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Abstract 

Nowadays, a major safety challenge in rail transport is to manage the incidents and emergencies in the most efficient possible way. 
The current contingency plans tend to be based on static procedures not taking into account how real-time conditions affect them. 
Consequently, the decision-making process may well suffer delays and the possibility of occurrence for human mistakes could 
raise since the required measures are expected to be carried out under important pressure. In this study, focused on commuter trains, 
railway safety is enhanced by a new intelligent emergency management system which aims to support the operator tasks in a real-
time incident or emergency situation. This cyber-physical system is composed by two main modules: one on board the train, 
including sensors and GPS, and other integrated in the control centre addressing four computational models. Those models cover 
(1) the detection of different types of incidents/emergencies using the information received from on board sensors, (2) the 
calculation of the evacuation process (if necessary), (3) the selection, estimation of routes and communication with emergency 
services required for each event, and finally (4) a provision of actions to support the operator decisions. Communication between 
modules is provided by GPRS due to actual technology available in the pilot trains. This system has been implemented in an actual 
railway line in Cantabria (Santander-Cabezón de la Sal) and three practical demonstrations were defined based on several use cases, 
which were tested using a pilot facility incorporating all sensors and devices installed in those trains. Results demonstrated the 
benefits of the new system. 
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1. Introduction 

According to the last report of 2019 of the National Commission for Railway Accidents (CIAF (2019)) only in 
Spain during 2018 one serious accident (an impact against a landslide), nine events at railroad crossing, two fires and 
other thirty-one different types of serious incidents took place. This demonstrates the importance of managing such 
undesirable events in the fastest and safest manner via transportation policies.  
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Over the last decade, Intelligent Transportation Systems (ITS) have implemented new features, addressing safety 
and security issues. The importance of enhancing the protection of critical transportation infrastructures, due to the 
wide range of risks which impact their proper functioning, is shown in studies as Janusova and Ciemancova (2016) 
through different examples of goals and roles of using ITS in railway transport and its potential benefits for decision-
making process of transport operators or emergency responders. 

Regarding intelligent systems developments, there is a wide variety of areas and applications. As shown by Qureshi 
and Abdullah (2013), ITS technology operates in diverse fields of transportation through management systems of 
freight (e.g. Commercial Vehicle Operations (CVO) or Advanced Fleet Management System (AFMS)), transit (e.g. 
Automatic Vehicle Location (AVL) or Travel Assistance Device(TAD)), incident (e.g. Critical Incident Management 
System (CIMS) or Cyber Physical System (CPS)) or emergency (e.g. Emergency Management Information System 
(EMIS) or Multi-Commodity Stochastic Humanitarian Inventory Management Model (MC-SHIC)), all with the aim 
of improving safety. Other example of ITS applications is shown in Shi and Ni (2015), with the analysis, model and 
framework of Railway Intelligent Transportation Systems (RTIS) and its applications as the Transportation 
Management Information Systems (TMIS) or the Automatic Train Identification Systems (ATIS), among others. The 
application of this technology in urban transport is shown in Qin et al. (2016) introducing Urban Rail Intelligent 
Transportation Systems (URITS) divided into five layers (perception, communication, integration, operation and 
service) providing communication signals, integrated supervision and operations management. 

Moreover, some research works have been done to improve individual components of the system. Developing an 
online real-time model which represent the normal behaviour of train trajectory, anomalies in train speed during the 
whole route from the departure location can be detected (Kang et al. (2018)). Results from the validation of the system 
through simulations shown a sensitive improvement detection up to 22%. Another example proposes a security 
incident detection technique based on rough sets theory using a Multilevel Intelligent Control System (MICS) within 
ITS (Chernov et al. (2016)). Network security incidents were defined as a cause-effect chain of events for their 
classification (e.g. system malfunction incidents, incidents caused by user errors, intentional cyber-attacks). The 
proposed technique gives rise to a simple and fast calculation. Another important component of transportation is the 
travel time information, stressing the fact that the longer delay of train arrival means longer waiting time for 
passengers. To provide better service, researchers from India presented in Krishna and Yugandhar (2013) one of the 
first attempts at real-time short-term prediction of arrival time for ITS applications through the development of three 
modules (vehicle section module, base station section module and user mobile section module) integrated in a 
comprehensive system. The arrival time calculation uses the train location and the station location through Global 
Positioning System (GPS) modules placed on board the train and at each station.  

One of the most recently published studies deals the implementation of satellite navigation elements for rail 
transport (Nedeliakova et al. (2019)). An advantage of the functions is that it can be integrated in current technology 
systems and with new digital devices. ITS have been also integrated with other intelligent systems from other type of 
transport. In Osipitan (2016) combining intelligent transportation system for roadways and an intelligent rail system 
technology developing an Intelligent Grade Crossing System (IGCS) which improves the security of highway-rail 
intersections. Based on the importance of ITS, several countries have carried out their own studies to measure the 
benefits of implementing these technologies to their railway service. In 2012, China analysed the situation of their 
railway infrastructure, taking into consideration that it is its cheapest means of mass transportation, and how this 
infrastructure could be affected by the implementation of Rail Intelligent Transportation Systems (RITS) (Jiang et al. 
(2012)). This analysis established five sustainable development strategies which offer a transportation solution 
minimizing environmental impact and contributing to social and economic prosperity. Similarly, Tokody et al. (2015) 
developed an ITS ensuring the highest reliability implementation, taking into account technical and technological 
characteristics, probability of system failures and theories of normal accidents, reliability organizations and flexible 
engineering planning. Also, they paid special attention to safety risks of software and hardware products. Efficiency, 
safe operation and convenience, as well as the increment of the adaptability of the system were the key aspects 
considered by the authors for ITS development. In Poland, new concepts and innovative technologies were also 
implemented as the European Train Control System (ETCS), a subsystem of the ERTMS (Kornaszewski et al. (2017)). 
The idea of the ETCS is based on the digital track-vehicle transmission, supplying the engine driver of information 
concerning locations of trains, allowed speed or the closure of a level crossing. The GSM-R radio communication 
complete the system. 
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In essence, the stress produced by emergency events to control centre operators increase the likelihood of making 
mistakes. Emphasizing that responsibility to manage emergency events through a decision-making process it is crucial 
to minimize risks and emergency consequences. Hence, the application of ITS is certain to provide elements to the 
operator for decision-making process. In this sense, the purpose of this study is to support the operator during the 
decision-making process slightly improving its activities. This paper provides the explanation and characteristics of 
the four models integrated in SIGNAL system elaborating the corresponding communications protocols and the 
validation experiments conducted. 

2. Methodology 

SIGNAL is a cyber-physical holistic intelligent management system including both on board and control centre 
modules, see Fig. 1. While the former, managed by the train driver, receives information from train devices as smoke 
and fire sensors, speedometer, accelerometer and GPS, the latter integrated in the control centre hardware aims to 
support the operator tasks during an incident. The control centre is composed by four independent models. 

Based on the available technologies installed in the railway vehicles selected for the practical demonstrations, the 
communication between both modules is provided via General Packet Radio Service (GPRS) using User Datagram 
Protocol over Internet Protocol (UDP/IP). Likewise, in order to provide Voice Call and messaging services Short 
Message Service (SMS) and Global System for Mobile (GSM) communication are used. In case of a “dead man” 
warning from the train driver cabin, the communication between control centre operator and passengers through LED 
panels and audio system installed in the train is also feasible. The location of the train in both modules is shown 
through a Global Information System (GIS). The characteristics of the four models developed are defined as follows: 
 

 

Fig. 1. Intelligent Emergency Management global scheme. 

1) Incident model. Through constant reception of train location via GPS and current status of sensors installed on 
board, it is able to detect different types of incidents in real-time clustered as can be seen in Table 1. To elaborate this 
classification an extensive review was conducted founded on previous railway emergency events. 
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          Table 1. Incidents and its relation with sensors. 

Id. Incident Code Incident Designation Sensors/Devices 

1 NOGPS GPS signal lost GPS 

2 FTEC Stop due to a breakdown of a rolling stock 
Speedometer 

3 DESC Derailment 

4 FEVIAJE Emergency break by passenger 

Accelerometer 

5 FECOND Emergency break by engine driver 

6 FEHM Emergency break for “dead man” 

7 IMPC1 Minor running-over due to the impact against a small object 

8 IMPC2 Major running-over due to the impact against a large object 

9 INCN Fire in rolling stock Fire detector 

 
Once a sensor achieves threshold values capturing an abnormal behaviour, the model alerts both the driver and 

control centre. Communication is implemented using the frame structure A from Table 2 to receive and report the 
current status of the sensors. If an anomalous frame has been detected, the system initiates a voice call between the 
control centre operator and the engine driver to verify the incident. In case of reception of “dead man” incident code 
or similar code preventing the establishment of voice call, the operator immediately initiates the protocols for direct 
communication with the passengers using LED panels through the frame structure B from Table 2. Similarly, a Public 
Address system (PA) could be employed by control centre operator through frame structure C (Table 2) to remotely 
configure the audio devices installed on board allowing direct communication with passengers to provide instructions.  

        Table 2. Communications frame structures. 

Structure Frame 

A UUUU; YYYYMMDDHHMMSSCC;EVENT;LON;LAT,SPD,SPDU 

B UUUU; YYYYMMDDHHMMSSCC;MSGD;FMT;MESSAGE 

C UUUU; YYYYMMDDHHMMSSCC;AUDIOV;ON/OFF 

Train unit (UUUU), time stamp (YYYYMMDDHHMMSSCC), incident code (EVENT), 
longitude (LON), latitude (LAT), instant speed (SPD), instant speed-up (SPDU), panel 
options (MSGD/FMT), message shown (MESSAGE), audio tag (AUDIOV)  

 
2) Passenger model. In case of remaining inside the train was not a safety alternative for passengers, this model 

runs stochastic simulations to calculate the total evacuation time under different conditions. The total time (𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) is 
calculated by two terms: the egress time from the train (𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) and the movement time of passengers (𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚) towards 
the access point for the alternative transfer transport (see Equation (1)). 

total egress movT T T= +     (1) 

Focus on the first term, trains are characterized as narrow spaces that limits the people movement inside, prevailing 
the queues discipline. According to British Standards Institute (2004) and ISO (2015), the required evacuation time 
for rail cars comprises two main variables: 1) the time of the first few occupants to reach the exit (movement time) 
and 2) the flow time of the rest of passengers through the available exits. The chance for passengers to leave the train 
is determined by the opening of exits, prior notice from the crew. The random flow rate of passengers through exits 
is expected to be the most decisive variable to calculate egress time. Also, flow rates depend on the operative 
conditions: the urgency (i.e. evacuation or normal alighting) and the evacuation destination (i.e. high platform, rail 
tracks). Hence, four egression classes were implemented: evacuation to platform, evacuation to tracks, alighting to 
platform and alighting to tracks. Data used for flow rates f are based on empirical data provided in Cuesta et al. (2017); 
Capote et al. (2008); Nelson (2002) and Norén and Winér (2003) and its minimum and maximum values are shown 
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in Table 3. The train occupation (𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜), the number of available exits (𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) and their width (𝑤𝑤𝑤𝑤𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) are also 
components of Equation (2). Particularly, train occupation is calculated using 𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚 (maximum occupation) and 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 
(occupation density assumed as 20, 20-60 and >60 %). 

* *
occup

egress
doors doors

n
T

n w f
= ; where max *

100
occup

occup

P
n n=    (2) 

The second term is the movement time of passengers (Equation (3)) from the train to the transfer transport, which 
may have two situations, egress to platform or egress to rail level with distance 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡. Finally, walking speeds (𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖) are 
taken from empirical data (Chandra and Bharti (2013); Henderson (1971)) (see Table 3). The movement time for each 
passenger is (𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖), the number of passengers is denoted as i and the total number of walking speed values is 𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜 
(depending on train occupation load). 

( )max
imov movT t=  where ;0

i

t
mov p

i

dt i n
v

= < <    (3) 

                        Table 3. Flow rate through exits and walking speed values. 

 Flow rate (per/s) Walking speed (m/s) 

 Min. Max. Min. Max. 

Evacuation to platform 1.23 3.84 0.5 3 

Evacuation to tracks 0.85 1.45 0.3 2.1 

Alighting to platform 0.93 0.96 0.4 2.2 

Alighting to tracks 0.56 0.69 0.2 1.4 

 
Note that flow rates and walking speeds are random variables used to determine the evacuation times through 

Monte Carlo stochastic simulations, as it is described in Alvear et al. (2014). Moreover, the time calculated from the 
Passenger model is the 95th percentile of the total evacuation time, resulting of sum up the 95th percentiles of each 
term (egress time + movement time). 

3) Intervention model: this model supports operator and improve time required. The model works under real-time 
conditions using the information provided by previous models. The conceptual approach is based on defining the 
emergency services to report the situation and which data should be shared with them (the existence of injuries, access 
points to the railroad, etc.). To determine that, the model has a decision tree logic which guarantees the optimal 
information flows to external services. The intervention model also determines the nearest emergency services from 
the incident location, being essentially the advanced implementation of the geographical coordinates of each service. 
Finally, the model calculates the estimated arriving times of the corresponding emergency services and transit 
transport using OpenStreetMaps service (https://www.openstreetmap.org). Mapping of railroad access points through 
video recording or GIS must be defined in advance to implement the corresponding information in the system, 
establishing three levels of access: free (without obstacles), medium (separation systems easy to take off) and no 
access (impassable areas).  

4) Decision model: this model shows a summary of the actions taken during the incident/emergency and helps the 
operator to verify all those decisions and actions. It is based on a sequence of statements/decisions and is represented 
as a decision tree.  

After each model and the communications between modules were developed, they were integrated in a main 
software called SIGNAL. 
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3. Software validation 

The evaluation of the proper functioning of SIGNAL was realized through the validation of a set of technical 
requirements in three use cases. The selected line was Santander-Cabezón de la Sal located in Cantabria (Spain) and 
operated by Renfe-Feve Railway Company. This line is approximately 48.6 km long and has 23 stations or halts. This 
line is operated by commuter trains with three coaches of 15.24 m long, 2.35 m width and 4 exits per coach (1.2 m in 
width each). The maximum speed is 80 km/h due to some operation constraints of the track. The use cases selected 
were derailment, emergency brake by engine driver and fire in rolling stock as they cover the validation of all elements 
of the system. Firstly, a possible scenario was described and executed for each incident with characteristics shown in 
Table 4. 

   Table 4. Descriptions and characteristics of the possible use case scenarios. 

Use Case Possible incident scenario 
Characteristics 

Overturning Injuries Occupation Evacuation 

Derailment Partial derailment (final coach) because of a landslide.  No Yes 20-60 % No 

Emergency brake 
by engine driver 

Due to the presence of a car on a railroad crossing. The 
train can stop before impacting. No No - No 

Fire A problem in rolling stock produces a fire that affects 
the third coach. The train can reach next station. No No 20-60 % Yes 

 
A methodology was defined to conduct the use cases. Each test should start with the constant exchange of frames 

showing normal operation conditions of the train. At a given time, the on board simulator activates the corresponding 
incident. The alarm appears at the control centre and the operator calls to the engine driver using a voice 
communication protocol GSM. For derailment and fire, the driver confirms the incident, but in the emergency break 
it established a false alarm because the train can continue the route. Then, for the use cases with a verified incident, 
the Intervention model runs and it allows the operator to implement the corresponding information from the engine 
driver. The Intervention model provides the course of actions to carry out (i.e. notification to the emergency services 
and mobilizing transfer transport), if it is necessary. The operator notifies to the emergency medical services, 
firefighters and police services for the derailment case and it notifies to firefighters and police services in the fire case. 
Also gives the location of the incident, the nearest access points and other relevant information (injuries, overturns, 
…). Then, the operator calls the engine driver to give him the estimated arriving times of the emergency services. The 
Passengers model works when it is necessary. Here, it calculates the times for a normal alighting in the derailment 
case and for an evacuation to platform in the fire case. The operator notifies to the transfer transport of the nearest 
access point to the railroad and the engine driver of the arrival times. The operator should be alert for possible changes 
until the incident is over. Its last responsibility is to check the decisions and actions carried out based on the Decision 
model. 

4. Results 

The validation of each model was developed through the previous defined use cases testing the individual modules 
considering interactions. To illustrate this validation process, the corresponding interfaces and description of each 
moment during the development of the derailment use case was used. Starting from a regular train operation, when 
the software detects an incident, an alarm is shown on the control centre interface (Fig. 2a.). In that moment, the 
Incident Model interface is activated as an emerging panel (Fig. 2b.). This panel enables the communication between 
the operator and the engine driver to confirm the incident and implement the corresponding information. Then, the 
interface of the Intervention, Passengers and Decision Models appeared in an overview intervention interface (Fig. 
3.). Through this screen, the models provide the corresponding results to the operator who can supply them to the 
engine driver and also notice to the services and transport. 
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Fig. 2. (a) Control centre incident detection; (b) Control centre operator-engine communication interface. 

 

Fig. 3. Control centre overview intervention interface.  

5. Discussion and conclusions 

Safety and security for passengers of mass rail transportation systems is a major challenge. An incident or an 
emergency management with people involved is a serious and complicated process. To contribute to the improvement 
of railway transportation, we developed a prototype of an intelligent emergency management system. The aim is to 
support the operator tasks of a control centre in the decision-making actions in real-time and reduce the possibility of 
making mistakes at the minimum. To achieve the objective, we developed a module on board a train that can 
communicates and shares information from train sensors to the module integrated in the control centre hardware. This 
module is composed by four models that detect incidents automatically, that calculate evacuation times in a few 
seconds and that provide emergency management support in real-time.  

The case studies have shown that the proposed system does its job opening the field to new application 
opportunities to emergency management response in rail transport. First, it is possible to determine the nearest access 
point to the location of the emergency in a few steps. This is very useful for the emergency services that waste a lot 
of time defining the best entrance point. Furthermore, the system can be able to provide the type of services 
(emergencies or transfer transport) to demand their help. This is essential for a better work conditions of the services 
that are really necessaries. Second, the bidirectional communication among engine driver and control centre operator 
(or among operator and passengers in case of a dead man of the engine driver), reduces the global anxiety due to the 
exchange of information in real-time. Finally, the supporting given to the operator is crucial to decrease their 
responsibility, to reduce its stress and, consequently, to improve the incident management and also passengers safety. 

The presented system provides consistent and reasonable results while providing demonstrated benefits. The 
system would drastically reduce evacuation, intervention and decision times. This paper goes beyond other 
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contributions since it proposes the development and use of a real-time intelligent management system for incidents in 
rail transport. The next step is to achieve the completely installation and integration of the prototype in a real 
environment. 
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