
How windows size and number can influence the

schedulability of hierarchically-scheduled

time-partitioned distributed real-time systems

Andoni Amurrio1,2, Ekain Azketa1, Mario Aldea2, and J.Javier
Gutiérrez2

1Ikerlan, Memeber of Basque Research and Technology Alliance
2Software Engineering and Real-Time Group, University of

Cantabria

July 16, 2021

Abstract

Partitioning techniques are implemented in the development of safety-
critical applications to ensure isolation among components. An adequate
scheduling of the execution of such partitions is a key challenge so that
applications meet the hard deadlines imposed. In this work, we study the
effect of different partition window configuration parameters, with the aim
of analyzing their impact in the worst-case response times of system tasks.
This is the first step in the development of an algorithm for optimizing
partition windows in hierarchically-scheduled time partitioned distributed
systems.

Keywords: Time-partitioning, Partition-scheduling, Schedulability-
analysis, Safety-critical applications.

1 Introduction

Although scheduling real-time systems has been addressed for many years, novel
design, architectural and execution paradigms enforce real-time researchers to
continuously develop new strategies to guarantee that deadlines imposed in soft-
ware are met even in the worst-case scenario. Partitions are strictly independent
execution environments protected from each other, and they are used when ap-
plication components have different criticality levels; it is crucial to avoid that
low criticality components jeopardize the execution of high criticality ones. Re-
cent works [1] [2] remark the interest on virtualization/partitioning techniques
at many industrial domains, such as automotive or railway, as key issues to
be addressed when developing safety-critical applications, and in [3] the will of

1



train manufacturers to re-factor their applications designs is shown, in order to
allow the execution of applications with different criticality levels.

In this work, we focus on a railway signalling application. Up to now, this ap-
plication has been executed in a cyclic scheduler where all functions are executed
even if they do not have any useful work to do. With the aim of substituting
this architecture by a novel partitioned execution environment, in [4] a schedu-
lability analysis technique was presented, and based on this, we can propose
a partition scheduling optimization algorithm. A more detailed description of
this application can be found in [4], and from now on we will construct a simpli-
fied (yet representative) system that captures the most relevant features of such
safety-critical applications. The experiments conducted in this work will serve
as a basis and guide for the development of an optimization algorithm that
shall produce schedulable solutions for time-partitioned distributed real-time
systems.

The rest of the paper is organized as follows. In Section 2 the system model
addressed in this work is described, including an overview of the response time
analysis technique. In Section 3 the experiments conducted are presented, and
in Section 4 we draw the conclusions and the future works.

2 System Model

In this work we follow a system model compliant with MAST (Modeling and
Analysis Suite Tool for Real-Time Applications) [5] [6], which is a GPL open
source model and also a set of scheduling, analysis and simulation tools devel-
oped by the University of Cantabria.

2.1 Logical Architecture

The main element of this model is the distributed end-to-end flow (hereafter e2e
flow) as the one depicted in Figure 1, which consists of a sequence of activities
with precedence relations executed in response of a periodic or sporadic workload
event (ein), with a minimum inter-arrival time (Ti). The main component of an
e2e flow is the event handler called step, which represents an operation being
executed by a schedulable resource (a task or a message) in a processing resource
(a computer or a network). Each step is activated by an input event, and after
its execution it generates an output event. Fork and Join event handlers are
also allowed, they do not have runtime effects and enable modeling multipath
e2e flows. The j-th step in a Γi e2e flow is denoted as τij , and it has a worst-
case and a best-case execution time, Cij and Cbij respectively, and a deadline
Dij relative to the workload event. Each step represents a utilization of the
processing resource of Uij = Cij/Ti.



τ
1 3

Prio1 3

C1 3

1

ein1

T1

R1 4 , D1 4

R1 3 , D1 3

1 2 J1 4

F
1 1

Prio1 1

C1 1

J
eout1 41 4

Prio1 4

C1 4

1 2
Prio1 2

C1 2

CPU 1

CPU 2

Figure 1: Distributed multipath e2e flow

2.2 Partitioning model

In this work, hierarchically scheduled and time-partitioned systems are ad-
dressed. A timetable driven scheduling policy is considered as primary scheduler
in every processor, where temporal partitions are scheduled in a cyclic man-
ner. A temporal partition Px is composed of one or more partition windows
Winxk within a periodic Major Frame (MAF ). Partition windows start at a
time Sxk relative to the start of the MAF, and their length is Lxk. Hence,
partition windows within a temporal partition are defined as follows: Winxk
= { Sxk , Lxk }. Inside each partition, the secondary scheduler is based on
preemptive fixed priorities, where Prioij is the priority of step τij , and where
the highest number represents the highest priority. The partition utilization
of Px is the sum of the utilization of all the steps contained in that partition:
UPx =

∑
∀τij∈Px

Uij . We also define the term Available Utilization (AUPx) as
the processing time allocated to the partition Px in each processor, which is:
AUPx

=
∑

∀Winxk∈Px
Lxk/MAF .

We are taking into account the overheads provoked by context switches at
the primary scheduler. This overhead is the time CS that CPUs need to load
a partition context at the beginning of a partition window and saving it after
execution terminates. In other words, it can be understood as a non-available
CPU time whenever a partition window executes. For response time analysis
purpose, this effect can be modelled by gathering this unavailable time at the
beginning of every partition window and substracting this amount to the avail-
able CPU-time for that window, as shown in the example of Figure 2, where
MAF = 40ms. In this example a time partition is composed of two partition
windows, and the effect of substracting the time for switching the context at
each window provokes that the effective partition’s (P ′

i ) length is 2 ms lower
than the original Pi. Therefore, the effective partition window is defined as
follows: Win′ik = { Sik + CS, Lik − CS}.



Wini1 Wini2

0 20 40 (ms)

Wini1 Wini2

0 20 40 (ms)

→ P’i = {1, 9} + {21 , 9}Pi = {0 , 10} + {20 , 10}

AUPi = 20ms AUP’i = 18ms

Figure 2: Partition and effective partition with CS = 1ms

2.3 Response time analysis

The analysis of a given partition is performed independently: the rest of time-
partitions, as well as the unused CPU time within the MAF, are modeled as a
single high priority e2e flow, called unavailability flow, which has to be analyzed
along with the steps hosted in the partition under analysis. To do so, we use
the offset-based analysis techniques [7] [8], which was extended in [4] to support
the analysis of multipath flows like those addressed in our use-case. Readers are
encouraged to read the aforementioned references for a deeper understanding of
the schedulability analysis of these systems.

3 Study of the influence of partition windows in
schedulability

τ1.1

(6)

τ1.2

(5)

τ1.3

(4)

τ1.4

(3)

τ1.5

(2)

τ1.6

(1)

eout1 1

D
1.6

= 50

ein1

T
1

= 50

Figure 3: Guiding application example

To perform the proposed study, we will evaluate different partition schedul-
ing schemes. Thus, we are going to construct a simple application example,
which gathers the most relevant features that characterize our motivating rail-
way use-case. This example is composed of a single multipath e2e flow activated
periodically every 50 ms which is composed of six steps (τ11 to τ16), as shown
in Figure 3. The flow is mapped within a single partition (P1), and we assume,
for the sake of simplicity, the the execution time of each step is fixed and equals
2 ms. The priority of each step is shown between brackets. When referring to
the schedulability of the application, it regards to the worst-case response time
of the 6-th step (R16) in comparison with its deadline. The MAF considered for



the whole experiment set is 50 ms.
A very common early-design decision regards to the CPU time allocated for

the execution of each partition, i.e. AUP1
in our model. Depending on this

time, response times may vary significantly as shown in Figure 4. Even if this
effect may result obvious, it gives us an idea about the effect that not having all
the processor time dedicated for the execution of applications produces on the
worst-case response times calculated by the analisis technique. The longer the
gaps between partition windows within the MAF are (where P1 is not allowed
to be executed), the higher is the worst-case response time. In this example
the partition utilization UP1

represents 24% of the CPU time, and worst-case
response times vary from 580 ms to 12 ms when the available CPU goes from
the initial utilization of 24% to the 100%.

24 29 34 39 44 49 54 59 64 69 74 79 84 89 94 99

0

200

400

600

AUP1 (%)

R1 6 (ms)

Figure 4: Worst-case response time as a function of P1’s available CPU time
(in %)

Once the available time has been fixed, the next design decision to take
would be to distribute this given time along the MAF. At a first approach, we
will consider a harmonic distribution of partition windows, although this might
be subject for optimization when more partitions conform the MAF. Figure
5 shows the worst-case response times obtained when the number of partition
windows varies from 1 to 100, for three different values of AUP1

. As can be
seen, increasing the number of windows produces in fact a reduction in the
unavailable gaps in the MAF, making a remarkable reduction of the response
times obtained.

Experiments conducted until now have not considered the effects of the con-
text switch overheads that are present when a partition is activated, and which
have been modeled in the previous section. In general, context switch overheads
depend on the operating system/hypervisor where applications are executed.
In [9] the measured context switch overheads are 17µs, and in [10] they are 27µs.
Therefore, in our experiments we will consider a value of CS = 20µs and also
a higher order of magnitude representing a slower processor, i.e. CS = 200µs.
The maximum CPU time that can be dedicated for context switch overheads
is the difference between the available partition utilization (AUP1

) and the par-
tition utilization (UP1

). With this, we determine the limit of the number of
partition windows that can be set without overloading the partition as follows:



1 11 21 31 41 51 61 71 81 91

0

20

40

60

80

100

120

140

160

180

200

Number of windows

40% 50% 60%

R1 6 (ms)

Figure 5: Evolution of worst-case response times when the number of windows
is increased, for different % of AUP1

NWP1
= b(AUP1

− UP1
) ∗ MAF

CS
c (1)

0

50

100

150

200

1 6 11 16 21 26 31 36

Number of windows

R1 6 (ms)

(a) CS = 200µs

0

50

100

150

200

1 61 121 181 241 301 361

Number of windows

R1 6 (ms)

(b) CS = 20µs

Figure 6: Worst-case response time as a function of the number of partition
windows - AUP1

= 40%

In Figures 6 to 8 the worst-case response times obtained in different schedul-
ing schemes are shown. For different AUP1

values we calculate the response
times when increasing the partition window number. Qualitatively, worst-case
response times vary in the same way regardless the CPU availability, i.e. the
maximum response times are obtained when P1 is scheduled in a single window,
and as the number of windows increases response times reduce fast, up to a
point. After that point, notice that in the ideal scenario (CS = 0, blue plot)
the response-time curve remains constant, while if CS > 0 (orange plot) the
curve increases again.



0

50

100

150

200

1 11 21 31 41 51 61

Number of windows

R1 6 (ms)

(a) CS = 200µs

0

50

100

150

200

1 61 121 181 241 301 361 421 481 541 601

Number of windows

R1 6 (ms)

(b) CS = 20µs

Figure 7: Worst-case response time as a function of the number of partition
windows - AUP1 = 50%

4 Conclusions and future work

In this work we have presented a study of the behaviour that time-partitioned
real-time systems exhibit when worst-case analysis is applied on them, including
the effect of context switch overheads on the primary scheduler. The knowledge
of this performance will be exploited for developing a partition-scheduling opti-
mization algorithm.

We have observed that increasing the number of partition windows has a
positive effect on the reduction of response times, which is outweighed by the
negative effect of context switch overheads. Finding the window configuration
that gets the turning point on response times is essential for a partition window-
optimization algorithm.

When the partition utilization is very low in comparison to the available
utilization, and also when context switch overheads are very low, the range of
windows to explore (1..NWPx

) is very high. We have noticed that analyzing a
very big window number (> 500) has a negative impact in the execution time
of the analysis tool. That is why the strategy we shall follow is to explore first
the minimum number of windows and increasing them until the turning point
is found.

Acknowledgements

Work supported in part by ”Doctorados Industriales 2018” program from the
University of Cantabria and by the Spanish Government and FEDER funds
(AEI/FEDER, UE) under Grant TIN2017-86520-C3-3-R (PRECON-I4).



0

50

100

1 11 21 31 41 51 61 71 81 91

Number of windows

R1 6 (ms)

(a) CS = 200µs

0

50

100

1 91 181 271 361 451 541 631 721 811

Number of windows

R1 6 (ms)

(b) CS = 20µs

Figure 8: Worst-case response time as a function of the number of partition
windows - AUP1

= 60%

References

[1] C. Donnarumma, A. Biondi, F. De Rosa, and S. Di Carlo, “Integrating
online safety-related memory tests in multicore real-time systems,” In Pro-
ceedings of the 41st IEEE Real-Time Systems Symposium (RTSS), 2020.

[2] Z. Jiang, S. Zhao, P. Dong, D. Yang, R. Wei, N. Guan, and N. Auds-
ley, “Re-thinking mixed-criticality architecture for automotive industry,”
in Proceedings of the IEEE 38th International Conference on Computer
Design (ICCD), pp. 510–517, 2020.

[3] H. Fang and R. Obermaisser, “Execution environment for mixed-criticality
train applications based on an integrated architecture,” in 2017 Interna-
tional Conference on Promising Electronic Technologies (ICPET), pp. 1–7,
IEEE, 2017.

[4] A. Amurrio, E. Azketa, J. J. Gutierrez, M. Aldea, and M. G. Harbour,
“Response-time analysis of multipath flows in hierarchically-scheduled
time-partitioned distributed real-time systems,” IEEE Access, vol. 8,
pp. 196700–196711, 2020.



[5] M. González Harbour, J. J. Gutiérrez, J. C. Palencia, and J. M. Drake,
“Mast: Modeling and analysis suite for real time applications,” in in Pro-
ceedings of the 13th Euromicro Conference on Real-Time Systems, pp. 125–
134, IEEE, 2001.

[6] M. G. Harbour, J. J. Gutiérrez, J. M. Drake, P. López, and J. C. Palencia,
“Modeling distributed real-time systems with mast 2,” Journal of Systems
Architecture, vol. 59, no. 6, pp. 331–340, 2013.

[7] J. C. Palencia and M. González Harbour, “Schedulability analysis for tasks
with static and dynamic offsets,” in Proceedings 19th IEEE Real-Time Sys-
tems Symposium (Cat. No. 98CB36279), pp. 26–37, IEEE, 1998.

[8] J. C. Palencia, M. González Harbour, J. J. Gutiérrez, and J. M. Rivas,
“Response-time analysis in hierarchically-scheduled time-partitioned dis-
tributed systems,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 7, pp. 2017–2030, 2016.

[9] E. Hamelin, M. A. Hmid, A. Naji, and Y. Mouafo-Tchinda, “Selection and
evaluation of an embedded hypervisor: application to an automotive plat-
form,” Proceedings of the 10th Embedded Real-Time Systems International
Congress (ERTS 2020).

[10] M. Masmano, I. Ripoll, A. Crespo, and J. Metge, “Xtratum: a hypervisor
for safety critical embedded systems,” Proceedings of the 11th Real-Time
Linux Workshop 2009, pages 263-272.


