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ABSTRACT
A Software Product Line (SPL) captures families of closely related
software variants. The configuration options of an SPL are rep-
resented by features. Typically, SPLs are developed in a feature-
centric manner and, thus, require different development methods
and technologies from developing software products individually.
For developers of single systems, this means a shift in paradigm and
technology. Especially with invasive variability realization mecha-
nisms, such as Delta-Oriented Programming (DOP), centering de-
velopment around configurable features realized via source code
transformation is commonly expected to pose an obstacle, but con-
crete experience reports are lacking. In this paper, we investigate
how DOP and cutting-edge SPL development tools are picked up
by non-expert developers. To this end, we report on our experi-
ences from a student capstone SPL development project. Our re-
sults show that participants find easy access to SPL development
concepts and tools. Based on our observations and the participants’
practices, we define guidelines for developers using DOP.
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1 INTRODUCTION
Software Product Line (SPL) engineering aims at realizing families
of closely related software systems [19]. Typically, SPLs are devel-
oped in a feature-centric manner: features represent configurable
conceptual units whose relations are captured by a variabilitymodel,
such as a feature model [10]. For each feature, code needs to be im-
plemented which realizes the respective variable functionality. For
instance, in Delta-Oriented Programming (DOP), delta modules are
defined containing delta operations that transform existing code by
adding, deleting, and modifying code elements [18]. For develop-
ers of single systems, switching to variability-aware programming
means a shift in engineering paradigms and applied technology.

Highly invasive variability realization mechanisms, such as DOP,
promise to quickly realize an SPL by using an existing product as
base and changing its implementation according to (de)selected fea-
tures. However, developing an SPL is typically expected to be par-
ticularly challenging due to the additional dimension of complex-
ity induced by variability [3]. Especially the invasiveness of DOP
poses new obstacles for developers. However, experience reports
inspecting these expectations are lacking – especially for develop-
ers new to the concepts and technology of DOP [5].

To provide more insights in SPL engineering for non-expert de-
velopers and with DOP, we report on an educational SPL capstone
project with 8 students. The participants implemented an SPL we
call NaviDeltaSPLwhich consists of 46 features in 12 versions over
a time frame of 3 weeks of full-time work. We provide insights into
this project by highlighting how participants picked up the SPL de-
velopment paradigm. Based on the participants’ experiences and our
own observations, we derive guidelines for improved development.

With this paper and its contributions, we aid other developers
in implementing their SPLs. Additionally, we support the research
community by providing an open-source repository of a medium-
sized SPL.1

2 BACKGROUND
We provide a brief introduction to concepts and technology factor-
ing into the project and our experience report:
Feature Models. Variable and common functionality of an SPL
is represented by features. In a feature model, relations between
features are captured to define the set of viable feature combinations

1https://github.com/TUBS-ISF/NaviSPL
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forming the problem space of an SPL. Features of a feature model
are structured in a tree and each feature has a type: Provided that
its parent feature is selected, an optional feature may be selected
whereas a mandatory feature must be selected [1, 10]. To express
relations for sets of child features, optional features can be grouped
in or and alternative groups permitting selection of at least one
and exactly one feature, respectively. To express more constraints
on possible feature combinations apart from the tree structure
and types, cross-tree constraints can be defined which are Boolean
expressions with features as variables.
Delta-Oriented Programming (DOP). Concrete variability real-
ization mechanisms permit expressing variability on code/realiza-
tion artifact level, i.e., in the solution space of an SPL. Three main
categories of variability realization mechanisms exist: annotative
(or negative), compositional (or positive), and transformational ap-
proaches [19]. Delta-Oriented Programming (DOP) is the primary
representative for transformational approaches. In DOP, developers
apply delta operations in delta modules that transform existing arti-
facts by adding, deleting, or modifying elements of the artifacts [18].
DOP is an invasive variability mechanism as it can change the inner
structure of an existing implementation. To define delta modules
and delta operations, dedicated delta languages are required for each
target artifact type. For instance, DeltaJava allows to define delta
modules for Java code.2 Figure 1 shows an exemplary delta module
Δ tts, whichmodifies the class NaviApp by adding two new imports
and two new class variables. Additionally, the delta module modi-
fies the method addMenu(). Method modification results in over-
writing the original method body. In this case, three new statements
are added. Using the original() keyword, the code of the original
method before modification can be called. Similarly, a delta opera-
tion with the removes keyword can remove a classifier or a partic-
ular classifier member (constructor, method, field, or constant).
Mapping. A feature-artifact mapping, or short mapping, connects
problem and solution space, e.g., by mapping combinations of fea-
tures to realization artifacts, such as delta modules [19]. To this
end, a mapping consists of an application condition, i.e., a Boolean
expression over features, and a set of mapped realization artifacts.
To derive a variant of an SPL, a configuration, i.e., a selection of
features, must be defined. Using this configuration and the map-
ping, relevant realization artifacts are determined based on their
satisfied application condition. The variant is then generated out
of the determined realization artifacts, e.g., for DOP, by applying
the delta operations of determined delta modules.

3 PROJECT SETUP
The intention of the capstone project we report on in this paper
was twofold: first, for students to learn SPL engineering and to give
proof of their development capabilities with a non-trivial practical
subject system, and second, for us to gain insights into the concept
and technology adoption process by observing the development
of a realistic SPL project. We decided to use a real-world inspired
system and to incrementally extend it by configurable functionality
that is common in similar systems. In the following, we provide an
overview of the capstone project by describing the subject system,
the participant group, and their work organization.
2https://deltajava.org/

Figure 1: Exemplary delta module modifying the class NaviApp.

Subject System.The task for the projectmemberswas to implement
a navigation system SPL based on an existing open-source map
viewer JMapViewer.3 In its basic form, it allows for showing maps
by querying OpenStreetMap, to zoom in and out, and to show
markers. Overall, JMapViewer has 4, 353 LOC.

During the project, JMapViewer was extended by configurable
features known from other maps and navigation services. In partic-
ular, we prompted participants to implement map features, such
as a search history, available bus stops, points of interest (POIs), a
location’s weather, and suggestions for searches. Newly added nav-
igation features are basic navigation, route distance, travel time,
differentiation between a pedestrian/car route, navigation instruc-
tions via text-to-speech output, speed limits, and carpooling ser-
vices. In summary, the configurable functionality of the resulting
NaviDeltaSPLwas a mix of easily implementable features, features
querying external sources, and more complex features.
Participant Group. For most of the participants, the project was
the first encounter with SPL engineering and its concepts. The
group consisted of 8 Computer Science students: 7 Bachelor’s stu-
dents and 1 Master’s student. In their Bachelor studies, each stu-
dent participated in a Java programming course and a medium-
sized software engineering project. Thus, general programming
experience was available but far from practiced. The Master’s stu-
dent also took a lecture on SPLs with mostly theoretical concepts
but also small programming tasks with different SPL technologies.
Another student was an expert with the theoretical concepts of
DOP as he implemented the most current version of DeltaJava
used in the capstone project.
Tools. For developing the SPL, we prescribed to use the tools Dar-
winSPL [15] and DeltaJava. To provide basic orientation, we held
a two-day workshop to introduce SPL engineering concepts and
technologies explaining fundamentals of SPLs and feature models.
As preparation for their use of DeltaJava, we also introduced DOP
as variability realization mechanism. For feature modeling, we in-
troduced the tool DarwinSPL with its integrated mechanism for
tracking feature-model evolution. In multiple hands-on sessions,
we exemplarily applied both tools together with the participants.
Work Organization. As part of the project’s results, we wanted
to learn which work organization works best for non-expert SPL
developers. Thus, in general, participants should organize them-
selves independently. The project took three full-time weeks and
3https://wiki.openstreetmap.org/wiki/JMapViewer
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we expected the team to establish own best practices. We specified a
rough Scrum-like development process, which could be adapted dy-
namically based on gathered experiences. Developers should work
in teams of two to perform pair-programming. The role of Scrum
master should be filled by one pair as well and rotate between the
participants on a regular basis. The main tasks of the Scrum mas-
ter team were to adapt the feature model as part of evolution, and
to monitor the implementation process. Finally, we asked to use
one Git branch per feature which would be merged by the Scrum
master team. In order for us to evaluate project progression retroac-
tively, we asked the participants to document, for each performed
change, its nature, effects, and rationale.

4 OBSERVATIONS AND INSIGHTS
After completing the introductory workshop, the team started to
implement the NaviDeltaSPL incrementally. In the following, we
report on the resulting SPL, the process leading to it, and remarkable
observations. We structure our observations by artifact space, i.e.,
the feature model, the mapping between feature model and delta
modules, and the delta modules. For each observation, we define
an identifier (for later reference), provide an example, and derive
conclusions. These lead to our guidelines in Section 5.

4.1 Resulting Software Product Line
The project’s output is a medium-sized open-source SPL. To better
understand the SPL’s extent, we describe meta data of the resulting
feature model and the delta modules.
Feature Model. Overall, we asked to implement 37 features, dis-
tributed over multiple requirement requests. The resulting feature
model has 12 versions and contains 5 (v1) – 46 (v12) features. The
discrepancy between the required features and the actual features
of the feature model stems from participants splitting up features
to allow for more fine-grained configuration.

Figure 2 shows the feature model after the project’s completion
(v12). Participants structured the feature model by topics, i.e., one
subtree for each of the functionalities for map handling, routing,
information provision, and mobility services. The number of newly
added features varied heavily with each version. For instance, ver-
sions v2, v7, and v9 were the most extensive ones with 6, 8, and 8
added features, respectively, whereas in version v3 only 1 feature
was added and version v5 comprises only restructurings. Overall,
the entire feature-model history contains 80 feature-model modifi-
cations. Apart from feature creations, 35 changes were performed,
e.g., moving a feature/group or changing a feature/group type.

At version v12, the feature model contains 14 cross-tree con-
straints. Out of these, 11 cross-tree constraints modeled dependen-
cies between features due to technical reasons. In addition, 2 con-
straints restrict variability to prevent non-sensible configurations
due to conceptual reasons. In particular, the feature InfoGroup
creates a visual component that shows information gathered by
other features. Thus, it makes sense to select this feature only if
at least one information providing feature is selected as well. As a
result, the team defined two cross-tree constraints implying infor-
mation features if InfoGroup is selected (“InfoGroup → ...”). The
remaining constraint (“LocationImages → !Orientation”) was
introduced due to implementation reasons as the delta modules

mapped to the respective features are incompatible. Overall, the
number of valid configurations amounts to 52,860,672.
Delta Modules. The team implemented the NaviDeltaSPL with an
overall of 45 delta modules (6,382 LOC Java core assets and 4,067
LOC DeltaJava delta modules). To better analyze delta modules,
we classified different usage scenarios and defined according ter-
minology. Most of the delta modules (36) are unique feature delta
modules, i.e., they realize a single feature’s functionality and are
mapped directly in a 1-to-1 mapping. For similar features, it is
sensible to factor out common code to a shared code delta module.
Here, participants identified only one opportunity to reuse com-
mon code, i.e., for the features ArrivalTime and DepartureTime
resulting in the delta module Δ DepartureArrivalTimeHelper. In-
teracting features require “glue code” to properly work together so
that additional feature interaction delta modules are necessary. Par-
ticipants implemented 8 of those delta modules, of which 6 were
implemented to make certain information providing features (e.g.,
TravelTime or Weather) work with the InfoGroup feature, which
contains GUI functionality to display their results.

4.2 Development Process
As highlighted in Section 3, the teamwas responsible for organizing
itself. In general, team members reported that the feature-centric
development paradigm was easy to understand and that thinking
in feature increments as a conceptual and implementation unit was
natural to them. The notion of variability (i.e., being able to turn
certain features on or off) required no more explanation than in
the introductory workshop (cf. Section 3).
Process Steps. Figure 3 shows the incremental and agile develop-
ment process devised by the team. After stakeholders (i.e., we as
supervisors) came up with new feature/product requests, the team
decided in a common effort which features to implement next. Here,
it is important to note that each feature was assigned to exactly one
development pair. Subsequently, developers implemented the se-
lected features while the Scrum master pair added the new features
to the feature model. It strikes us that the new features were added
to the feature model in parallel to implementing them. However,
we hypothesize that this was possible only due to the small and
quickly implemented feature increments. When a feature’s delta
module is implemented, it is added to the “integration queue” where
it waits for integration by the Scrum master team. Throughout this
process, we made the following noteworthy observations:

(Obs. 1) Placing a new feature in the feature model requires both do-
main and implementation knowledge. When the Scrum master team
picked a new feature from the integration queue, the respective de-
velopers were consulted. Together, both pairs defined cross-tree con-
straints and the feature-delta mapping. As the Scrum masters did
not know the new feature’s implementation details, they were po-
tentially not able to properly insert it in the feature model’s hierar-
chy. Thus, collaboratively with the feature-implementing developer
team, they adapted the feature model to put the new feature in the
best fitting spot. While this procedure was possible for a medium-
scale SPL, for larger and more mature SPLs, we expect that such fre-
quent ad-hoc restructuring would be an indicator for bad planning.

(Obs. 2) Product sampling for testing is informed by domain knowl-
edge, developer experience, and uncertainty of products containing
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Figure 2: Feature model of the navigation system after the last evolution step.
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Figure 3: Development process devised by the team.

faults. After feature integration, the Scrum masters tested a new
feature using sampled products. To this end, they picked config-
urations known for having many feature interactions or having
exposed problems in the past. To catch other bugs, the Scrum mas-
ter team also randomly selected several configurations. Finally, if
the feature was free from known bugs, they merged the Git branch
of the feature into the main branch.
Planning and Evolution. (Obs. 3) For SPLs, adequate sprint dura-
tion is shaped by size and number of the features to be implemented.
In our workshop, we suggested to perform one feature-model evo-
lution step a day. In the daily stand-up meetings, the team selected
feature(s) to implement on that very day, which turned out to be a
very compact agile process. In this scenario (also due to our short-
notice feature requests), the team planned from day to day and,
thus, one day resembled one sprint. Due to the high number of im-
plemented features in a short period of time and the mostly small
feature size, the sprint duration of one day proved as appropriate.
In other projects, the number and size of features per sprint may
differ – especially if more extensive quality assurance is performed.
We believe that feature number and size are main factors for de-
termining an adequate sprint duration.
Developing with DOP. (Obs. 4) The concepts of DOP appeared to
cause no obstacles for new developers. In general, developers did not
encounter conceptual obstacles with the DOP paradigm. The idea
of transforming existing code via delta operations was directly clear

to them. Moreover, due to the feature-centric and delta-oriented
paradigms, modularization along variation points (i.e., each feature
is mapped to its delta module) was also seen as natural.

(Obs. 5) Participants intuitively exploited DOP’s capacity to develop
features on product level. Developing a delta module on product-
line level is challenging as the impact of its delta operations on all
products needs to be considered. Thus, it is easier for developers to
develop delta modules on product level. That means using a product
as base, modifying it, and reversely extracting performed changes
as delta operations. The transformational nature of DOP enables
this procedure. However, this manual procedure is laborious and
error-prone, thus, indicating potential for automation.

(Obs. 6) Implementation pace with DOP significantly exceeded our
expectations. Originally, we planned for 24 features. This included
smaller and larger features, and features that built upon each other.
We anticipated that certain feature requests would require feature
model restructurings or introduce feature interactions. After the
introductory workshop, we expected the remaining 3 days of that
week to be non-productive but dedicated to learning the concepts
and tools. However, the team implemented all of our originally
planned features within 4 days whereas we planned for 11 days
of development. To foster further development, we devised new
feature ideas resulting in 37 requested features.

4.3 Feature Model
During the project, the team realized that the feature model is
the conceptual heart of an SPL, which is important to keep well-
maintained andwell-structured.Without this ongoingmaintenance,
overview is lost and feature dependencies cannot be properly rep-
resented by the feature-model structure. In the following, we de-
scribe measures the team took to maintain and structure the feature
model. We illustrate each measure with an actual example from
the NaviDeltaSPL’s feature model.

Degree of Variability. (Obs. 7) There is a trade-off between fea-
ture granularity and increasing complexity of the feature model/delta
modules. In the project, we posed a feature request to show the
elapsed and the remaining travel time during navigation. The team
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decided to split this up into two features, one for the elapsed travel
time and one for the remaining travel time. As the former feature
does not require the feature Navigation, they moved both fea-
tures under the feature Route and added a cross-tree constraint
“RemainingTime → Navigation”. In summary, this resulted in a
significantly more complex feature model than just adding a fea-
ture TravelTime under Navigation. While this may be desirable
to have such a fine-grained SPL, it results in a high complexity and,
consequently, worse maintainability.

(Obs. 8) Conservative extension of the configuration space reduces
potential technical debt. Originally, team members modeled the fea-
ture Suggestions as child feature of Route assuming that there
will be a dependency between those features. At a later point, they
learned that this assumed dependency did not actually exist. Con-
sequently, they moved the feature Suggestions under the feature
Information (v11) to make it accessible even without selecting the
feature Route. Without this conservative future planning of the
team and if the dependency would arise as expected, developers
would need to restructure the feature model, configurations would
become invalid, and, potentially, implementation would need to
change. The way the team approached this, they could relax the
original constraints to allow for more configurations without im-
pact on existing products. This shows the importance of conserva-
tive future planning to not introduce technical debt.

Effect of Evolution. (Obs. 9) Changing the feature model, even via
refactoring, may invalidate existing configurations. As participants
tested their SPL using a set of known critical configurations, they
encountered this phenomenon. For instance, a configuration that
selects the feature Speedlimit became invalid in v6 as an alter-
native child group was introduced. However, as selecting the new
feature None reflects the same behavior as before evolution, with
sufficient domain knowledge, the choice of an alternative configu-
ration representing similar functionality is obvious. Yet, for real-
world SPLs, this would affect configurations of customers. Thus, up-
dating configurations after SPL evolution is required to keep them
up-to-date. A method, such as guided configuration evolution [16],
is required to define configuration update operations by domain
engineers who know how configurations are affected by a change.

4.4 Connection of Problem and Solution Space
The mapping serves as main artifact for the connection between
problem space and solution space. We gained several valuable in-
sights both by observing the team connecting the two spaces and
by retroactively analyzing the defined artifacts.

Structuring and Overview. (Obs. 10) With an increasing number of
features, maintaining the feature-artifact mapping grows significantly
more complex. The mapping file of NaviDeltaSPL has 142 LOC
(94 LOC for mapping entries, 48 blank lines for structuring). Thus,
when searching for mapping entries, the team struggled to find the
correct ones. In the end, they concluded that mapping entries need
a defined sorting order, but did not have any concrete suggestions.
We analyzed the mapping file but did not identify any rules the
team used for sorting.

Constraints Scattered Throughout Spaces. (Obs. 11) Cross-tree
constraints permit lifting technical incompatibilities to domain level.

RemainingTravelTime → Navigation

a)

b)

Figure 4: Delta module dependency between Δ TimeRemaining
and Δ Navigation is redundantly defined in a) Δ TimeRemaining
and b) combination of the mapping and feature-model constraints.

Interestingly, not only the mapping served to connect artifacts be-
tween the spaces. The team also used cross-tree constraints be-
tween features whose mapped delta modules were incompatible. In
particular, the delta modules of the features LocationImages and
Orientation are incompatible. Thus, they added a cross-tree con-
straint preventing the selection of both features (“LocationImages
→ !Orientation”, v7). This way, technical incompatibilities man-
ifested on domain level via cross-tree constraints. However, in the
cross-tree constraint file, it was not directly clear why this con-
straint existed as it was mixed with domain cross-tree constraints.

(Obs. 12) Delta-module dependencies may overlap with feature de-
pendencies imposed by the feature model. Figure 4 shows the header
of the delta module Δ TimeRemaining, which defines a dependency
to the delta moduleΔ Navigation. The combination of themapping
shown in Figure 4 with the feature-model cross-tree constraint be-
tween the features RemainingTravelTime and Navigation (cf. Fig-
ure 2) results in the same dependency between the delta modules.
Thus, this dependency is redundant and distributed over several
SPL artifacts resulting in reduced maintainability.

(Obs. 13) Application conditions of mapping entries may overlap
with constraints imposed by the feature model. The feature Mile does
not have a directly mapped delta module (i.e., no 1-to-1 mapping).
In fact, the delta module Δ RouteDistanceMile has the application
condition “RouteDistance && Mile”. As RouteDistance is the
parent feature of Mile, this application condition is semantically
equivalent to a 1-to-1 mapping to Mile (if the feature model struc-
ture is taken into account). Thus, in the current state of the SPL,
this application condition is unnecessarily complex and, thus, re-
duces maintainability. When thinking about future evolution, this
modeling may be sensible as the feature Milemay be even relevant
for other features than RouteDistance so that it would be moved
away from below RouteDistance. In the end, engineers defining
feature models and mappings always need to keep such require-
ments in mind, and there is a trade-off between current complexity
and future flexibility. In contrast to feature and delta module de-
pendencies in Obs. 12, the overlapping constraints of application
conditions and feature-model constraints may also contain exclu-
sions of feature combinations.
Unmapped Features. (Obs. 14) The notion of adding features to a
configuration and the manifestation of variation points in DOP may
result in a misalignment between features and their implementation.
We identified that certain features do not appear in the mapping.
For the first identified unmapped feature Truck, we could indeed
not find any implementation. One explanation is that Truck has
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been modeled as flag to force the selection of the feature Wind via
the respective cross-tree constraint if Truck is selected. Two other
unmapped features are Car and Kilometer. We found that the re-
spective parent features (Routecalculation and RouteDistance)
were implemented before their child features were even planned.
The standard functionality of those features was to calculate a route
for cars with kilometers as distance unit. When the child features
were introduced, the standard functionality was already present so
that only the functionality of alternative sibling features was imple-
mented in new delta modules. That shows a paradigm difference
between product-based development of DOP and the notion of fea-
ture models and configurations. In DOP, developers start with an
existing product containing certain features not only adding new
functionality but also removing functionality not demanded by a
configuration due to delta module application. In configurations,
features are selected that define functionality that should be added
to a product but not removed. The same misalignment also exists
for annotative (or negative) variability realization mechanisms.

4.5 Delta Modules
After deciding for features to be realized next, the development
teams started to implement them in parallel with the Scrum master
team adapting the feature model. To better understand how the
team implemented the features, we first investigate the effort the
participants took for implementing the individual features and,
second, observed how they implemented them.

Implementation Effort. As measure for implementation complex-
ity and effort, Figure 5 shows the required implementation time per
delta module in days. First, we analyzed how many days the team
took to implement a delta module’s core functionality (i.e., the code
necessary to make the delta module work, but without refactorings
or fixes for bugs found later). Second, we analyzed the time span
between feature creation in the feature model and implementation
of the mapped delta module. The diagram shows that there is vari-
ation regarding the required time for implementing a feature, and
between feature creation and finishing the core functionality.

To measure core functionality implementation time, we deter-
mined the first and last dates of the delta modules’ core functional-
ity Git commits. We assume that each delta module took at least
1 day for implementation, i.e., if the first and last core functional-
ity commit were on the same day. As Figure 5 illustrates, for most
delta modules, it took 1 day to implement the core functionality.
However, several delta modules took significantly more time. For
instance, Δ History took 7 days to implement. The required time
only partially correlates with the size of the delta modules. For in-
stance, it took only 4 days to implement the largest delta module
Δ CarPool. In summary, the results show that there is significant
variation in the time required to implement delta modules.

The time from feature creation to mapped delta module imple-
mentation is even more diverse than the pure core functionality
implementation time. The largest time span (13 days) was for the
delta module Δ Speedlimit. Even the child features of the fea-
ture Speedlimit were added before the delta module had been
implemented. Another interesting fact is that some delta modules
(Δ FavoriteRoute, Δ GreaterZoom) had been implemented one
day before the mapped feature had been created, resulting in value

0 in Figure 5. We conclude that the reason for this variation is the
parallel development process of the feature model, the delta mod-
ules, and the integration of queued feature implementations.

Invasiveness of DOP. (Obs. 15) DOP’s independence of explicitly de-
fined variation points requires coordination in collaborative develop-
ment. DOP is an invasive variability realization mechanism. In gen-
eral, each code element of a target language can be modified in or-
der to realize features without explicit variability structures in the
target language. Thus, module boundaries of the target language
are not respected by delta modules. However, if multiple developers
modify one code element or code affecting that element, negative
feature interaction can occur. The team experienced that when they
“destroyed” each delta modules/features maintained by other partic-
ipants due to such negative feature interaction. They reported mul-
tiple times that this became apparent when testing and that addi-
tional bug fixes were necessary – often in collaboration with other
development pairs who implemented the conflicting delta modules.
Thus, DOP enables quick development of an SPL, but this comes at
a price of a lot of testing and communication between developers.

(Obs. 16) DOP can transform only identifiable code elements. Non-
identifiable elements require workarounds that break with DOP’s prin-
ciples. By design, delta operations can only transform (implicitly)
identifiable slots, e.g., a Java method via its containing class’ name
and own signature. Elements such as particular statements within
a method do not have a unique identifier. Thus, they cannot be ad-
dressed to be removed nor can a new statement be added between
two existing statements. Similarly, members/variables declared in
an original method body are not accessible by delta modules. This
results in limitations regarding DOP’s invasiveness. Adding, remov-
ing, or modifying arbitrary points in the code is not possible. These
limitations were hard to understand for the students as, in general,
DOP is very invasive and allows for fine-grained transformations.

The participants specifically devised constructs to overcome
the limitations of addressable slots by delta operations. To access
variables declared in method bodies, they turned many method
variables to class variables in the base code. While this procedure
enabled participants to access these variables in delta modules, it
is non-arguably an anti-pattern.

To change amethod’s bodymore flexibly, the team introduced an-
other workaround.WithDOP,methods can bemodified by exchang-
ing their implementation. It is possible to call the original implemen-
tation as well, using a distinct keyword, such as original() (cf. Fig-
ure 1). As a result, new code can be added only before and after the
original implementation but not at arbitrary locations of the original
method’s body. To overcome this limitation, the team added calls to
methods with empty bodies at points in the original implementation
where they wanted to add code. They called these empty methods
hookmethods and, bymodifying themwith deltamodules, theywere
able to add code at predefined positions within an original method’s
body. This concept is similar to the Template Method pattern which
is demonstrably used for variability modeling [20–22]. The team
came up with this pattern on their own and made it an internal cod-
ing guideline. However, the concept of the Template Method, which
requires to add template method calls at appropriate points in the
original methods, and DOP, whose goal it is to leave the base prod-
uct as-is and not to shape it towards an SPL, contradict each other.
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Figure 5: Development time of each delta module in days.

Figure 6: Resulting variant code of three delta modules, each mod-
ifying the addMenu() method.

Tool Support and DeltaJava. (Obs. 17) Automated product genera-
tion is a prerequisite for quality assurance. Several challenges for
the team were due to the implementation/tool support of Delta-
Java. When testing the SPL, the generation of each product for the
tested configurations needed to be triggered and executed manu-
ally. As a result, the team tested less. They argued that automatic
product generation is necessary for effective and efficient testing.

(Obs. 18) Automatically generated products need to preserve code
legibility, e.g., to be maintainable. Testing, debugging, and fixing
bugs often requires to read and understand the code of an actual
product. With DeltaJava, each delta modification of a method con-
taining an original() call results in a new separate method in
the generated product. For instance, Figure 6 shows the variant
code in which three delta modules (Δ Navigation, Δ Routing, and
Δ Localization) modify the method addMenu(), resulting in four
methods. Final products become cluttered by generated methods
stemming from delta modules. Consequently, reading and under-
standing the code of a product is cumbersome, making testing and
fixing bugs an even harder task. The team reported that mainte-
nance and identifying feature interactions were problematic due
to non-legibility of the generated code. From this, we draw that a
major factor for an SPL’s quality is legibility of generated code –
independently from the used variability realization mechanism.

(Obs. 19) Comfort functionality is an enabling factor for adopting
SPL development on product-line level. To implement delta mod-
ules, DeltaJava provides its own code editor.Comfort functionality
developers are used to from well-established IDEs, such as quick
fixes, auto completion, etc., are currently missing in DeltaJava. As
a consequence, developing delta modules is currently significantly

more intricate than developing standard Java code. Participants fre-
quently mentioned this lack and stated that such functionality is
crucial for productive use.

5 GUIDELINES FOR DELTA-ORIENTED
PROGRAMMING

Based on the project members’ practices, and our own observations
and insights (cf. Section 4), we conclude guidelines for beginners
that can be used as orientation. For each guideline and advice, we
refer to the relevant observation(s).

Feature-Model. (Gui. 1) Assign Variability Master Having an engi-
neer with an overview on the entire SPL and its implementation is
sensible to maintain the feature model. A dedicated role will help
to add new features at the right place in the feature model. (Obs. 1)

(Gui. 2) Reflect on Feature Granularity Modeling features too
fine-grained is a pitfall, especially for inexperienced SPL developers,
as this may result in too much complexity for maintenance and
testing. Additionally, feature-model evolution should be planned
conservatively to not allow too many feature combinations which
may have to be constrained later. Vice versa, anticipated feature
dependencies may affect how the feature model is structured, but
if these dependencies do not hold, unnecessary restrictions may
exist. Continuously reflecting those design decisions and thorough
planning is important to keep the SPL manageable. (Obs. 7, 8)

Problem and Solution Space Connection. (Gui. 3) Manage the
Mapping Keeping an overview on the mapping is challenging and
sorting mapping entries requires domain expertise. Deep integra-
tion of the feature model and the mapping editors could help, e.g.,
by showing all mapping entries for a certain feature via a context
menu in the feature model editor. (Obs. 10)

(Gui. 4) Explicate Technical Dependencies/Incompatibilities Tech-
nically incompatible delta module combinations should be reflected
on feature-model level via cross-tree constraints to model incom-
patibility of the mapped features. Thus, such incompatibilities are
lifted to domain level to prevent the generation of faulty variants.
However, the resulting redundancies between feature-model con-
straints and delta-module dependencies may result in problems
during evolution. If respective constraints/dependencies change,
all occurrences must be updated. To avoid inconsistencies, tools
could provide support to link feature-model constraints with delta
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module dependencies, which can be used to keep them synchro-
nized. Moreover, a connection to a bug or ticket system is sensible
as the respective constraints should be removed once the incom-
patibilities/dependencies are removed. (Obs. 11, 12)

(Gui. 5) Reduce Redundancy with Maturity To improve the map-
ping overview, redundancies between application conditions and
feature-model constraints should be eliminated. However, as (dur-
ing evolution) the respective feature-model constraints may be re-
laxed and application conditions would not be correct anymore, this
should only be done for stable feature-model structures. (Obs. 13)

Delta-Oriented Programming. (Gui. 6) Avoid Optional-Feature
Code in the Core In DOP, variants are created by transforming a core
product. This core product already contains functionality which
may also be the functionality of an optional feature. Consequently,
if the respective feature is selected for a variant, no transformations
need to be performed to integrate that functionality. This results in
features having no mapped delta modules. Only if such features are
not selected, delta modules are applied that remove or alter the core
functionality. That makes it hard to identify which code belongs
to the feature as it is never explicitly added by a delta module. The
respective code has to be identified by analyzingwhat its deselection
would change. Thus, it would be cleaner to extract the respective
functionality and add it to a distinct delta module. (Obs. 14)

(Gui. 7) Facilitate Product-Based Development The project partic-
ipants implemented features on product level by creating a variant,
changing it, and manually extracting these changes to delta mod-
ules. This procedure is inefficient but it was necessary to make the
delta module creation more accessible. Productive usage of DOP
requires tool support that automates this procedure. For instance,
SiLift [11] retroactively extracts differences between variants and
derives respective delta operations. Tools that directly integrate
with the editor and transform changes to delta operations would
render this additional difference computation obsolete. (Obs. 5)

(Gui. 8) Approach Monotonicity For small SPLs and less experi-
enced developers, DOP seems to be a good method to start with
as it is easy to understand. Once the set of valid configurations be-
comes stable, more complex SPLs could benefit from migrating to
more modularized SPL techniques, such as plug-ins or a variable
component architecture, to avoid problems stemming from the in-
vasiveness of DOP. As a starting point for such a migration, delta
modules could be refactored to achieve monotonicity [8], i.e., they
only add code and do not modify or remove elements. (Obs. 15)

(Gui. 9) Teach/Train Good SPL Practices DOP is easy to learn, yet
hard to master. Developers need to know bad and best practices as
these severely impact the success of an SPL project and its main-
tainability. In particular, bypassing DOP’s limitations to define even
more invasive delta modules comes at the price of complex and
error-prone code. Explicit variability-oriented development train-
ing is necessary for developers to implement good SPLs. (Obs. 16)

(Gui. 10) Generate Legible Products White-box testing, debugging,
and delta module definition require reading generated products.
Thus, apart from comfort functionalities (Obs. 17, 19), tooling for
DOP should generate legible code. (Obs. 18)

With these guidelines, we aim at reducing barriers for engineers
new to SPL development. Additionally, we identified potential for
improvement regarding DOP and respective tools, e.g., DeltaJava.

6 RELATEDWORK
SPL development is already common practice in industry, and a
multitude of experience reports and case studies exist [4, 7, 12, 13,
17, 23, 24]. However, none of these articles provides insights regard-
ing DOP nor inexperienced developers starting with SPL develop-
ment. While, to the best of our knowledge, the above-mentioned
projects were implemented by experienced developers with estab-
lished habits and practices, we recruited project participants who
were inexperienced with SPL engineering and taught them clean
concepts. This enabled us to analyze how SPL engineering with
DOP is picked up if no existing habits might influence it. The exist-
ing experience reports also lack insights regarding SPL evolution.

For DOP, there is a significant lack of case studies and, even
more, publicly available data [5]. Behringer and Fey [2] present
how their tool suite PEoPL can be applied to an artificial case study.
Helvensteijn et al. [9] present the case study Fredhopper, which is
realized using the delta modeling capacities of ABS [6]. With the
Body Comfort System case study, Lity et al. [14] provide an extensive
source for a delta-oriented SPL using state charts, architecture
diagrams, textual requirements, and test cases. However, none of the
aforementioned articles reports on the experiences of developing
the SPL nor provides experiences on SPL evolution.

Most notably, Camargo et al. [5] report on experiences with
using evolution templates for the safe evolution of two medium
sized (∼5.500 and ∼7.500 LOC) SPLs, both implemented withDelta-
Java (older version). However, they focus on the use of evolution
templates and do not report on general observations on SPL develop-
ment with DOP, nor on guidelines or suggestions for improvement.

7 CONCLUSION
In this paper, we presented our experiences with a capstone project
to implement an SPL using DOP. The results and provided data can
be used as basis for further research on constructing and evolving
an SPL based onDOP. From our observations, we derived guidelines
for developing an SPL with DOP – especially for inexperienced de-
velopers. The entirety of our observations leads us to the assump-
tion that DOP seems to be a good method to start with a small
or medium-sized SPL even for relatively inexperienced developers.
However, the invasiveness of DOP suggests that more complex SPLs
should be migrated to more modularized SPL techniques, such as
plug-ins or a variable component architecture. With our identified
potential for improvement, DOP tools, such as DeltaJava, can ad-
vance towards productive usability. In addition, the capacity of DOP
to introduce variability to an existing software product pairedwith a
possibility for migrating to other variability realization mechanisms
as an SPL matures opens avenues for future research. For instance,
how to support startups in customizing their software to different
customer configurations rapidly while mitigating potential techni-
cal debt accrued by an invasive variability realization mechanism.
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