouts, i.e., they are restarted.

J. SELF-ADAPTIVE SEARCH EQUATION-BASED
ARTIFICIAL BEE COLONY
The SSEABC algorithm was developed for the CEC’16 com-
petition on real-parameter single-objective optimization and
introduced three strategies for exploring the problem search
space: (1) Self-adaptive search equation determination, (2) A
competitive local search selection, and (3) An incremental
population size. Interestingly, the mutation strategy in this
algorithm was constructed randomly according to the follow-
ing equation:

x(t)i,j = term1+term2+term3+term4, for j=1, . . . ,m, (26)

where m determines the number of changed elements in
the vector x(t)i in the interval [1,D], term1 denotes the base
vector, on which changes are performed (i.e., current, best or
randomly selected), while term2, term3, and term4 denote
different combinations of the second term in Eq. (24) (e.g.,
(xbest − xr1), (xr0 − xr1), etc.), where each term termk is
multiplied with different scale factors φk for k = 1, . . . , 3,
respectively. Each component of the mentioned expression,
i.e., (1) The number of successful updates are about to be
maintained, and (2) Those components with the lowest suc-
cess rates are to be eliminated from the set of available
components for constructing the mutation strategy.

The SSEABC uses two local search strategies that com-
pete between each other during the fixed budget of fitness
function evaluations. In a competition phase, the best local
search algorithm is determined that is then applied later in
the deployment phase. If the best solution is not improved in
this phase, the competition is turned back.

The incremental population size is based on Incremental
Social Learning (ISL) [23]. This strategy adds a new solution
to the population after a predefined number of generations.
Thus, the new solution x(t)new is generated according to the
following equation:

x(t)new,j = x(t)ini,j + φi,j · (x
(t)
best,j − x

(t)
ini,j), (27)
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TABLE 2. The CEC Competitions on Real-Parameter Single-Objective Optimization Function Benchmark Suites.

where x(t)ini denotes the randomly generated vector, and x(t)best
the best solution found in the population so far.

III. THE CEC FUNCTION BENCHMARK SUITES
The aim of the CEC competitions is to compare the state-
of-the-art stochastic search algorithms on an annual basis.
These competitions include various types of benchmark
problem suites, like: single-objective, large-scale, noisy,
multi-objective, and constrained optimization. The CEC
competitions provide specific test environments for detailed
algorithm assessment and comparison [25]. Mainly, the test
environment is especially popular for benchmarking the EAs.

In this study, we are focused on the CEC Competition on
Real-Parameter Single-Objective Optimization benchmark
function suites. Over time, several competitions were orga-
nized as part of the general CEC conference. More informa-
tion about the particular competitions can be found on the
web site of Prof. Suganthan [26], who is one of the main
promoters of Evolutionary Computation (EC) and the main
driving force for development of the new benchmark suites
in the last two decades. Besides the definitions of bench-
mark suites, the results of the particular competition and the
winning algorithm’s codes can also be found, together with
articles describing their operations in detail.

Indeed, the CEC Competitions on Real-Parameter Single-
Objective Optimization were organized in the years
2005 [27], 2013 [28], 2014 and 2016 [9], and 2017 and
2018 [10]. Afterwards, this competition was renamed to the
100-Digit Challenge Special Session and the Competition
on Single Objective Numerical Optimization in 2019 and
2020 [29]. Interestingly, the two competitions were organized
biannually, i.e., the same problem benchmark suites were
used in the years 2014 and 2016, and in the years 2017 and
2018. Usually, the benchmark functions are implemented
in Matlab, C and Java programming languages. Due to the
changed propositions and application of different termination
conditions in the last two benchmarks, this study is focused
on the problem benchmarks issued in the last decade, i.e., in
the years: 2013, 2014 (2016), and 2017 (2018).

The characteristics of the mentioned function benchmark
suites are illustrated in Table 2, from which it can be seen
that the functions in the suites are divided into four types:
(1) Unimodal, (2) Multi-modal, (3) Hybrid, and (4) Com-
position functions. Unimodal functions have a single global
optimumwithout any local optima. Interestingly, the CEC’13

benchmark function suite did not support the hybrid func-
tions. These have arisen in later issues of CEC benchmark
suites. Unimodal functions are non-separable and rotated.
Multi-modal functions are either separable or non-separable.
Additionally, these are also rotated and/or shifted. The hybrid
functions are developed such that the variables are divided
randomly into some subcomponents, and then different basic
functions are used for different subcomponents [9]. Com-
position functions consist of the sum of two or more basic
functions. Hybrid functions are used in this suite as the basic
functions for constructing composition functions. As a result,
the characteristics of these hybrid and composition functions
depend on the characteristics of the basic functions.

The separability of a function determines typically how
difficult the function is for solving. That is, function f (xi)
is separable if its parameters xi = [xi,1, . . . , xi,D] are inde-
pendent. In general, the separable functions are considered to
be the easiest. In contrast, the fully-nonseparable functions
are usually the more difficult to solve [9]. The degree of
separability could be controlled by dividing the object vari-
ables randomly into several groups, each of which contains
a particular number of variables. Although some of the used
functions are separable in their original forms, applied tech-
niques such as Salomon’s random coordinate rotation make
them non-separable. Furthermore, the global optimum of the
function could also be shifted and scaled. The search range of
the problem variables is limited to xi,j ∈ [−100, 100] for all
functions. Thus, the orthogonal (rotation) matrix is generated
from standard normally distributed entries by Gram-Schmidt
orthonormalization, while matrix data are saved in the corre-
sponding files according to their dimensions.

The functions of dimensionsD = 10,D = 30, andD = 50
were used in the CEC’13 competition benchmark suite, while
the dimension ofD = 100was added for the newer CEC com-
petition benchmarks (i.e., CEC’14 and CEC’17). Because the
CEC’13 functions are defined for D = 100 as well, solving
these was included into the study too. The maximum number
of fitness function evaluations MAX_NFE was limited to
10, 000D according to four observed dimensions D = 10,
D = 30, D = 50, and D = 100, respectively.

IV. EXPERIMENTS AND RESULTS
The purpose of our experimental work was to show that the
following two hypotheses hold: (1) Selecting the CEC Com-
petition on a Real-Parameter Single-Objective Optimization
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benchmark issued in the last decade does not influence the
assessment of the quality of the newly developed algorithm
significantly, and (2) It is possible to find the algorithm
achieving the best results on all observed benchmarks. The
first issue speculates that the performance of the newly
developed algorithm can be tested on arbitrary CEC bench-
marks issued in the last decade, while the second that there
might exist some best algorithm capable of outperforming the
results of all the other algorithms by solving all the problems
in the test.

Three sources served to help us in implementing the algo-
rithms in Table 1: (1) The DE, jDE, and SaDE algorithms
based on the original implementation of DE in C/C++
taken from the official Berkeley University of California
web sites [30], (2) ABC on the implementation of the
original imlementation in C/C++ found on Karaboga’s
web sites [31], while (3) The implementation of the other
algorithms appearing in CEC competions, i.e., SSEABC,
SHADE, LSHADE, iL-SHADE, jSO, LSHADE_RSP, were
downloaded from Prof. Suganthan’s GitHub repository [32].
Although source codes were taken from different sources, all
these codes were implemented in the same C++ program-
ming language and compiled using the g++ compiler of the
same version. In this case, we ensured the fairness of the
results.

Two experiments were performed in order to justify the
research questions set in Section I. The results of the exper-
iments, in which ten different algorithms were involved by
optimizing three CEC function benchmarks of four different
dimensions of functions, are illustrated in the remainder of
the section.

A. INFLUENCE OF CEC BENCHMARKS ON THE
PERFORMANCE OF ALGORITHMS
The purpose of the test was to identify how the different CEC
benchmarks affect the results of ten stochastic nature-inspired
algorithms. In line with this, all the mentioned algorithms
were applied to the CEC’13, CEC’14, and CEC’17 func-
tion benchmarks. The experimental setup complied with
the regulations of the CEC Competition on Real-Parameter
Single-Objective Optimization, except that the number of
independent runs was set to 25 due to reducing the time com-
plexity. Thus, each algorithm was applied to three different
benchmarks using the same parameter setup as presented at
the beginning of the section. The results were evaluated using
two statistical tests, i.e., the Friedman non-parametric test
and Spearman rank correlation. The former is appropriate for
ranking the algorithms according to their performance, while
the latter for establishing the dependencies between ranked
algorithms and the observed benchmarks.

1) FRIEDMAN NON-PARAMETRIC TEST
An analysis of the results based on the Friedman non-
parametric statistical tests, in which the results obtained by
a particular algorithm optimizing all benchmark functions
of a specific dimension, were evaluated according to five

standard statistical measures: Best, Worst, Mean, Median,
and StDev values. Typically, these tests are conducted in
order to estimate the quality of the results obtained by var-
ious nature-inspired algorithms for global optimization [33].
Indeed, the Friedman non-parametric test is a two-way anal-
ysis of variances by ranks. In the first step, the statistic test is
calculated and converted to ranks. Then, the null hypothesis
is stated, which assumes that medians between the ranks of
all algorithms are equal. Here, a high value of rank means
a better algorithm. The second step is performed only if a
null hypothesis of a Friedman test is rejected. In this case,
the post-hoc tests are conducted using the calculated ranks.
Let us notice that the post-hoc analysis was not performed in
our study, because we needed only the proper ranking of the
algorithm’s performance for the next step. Here, the test was
conducted using a significance level of 0.05.

In summary, there were 25×3×4×10 = 3, 000 indepen-
dent runs, where 25 denotes the number of independent runs,
3 the number of benchmarks, 4 the number of different func-
tion dimensions, and 10 the number of algorithms in the tests.
Thus, each algorithm produced results evaluated according
to n × 5 different statistical measures per single run per
benchmark, where n determines the number of functions in
a particular benchmark (see Table 2). These results represent
ranks obtained after calculating the Friedman non-parametric
tests. However, the classifiers composed from the average
values of statistical measures obtained after 25 independent
runs were applied in place of values gained after a single run.

The results of the conducted tests are illustrated in Fig. 1,
which is divided into four parts according to the observed
dimensions of the functions (i.e., D = 10, D = 30, D =
50, D = 100). Thus, each part consists of a table and a
graph, where the former presents the results of the particular
algorithm numerically, while the latter illustrates the same
data graphically.

As can be seen from Fig. 1, the performance of the algo-
rithms can be divided into three classes, i.e., the results of:
• the original algorithms (DE, ABC),
• the self-adaptive algorithms (jDE, SaDE, SSEABC),
• the SHADE branches (SHADE, LSHADE, iL-SHADE,
jSO).

The results of the original algorithms showed that the ABC
algorithm outperformed the results of the original DE on
the CEC’13 benchmark suite on the one hand, while the
DE algorithm achieved better results on the other suites.
The self-adaptive SSEABC overcame the results of the other
self-adaptive algorithms in tests, except by optimizing the
functions of higher dimensions (i.e., D = 100), where
the jDE algorithm was more powerful. More interesting
is the comparison of the SHADE branch of algorithms, where
the results achieved by the LSHADE, iL-SHADE, and jSO
outperformed the results of the SHADE and LSHADE_RSP.

2) SPEARMAN RANK CORRELATION TEST
Spearman rank correlation is applied primarily when one
wishes to assess whether the connection between two
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FIGURE 1. The results of Friedman’s non-parametric tests by various CEC benchmarks in competitions on real-parameter single-objective optimization.

non-normally distributed variables is significant or not. In our
study, it was used to show how dependent rankings of

the particular algorithms are on the observed benchmarks.
The Spearman correlation coefficient rs is a non-parametric
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measure of rank correlation that is expressed mathematically
as [34]:

rs =
cov(rX , rY )
σrX · σrY

, (28)

where X and Y are classifiers converted to ranks rX and
rY , respectively, σrX and σrY the corresponding standard
deviations of them, and cov(rX , rY ) is a measure for joint
variability of these variables, in other words:

cov(rX , rY ) =
1
N

N∑
i=1

(rX ,i − rX ) · (rY ,i − rY ). (29)

In Eq. (29), rX and rY denote means of ranks belonging to
classifiers X and Y , while N is the number of algorithms in
the test.

The null hypothesis in a Spearman test is set as rs = 0,
which asserts that variables do not correlate. This means that
the test does not assume a linear relationship between two
variables, but arbitrarily curved. To show how significant the
relationship is between the pairs of observed variables [35],
the Wilcoxon non-parametric test needs to be performed
after calculation of the Spearman correlation coefficient rs.
The null hypothesis by the Wilcoxon test asserted that there
was not a significant relationship between the two random
variables. The result of this test is a p-value, denoting the
probability of obtaining test results at least as extreme as the
results actually observed, under the assumption that the null
hypothesis is correct.

In our study, the Spearman rank correlation tests were
performed between pairs of classifiers converted to ranks
regarding the Friedman non-parametric tests, where each
rank vector rX represents the ranking of algorithms obtained
by optimizing the particular CEC benchmark on different
dimensions of the functions. Here, pairs represent combina-
tions of two distinct rankings, obtained by optimizing par-
ticular CEC benchmarks. As a result, each rank vectors rX
and rY consisted of 4 × 10 elements (also samples), where
4 denotes the number of different dimensions of functions in
the benchmark, and 10 is the number of algorithms. The same
data were also entered in the Wilcoxon non-parametric test in
order to calculate the corresponding p-values.

The results of the Spearman rank correlations are illus-
trated in Fig. 2 that are divided into two parts: a graph and
a table. Graph 2a illustrates the distribution of data entered
into the Spearman tests in the form of rank vectors. Table 2b
presents the comparison of mutual comparisons between
pairs of distinct benchmarks, represented as a matrix with
rows designated benchmarks and columns values of Spear-
man correlation coefficient rs and p-value as obtained by the
Wilcoxon non-parametric test. For instance, the Spearman
correlation coefficient by comparing rankings obtained by
the CEC’13 and CEC’14 benchmarks is 0.95. This means,
that the rankings obtained by optimizing the CEC’13 bench-
mark functions is not significantly different from the rankings
obtained by optimizing the CEC’14 benchmark functions due
to the p-value zero.

Interestingly, the p-values obtained for all the other com-
parison of benchmark pairs were also set to zero. This means
that the rankings of a particular algorithm were not signifi-
cantly different when the results of the same algorithms were
compared on the different CEC benchmark suites. As a result,
the first hypothesis can be accepted.

B. IN SEARCHING FOR THE BEST ALGORITHM
The purpose of this test was searching for the best algorithm
that must be ranked in the first place by optimizing all the
observed benchmarks. In line with this, the best algorithm
according to the Friedman tests was identified and aggregated
into Table 3, where rows denote the algorithms and columns
their rankings in the first place by optimizing the observed
benchmarks. Thus, the first place is denoted by a plus sign
(‘+’). We searched for the algorithm with the pluses in all
columns (i.e., 12 pluses in one row).

From Table 3 it can be seen that three algorithms (i.e.,
LSHADE, iL-SHADE, jSO) achieved the same and highest
rank by optimizing all the functions of dimension D = 10
collected in the CEC’13 benchmarks. This means that these
problems became too easy for the state-of-the-art algorithms
nowadays. Furthermore, the LSHADE achieved the best
results 2-times, iL-SHADE 5-times, and jSO 7-times, by opti-
mizing three different benchmark suites by different dimen-
sions of the functions.When the number of pluses is analyzed
from the benchmark’s point of view, it can be concluded
that the iL-SHADE was better on the CEC’14 benchmark
functions, while jSO on CEC’13 and CEC’17. According to
the presented results, we can conclude that the best algorithm
does not exist. This fact obviously justifies that the second
hypothesis must be rejected.

C. DISCUSSION
Our experimental work started with the assumption that
selecting a CEC benchmark issued in the last decade does not
affect the ranking of the newly developed algorithm signifi-
cantly. On the other hand, some reviewers argued that the new
CEC benchmarks are more relevant for determining the qual-
ity of the nature-inspired algorithms. Consequently, the win-
ning algorithms solving these benchmarksmight also bemore
relevant. As can be derived from these two assumptions,
there must exist an algorithm capable of outperforming the
results of all the other algorithms on all observed benchmarks.
Unfortunately, the second assumption was rejected by the
fact that iL-SHADE outperformed the results of jSO on the
CEC’14 benchmark, and vice versa, that jSO outperformed
the results of iL-SHADE on the CEC’17 benchmark. Are our
assumptions or the derivation from them wrong?

Obviously, each coin has two sides. On the one hand,
the purpose of organizing the CEC competitions is not to
find a general problem solver capable of solving all prob-
lems, but encourage the development of new, more powerful
nature-inspired algorithms, by solving increasingly difficult
problems. The fact that the benchmarks’ problems become
harder and harder from year to year proves the fact that
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FIGURE 2. The results of Spearman rank correlation test by various CEC benchmark function suites in competitions on
real-parameter single-objective optimization.

TABLE 3. The Best Algorithms According to Benchmark Function Suites.

even three state-of-the-art algorithms are capable of finding
the optima of all functions of dimension D = 10 collected
in the CEC’13 benchmark. On the other hand, algorithms
appearing in the particular competitions are adapted strongly
to the demands of specific benchmarks. This means that even
the winner of the CEC’17 competition, that is adapted to the
demands of the current benchmark, is probably not capable

of coping with the performance of the winner of the previous
competitions.

In general, could we pronounce the best algorithm on
all CEC benchmark suites? In our opinion, the answer to
this question gives us the famous ’’No Free Lunch’’ (NFL)
theorem by Woolpert and Macready [36], asserting that
any two optimization algorithms are equivalent when their
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performance is averaged across all problems. How about
selecting the CEC benchmarks? In our opinion, there is no
big difference in using any of the CEC benchmarks from the
last decade. All are hard enough for showing the advantages
and weaknesses of the newly developed algorithms.

V. CONCLUSION
Developers of new stochastic nature-inspired algorithms are
typically confronted with the issue of how good their product
is when compared with the existing ones. Consequently, a lot
of benchmark suites have emerged that enable assessment of
the quality of algorithms objectively. In this sense, benchmark
function suites prepared for competitions at the GECCO and
CEC conferences present a suitable testbed for testing the
quality of these algorithms. Because the CEC benchmarks are
founded on more or less an annual basis, usually, the ques-
tion arises how the particular benchmark suite influences the
ranking of algorithms in these competitions?

This article is focused on the CEC Competitions on Real
Parameter Single-Objective Optimization, with three bench-
mark suites taken into consideration, i.e., in the years 2013,
2014 (2016), and 2017 (2018). Ten stochastic nature-inspired
algorithms were captured in this study: the original DE and
ABC, the self-adaptive jDE, SaDE and SSEABC, and the
SHADE branch of algorithms, incorporating the original
SHADE, LSHADE, iL-SHADE, jSO and LSHADE_RSP.

The purpose of this study was twofold: (1) To show
that using different CEC benchmark function suites does
not influence their ranking crucially, and (2) To find the
best algorithm capable of outperforming the results of the
other algorithms on all benchmarks. In the sense of the first
issue, the Spearman rank correlation was conducted, based
on Friedman’s ranks obtained by optimizing the particular
CEC benchmark functions of four different dimensions (i.e.,
D = 10, D = 30, D = 50 and D = 100). The Spearman rank
correlation tests with classifiers containing ranks obtained by
classifying the results of ten different algorithms by solving
the different CEC benchmark suites showed no significant
differences among rankings. However, the rankings of the top
state-of-the-art algorithms in tests showed, for instance, that
the best ranked algorithm by solving the CEC’17 function
suite is not the best by solving the CEC’14 suite and vice
versa. The reason for this needs to be searched in the fact
that both specific algorithmswere issued at different times for
different competitions, i.e., the former was tuned for solving
the CEC’17 function suite optimally, while the latter for the
CEC’14 suite. Obviously, this phenomenon confirms theNFL
theorem.

Many directions exist for the future work, for example:
to make a similar study for the other CEC competitions,
to include the additional algorithms into the existing study,
or to extend the same study to the GECCO function suite too.
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