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Resumé

Som et resultat af de mange forskellige digitale enheder der er til r̊adighed, samt hurtige og billige datala-
gringsmuligheder, indsamles og deles enorme mængder data konstant med forskellige form̊al. Alene omfanget
af denne dataindsamling giver udfordringer indenfor diverse forskningsomr̊ader, s̊asom adgangskontrol, kryp-
tografi og databeskyttelse. Mens sikkerhed er et komplementerende forskningsfelt, fokuserer vi i denne
afhandling p̊a databeskyttelse (data privacy).

Vi betragter differential privacy1, der med sin stringente definition samt det, at vi ikke behøver antagelser
om analytikerens baggrundsviden eller beregningskraft, er blevet state-of-the-art indenfor databeskyttelse.
Differential privacy lader os eksplicit kvantificere tabet af privacy og giver derved transparens omkring de
givne privacy garantier i en applikation. Specifikt vil vi primært fokusere p̊a en distribueret model, hvor
data er fordelt mellem mange kuratorer, hvilket ofte er tilfældet i praksis, som for eksempel data indsamlet
fra mobile enheder eller landsspecifikke data ang̊aende, for eksempel, en pandemi.

Hovedbidragene i denne afhandling er som følger:

• Vi introducerer en kompakt opsummering af et datasæt, en s̊akaldt sketch, til effektivt og præcist at
estimere kardinaliteten af et datasæt, mens differential privacy opretholdes. En vigtig anvendelse er at
to s̊adanne sketches over mængder A og B kan kombineres til en sketch for den symmetriske differens,
A4B, og dermed giver mulighed for at estimere kardinaliteten af den symmetriske differens mellem
inputmængder der holdes af forskellige kuratorer, og derfor ikke kan udveksles.

• Vi introducerer en differentially private sketch til at estimere Euklidisk afstand mellem reelle inputvek-
torer holdt af forskellige kuratorer og beviser at vores sketch opn̊ar bedre privacy, effektivitets og
præcisionsgarantier end tidligere arbejde.

• Vi introducerer en ny støjfordeling, Aretefordelingen, der giver en differentially private mekanisme,
Arete mekanismen. Denne mekanisme giver mulighed for at udføre statistisk analyse over et datasæt
med en fejl, der er eksponentielt aftagende i privacy parameteren ε, og derved forbedrer Laplace
mekanismen n̊ar kravene om privacy er lave (for store værdier af ε). Derudover har Aretestøjfordelingen
en kontinuert tæthedsfunktion samt er uendeligt delelig2 hvilket betyder, at vi kan fordele den nødvendige
støj for at opn̊a differential privacy mellem mange kuratorer og derved tillade privat, distribueret anal-
yse med høj præcision.

Vi definerer formelt differential privacy samt de to centrale problemer vægtet kardinalitetsestimering og
approksimation af Euklidisk afstand, og giver stringente beviser for hvert af de nævnte resultater. Derudover
nævner og diskuterer vi et antal åbne problemer i forlængelse af bidragene fra denne afhandling.

1Der findes endnu ikke et veletableret dansk udtryk for differential privacy og vi benytter derfor det engelske begreb.
2Infinitely divisible
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Abstract

As a result of the variety of digital devices available and fast and cheap storage, huge amounts of data are
constantly collected and shared for various purposes. The mere extent of the data creation and collection
introduces challenges within various research fields such as access control, cryptography and privacy protec-
tion. While security is a complementary field of research, we will in this thesis focus on privacy protection.

We study differential privacy, the state-of-the-art privacy technique, due to the stringent definition and
the fact that we make no assumptions about the background knowledge of the analyst or their computational
power. Differential privacy lets us explicitly quantify the privacy loss and establishes transparency in an
application’s privacy guarantees. Specifically, we will primarily focus on a distributed setting, where data is
split among many curators as is often the case in practice, such as, for example, data collected from mobile
devices or country-specific data about, say, a pandemic.

The main contributions of this dissertation are as follows:

• We introduce a compact summary of a dataset, a sketch, for efficiently and accurately estimating the
cardinality of the dataset while preserving differential privacy. An important application is that two
such sketches over sets A and B can be combined into a sketch for the symmetric difference, A4B,
allowing for privately estimating the cardinality of the symmetric difference between input sets held
by different curators, and so cannot be exchanged.

• We introduce a differentially private sketch for estimating the Euclidean distance between real input
vectors held by different curators and prove that our sketch achieves better privacy, efficiency and
accuracy guarantees than previous work.

• We introduce a new noise distribution, the Arete distribution, which permits a differentially private
mechanism, the Arete mechanism. This mechanism incurs error exponentially decreasing in the privacy
parameter ε, improving over the Laplace mechanism in the low privacy regime (for large ε). Further-
more, the noise distribution has a continuous density function and is infinitely divisible, meaning that
we can distribute the noise necessary to ensure differential privacy among several data curators to allow
for private, distributed analysis with high accuracy.

We formally define differential privacy along with the two central problems of weighted cardinality esti-
mation and Euclidean distance approximation and give stringent proofs for each of the results mentioned.
Furthermore, we present and discuss several open problems extending the contributions of this thesis.
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Chapter 1

Introduction

All the world is made of faith, and trust, and
pixie dust.

J. M. Barrie
Peter Pan

Recent developments in technology enable powerful and continuous data collection and curation. The
statistical properties of this data are valuable for developments in other fields – a simple example is to
understand serious diseases better, allowing us to diagnose patients sooner and treat them better. Data
analysis offers the opportunity to learn about the world and ourselves.

However, data analysis also raises several concerns, such as storage, speed – and privacy. While privacy is
commonly considered a human right, it is not so easy to argue why we do not want others to go through our
trash or read our mail. And similarly, why we want to keep our Google searches, location or health diaries
to ourselves. Nevertheless, despite being well aware of the data collection, we keep using the flashlight app,
which requires access to the microphone for no apparent reason because it had a nicer interface. Or click the
”accept all cookies” button because we are in a hurry and somehow expect data collectors to ”play nice”.
And who really cares if I watched that cat video... again? So what is privacy, and why is it so important?

Arguing that you don’t care about the right to privacy because you have nothing to hide is no
different than saying you don’t care about free speech because you have nothing to say.
– Edward Snowden, [126]

Privacy matters; privacy is what allows us to determine who we are and who we want to be.
- Edward Snowden, [131]

Over the recent years, data protection laws and regulations (such as the General Data Protection Reg-
ulation (GDPR) in the EU [66], the California Consumer Privacy Act [123] and India’s Personal Data
Protection Bill [85]) have been introduced in an attempt to hinder unauthorized data collection and to
ensure transparency in the handling of user data.

A widely used method for preserving data privacy is via anonymization, where we remove obvious iden-
tifiers such as name, IP address or social security number from the data. Many examples have proven
that anonymization does not provide sufficiently strong privacy guarantees [15, 26, 44, 83, 115, 133], since
anonymized data is vulnerable to linkage attacks (also known as re-identification attacks). In such attacks,
anonymized data records are re-identified by linking the anonymized dataset with non-anonymized auxiliary
information. In a prominent example, Sweeney showed that upwards 87% of the US population are uniquely
identifiable given only their 5-digit zip code, gender and date of birth [132]. Sweeney later re-identified
anonymized hospital records of (at the time) Massachusetts Governor William Weld by comparing hospital
records with public voter registration records using these three simple demographics [133]. Other examples
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include when Calandrino et al. uncovered Amazon customers’ purchase history via collaborative filtering
(the ”Customers who bought this item also bought...” feature) [26] or when Narayanan and Shmatikov re-
identified Netflix users by comparing the anonymized user ratings dataset with the publicly available user
ratings dataset from IMDB [115], assuming that users are likely to give the same movie similar ratings at
approximately the same time on the two platforms. In conclusion:

Anonymized data isn’t – Cynthia Dwork.

Even aggregate data and statistics about data may leak sensitive information: The Fundamental Law
of Information Recovery says that overly accurate answers to too many questions will destroy privacy in a
spectacular way [49]. Intuitively, every time a statistical result about a dataset is released, a bit of information
about each data record is leaked – death by a thousand cuts. Dinur and Nissim [49] exploited this principle
with a reconstruction attack, proving that one can reconstruct large parts of a dataset via several aggregate
query results if we answer each query too accurately. This work was the first in a line of research about
reconstruction and re-identification of data from auxiliary information, eventually leading to the definition
of differential privacy1, which by design protects against such attacks. This definition enables us to make
privacy guarantees that hold regardless of the computational power and auxiliary information available to
the adversary. Another equally important property of differential privacy is that we can quantify the privacy
loss even when the same data is subjected to multiple queries, allowing us to fix a privacy budget for an
application. Intuitively, differential privacy permits statistical analysis of a dataset while protecting the
privacy of each individual record in the dataset by adding noise to query results. We define differential
privacy in the next chapter.

Several examples have shown that a single unit curating large amounts of data is vulnerable to large-scale
data leaks: in the Facebook-Cambridge Analytica scandal, data about millions of Facebook users, collected
by the data analytics firm without the users’ consent, was leaked and used to build voter profiles for political
campaigns [28]. Other examples include when hackers gained unauthorized access to the guest reservation
database of the Marriott International hotel chain [101], or when the social media Whisper (branded as the
”safest place on the Internet”) left age and location data tied to anonymous posts exposed in a database
openly accessible – even without password-protection [51], thus being vulnerable to linkage attacks. We
consider a more general setting, where data may be distributed among many data curators. In particular,
we are interested in the case where data is too extensive or sensitive to share, and each curator releases only
a summary of their data. Going even further, we may create summaries that can be combined (offline) to
enable analysis over the entire dataset without each curator sharing more than the summary.

In this thesis, we will discuss private data analysis over distributed data. In Chapters 3 and 4, we will
discuss how to create differentially private summaries supporting efficient and accurate statistical analysis
for two fundamental problems in data management and data analysis, F0 estimation and Euclidean distance
approximation. In Chapter 5 we return to the basics of differential privacy and introduce a new noise
distribution, the Arete distribution, which can be applied to ensure differential privacy of real-valued queries.
The Arete distribution combines the best properties of previous noise distributions to give a differentially
private mechanism that can be distributed among several parties while ensuring low error. Before formally
presenting our results, we give the background and introduce and motivate these results in Chapter 2.

The papers making up this thesis are listed below with references to the chapters treating the results
in-depth:

1. Efficient Differentially Private F0 Linear Sketching (ICDT 2021) by Rasmus Pagh and Nina Mesing
Stausholm2 [119]. The results are presented in Chapter 3.

2. Improved Differentially Private Euclidean Distance Approximation (PODS 2021) by Nina Mesing
Stausholm [130]. The results are presented in Chapter 4.

1The name Differential Privacy was suggested by Michael Schroeder [63]
2Full name: Nina Mesing Stausholm Nielsen
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3. The Arete Distribution for Differentially Private Noise Addition (in submission) by Rasmus Pagh and
Nina Mesing Stausholm. The results are presented in Chapter 5.

During my time as a PhD student, I co-authored an additional publication, Hardness of Bichromatic
Closest Pair with Jaccard Similarity (ESA 2019) alongside Rasmus Pagh and Mikkel Thorup [120]. This
work extends a result from my Master’s thesis and is not included in this dissertation, as it deals with the
problem of similarity search rather than data privacy.

3





Chapter 2

Background

In this chapter, we give the necessary background and the intuitive introductions to the results presented in
Chapters 3, 4 and 5.

2.1 Differential Privacy

2.1.1 The Intuitive Explanation

Consider a dataset containing sensitive information about a group of people. A statistical query q : X → Rk
for k ≥ 1 is a function that can be applied to the dataset to learn statistical properties of the data, such
as the mean of their ages or the number of individuals satisfying a certain predicate. Such analysis over
sensitive data may lead to privacy issues, as exhibited in the following example:

Example: Suppose that a hospital generates a dataset over the daily positive (anonymous) test results
for diabetes for statistical purposes. A nosy nurse knows that patient X is to be tested for diabetes and keeps
an eye on the number of positive tests reported in the dataset to determine whether or not patient X has
diabetes.

Releasing query results in a differentially private manner intuitively means that for similar datasets, any
query output is essentially equally likely. Informally, differential privacy guarantees that an analyst cannot
determine whether any specific data record was present in or absent from the dataset from an observed query
result. The goal is to protect the data of every individual while permitting statistical analysis on the dataset
as a whole.

An intuitive requirement for a privacy definition for data analysis is that analysts know no more about
any individual in the dataset after the analysis than before. However, consider a study showing that smoking
leads to lung cancer. The analyst learns that the smoker next door is more likely to get lung cancer, thereby
violating the privacy guarantee. This requirement is too strict, as it allows us to learn nothing from the
analysis, and the example is not considered a privacy breach according to differential privacy since it is the
conclusions of the study rather than the presence in or absence from the dataset that affect the smoker.
Differential privacy essentially says that nothing can be learned from a dataset that could not be learned
from the same dataset with any individual’s data removed.

2.1.2 The Formal Definition

As we are interested only in hiding whether a single individual’s data is in the dataset or not, we define
neighboring datasets and sensitivity of a query. Let D ⊆ X be a dataset. Datasets are neighbors if they are
identical except for a single record, and the sensitivity of a query intuitively measures how much the result
of the query can differ when applied to neighboring datasets. That is, the sensitivity of a query helps to
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understand how much noise is necessary – or rather, how big a difference the noise must hide. The following
definition is useful for defining neighboring inputs when X is numeric:

Definition 2.1 (`p-norm). For real p ≥ 1, the `p-norm of x ∈ Ru is

‖x‖p =

 u∑
j=1

|xj |p
1/p

.

We define neighboring inputs and sensitivity of a query formally:

Definition 2.2 (Neighboring inputs). Inputs x, y ∈ X are neighbors, sometimes also called adjacent, if
they differ in at most one data record. We denote neighboring inputs by x

.
= y. If X ⊆ Ru, u ≥ 1, x and y

are neighbors if ‖x− y‖1 ≤ 1.

Definition 2.3 (`p-sensitivity). Let q : X → Rk be a query. The `p-sensitivity of q is

∆ := max
x,y∈X : x

.
=y
‖q(x)− q(y)‖p.

Unless otherwise specified, whenever we simply write the sensitivity, we refer to the `1-sensitivity. Occa-
sionally (in Chapter 4), we also consider the `2-sensitivity but will specify the distinction.

We now give the formal definition of differential privacy:

Definition 2.4 (Differential Privacy [55, 60]). A randomized mechanism M : X → Range(M) is (ε, δ)-
differentially private for ε, δ ≥ 0 if for any neighboring inputs x, y ∈ X and for all S ⊆ Range(M)

Pr[M(x) ∈ S] ≤ eε Pr[M(y) ∈ S] + δ

where the probability is over the random coin flips performed byM. If δ = 0, we say thatM is ε-differentially
private.

Note that one can think of M(x) as a probability distribution over the possible values of M applied
to x. We often simply write M(x) to denote the output of M applied to x instead of the more accurate
ξ ∼M(x).

We will mainly concern ourselves with ε-differential privacy, sometimes referred to as pure differential
privacy, but will touch upon (ε, δ)-differential privacy, also called approximate differential privacy, in Chap-
ter 4. While not quite accurate [107], a common, intuitive interpretation of approximate differential privacy
is that we get pure differential privacy except with probability δ [112]. While approximate differential privacy
is theoretically weaker than pure differential privacy, in practice, the guarantees are essentially the same for
sufficiently small δ. A useful definition is that of privacy loss:

Definition 2.5 (Privacy loss incurred by observing ξ). Let x, y ∈ X be neighbors. For observed output
ξ ∼M(x), the privacy loss incurred by observing ξ is defined as

ln

(
Pr[M(x) = ξ]

Pr[M(y) = ξ]

)
, Pr[M(y) = ξ] 6= 0.

For an ε-differentially private mechanism, the privacy loss is always bounded by ε, while for an (ε, δ)-
differentially private mechanism, the privacy loss is bounded by ε with probability at least 1− δ. Differential
privacy allows us to explicitly quantify the greatest possible privacy loss in terms of the privacy parameter ε
and so allows us to compare algorithms: for a certain accuracy guarantee, we may ask if a technique provides
better privacy, or for a certain privacy guarantee, which technique has better accuracy. For more details
about differential privacy, we refer the reader to [56, 63, 137].
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Figure 2.1: Illustration of densities for the output of mechanismM on inputs x (black) and y (gray), whereM adds Laplace
noise to the query output q(x) and q(y). If M is ε-differentially private and x and y are neighbors, then the two distributions
will differ by at most a factor eε in any point.

2.1.3 The Power of Differential Privacy

Differential privacy is a mathematical worst-case guarantee about a randomized mechanism. It is important
to note that it is a property of the mechanism rather than the perturbed data: Given a query output, there
is no way to determine whether it satisfies differential privacy, only whether it was released via a provably
differentially private mechanism. One of the primary strengths of differential privacy is this mathematical
guarantee, as we can formally prove the privacy level ensured by a mechanism in terms of ε and δ.

Moreover, there are strong results about the privacy guarantees under post-processing and composition:
The post-processing property states that one cannot decrease the privacy level by performing additional
computations to a query result released by a differentially private mechanism:

Lemma 2.1 (Post-processing [60]). For (ε, δ)-differentially private mechanism M1, the composition M2 ◦
M1 satisfies (ε, δ)-differential privacy for any mechanismM2 (which need not itself be differentially private).

The following result about differential privacy under composition allows us to determine how the privacy
level degrades when releasing multiple statistics about the same data:

Lemma 2.2 (Composition [57, 59]). Let D be a dataset and suppose that mechanisms M1, ...,Mn satisfy
(εi, δi)-differential privacy. The mechanism computing (M1(D), ...,Mn(D)) is (ε, δ)-differential privacy,
where ε :=

∑n
i=1 εi and δ :=

∑n
i=1 δi.

2.1.4 Privacy via Noise Addition

Differential privacy requires randomness and is typically ensured by injecting random noise into the analysis
– usually simply by adding random noise to the query result before releasing the perturbed result. Adding
well-chosen noise calibrated to the sensitivity of the query ensures differential privacy by making it hard
to determine whether a specific dataset was the input resulting in the observed output or whether the true
input was a neighboring dataset.

Example: Returning to the example from before, suppose that the number of positive results is reported
with an added random value from {−1, 0, 1} so we cannot confidently determine whether patient X’s test
result was positive. While this noise addition does not actually ensure differential privacy1, it gives a good
idea of how we may hide patient X’s test result in the statistics by adding noise.

A fundamental question concerns the tradeoffs between accuracy and privacy, and so we ask how much
noise is necessary to ensure differential privacy. Noise addition extends naturally to vector queries, where
differential privacy can be ensured by adding noise to each coordinate of the query output. Furthermore,
we must select a suitable noise distribution (i.e., real, discrete, binary, etc.) for the query in question to

1Suppose that neighboring datasets D and D′ have true number of positive test results z and z − 1, resp. Observing noisy
output z + 1 happens with non-zero probability on input D and probability 0 on input D′.
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ensure differential privacy. A common example of noise addition for real-valued queries is to use the Laplace
mechanism, which adds noise from the Laplace distribution and is ε-differentially private for appropriate
parameters:

Lemma 2.3 (Laplace Mechanism [60]). For query q : Ru → Rk, k ≥ 1 and input x ∈ Ru, the Laplace
mechanism outputs q(x) + ϕ where ϕ ∼ Lap(λ)k. If ∆ is the sensitivity of q, the Laplace mechanism with
parameter λ = ∆/ε is ε-differentially private.

2.1.5 Local Differential Privacy

So far, we have mainly considered the central model of differential privacy, where data is held by a single,
trusted curator. In this case, the curator computes the query output, adds appropriate noise, and releases the
perturbed, private query result. Consider a setting where there is no trusted, central curator, but sensitive
data is distributed among multiple curators who cannot share the data for privacy concerns. As we still
want to analyze the collection of (distributed) data, the privatization process must be transferred such that
each curator locally applies a differentially private mechanism before releasing a private version of their
data. Statistical analysis can then be performed by an untrusted third party on the collection of private
data contributions. This model is often referred to as the local model of differential privacy [95, 54].

Example: Suppose that the hospital has a new test, the patients can perform in their own homes. As
the hospital still wants statistics over the number of positive results, patients are asked to register positive
test results via a website. Before submitting the positive result to the hospital records, a script on the website
locally adds random noise to ensure privacy: each positive result is reported with probability p. If patient X’s
test is positive, the result will show up in the statistics with probability p. While the nurse cannot confidently
determine if the test is negative, it may be possible to determine if the result is positive. So suppose that
patients also register negative tests, and these are (falsely) reported as positive with some (small) probability
q, thus hiding the true positive tests among a few false positive ones. This technique is known as randomized
response [141].

As noise is added to each data contribution, the total amount of noise depends on the number of partic-
ipants, so the accuracy is likely to suffer compared to the accuracy obtainable in the central model. On the
other hand, the local model does not have the trust assumptions of the central model, and the data collector
is not responsible for protecting the privacy of the collected data. For these reasons, several large organi-
zations have deployed systems using local differential privacy, such as Google’s RAPPOR [65], Apple’s iOS
[8, 46, 78] and Microsoft’s Windows 10 [48]. In Section 2.2 we introduce two fundamental problems in data
analysis and briefly describe how to solve these problems in a locally differentially private way. In Section
2.3.3 we consider a middle ground between central and local differential privacy, making use of cryptographic
techniques to simulate the trusted central curator. For more details on local differential privacy, we refer to
the surveys [16, 41, 100, 140, 146, 148].

2.2 Statistics Over Distributed Data

In line with the distributed setting mentioned in Section 2.1.5, there are many real-world settings where the
amount of data is huge and possibly distributed among multiple participants. Therefore, a query cannot
immediately be answered without data sharing. Examples include data collected by search engines or apps
for mobile devices collecting and analyzing data submitted by users. We introduce the results formally
presented in Chapters 3 and 4 in this section and the results presented in Chapter 5 in Section 2.3.

We now discuss data structures, sketches, permitting accurate statistical analysis without the need to
see the whole dataset. We introduce two fundamental problems, F0 estimation and Euclidean Distance
approximation, and specific sketches that can be used to solve these problems. We are especially interested
in sketch definitions that support combining sketches over distributed data to obtain a sketch for the whole
data, as this allows us to perform analysis over the distributed data without sharing the actual data. While
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we begin this section by considering non-private sketches, we discuss how to construct differentially private
versions of in Section 2.2.4.

2.2.1 Sketches

A sketch of a dataset is a compact data structure representing (or ”sketching”) said dataset. Sketches are
usually defined with a particular set of statistical queries in mind, and we may (approximately) answer
statistical queries about the data without seeing the entire dataset by applying a specified procedure to the
sketch. We want sketch techniques that are simple to implement, require only little space compared to the
data it represents, and can be computed efficiently. In particular, we care about the tradeoff between the
accuracy of the query result versus space usage and computation/update time. In order to answer queries
about distributed data, we study sketches that can be combined to represent the collection of the data.
Suppose that each curator creates a sketch of their own data, and the collection of sketches can be analyzed
to learn statistical properties about the whole data. We will limit ourselves to numeric sketches, such that
they can be thought of as binary or real-valued vectors. There are many examples of sketches, where the
sum of two sketches is a sketch for the union of the two datasets, but of particular interest are the so-called
linear sketches, which for input vector x is a linear mapping of x. That is, for sketch matrix S, Sx is the
sketch of x. We remark that sketch matrix S is usually chosen at random from a suitable family of matrices
to avoid consistently mapping different items to the same output (although, for a fixed sketch matrix, this
may still be the case). Linear sketches have the powerful property that for input vectors x, y and sketch
matrix S, we have Sx− Sy = S(x− y) – that is, the difference between two such linear sketches is a sketch
for the difference x− y.

Example: Let us return to the example from before, although without the added noise – that is, we have
a dataset over the positive tests. Suppose that the number of tests performed is enormous, and we wish to
combine daily reports to get a weekly report. Instead of storing a data record for every positive test, simply
store the number of positive tests each day. Adding up daily numbers gives a number for the entire week.
Now, suppose that the hospital has two different tests: the regular one performed at the hospital and the new
test taken in the patients’ homes. The hospital recommends that you get both in the same week to be sure of
the result. In addition to knowing the daily number of positive results, the hospital also wants to know how
many people got only one positive test result to see how many of the weekly positives are not quite sure –
either because one of the tests were negative or because the patient took only one test. Solving this problem
requires a more elaborate sketch than simply the number of positive results, as the individuals who took both
tests must be subtracted when combining sketches.

As mentioned, sketches are often randomized and so instead of explicitly materializing the sketch matrix,
which could be very large, a common approach is to define the transformation using appropriate, randomly
chosen hash functions. We refer to [40] for a survey on sketch techniques and results.

We are now ready to discuss two fundamental problems in statistical analysis: F0 estimation and Eu-
clidean Distance approximation in a bit more detail. We also discuss linear sketches for solving these two
problems, and while we limit ourselves to the intuition here, the sketch matrices (including differentially
private versions) are formally defined in Chapters 3 and 4. We refer to Section 2.2.4 for the intuition behind
the differentially private sketches for these problems.

2.2.2 Problem: F0 Estimation

A classical problem in data management and database query processing is that of computing the number
of distinct items in a multiset (the cardinality). We formally define the problem as follows: let U = [u]
be the universe and S an input multiset over items from U . It is often convenient to represent S by a
vector x ∈ Zu where xj counts the occurrences of each item j ∈ [u] in S, and so the task is to compute
‖x‖0 =

∑
j∈U 1[xj 6= 0] (the problem is therefore also referred to as F0: the 0th frequency moment). As we

are interested in estimating the size of the symmetric difference between sets, we consider input set S with
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the characteristic vector x ∈ {0, 1}u where xj = 1 if and only if j ∈ S for each item j ∈ [u]. The observant
reader will notice that the example given in Section 2.2.1 concerns this problem.

For large datasets, we wish to solve the problem without explicitly enumerating the set. Therefore, we
represent data by a sketch that allows us to estimate the cardinality with a tradeoff in accuracy versus space.
Well-known sketches for cardinality estimation include HyperLogLog, FM-sketches and bottom-k sketches,
but although these sketches can all be merged to give a sketch for the union of the input data, they are not
linear, and so cannot be subtracted to give a sketch for the difference between the two input datasets, which
is the main application of interest. We now introduce a linear sketch (over the field of two elements, GF(2))
which can be used to accurately estimate the cardinality of the input set while ensuring that the difference
of two such sketches is a sketch for the symmetric difference of the input sets.

The KOR Sketch

Consider our main application, where we want to estimate the size of the symmetric difference of datasets
held by two different curators. There is no way of knowing the size of the symmetric difference before
releasing the individual sketches, so one difficulty is to decide on a suitable sketch size. While we want
the sketch to be as small as possible, a sketch that is too small compared to the input set (the symmetric
difference) will be overfilled, leading to inaccurate estimates due to hash collisions (too much information
is lost). On the other hand, recalling that we will add noise to each coordinate of the sketch to preserve
privacy, the signal of the input set will drown in noise if the sketch is too large. In Chapter 3 we define a
linear sketch building on a technique by Kushilevitz, Ostrovsky and Rabani [99] (STOC 1998) – therefore
named the KOR sketch – which allows us to fix an appropriate sketch size, without knowing the input size.
Intuitively, the idea is to fix a sketch size and compute log(u) identical (partial) sketches for samples of
decreasing size of the input: for i = 0, ..., log(u)− 1, one can think of the input to the ith partial sketch as a
sample whose size is approximately a 1/2i+1 fraction of the size of the (whole) input set. As the size of the
(sampled) input sets is halved at each step, the fixed sketch size is suitable for at least one of the samples
and thereby permits an accurate estimate of the size of this particular sample. Subsequently, one can correct
this estimate for the sampling step to get an accurate estimate for the whole (unsampled) input set (with
high probability). The KOR sketch is the collection of the log(u) partial sketches.

The log(u) samples are created using a standard hashing-based subsampling technique (see for example
[144]) to ensure that each invocation of the sketch samples identically. This is important for the application
of estimating the size of the symmetric difference, as identical items in two input sets must either be sampled
from both input sets or not at all: suppose xs, ys ∈ {0, 1}u are samples of input sets x, y ∈ {0, 1}u. The sum
xs + ys over GF(2) must represent (a sample of) the symmetric difference of x and y. We refer to Section
3.4.1 for the details and formal description of the KOR sketch.

2.2.3 Problem: Euclidean Distance Approximation

A well-known problem in various data analysis applications is approximating the Euclidean distance between
two real-valued vectors. Euclidean distance is a useful measure for similarity of two vectors and finds appli-
cations in fields such as nearest-neighbor search [3, 87], computational geometry [35], document comparison
[134], data streams [86], clustering [22, 38], graph sparsification [128], low-rank approximation [37], numerical
linear algebra [36, 52, 145] and many more. We concern ourselves with squared Euclidean distance, but as
a solution to one problem implies a solution to the other, we do not explicitly make a distinction.

Example: Suppose that the two tests for diabetes both give a score between 0 and 1, indicating the
severity of the disease, instead of the positive/negative answer, as has been discussed so far. The hospital
wishes to compare the results of the take-home test with the results of the test performed at the hospital, and
so each patient takes both tests and receives a score from each. The hospital collects all of the test scores in
two data vectors and computes their Euclidean distance to measure the similarity of the test results.
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For input vectors, x, y ∈ Ru, the (squared) Euclidean distance between x and y is defined as

‖x− y‖22 =

u∑
j=1

(xj − yj)2.

As the input dimension u may be very large, we are once again interested in techniques for estimating
the Euclidean distance between two vectors without sharing the entire input – i.e., we want a sketch that
(approximately) preserves Euclidean distance. The Johnson-Lindenstrauss transformations are a natural
choice for such a sketch.

Johnson-Lindenstrauss Transforms

The Johnson-Lindenstrauss transformations are a family of linear transformations that (with high proba-
bility) preserve `2-norm of real input vectors up to a small error while reducing the dimension of the input
vectors. Specifically, Johnson-Lindenstrauss matrices are linear maps satisfying the following lemma:

Lemma 2.4 ((Distributional) Johnson-Lindenstrauss Lemma [90]). For any 0 < β, p < 1/2 and any input
dimension u > 0, there exists a random k × u-matrix S where k = O(β−2 log(1/p)) such that for any input
x ∈ Ru

(1− β)‖x‖22 ≤ ‖Sx‖22 ≤ (1 + β)‖x‖22
with probability at least 1− p.

As ‖Sx− Sy‖22 = ‖S(x− y)‖22, the lemma implies that for input vectors x, y ∈ Ru we have

(1− β)‖x− y‖22 ≤ ‖Sx− Sy‖22 ≤ (1 + β)‖x− y‖22.

Thus, it suffices to release the sketches Sx and Sy to allow for Euclidean distance estimation.
Johnson-Lindenstrauss matrices are particularly interesting due to the remarkable result by Jayram &

Woodruff [89] and later Kane et al. [92] stating that the optimal output dimension is k = Θ(β−2 log(1/p)),
and so depends only on the accuracy parameter β and the error probability p – not on the input dimension
u.

The literature suggests several families of linear transformations satisfying the Johnson-Lindenstrauss
Lemma [1, 3, 43, 87, 93], but of particular interest are very sparse matrices as they allow us to compute
sketches fast. In Chapter 4 we define and discuss the Sparser Johnson-Lindenstrauss transformation by Kane
& Nelson [93] which has sparsity s = O(β−1 log(1/p)) – i.e., each column has at most s non-zero entries. In
Section 2.2.4 we discuss how to achieve a differentially private version of the Sparser Johnson-Lindenstrauss
matrix and give an introduction to the results presented in Chapter 4.

As Johnson-Lindenstrauss matrices are known from the dimensionality reduction literature, we follow
convention and refer to them as projections and transformations rather than sketches in Chapter 4.

2.2.4 Differentially Private Sketches

As touched upon in Section 2.1.4, we can compute differentially private versions of linear sketches by adding
suitable noise to each coordinate of the sketch. Such private sketches can be released to allow for analysis, and
the post-processing property of differential privacy (Lemma 2.1) ensures that since the sketch is differentially
private, then any estimator based on that sketch is also differentially private. Therefore, an untrusted
analyst can use the privately released sketches to compute answers for statistical queries, and in particular,
the analysis can be performed offline – that is, without the curators necessarily being active at the time of
analysis. This property is particularly valuable in a distributed setting where participants release private
sketches of their own data, which can be merged (offline) to permit analysis over the collection of data, or
if data is created at different times as suggested in the following example:

Example: Recall the example in Section 2.2.1 where we wanted (non-private) daily sketches which
could be combined to a weekly sketch. Adding noise to the daily sketches lead to the questions:
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1. Is the daily sketch robust against the noise, and so still allows for accurate approximations of the daily
number of positive results after noise addition?

2. Can the noisy daily sketches be combined into a noisy weekly sketch?

Similar to our interest in linear sketches that could be merged in Section 2.2.1, we now take the idea
further and consider private sketches that may be combined to give a private sketch for the combined data.
The idea is simple: for non-private linear sketch S, input vector x and random noise vector ϕ from a suitable
distribution, we can build a differentially private sketch Sx+ ϕ. For inputs x, y and noise ϕ,ψ, we have

(Sx+ ϕ) + (Sy + ψ) = S(x+ y) + (ϕ+ ψ) and (Sx+ ϕ)− (Sy + ψ) = S(x− y) + (ϕ− ψ).

Hence, adding or subtracting such noisy linear sketches gives a noisy sketch for x ± y with noise ϕ ± ψ.
While this observation immediately leads to the question: what accuracy guarantees can we get from the
combination of noisy sketches, when the noise increases when combining sketches? (this question is discussed
further in Chapter 3), we will in this thesis only consider combining two sketches. Note that we can explicitly
determine the privacy guarantees of the sketch resulting from combining two noisy sketches.

An important property of using the same sketch matrix for different inputs is that combining two such
sketches gives a similar sketch for a function of the input sets. Therefore, to use two sketches to build a
sketch for the difference of the inputs, it is essential that the sketch matrix (or equivalently, the hash function
defining the sketch matrix) is public, and only the noise is kept secret.

We now give the intuition behind the private sketches as well as introduce our results presented formally
in Chapters 3 and 4.

Differentially Private F0 Estimation

In Chapter 3 we consider a weighted generalization of cardinality estimation, where we are also given a public
weight vector w ∈ (0, 1]u, such that each item j ∈ [u] has a weight, wj . Given input set S ⊆ U we aim to
estimate the weight of S, i.e.,

∑
j∈S wj . In terms of the characteristic vector for S, x ∈ {0, 1}u, we must

estimate ‖x ◦w‖1, where ◦ denotes the Hadamard (i.e., entrywise) product. Note that this problem reduces
to standard cardinality estimation in the important case where the weights are all 1, w = (1, . . . , 1). We
here give an intuitive description of how to construct sketches for weighted F0 that are small, differentially
private, and computationally efficient and refer to Chapter 3 for a formal definition as well as the analysis
of the privacy, accuracy, size, and time guarantees.

As discussed above, we can make a linear sketch differentially private by adding appropriate noise to each
entry of a linear sketch. The KOR sketch from Section 2.2.2 can be represented by a binary vector, and we
privatize it using the standard privacy technique randomized response [141], which has become one of the
main techniques in local differential privacy due to the high scalability. The technique was first introduced
by Warner in 1965 as a way of privately conducting surveys about embarrassing or illegal questions and is
best explained via an example:

Example: Suppose that we study the fraction of individuals with some property P by asking a group
of people whether or not they have property P . As P may be sensitive, each participant flips a coin before
answering the question. If the coin comes up heads, the participant answers the question truthfully, and
if the coin comes up tails, the participant flips the coin once more. If on the second toss, the coin shows
heads, the participant answers ”yes” and on tails, they answer ”no”. From the collected, private answers,
one can estimate the fraction of people with property P while not being able to determine whether any specific
individual has property P or not. Recall the example from Section 2.1.5, where we reported each positive
test result with a probability p and each negative result with probability q. This noise addition was, in fact,
randomized response.

In our private sketch for F0 estimation we use randomized response as follows: Let Sx ∈ {0, 1}τ be
the (non-private) KOR sketch for input x ∈ {0, 1}u and flip each bit in Sx independently with probability
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p(ε) < 1/2 depending on the privacy parameter ε. Then, each bit in the sketch is reported falsely with
probability p(ε). These bit flips can be expressed in terms of a noise vector ϕ ∈ {0, 1}u where Pr[ϕj = 1] =
p(ε) independently for each entry j ∈ [u] and so we define the noisy KOR sketch as Sx+ϕ, where the noise
addition happens over GF(2). We prove in Chapter 3 that the resulting sketch is ε-differentially private for
an appropriate choice of p as a function of ε.

Moreover, for every choice of accuracy parameter 0 < β < 1 and privacy parameter ε = O(1) there exists
a distribution H of linear sketches of size τ = O(log2(u)ε−2β−2) such that Sx+ ϕ is ε-differentially private
for S ∼ H. Given Sx + ϕ we can compute an estimate of ‖x ◦ w‖1 that is accurate within a factor 1 ± β,
plus additive error O(log(u)ε−2β−2). In the unweighted case, recent work [4, 129, 65, 138] has shown how
to privately and efficiently compute an estimate for the size of the symmetric difference between two sets
using (non-linear) sketches such as FM-sketches and Bloom Filters. These methods have an error bound
depending on an upper bound m̄ on the size of the input sets and achieve error no better than O(

√
m̄).

Hence, for β = o
(
1/
√
m̄
)

and log(u)/ε = m̄o(1), the noisy KOR sketch improves over these results. Letting

m denote the size of the symmetric difference, McGregor et al. [103] show that an additive error of Ω̃(
√
m/eε)

(where the Õ notation suppresses a polylogarithmic factor) is necessary to estimate m under the constraint
of ε-differential privacy. In contrast, setting β = 3

√
log(u)/(ε2m) to balance the relative and additive error,

our noisy KOR sketch achieves error Õ(m2/3/ε2/3).

In order to efficiently privatize our sketch, it is essential that we can compute the noise efficiently. While
Mir et al. [110] and Kenthapadi et al. [96] also studied differentially private sketches for F0 estimation, their
algorithms for calibrating noise are not computationally efficient: Kenthapadi et al. [96] computes the sketch
via a Johnson-Lindenstrauss matrix (see Section 2.2.3) where all entries are i.i.d. normally distributed and
add Gaussian noise to the sketch. To calibrate the noise to the sketch, one must first compute the sensitivity
of the sketch matrix, which requires time superlinear in the universe size u. Mir et al. [110] also compute a
standard linear sketch but add noise via the exponential mechanism, which requires quasipolynomial time in
the sketch size. In comparison, we can sample noise in time proportional to the size of the sketch. We remark
that for a fixed ε, the size of the KOR sketch is polynomially related to the lower bound of Ω

(
log(u)β−2

)
bits by Jayram & Woodruff [89].

We formally prove these results in Chapter 3 where we also discuss how to use the noisy KOR sketch for
a distributed streaming implementation for estimating the size of the union between two input streams. We
conclude the chapter by mentioning a few open questions related to private F0 estimation.

Differentially Private Euclidean Distance Approximation

This section introduces the techniques and results presented formally in Chapter 4. Euclidean distance
approximation was introduced in Section 2.2.3, and we recall that the Johnson-Lindenstrauss matrices suggest
(non-private) sketches allowing us to solve this problem accurately. In line with the rest of this chapter,
we use the terms matrix, sketch and transformation interchangeably. In Chapter 4 we use projection and
transformation to be consistent with the literature on Johnson-Lindenstrauss matrices. Our main focus will
be on the Sparser Johnson-Lindenstrauss transform by Kane & Nelson [93], while we also discuss the Fast
Johnson-Lindenstrauss transform by Ailon & Chazelle [3]. We prove that such a sketch is robust against noise
and permits accurate distance approximation from sketches that have been privatized via noise addition. We
recall the Laplace mechanism from Lemma 2.3 and define the Gaussian mechanism, which adds Normally
distributed noise:

Lemma 2.5 (Gaussian Mechanism [57, 63]). For query q : Ru → Rk, k ≥ 1 and input x ∈ Ru, the Gaussian
mechanism outputs q(x)+ϕ where ϕ ∼ N (0, σ2)k. For ε ∈ (0, 1), if ∆2 is the `2-sensitivity of q, the Gaussian

mechanism with parameter σ2 ≥ 2∆2
2 ln(1.25/δ)

ε2 is (ε, δ)-differentially private.

Consider input vector x ∈ Ru and Johnson-Lindenstrauss matrix S. As the sketch Sx is real-valued,
applying either the Laplace or the Gaussian mechanism ensures differential privacy of the noisy sketch, but
one may ask which mechanism gives better error guarantees. Specifically, we suggest an ε-differentially
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private sketch based on the Sparser Johnson-Lindenstrauss transform (SJLT) [93] with added Laplace noise:
For any 0 < β, p < 1/2 and u > 0 there is a distribution H over k × u-matrices with k = Θ

(
β−2 log(1/p)

)
and sparsity s = O

(
β−1 log(1/p)

)
and a distribution D over R such that for S ∼ H, x ∈ Ru and ϕ ∼ Dk,

the sketch (S, Sx + ϕ) is ε-differentially private and can be computed in time O(s‖x‖0 + k), including the
time to sample the noise. For y ∈ Ru and ψ ∼ Dk, ‖(Sx+ϕ)− (Sy+ψ)‖22−2ks/ε2 is an unbiased estimator
for ‖x − y‖22. Previously, Kenthapadi et al. [96] defined a (ε, δ)-differentially private sketch based on the
Johnson-Lindenstrauss matrix by Indyk & Motwani [87], where all entries are i.i.d. normally distributed
with added Gaussian noise and use this noisy sketch to obtain an unbiased estimator for Euclidean distance
approximation with low variance. Besides having a better privacy guarantee, our sketch is also faster to
compute due to the sparsity of the sketch matrix, and our estimator has lower variance for δ < pO(1/β) than
that of Kenthapadi et al. (we spare the reader the expression for the variance here, but refer to Chapter 4,
where we also dive into the formal proofs). For larger values of δ, we may apply the Gaussian rather than the
Laplace mechanism to compute a sketch with similar accuracy and privacy guarantees as that of Kenthapadi
et al. while still being more efficient.

Another important property of our sketch is that it avoids a sizable initialization cost inherent to the
results in [96], as a consequence of their choice of sketching matrix: in order to calibrate the noise to the sketch
matrix, one must first compute the sensitivity of the sketch, which requires superlinear time in the size of the
universe. The Sparser Johnson-Lindenstrauss matrix has a fixed sensitivity, so the noise can immediately
be calibrated to this known sensitivity. We provide all of the proofs and arguments in Chapter 4, where we
also describe a differentially private version of the Fast Johnson-Lindenstrauss Transform (FJLT) by Ailon
& Chazelle [3] with added Gaussian noise. This private sketch based on FJLT offers a tradeoff in speed for
variance for certain settings of the parameters u, β, and p compared to the private SJLT.

Differentially Private F0 Estimation Revisited

We remark that our private sketch for Euclidean distance approximation discussed above (and formally
presented in Chapter 4) can also be applied to estimate the cardinality of the symmetric difference between
two input sets: For binary vectors x, y ∈ {0, 1}u we have that Sx−Sy = S(x−y) is the Johnson-Lindenstrauss
transformation of the symmetric difference x−y. As S is a Johnson-Lindenstrauss transformation, ‖Sx−Sy‖22
accurately approximates ‖x−y‖22, which in turn is the same as ‖x−y‖0, since x and y are binary vectors. Thus,
the results from Chapter 4 can be applied to estimate the size of the symmetric difference, m, between inputs
x and y with error (std. deviation) O(m/

√
k +
√
sm/ε+ s

√
k/ε2). We remark that for β = 3

√
log(u)/(ε2m)

(as we chose to balance the relative and additive error of our noisy KOR sketch), this error is proportional
(suppressing polylogarithmic factors) to m2/3/ε2/3, hence we get error guarantees comparable to those of
the noisy KOR sketch.

2.3 Revisiting Privacy via Noise Addition

We now return to the question of how much noise is necessary to preserve differential privacy as touched
upon in Section 2.1.4. Although we are still interested in distributed data, we discuss a few differentially
private mechanisms in the central model of differential privacy before moving on to the distributed setting.
We consider mainly single real-valued queries. While the Laplace mechanism is asymptotically optimal for
ε-differential privacy when ε → 0, we study what happens for larger values of ε – that is, for a low level of
privacy. Geng, Kairouz, Oh & Visvanath [69, 70] introduced the Staircase mechanism and proved that this
noise distribution is optimal for answering real-valued queries ε-differentially privately. In Section 2.3.2 we
introduce a new ε-differentially private mechanism, the Arete mechanism, and compare it to the Staircase
mechanism. The Arete mechanism adds noise from our new Arete noise distribution. We go into further
detail with the Arete mechanism in Chapter 5.

In Section 2.3.3 we return to a distributed setting: In the previous section, we ensured differential
privacy by adding sufficient noise to each data release (each sketch). That is, we considered the local model
of differential privacy. We now discuss how to answer aggregate queries privately without requiring local
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differential privacy. The idea is to aggregate the data contributions securely using cryptographic techniques
such that the aggregator sees only the aggregate query result and not the individual data contributions.
Then each participant needs only add noise shares to their data contribution. During aggregation, the noise
shares add up to noise that masks the (aggregate) query output. This way, we can lower the noise level to
that of the central model. We describe how noise from the Arete distribution in infinitely divisible and so can
be divided among n participants such that the aggregate result has the same privacy and error guarantees
as applying the Arete mechanism in the central model.

2.3.1 The Staircase Mechanism

Geng et al. [70, 69] presented the ε-differentially private Staircase mechanism for real-valued queries, which
adds noise from their new Staircase distribution. We limit ourselves to discussing single-dimensional real-
valued queries as handled in [70] and refer the reader to [69] for multi-dimensional queries. The Staircase
distribution with parameters ε, γ ∈ [0, 1] and query sensitivity ∆ > 0 is a mixture of uniform distributions,
and so the density function of the Staircase distribution, fSC , is a piece-wise constant function (See Figure
2.2(b)) defined as follows:

fSC(t) :=


a(γ), t ∈ [0, γ∆)

e−εa(γ), t ∈ [γ∆,∆)

e−kεfSC(t− k∆), t ∈ [k∆, (k + 1)∆), k ∈ N
fSC(−t), t < 0

where a(γ) = (1−e−ε)/(2∆(γ+e−ε(1−γ))) is a normalizing constant, ensuring that fSC defines a probability
measure – i.e., that

∫
R fSC(t)dt = 1.

The Staircase mechanism places the majority of the probability mass in a uniform distribution on an
interval of length (for optimal γ) 2γ∆ = ∆e−Ω(ε) around zero and only probability mass

2

∞∑
k=1

a(γ)e−εk∆ = O(γ−1e−ε) = e−Ω(ε)

in the tails. Geng & Viswanath prove that this noise distribution is optimal for single real-valued queries.
While the Laplace mechanism is by now the standard choice of mechanism to achieve ε-differential privacy,
the Staircase mechanism has error exponentially decreasing in ε, and so ensures better accuracy than the
Laplace mechanism for large ε. For ε → 0, the Staircase distribution approaches the Laplace distribution.
Specifically, the Staircase distribution has (absolute) noise magnitude Θ(∆e−ε/2) (for the optimal choice of
γ), while the Laplace distribution has noise magnitude Θ(∆/ε).

2.3.2 The Arete Mechanism

In Chapter 5 we present our new noise distribution, the Arete1 distribution, and a mechanism for single
real-valued queries which adds noise from this distribution, the Arete mechanism. We prove that for suitable
parameters, the Arete mechanism is ε-differentially private.

The Arete Distribution

Intuitively, the Arete distribution can be thought of as a symmetric Γ-distribution, mirrored at zero, which
is flattened slightly to avoid the singularity at 0 (See Figure 2.2(c)). More precisely, a random variable
with the Arete distribution for parameters α, θ, λ > 0 has the same distribution as Z := X1 − X2 + Y ,
for independent Γ-distributed random variables X1, X2 ∼ Γ(α, θ) and Laplace distributed random variable
Y ∼ Lap(λ), where the latter is added to flatten the distribution.

1The name Arete is inspired by the word arête (pronounced ”ah-ray’t”), which is both a sharp-crested mountain ridge, while
also a concept from Greek mythology, Arete (pronounced ”ah-reh-’tay”) referring to moral virtue and excellence: the notion of
the fulfillment of purpose or function and the act of living up to one’s full potential [142].
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(a) Laplace distribution (b) Staircase distribution

(c) Arete distribution

Figure 2.2: Illustration of the density functions for the Laplace, Staircase and Arete distributions. The purpose of this figure
is to give an intuitive idea of the shapes. See Figure 5.2 for plots showing the densities of the Arete vs. Laplace distributions
for certain parameter settings.

Properties

The Arete distribution has a continuous density function which is symmetrically and monotonely decreasing
– that is, the density function is symmetric around 0, and monotonely decreases for t ≥ 0. The distribution
also has low expected (absolute) value for suitable parameters, exponentially decreasing in ε, and so can
be considered a counterpart to the Staircase distribution with a continuous density function and compa-
rable magnitude of the noise. Specifically, the Staircase mechanism has expected error Θ(∆e−ε/2) for the
optimal parameter setting, while there exists a parameter setting (not necessarily optimal) such that the
Arete mechanism has expected error O(∆e−ε/4), where ∆ is the sensitivity of the query. Furthermore, the
Arete mechanism has variance O(∆2e−ε/4) for the same parameter setting, while the Staircase mechanism
achieves variance Θ(∆2e−2/3ε) for the parameter setting optimizing for variance. We remark that for there
is not generally a parameter setting simultaneously optimizing for both error and variance for the Staircase
mechanism.

Apart from having error and privacy guarantees comparable to those of the Staircase mechanism, the
Arete mechanism has a few additional desirable properties. As briefly mentioned, the Staircase distribution
has a piece-wise constant density function, and so the privacy guarantee worsens in a step-wise manner for
query outputs that are slightly further apart than the sensitivity ∆ (i.e., for inputs that are almost but not
quite neighboring). Although the differential privacy guarantee does not need to be satisfied for such inputs,
it is still relevant to study what privacy guarantees can be made for inputs that are not quite neighbors. For
the Staircase mechanism, the privacy guarantee is immediately (at least) halved: suppose that |x−y| = 1+µ
for an arbitrarily small µ. If |q(x)−q(y)| > ∆, we may observe a noisy query output ξ = q(x)+ϕ = q(y)+ψ
such that fSC(ϕ) = a(γ)e−εk and fSC(ψ) = a(γ)e−ε(k+2). The Arete distribution has a continuous density
function, and so the privacy guarantee deteriorates more smoothly (see Figure 2.3). Furthermore, the Arete
distribution was inspired by the search for an alternative to the Staircase mechanism, which could be applied
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(a) Staircase mechanism (b) Arete mechanism

Figure 2.3: Illustrations of the worst-case privacy loss of the Staircase and Arete mechanisms depending on the difference
between query outputs. As we have no closed form for the density of the Arete distribution, we cannot explicitly determine the
privacy loss, so the graph given here is an approximation.

in a distributed setting while keeping the error low. We briefly touched upon infinite divisibility earlier in
this section but will discuss this key property of the Arete distribution a bit further in the next section.

2.3.3 Differential Privacy and Cryptographic Primitives

Consider the simple but important problem of real summation in a setting where an untrusted aggregator
can sum data contributions xj ∈ R from n participants without looking at each individual contribution,
thus only seeing the result of the aggregation. If we can add random noise to the contributions, which adds
up to appropriate noise for the query output during the aggregation, we can achieve the noise level from
the central model with the trust assumptions of the local model. The lines of work on secure multiparty
aggregation [77, 108] and the shuffle model of differential privacy [19] allow an untrusted unit to aggregate
data contributions without seeing the individual contributions using cryptographic techniques. We describe
the strategy using secure multiparty aggregation: Suppose that n participants add a bit of noise (a noise
share) ϕj to their own data contribution xj before submitting xj + ϕj to the aggregator. The noise share
ϕj does not need to ensure differential privacy of xj + ϕj , as the data contributions are shared via a secure

channel and the aggregator sees only the result
∑n
j=1(xj +ϕj) =

(∑n
j=1 xj

)
+ϕ for ϕ :=

∑n
j=1 ϕj . We want

noise shares ϕj such that the aggregated noise ϕ ensures differential privacy of the query result. Such noise
shares can be chosen for infinitely divisible distributions: Intuitively, a distribution D is infinitely divisible
if, for any n ∈ N, we can express random variable X ∼ D as a sum of n independent, identically distributed
random variables. That is, if for any n ≥ 1 there exist i.i.d. random variables X1, . . . , Xn such that

∑n
j=1Xj

has the same distribution as X. Note that Xi need not have distribution D.

As the Laplace distribution is infinitely divisible (a Laplace distributed random variable can be described
as the sum of differences between Γ-distributed random variables), secure multiparty aggregation [2, 77] and
the shuffle model [73] have previously been used together with Laplace noise to get essentially the same error
guarantees as in the central model for real summation. Since the Γ-distribution is also infinitely divisible
(as a Γ-distributed random variable can be expressed as the sum of Γ-distributed random variables) and
recalling that a random variable with the Arete distribution can be expressed as Z = X1 − X2 + Y for
Γ-distributed X1, X2 and Laplace distributed Y , the Arete distribution is also infinitely divisible – this
observation is formalized in Chapter 5. That is, one can choose noise shares that sum to Arete distributed
noise during aggregation, and so we can simulate an application of the Arete mechanism in the central model
of differential privacy by adding such noise shares to the data contribution of each participant. We note
that the Staircase distribution is not infinitely divisible as it is a mixture of uniform distributions, and so
we cannot simulate the Staircase mechanism using a secure channel.
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We give a formal definition of infinite divisibility as well as proofs that the Laplace, Γ, and Arete
distributions are infinitely divisible in Chapter 5. We then also argue how to combine secure multiparty
aggregation and the shuffle model with the Arete mechanism to solve two open questions from previous
work: [76] studies private real summation with several different secure multiparty aggregation protocols,
and [73] applies the shuffle model to sum real numbers privately. Both of [73, 76] use noise shares adding
up to Laplace noise. Exchanging these noise shares with shares adding up to a random variable with the
Arete distribution, we can achieve error exponentially decreasing in ε for queries over distributed data while
avoiding a dependency on the number of participants, inherent in the local model of differential privacy.

2.3.4 Privacy Amplification Techniques

The Staircase and Arete mechanisms significantly improve on the error for large values of ε – that is, for low
privacy guarantees. Suppose we want to increase the privacy level of such query results. In that case, we
now consider two techniques for privacy amplification: privacy amplification by sub-sampling [10], where the
privacy level is increased by considering only a sample of the input and privacy amplification via shuffling [64],
where a trusted shuffler ensures that the data contributions are anonymized before being forwarded to the
analyzer. Balle et al. [10] give a general technique to amplify privacy, showing that applying a differentially
private mechanism to only a sample of a dataset rather than the whole dataset gives better privacy guarantees:
LetM be an (ε, δ)-differentially private mechanism andMS :=M◦S be the composition ofM with sample
technique S. Then MS is (ε′, h(δ))-differentially private for an 0 < ε′ ≤ ε and some function h of δ. We
refer to [10] for the details and results concerning different variations and sampling techniques, but as an
example, Balle et al. show that if S randomly (and without replacement) samples m items from the input
set of size n ≥ m, then, ε′ = log(1 + (m/n)(eε − 1)) and h(δ) = m

n δ. Erlingsson et al. [64] show that
a (permutation invariant) mechanism satisfying ε-differential privacy (for ε < 1) in the local model also
satisfies O(ε

√
log(1/δ)/n, δ)-differential privacy in the shuffle model [19]. One advantage of this result is

that it suggests a method to achieve privacy amplification while still analyzing the entire dataset instead of
only a subsample, which was the case for the work of Balle et al.
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Chapter 3

Differentially Private F0 Estimation

This chapter is based on the paper Efficient Differentially Private F0 Linear Sketching (ICDT 2021) by
Rasmus Pagh & Nina Mesing Stausholm [119].

3.1 Introduction

Estimating the number of distinct values in a set (its cardinality) without explicitly enumerating the set is
a classical and fundamental problem in data management. Sampling-based methods [81] can in many cases
be improved by using algorithms designed with data streams in mind [94]. Streaming algorithms based on
linear sketches can also be used to estimate changes as a dataset evolves [97] and for approximate query
processing in distributed settings [6, 40]. As a motivating example, consider the following SQL query:

SELECT P.name

FROM PATIENTS P, DIABETES_RESULTS D

WHERE P.egg_allergy = true AND P.name = D.name AND D.result = positive

The size (in bytes) of the query result is a sum weighted by string length over the names that appear in
subsets of two relations. That is, estimating the size of the join result is about estimating the weighted size
of a set intersection.

In the example above, the information that a tuple with a particular person exists (and satisfies a specific
predicate) can potentially be sensitive: as an allergy to egg is fairly uncommon, one may be able to identify
an individual with a positive test result. If the database is distributed, with relations on different servers
that are not allowed to expose sensitive information, it is not trivial how to estimate this join size.

Differential privacy is often considered the gold standard for providing rigorous privacy guarantees, and
while it is known to come with pitfalls [98], work in the database community has led to privacy-preserving
database systems supporting (limited) SQL, see e.g. [106, 143] and their references. A challenge in such
systems is that the set of queries is often not known ahead of time, so budgeting the disclosure of detailed
information is highly non-trivial. An appealing approach to privacy-preservation, even when faced with
unknown queries, is to release a private sketch of the dataset from which we can compute approximate query
answers (as a side effect, this also eliminates the need for interaction, allowing for offline query results). In
this chapter, we will consider private linear sketches for the problem of weighted cardinality estimation:

Consider two players with sets A and B from a universe U = [u], resp. For every element j ∈ U let
wj ∈ (0, 1] be a fixed, public weight and for input set A ⊆ U consider the corresponding weight vector wA
with (wA)j = wj · 1[j ∈ A] for each j ∈ U . The goal is to estimate the weight of the symmetric difference
‖wA4B‖1, in a differentially private way. In this chapter, we show how to solve this problem using the
following idea: a player computes a linear sketch of the input set, from which it is possible to estimate the
weight of the set. Before releasing the sketch, the player adds noise to each entry of the sketch to ensure
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that the sketch is differentially private. We prove that the sketch is robust against noise, i.e., that one may
accurately estimate the weight of the input set from the private sketch, and argue that the sum of two such
sketches is a sketch for the symmetric difference. We formalize the idea in Section 3.4 and remark that if
wj = 1 for all j ∈ U , then the problem reduces to estimating the set size, a problem often referred to as F0,
and so the weighted version can be considered a generalization of F0.

If we, along with the estimate of the weight of the symmetric difference ‖wA4B‖1, have estimates of
‖wA‖1 and ‖wB‖1, then one can also estimate ‖wA∪B‖1, ‖wA∩B‖1, ‖wA\B‖1 and ‖wB\A‖1 as argued in
Section 3.4.3. To facilitate such estimates, each player also outputs a differentially private version of their
set weight. As it is not clear how to estimate ‖wA4B‖1 from ‖wA‖1 and ‖wB‖1, it seems insufficient to have
each party simply compute and release private versions of ‖wA‖1 and ‖wB‖1.

Our main results in this chapter are that we define and construct a noisy linear sketch over GF(2), the
field of size 2, with the following properties:

• ε-differentially private

• Computationally efficient

• Allows estimating the weight of the symmetric difference with small relative error

• Space usage is polynomially related to the lower bound (for fixed ε)

Previously known results satisfy at most 3 of these properties – see Figure 3.1 for an overview. We discuss
previous work further in Section 3.2. Our sketch can be computed and stored for offline computations, so
two players need not be active simultaneously but can release their sketches when ready. A self-contained
description of our linear sketch can be found in Section 3.4. Readers familiar with the sketching literature
will realize that our sketch combines a method of Kushilevitz, Ostrovsky, and Rabani [99] with a standard
hashing-based subsampling technique (see, e.g., [144]), and so refer to our (non-private) sketch as the KOR
sketch. We use a Randomized Response Technique [141] with noise parameter p(ε) < 1/2, and show in
Section 3.5.1 how to choose p(ε) to ensure ε-differential privacy for the sketch. This noisy counterpart is
referred to as the noisy KOR sketch. We generally leave out ε in the noise parameter and write simply p.
The bulk of our analysis is proving that the KOR sketch is sufficiently robust against noise to allow precise
estimation from the differentially private sketch. We show in Section 3.5.2 that the noisy KOR sketch permits
a (1 +β)-approximation for the weight of the input set with high probability and argue in Section 3.4.3 how
to privately estimate the weight of the symmetric difference from two noisy KOR sketches. A related but
non-linear and non-private sketch has previously been used for estimating the size of symmetric difference
by Mitzenmacher et al. [114]

For convenience, we often represent a set A ⊆ U by its characteristic vector xA ∈ {0, 1}u, where (xA)j = 1
if and only if j ∈ A. We often leave out the subscript A and simply write x to represent the input. As the
KOR sketch is linear and can be represented by a matrix, let S denote the sketch matrix and write Sx for
the (non-private) KOR sketch for input x. We formally define the sketch matrix in Section 3.4.1. Let x ◦ w
denote the Hadamard product. Our main theorem is:

Theorem 3.1 (Noisy KOR sketch). Let w ∈ (0, 1]u be given. For every choice of 0 < β < 1 and ε = O(1)
there exists a distribution H over GF(2)-linear sketches mapping a vector x ∈ {0, 1}u to {0, 1}τ , where
τ = O

(
log2(u)ε−2β−2

)
, and a distribution Dε over noise vectors such that:

1. For S ∼ H and ϕ ∼ Dε, given Sx+ ϕ we can compute, in time O(τ), an estimate ŵ of ‖x ◦ w‖1 that
with probability 1− 1/u satisfies |ŵ − ‖x ◦ w‖1| < β‖x ◦ w‖1 +O

(
log(u)ε−2β−2

)
.

2. For every S in the support of H, Sx+ ϕ is ε-differentially private over the choice of ϕ ∼ Dε, and can
be computed in time O(‖x‖0 log(u) + τ), including time for sampling ϕ.

The assumption that ε = O(1) is not essential, and is only made to simplify our bounds (which do not
improve for privacy parameter ε = ω(1)). Without loss of generality, we can assume that parameter β is
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Reference DP
Additive

error
Rel.
error

Initial.
time

Space
usage

Hardt & Talwar [82] ε Ω(1/ε) – – –

McGregor et al. [103] ε Ω̃(
√
m/eε) – – –

Jayram &
Woodruff [89]

– – 1 + β – Ω̃(1/β2)

Kane et al. [94] – Õ(1) 1 + β O(1) Õ(1/β2)

Mir et al. [110] ε Õ(m1−Ω(1)/εO(1)) 1 + β exp((εβ)−O(1)) Õ((εβ)−O(1))

Kenthapadi et al. [96] (ε, δ) Õ(
√
m/ε) 1 + β Ω̃(u) Õ(1/β2)∗

Stanojevic et al. [129] ε Õ(
√
|A ∪B|/ε2) – Ω(|A|+ |B|) Ω(|A|+ |B|)

This work ε Õ(m2/3/ε2/3) 1 + β Õ(ε−2β−2) Õ
(
ε−2β−2

)
Figure 3.1: Selected lower bounds (top part) and upper bounds (bottom part) for estimating the (unweighted) size of the
symmetric difference m = |A4B| from small sketches of sets A,B ⊆ {1, . . . , u}. Bounds stated as Õ and Ω̃ are simplified by
suppressing multiplicative factors polynomial in log(1/ε), log(1/β), log(1/δ), and log u. The non-private bounds in [89, 94]
improve previous results by an Õ(1) factor, we refer to their references for details. ∗ The space usage of [96] is measured in
terms of real numbers; it is unclear how much space a private, discrete implementation would need.

such that the error is dominated by β‖x ◦w‖1 because reducing β further cannot reduce error by more than
a factor 2. In the unweighted case, setting β = 3

√
log(u)/(ε2m) to balance relative and additive error we get

error Õ(m2/3/ε2/3), where the Õ notations suppresses a polylogarithmic factor. This is polynomially related
to known lower bounds described in section 3.2.3.

Applications Suppose that two players hold set A with corresponding characteristic vector xA ∈ {0, 1}u
and B with characteristic vector xB ∈ {0, 1}u. They jointly sample S ∼ H and privately sample ϕA, ϕB ∼
Dε according to Theorem 3.1. Then SxA + ϕA and SxB + ϕB are ε-differentially private. Furthermore,
(SxA +ϕB) + (SxB +ϕB) = (SxA + SxB) + (ϕA +ϕB), and we show in Section 3.4.3 that ϕA +ϕB ∼ Dε′
with ε′ = ε2/(2 + 2ε). In Section 3.5.2 we use this in conjunction with Theorem 3.1 to establish:

Corollary 3.1. For accuracy parameter β > 0, consider an ε-differentially private noisy KOR sketch for a
set A and an ε-differentially private noisy KOR sketch for a set B, based on the same linear sketch S ∼ H,
sampled independently of A and B. We can compute an approximation ∆̂ of the weight of the symmetric
difference, such that with probability 1− 1/u:

|‖wA4B‖1 − ∆̂| < β‖wA4B‖1 + poly(1/ε, 1/β, log u) .

In the special case where all weights wj are 1, this reduces to estimating the size of the symmetric dif-
ference A4B.

In Section 3.6 we describe how to modify our sketch to apply in a streaming setting. In this case, we
estimate the size of the union of the input streams rather than the size of the symmetric difference when
merging two sketches.

3.2 Related Work

In the absence of privacy constraints, seminal estimators for (unweighted) set cardinality that support
merging sketches (to produce a sketch of the union) are HyperLogLog [67], FM-sketches [68], and bottom-
k (aka. k-minimum values) sketches [14]. Progress on making these estimators private for set operations
include [135] (using FM-sketches) and [127], which builds a private cardinality estimator to estimate set
intersection size using the bottom-k sketch. We note that these sketches do not achieve differential privacy
but are aimed at a weaker notion of privacy. Specifically, they offer a one-sided guarantee that may reveal that
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an individual element is not present in the dataset. To our best knowledge, a private version of HyperLogLog
with provable bounds on accuracy has not been described in the literature.

The weighted version of cardinality estimation has been less studied. For (scaled) integer weights in [W ]
there is a simple reduction that inserts element i with weight wi by inserting the tuples (i, 1), . . . , (i, wi) into
a standard cardinality estimator on the domain U × [W ], but this makes the obtained bounds depend on the
number W of possible weights. Cohen et al. [39] showed that the class of cardinality estimators that rely
on extreme order statistics (for example, HyperLogLog) can be efficiently extended to the weighted setting,
even for real-numbered weights.

Note that the weighted F0 estimation problem is different from F1 and L1 estimation in the context of set
operations; for example, the union of two identical sets will have the same weighted F0, whereas summing
two identical vectors will produce a vector with twice the L1 norm. In the rest of this section, we focus on
the standard, unweighted setting.

3.2.1 Differentially private cardinality estimators

Already the seminal paper on pan-privacy [62] discusses differentially private streaming algorithms for F0 on
insertion-only streams. Their sketch is not linear and does not allow deletions or subtraction of sketches. It is
not clear if the sketch can be merged to produce a sketch for the union. Recent work by von Voigt et al. [138]
has shown how to estimate the cardinality of a set using less space in a differentially private manner using
FM-sketches, using the Probabilistic Counting with Stochastic Averaging (PCSA) technique [68]. These
sketches can be merged to obtain a sketch for the union of the input set with a slightly higher level of noise.
Privacy is achieved by randomly adding ones to the sketch and only sketching a sample of the input dataset.

Bloom Filters have been studied extensively to obtain cardinality estimators under set operations (already
implicit in [62]). Alaggan et al. [5] estimated set intersection size by combining a technique for computing
similarity between sets, represented by Bloom filters in a differentially private manner, named BLIP (BLoom-
then-flIP) filters [4] with a technique for approximating set intersection of two sets based on their Bloom
Filter representation [25]. We note that [4] achieves privacy by flipping each bit of the Bloom filter with a
certain probability, much like the technique we use to get privacy of our sketch. Stanojevic et al. [129] show
how to estimate set intersection, union, and symmetric difference for two sets by computing an estimate for
the size of the union, and combined with the size of each set, they show how to compute an estimate for the
size of the intersection and the symmetric difference. They achieve privacy by flipping each bit with some
probability, like in [4]. Also, RAPPOR [65] uses Bloom Filters with a Randomized Response technique to
collect data from users in a differentially private way but is mainly aimed at computing heavy hitters.

Though a bound on the expected worst-case error of privately estimating the size of a symmetric difference
|A4B| (as in Corollary 3.1) is not stated in any of these papers, an upper bound of O(

√
m̄), where m̄ is

an upper bound on the size of the sets, follows from the discussion in [129] (for fixed ε). It seems that this
magnitude of error is inherent to approaches using Bloom filters since it arises by balancing the error related
to the noise and the error related to hash collisions in the Bloom filter. An advantage and special case of
our noisy KOR sketch is that it can be used to estimate the size of the symmetric difference directly, and
therefore the error will depend only on the size of the symmetric difference. It seems that with non-linear
sketches, it would be necessary first to estimate the size of the union and combine this with the size of each
input set as exhibited in, for example, [129]. Hence, the error would depend on the size of the union of the
input sets.

3.2.2 Differentially private sketches

Closely related to our work is the differentially private Johnson-Lindenstrauss (JL) sketch by Kenthapadi et
al. [96], in which the technique of adding noise to the sketch is also applied. Kenthapadi et al. add Gaussian
noise, so to store and maintain a sketched vector, some kind of discretization would be needed (not discussed
in their paper). Discretizing a real-valued private mechanism is non-trivial: Without sufficient care, one
might lose privacy due to rounding in an implementation, as argued by Mironov [111]. Even if a suitable
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discretization of the mechanism in [96] would be possible (see [27] for a general discussion), it has several
drawbacks compared to our method:

• It only achieves approximate differential privacy as opposed to the pure differential privacy of the noisy
KOR sketch.

• The time needed to update the sketch when a set element is inserted or removed is not constant (in
the main method described, it is linear in the sketch size).

• The time needed to initialize the sketch is linear in the size of the sketch matrix, which has u columns
because the noise needs to be calibrated to the sensitivity of the JL sketch matrix, which requires linear
time in the size of the sketch matrix. Alternatively, which is the suggestion in Kenthapadi et al., the
sketch matrix is assumed to have low sensitivity, and noise is calibrated to this sensitivity. If a sketch
matrix with a large entry is randomly chosen, the sensitivity of the sketch matrix is large, in which
case the noise does not ensure privacy. So with a small probability, privacy is not preserved.

Another closely related work is the paper of Mir et al. [110], which also adds a noise vector after computing
standard linear sketches for F0 estimation to make the sketch differentially private. They further initialize
their sketches with random noise vectors to also get pan-privacy. The error bound obtained is similar to
ours, and the sketch has a discrete representation, but their method is inferior in terms of time complexity.
This is because they rely on the exponential mechanism [105], which is not computationally efficient. (Note
that a preprint of the paper of Mir et al. [109] presented a computationally more efficient method. However,
the sensitivity analysis in that paper has an error [117] that was corrected in the slower method published
in [110].)

Our method is more computationally efficient and arguably simpler than the methods of [96, 110]. Our
linear sketch is not a replacement for these sketches, though, since our sketch is over GF(2) rather than the
reals (or integers).

3.2.3 Lower bounds.

Jayram and Woodruff [89] show that, even with no privacy guarantee, to obtain error probability 1/u we
need a sketch of Ω

(
log(u)β−2

)
bits to estimate F0 with relative error 1± β. It is easy to extend this lower

bound to our setting, in which an additive error of c is allowed: Simply insert each item c times to increase
the size of the set so that the additive error is negligible. Formally this requires us to extend the universe
to U ×{1, . . . , c}, such that the lower bound in terms of the original universe size becomes Ω

(
log(u/c)β−2

)
.

(We do not use this reduction to eliminate the additive error in our upper bound because the reduction
increases the sensitivity of updates, destroying the differential privacy properties.)

Hardt and Talwar [82] show that an ε-differentially private sketch for F0 must have additive error Ω(1/ε),
which is comparable (up to polynomial and logarithmic factors) to the additive error we achieve.

Desfontaines et al. [45] show that it is not possible to preserve privacy in accurate cardinality estimators
if we can merge several sketches without loss in accuracy. Our sketch will have an increase in noise when
merging sketches and thus does not satisfy the requirement for cardinality estimators formulated in [45].

McGregor et al. [103] showed that in order to estimate the size of the intersection of two sets A and B,
based on differentially private sketches of A and B, an additive error of Ω(

√
u/eε) is needed in the worst

case when A and B are arbitrary subsets of [u]. The lower bound holds even in an interactive setting where
the players (holding A and B, resp.) can communicate, and we require that the communication transcript is
differentially private. The hard input distribution uses sets with symmetric difference of size Θ(u) with high
probability. Since |A ∩B| = (|A|+ |B| − |A4B|)/2, estimating the intersection size is no more difficult (up
to constant factors in error) than estimating |A|, |B|, and |A4B|. We can estimate |A| and |B| with error
O(1/ε) under differential privacy, so it follows that estimating |A4B| under differential privacy requires
error Ω(

√
u/eε). For a contrasting upper bound, [137, 113] suggest an algorithm estimating two-party set

intersection size up to an additive error of O(
√
u/ε) with high probability. A lower bound in terms of the

size m of the symmetric difference follows by setting u = m.
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3.2.4 Noisy sketching.

In addition to the paper of Mir et al. [110], there is some previous work on sketching techniques in the
presence of noise. Motivated by applications in learning theory, Awasthi et al. [9] considered recovery of a
vector based on noisy 1-bit linear measurements. The resistance to noise demonstrated is analogous to what
we show for the KOR sketch but technically quite different since the linear mapping is computed over the
reals before a sign operation is applied.

In a very recent paper [34], Choi et al. propose a framework for releasing differentially private estimates
of various sketching problems in a distributed setting. This framework ensures that the estimates only
have a multiplicative error factor. The technique relies on secure multiparty computation, and the sketch
submitted by each participant is not private and so cannot be released. Further, the results of Choi et al. do
not immediately allow for estimating size or weight of the symmetric difference between two sets.

If the sketching matrix S itself is secret and randomly chosen from a distribution over matrices with
entries in a finite field, very strong privacy guarantees on the sketch Sx can be obtained while still allowing
‖x‖0 to be estimated from Sx with small error [18]. Blocki et al. [20] prove that the Johnson-Lindenstrauss
transform is, in fact differentially private, when keeping the sketch matrix secret. However, the condition
that the sketch matrix is secret is a serious limitation for applications such as streaming and distributed
cardinality estimation that require S to be stored or shared.

3.3 Preliminaries

For a set A ⊆ U , we let xA denote the characteristic vector for A, defined for j ∈ [u] as

(xA)j =

{
1, j ∈ A
0, otherwise .

We write wA (or wxA) for the weight vector for input set A such that

wA = xA ◦ w

for fixed, public weights wj ∈ (0, 1], and ◦ denotes the Hadamard product.

For vector x = (x1, ..., xu) we define ‖x‖p =
(∑u

j=1 |xj |p
)1/p

as the p-norm of x. For p = 0, we define

‖x‖0 =
∑u
j=1 1[xj 6= 0], often called the zero-”norm”. F0 denotes the 0th frequency moment and

represents the number of distinct elements in a stream (or a set). Frequency moments are well-known from
the streaming literature; see for example [7].

Our sketch SxA is comprised of log(u) ”levels”, SixA for
i = 0, ..., log(u) − 1. We refer to Section 3.4.1 for a description of these levels. Let n denote the size of
the binary vector representation of SixA for each i. Hence, the size of the noisy KOR sketch SxA + ϕ is
τ = n log u. Note that n is fixed and depends on the privacy parameter ε and the accuracy parameter β.

Finally, we assume that sets and vectors are stored in a sparse representation, such that we can list the
non-zero entries in the input vector x in time O(‖x‖0).

3.3.1 Hashing-based subsampling

The sketch matrix S is defined by several hash functions. For simplicity, we assume access to an oracle
representing random hash functions, namely, that we can sample a fully random hash function, and it can
be evaluated in constant time. We do not store the hash function as part of our sketch, so the space for
our sketch does not include space required for storing the hash function. We believe it is possible to replace
these hash functions with concrete, efficient hash functions that can be stored in small space while preserving
the asymptotic bounds on accuracy, but to focus on privacy aspects, we have not pursued this direction.
Importantly, the differential privacy of our method holds for any choice of hash function and does not depend
on the random oracle assumption.
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To ensure that adding two sketches gives a sketch for the symmetric difference, both players must sample
the same elements for each Si. To ensure coordinated sampling, we use a hash function, so the same elements
from U are sampled by both players. We use the following (standard) subsampling technique: let S be the
family of all fully random hash functions from U into [0, 1]. Let s ∼ S uniformly at random. We sample an
element j from the input set at level i = 0, ..., log(u)− 1 if and only if s(j) ∈

(
wj/2

i+1, wj/2
i
]
. We refer the

reader to the survey of Woodruff [144] for more details on subsampling.

3.3.2 The Differential Privacy Model

In section 3.5.1 we prove that our protocol obtains ε-differential privacy. As the inputs are binary vectors
and the sketch is over GF(2), neighboring inputs are input vectors that differ in exactly one entry, i.e.,
vectors with Hamming distance 1. The sketch is over GF(2) and has sensitivity 1, which motivates the use
of Randomized Response as privatizing technique. We refer to Section 2.1.2 for the details about differential
privacy.

We may think of the protocol for estimating the weight of symmetric difference as working in the local
model of differential privacy (Section 2.1.5), as each player adds noise to their own sketch. We note that
our sketch would also work in a model where vectors supplied by the users are combined using a black-box
secure multiparty aggregation [77, 108]. In this setting, only the sketch for the symmetric difference would
be released, and so only this sketch would need to be differentially private.

In Section 3.4.3 we discuss how to compute estimates for the union and intersection of two input sets by
combining estimates for the weights of each set together with an estimate for the weight of the symmetric
difference. By each party releasing the weight of their own set via the Laplace mechanism (Lemma 2.3),
we may compute such differentially private estimates of the union and intersection with error of the same
magnitude as for the symmetric difference.

3.4 Techniques

3.4.1 Sketch Description

In this section, we describe the noisy KOR sketch in detail. The description is self-contained, but we refer
the interested reader to [40] for more background on (linear) sketches. As mentioned, our sketch combines
the techniques from [99] with hashing-based subsampling to achieve a sketch that is robust against adding
noise, as long as we know how much noise was added.

Recall that for input vector x ∈ {0, 1} and public weight vector w ∈ (0, 1]u we simplify notation by
defining wx := x ◦ w. The goal is to estimate the weight of x, ‖wx‖1.

We first give the intuition behind the n × u-matrices Si, that our sketch S is comprised of: Suppose
that we have a rough estimate Ê of ‖wx‖1, accurate within a constant factor. Then we can obtain a more
precise estimate by sampling (using a hash function) a fraction n/Ê of the elements, for some parameter n,
and computing the sketch from [99] of size n for the sampled elements. This gives an approximation of the
number of sampled elements, which in turn gives an approximation of ‖wx‖1 with small relative error. Since
we do not know ‖wx‖1 within a constant factor – especially in the setting where we are interested in the size
of the symmetric difference – we use hashing-based subsampling to sample each element j from the input
set with probability wj/2

i+1 for i = 0, . . . , log(u)− 1. Thus for each i, we sample elements corresponding to
approximately a 1/2i+1 fraction of the weight and compute the sketch from [99] of size n for the sampled
elements. For one of these i we are guaranteed to sample approximately a fraction n/‖wx‖1 of the input
weight assuming that ‖wx‖1 > n. For this i, we can obtain a precise estimate of ‖wx‖1 from the sketch.

We now define Si formally. We first describe the sketch from [99] as a linear sketch over GF(2). Let F
be the family of all hash functions from universe U into [n], and pick h ∼ F uniformly at random. The hash
function h uniquely defines an n× u-matrix K, where

Kk,j =

{
1, if h(j) = k

0, otherwise .
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We combine this with the following sampling technique:
Let S be the family of all hash functions from U to [0, 1]. Sample s ∼ S uniformly at random. The hash

function s defines a u× u-diagonal matrix Mi for each i = 0, ..., log(u)− 1, defined by

(Mi)j,j =

{
1, if s(j) ∈

(
wj/2

i+1, wj/2
i
]

0, otherwise .

The matrix-vector product Mix represents subsample of input vector x, where we sample each element with
probability wj/2

i+1.
We are finally ready to define Si as Si = KMi, which is an n× u-matrix over GF(2). By definition:

(Si)k,j =

{
1, (h(j) = k) ∧ (s(j) ∈

(
wj/2

i+1, wj/2
i
]
)

0, otherwise .

The KOR sketch can be represented as an n log(u)× u-matrix S, formed by stacking S1, ..., Slog(u).

Let Dε be a distribution over vectors from {0, 1}n log(u), where each entry is 1 independently with prob-
ability p. We show in Section 3.5.2 that it suffices to set p = 1/(2 + ε). Sample the noise (or pertubation)
vector ϕ ∼ Dε independently and uniformly at random. The noisy KOR sketch of x is then computed (over
GF(2)) as:

Sx+ ϕ.

3.4.2 Estimation

Next, we describe how to compute a weight estimate from a sketch Sx + ϕ. Let wx := x ◦ w and let ϕi be
the restriction of ϕ to the entries that are added to Six when adding ϕ to Sx. To compute an estimate for
‖wx‖1, for each i = 0, ..., log(u)− 1 count the number of 1s in Six+ ϕi, Zi = ‖Six+ ϕi‖0 and compute the
interval:

Ii =

[0, u] if Zi ≥ (1− γ)n/2[
2in ln

(
1

2/ε+1

1− 2Zi
(1+γ)n

)
, 2in ln

(
1

2/ε+1

1− 2Zi
(1−γ)n

)]
otherwise.

(3.1)

where γ < β−1/n
7e3(2/ε+1) . Compute the intersection I =

⋂log(u)−1
i=0 Ii and check if the maximum value in I is

within a factor (1 + η) of the minimum value in I for

η =
6γ
(
e3
(

2
ε + 1

)
− 1
)

1 + γ − 2γ
(
e3
(

2
ε + 1

)) .

If that is the case, every element in I is a good estimate for ‖wx‖1 (having relative error at most (1 + β))
with high probability. Otherwise, ‖wx‖1 is small with high probability, and we let the estimate for ‖wx‖1
be 0. We analyze the accuracy of this estimator in Section 3.5.

3.4.3 Application to symmetric difference

In this section, we describe a differentially private protocol to compute an estimate for the weight of the
symmetric difference between sets held by two parties. First, we show that the sum of two noisy KOR
sketches, SxA + ϕ and SxB + ψ, is a noisy KOR sketch for the symmetric difference, S(xA4B) + (ϕ + ψ),
which has the same properties as SxA + ϕ and SxB + ψ, but for ε′ < ε as more noise is added.

Lemma 3.1. The addition (over GF(2)) of two noisy KOR sketches with perturbation vectors ϕ ∼ Dε
and ψ ∼ Dε, respectively, is a noisy KOR sketch for the symmetric difference of the input sets with noise
ϕ+ ψ ∼ Dε′ for ε′ = ε2/(2 + 2ε).
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Proof. Let xA and xB be the input vectors from each of the two players. Let S be as defined in Section 3.4.1,
and define ϕ,ψ as the noise vectors for the noisy KOR sketches for xA and xB , respectively. We have (over
GF(2)) that

(SxA + ϕ) + (SxB + ψ) = (SxA + SxB) + (ϕ+ ψ) = S(xA + xB) + (ϕ+ ψ) .

This is exactly the noisy KOR sketch for the symmetric difference with perturbation ϕ + ψ. Note that we
observe a 1 in an entry of ϕ+ψ with probability p′ = p(1−p)+(1−p)p = 2p(1−p). We show in Section 3.5.2
that we can let p = 1

2+ε . Observe that

p′ =
1

2 + ε′
=

2

2 + ε

(
1− 1

2 + ε

)
which implies that ε′ = ε2/(2 + 2ε).

By Lemma 3.1 we can treat a sketch for the symmetric difference exactly like a sketch for input vector
x although with a different privacy parameter ε′. Hence, Theorem 3.1 gives us Corollary 3.1, restated here
for convenience:

Corollary 3.1. For accuracy parameter β > 0, consider an ε-differentially private noisy KOR sketch for a
set A and an ε-differentially private noisy KOR sketch for a set B, based on the same linear sketch S ∼ H,
sampled independently of A and B. We can compute an approximation ∆̂ of the weight of the symmetric
difference, such that with probability 1− 1/u:

|‖wA4B‖1 − ∆̂| < β‖wA4B‖1 + poly(1/ε, 1/β, log u) .

Note that the additive error in Corollary 3.1 still depends polynomially on ε even for privacy parameter
ε′, which is explained by the fact that ε′ = ε2/(2 + 2ε).

Finally, we assumed that ‖wA‖1 and ‖wB‖1 were released with Laplace noise, which gives an expected
additive error of O(1/ε) for each of ‖wA‖1 and ‖wB‖1 [60]. We can use the following equations to get
estimates for the union, intersection and difference:

‖wA∪B‖1 =
‖wA‖1 + ‖wB‖1 + ‖wA4B‖1

2
,

‖wA∩B‖1 =
‖wA‖1 + ‖wB‖1 − ‖wA4B‖1

2

‖wA\B‖1 =
‖wA‖1 + ‖wA4B‖1 − ‖wB‖1

2
.

That is, the error is bounded by half the error of the estimate of the symmetric difference size plus O(1/ε).

3.5 Proof of Theorem 3.1

In this section, we give a proof of Theorem 3.1, restated here for convenience:

Theorem 3.1 (Noisy KOR sketch). Let w ∈ (0, 1]u be given. For every choice of 0 < β < 1 and ε = O(1)
there exists a distribution H over GF(2)-linear sketches mapping a vector x ∈ {0, 1}u to {0, 1}τ , where
τ = O

(
log2(u)ε−2β−2

)
, and a distribution Dε over noise vectors such that:

1. For S ∼ H and ϕ ∼ Dε, given Sx+ ϕ we can compute, in time O(τ), an estimate ŵ of ‖x ◦ w‖1 that
with probability 1− 1/u satisfies |ŵ − ‖x ◦ w‖1| < β‖x ◦ w‖1 +O

(
log(u)ε−2β−2

)
.

2. For every S in the support of H, Sx+ ϕ is ε-differentially private over the choice of ϕ ∼ Dε, and can
be computed in time O(‖x‖0 log(u) + τ), including time for sampling ϕ.
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3.5.1 Noise level and Differential Privacy Guarantees

We first show that the noisy KOR sketch Sx + ϕ satisfies ε-differential privacy, which proves part 2 of
Theorem 3.1. Intuitively, removal/insertion of a single element can change only a single entry in the sketch,
as the element is inserted into only a single level.

Lemma 3.2. If p ∈
(

1
eε+1 ,

1
2

)
then Sx+ ϕ is ε-differentially private.

Proof. Let A and B be neighboring input sets with corresponding characteristic vectors, xA and xB . Neigh-
boring here means that one set is a subset of the other and the sizes differ by 1. By symmetry of differential
privacy, we can without loss of generality assume that A is the smaller set. Suppose that B\{z} = A.
The element z can only affect Six for i where z is sampled. Recall that there is at most one such i. If
z is never sampled, then SxA = SxB and privacy is trivial. So assume i ∈ {0, ..., log(u) − 1} such that
s(z) ∈

(
wz/2

i+1, wz/2
i
]
. We limit our attention to SixA + ϕi, where we think of ϕi as the restriction of the

n log(u)-dimensional random vector ϕ ∼ Dε to the entries that would be added to SixA when adding ϕ to
SxA. We show that SixA + ϕi is ε-differentially private. Then the entire sketch, SxA + ϕ, is ε-differentially
private.

Inserting z into the sketch implies that SixA and SixB will differ in exactly one entry. That is,
‖ SixA + SixB ‖0 = 1. Fix a noisy sketch, Hi. There exist unique vectors ϕi and ψi, such that
Hi = SixA + ϕi = SixB + ψi. Note that ‖ ϕi − ψi ‖0 = 1. Let ‖ϕi‖0 = r. Then ‖ψi‖0 = r′

for r′ ∈ {r + 1, r − 1}. Conditioned on ‖ϕi‖0 = r and ‖ψi‖0 = r′, the probabilities of randomly drawing
exactly these randomness vectors are, respectively:

(1− p)n−rpr and (1− p)n−r
′
pr
′
.

Let ε = O(1) be given. By Section 2.1.2 we know that it suffices to show that for any fixed output
Hi = SixA + ϕi = SixB + ψi, we have

e−ε ≤
Pr
[
observe Hi from A

]
Pr
[
observe Hi from B

] =
Pr
[
observe SixA + ϕi from A

]
Pr
[
observe SixB + ψi from B

] ≤ eε.
where the probability is over the randomness in ϕi and ψi.

Hence, to obtain differential privacy it suffices that for every possible value of r and r′ ∈ {r + 1, r − 1}

e−ε ≤ (1− p)n−rpr

(1− p)n−r′pr′
=

1

(1− p)r−r′pr′−r
≤ eε,

which is satisfied for 1/2 > p ≥ 1/ (eε + 1), since p < 1/2 by assumption.

3.5.2 Bounding accuracy

In this section, along with Section 3.5.3, we prove the first part of Theorem 3.1. Let input vector x be given
and let wx = x ◦ w. We will mainly consider each Six isolated, so let the (binary) randomness vector ϕi be
the n-dimensional restriction of ϕ as described in the proof of Lemma 3.2. First, we state two useful lemmas.

Lemma 3.3. For each i = 0, ..., log(u)− 1 let Li = ‖Six‖0 and Zi = ‖Six+ ϕi‖0. Then:

E
h∼F,
s∼S

[Li] =
n

2

1−
∏

j:xj=1

(
1− wj

2in

) (3.2)

E
h∼F,
s∼S,
ϕi∼Dp

[Zi] =
n

2

1− (1− 2p)
∏

j:xj=1

(
1− wj

2in

) (3.3)
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Proof. We refer to Section 3.8 for the proof.

Lemma 3.4. For i = 0, ..., log(u)− 1 let Zi = ‖Six+ ϕi‖0. For any 0 < γ < 1, we have with probability at

least 1− 6 log(u)e−
γ2p3n

62·3 that for all i = 0, ..., log(u)− 1 simultaneously:

(1− γ) E
h∼F,
s∼S,
ϕi∼Dp

[Zi] < Zi < (1 + γ) E
h∼F,
s∼S,
ϕi∼Dp

[Zi].

Proof. We refer to Section 3.8 for the proof.

First, we consider the case when 1 < n < ‖wx‖1. In Lemma 3.5 we state that in this case, with high
probability, we get an error of at most a factor (1 + β) for a well-chosen γ, where γ is a function of the
privacy parameter ε, the accuracy parameter β and the size of the universe, u. For convenience, define

Ii(p) =

[0, u] if Zi ≥ (1− γ)n/2[
2in ln

(
1−2p

1− 2Zi
(1+γ)n

)
, 2in ln

(
1−2p

1− 2Zi
(1−γ)n

)]
otherwise

(3.4)

and ŵx := 2in ln
(

1/
∏
j:xj=1

(
1− wj

2in

))
. We prove our result in two steps:

1. If ŵx ∈ Ii(p) for all i = 0, ..., log(u)− 1, then there is some i such that any value from (3.4) estimates
ŵx up to a factor (1 + η), where η is a function of γ and ε.

2. ‖wx‖1 ≤ ŵx ≤
(
1 + 1

2in

)
‖wx‖1 for each i. Specifically, ‖wx‖1 ≤ ŵx ≤

(
1 + 1

n

)
‖wx‖1 for all i.

Hence, we choose γ independent of i such that (1 + η)
(
1 + 1

n

)
≤ (1 + β) for at least one of the intervals

Ii(p). We pick γ to work for the i where ‖wx‖1/(2in) ∈ [1, 2) as this corresponds to having an input of size
between n and 2n (we obtain this input size by the sampling from x in Si). If ‖wx‖1 ≥ n, there is such
an i, and we can identify it by checking that the endpoints of the interval are sufficiently close together, as
described in Section 3.4.2. We consider the case when ‖wx‖1 < n in Section 3.5.3 where we show that in
this case, the error is bounded by an additive factor of O(n).

Lemma 3.5. Assume ‖wx‖1 > n > 1, and β > 1
n . With probability at least 1− 6 log(u)e−

γ2p3n
108 there exists

an i ∈ {0, ..., log(u)− 1} such that any element from Ii(p) is a (1 + β)-approximation to ‖wx‖1 for

γ <

(
β − 1

n

)
(1− 2p)

7e3
.

Specifically, i where ‖wx‖12in ∈ [1, 2), gives these guarantees.

Proof Sketch. We give an informal sketch of the proof and refer to Section 3.8 for the formal proof. We first
remark that for γ as described, Lemma 3.4 implies that if ‖wx‖1/(2in) ≤ 2, then Zi < (1− γ)n/2 with high
probability. Hence, it suffices to consider the intervals from (3.4) of the form

Ii(p) =

[
2in ln

(
1− 2p

1− 2Zi
(1+γ)n

)
, 2in ln

(
1− 2p

1− 2Zi
(1−γ)n

)]
.

Define

ŵx := 2in ln

(
1∏

j:xj=1

(
1− wj

2in

)) .
From Lemma 3.3, we have ∏

j:xj=1

(
1− wj

2in

)
=

1− 2 E[Zi]
n

1− 2p
.
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Assume that the bounds in Lemma 3.4 are satisfied. We remove this assumption shortly. By the bounds in
Lemma 3.4, ŵx ∈ Ii(p) for all i. We show that ŵx is contained in an interval, which is slightly bigger than
Ii(p) whenever ‖wx‖1/(2in) ∈ [1, 2) and show that the endpoints of this interval are within a factor (1 + η)
of each other, where η is a function of γ. Clearly, then Ii(p) is also sufficiently small for this i. Denote this
interval I∗i (p). Any element from I∗i (p) is a (1 +η)-approximation to ŵx. Removing the assumption that the
bounds in Lemma 3.4 hold, we simply get a small error probability and conclude that with probability at
least 1−6 log(u)e−γ

2p3n/108 we have ŵx ∈ Ii(p) for all i, and thus any value from I∗i (p) is a (1+η) estimation
to ŵx with high probability. Observing that ‖wx‖1 < ŵx ≤

(
1 + 1

n

)
‖wx‖1 for any i, we choose γ in terms

of β such that (1 + η)
(
1 + 1

n

)
< (1 + β). Then any value from I∗i (p) is a (1 + β)-approximation for ‖wx‖1.

We formally choose γ when giving the technical details in Section 3.8. We remark that the assumption
‖wx‖1/(2in) ∈ [1, 2) allows us to choose γ independent of i, such that we can compute Ii(p) for all i with a
single value of γ.

Observing that 1
2+ε >

1
eε+1 for ε > 0, we let p = 1/ (2 + ε) and observe that for Ii := Ii (1/ (2 + ε)) with

the choice of γ described in Lemma 3.5, we get the interval Ii in (3.1).

3.5.3 Putting things together

In this section, we consider the accuracy in the remaining case where ‖wx‖1 ≤ n. We also analyze the
running time. Combining with Section 3.5.1, this completes the proof of Theorem 3.1.

Note that if ε > 1, we can start our protocol by dividing ε by a suitable constant, c such that ε′ = ε/c < 1.
Changing ε by a constant will change our bounds by a constant factor as well. Hence, we can, without loss
of generality, assume ε < 1. We can also, without loss of generality, assume u > 10, as this will at most
increase the failure probability and space by a constant factor.

We first show a sufficient upper bound on the sketch size τ = n log u. Observe that p > 1/4 and let

cγ = 7e3 be a constant. Then we want e−
γ2p3n

108 < 1/u2 as this ensures a failure probability of at most
6 log(u)/u2 < 1/u. Noting that

(1− 2p)2 =

(
1− 2

2 + ε

)2

=

(
1

2/ε+ 1

)2

=
1

4/ε2 + 4/ε+ 1
>
ε2

20
,

we have

e−
γ2p3n

108 < e−

 (β− 1
n )(1−2p)

7e3


2

n/43

108 = e
−

(β− 1
n )

2
(

1
(2/ε+1)2

)
n

43·c2γ ·108 < e
− (β− 1

n )
2
ε2n

20·43c2γ ·108 < 1/u2

when letting n = O
(
log(u)β−2ε−2

)
. Hence, the size of the sketch is

τ = log(u) · n = O

(
log2(u)

ε2β2

)
.

Note that this n satisfies the requirement β > 1/n from Lemma 3.5.
We argue about the error: Note that if ‖wx‖1 ≥ n, then if one of the intervals Ii is sufficiently small

and ŵx ∈ Ii for all i = 0, ..., log(u) − 1, then ŵx ∈ I =
⋂log(u)−1
i=0 Ii and I is also sufficiently small to give

the wanted estimate. So by Lemma 3.5, we can check if the endpoints of I are within a factor at most
(1 + η) of each other, and if so, with probability 1 − 1/u any value from I is within a factor (1 + β) of
‖wx‖1. If I is too big, then none of the intervals Ii was sufficiently small implying that our assumption
that ‖wx‖1/(2in) ∈ [1, 2) does not hold for any i. And so, with probability 1 − 1/u we have ‖wx‖1 < n.
We refer to Section 3.8 for the formal proof of Lemma 3.5. Our protocol sets the estimate of ‖wx‖1 to 0
leading to an additive error of O(n) when I was too big. This means that we get an additive error of at
most n = O

(
log(u)β−2ε−2

)
, as required.
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Finally, we comment on the running times: For the first part of Theorem 3.1, we note that in order to
compute the estimate, we need to count the number of ones in Six+ϕi for each i = 0, ..., log(u)−1, compute
the intervals Ii and their intersection and check if it is sufficiently small. Counting the number of ones in
all Six+ϕi is the bottleneck and requires time O(τ). For the second part of Theorem 3.1, note that we can
initialize the randomness vector ϕ in time O(τ) and we can hash vector x in time O (‖x‖0 log(u)) assuming
that we can iterate over x in time O(‖x‖0). Combining with Lemma 3.5 and Lemma 3.2, we have completed
the proof of Theorem 3.1.

3.6 Distributed Streaming Implementation

In a streaming setting, we want a sketch that can be updated, and two sketches can be merged to give a
sketch for the union of the input streams, while we cannot guarantee that there are no duplicates in the input
stream. Our sketch does not immediately apply in this case, as items with an even number of occurrences
would ”cancel out”. Therefore, such items would never be represented in the sketch, as the sketch is over
GF(2). This issue can easily be fixed: the idea is to add another layer of sampling, such that we sample
each occurrence of a data item with probability 1/2. Hence, we treat identical items independently on each
occurrence and so ensure that an entry in the sketch is 1 with probability 1/2, regardless of the number of
copies of identical items and collisions with other items. We refer to this as the pre-sampled sketch. The
intuition is that the number of copies of an item inserted in the pre-sampled sketch is even or odd with
probability 1/2. By Chernoff bounds, the fraction of elements that are sampled an odd number of times is
very close to 1/2 with high probability. Thus it is natural to consider the estimator that is two times the
estimator described in Section 3.4.2.

To understand this in more detail, we argue that merging two (non-private) pre-sampled sketches over
GF(2) gives a sketch for the union of the two input sets. Suppose z ∈ A∪B, h(z) = k and that z is sampled
at level i. We argue that Pr[(SixA∪B)k = 1] = 1/2. Note that

(SixA∪B)k = 1 ⇔ (SixA)k 6= (SixB)k.

Further, we have that if z ∈ A, then Pr[(SixA)k = 1] = 1/2 regardless of the number of other elements
hashing to k at level i. If no elements from A hash to entry k at level i, then Pr[(SixA)k = 1] = 0. We
have

Pr[(SixA∪B)k = 1] = Pr[(SixA)k = 1] Pr[(SixB)k = 0] + Pr[(SixA)k = 0] Pr[(SixB)k = 1],

which is 1/2 whenever z ∈ A ∪B.

3.7 Open Problems

An immediate question is, how to get a better additive error than described in Figure 3.1 in terms of the
size of the symmetric difference m and the accuracy and privacy parameters β and ε. Whereas the noisy
KOR sketch has additive error Õ(m2/3/ε2/3), one may ask whether we can improve on the exponent of 2/3
to get closer to the well-known lower bound [103] of Ω̃(

√
m/eε).

In Section 3.4.3 we saw that combining sketches (Sx+ϕ)± (Sy+ψ) = S(x±y)+(ϕ±ψ) lead to a sketch
with noise ϕ±ψ, which need not have the same distribution as ϕ and ψ. Hence, the combined sketch S(x±
y) + (ϕ±ψ) may have a higher noise level (and so better privacy guarantees and worse accuracy guarantees)
than the original sketches Sx + ϕ and Sy + ψ. Therefore it is interesting to understand how noise behaves
under such addition/subtraction, and in particular, how fast the amount of noise grows when combining

multiple sketches. Suppose that we combine n linear sketches:
∑n
j=1 Sxj + ϕj = S

(∑n
j=1 xj

)
+
∑n
j=1 ϕj .

By accepting lower privacy guarantees for the individual sketches, or by combining differential privacy with
secure aggregation as discussed in Section 2.3.3, we may choose ϕj appropriately to ensure that

∑
j ϕj

follows a noise distribution which ensures that the combined sketch achieves a specific privacy guarantee.
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As the noise distribution for ϕj will usually depend on n, an especially interesting question concerns when
the number of sketches merged is unknown, in which case it is not clear how to avoid a significant increase
in the noise level (and so decreasing accuracy).

As mentioned, our noisy KOR sketch can be used to estimate the size of the union of streaming data
and multisets. Without the privacy constraint, it is known that we can use (non-private) linear sketches to
estimate the size of the symmetric difference, but it would be interesting to understand how to estimate the
size of the symmetric difference for such data with privacy.

3.8 Technical Details

In this section, we give the technical details and proofs omitted in the previous sections.

3.8.1 Omitted Proofs for Expected Number of Ones in Sketch

Lemma 3.3. For each i = 0, ..., log(u)− 1 let Li = ‖Six‖0 and Zi = ‖Six+ ϕi‖0. Then:

E
h∼F,
s∼S

[Li] =
n

2

1−
∏

j:xj=1

(
1− wj

2in

) (3.2)

E
h∼F,
s∼S,
ϕi∼Dp

[Zi] =
n

2

1− (1− 2p)
∏

j:xj=1

(
1− wj

2in

) (3.3)

Proof. Let A be the input set with corresponding weight vector w. Let vi ∈ Zn≥0 be a vector such that for
each k ∈ [n]

(vi)k =
∑
j∈A

1

[
s(j)

wj
∈
(
1/2i+1, 3/2i+1

]]
· 1 [h(j) = k] .

That is, each entry (vi)k is the number of candidates for entry k in the sketch at level i, i.e., the number of

items j that hash to k and satisfy s(j)
wj
∈
(
1/2i+1, 3/2i+1

]
. Since s(j) is uniform, we have for such a candidate

Pr
s∼S

[
s(j) ∈

(
wj/2

i+1, 2wj/2
i+1
] ∣∣∣ s(j) ∈ (wj/2i+1, 3wj/2

i+1
]]

=
1

2
.

If there is at least one candidate for entry k then, by the Principle of Deferred Decisions, the probability
that we sample an odd number of these is 1/2 and so for i = 0, ..., log(u)− 1

Pr
h∼F
s∼S

[(SixA)k = 1 | (vi)k 6= 0] =
1

2
and Pr

h∼F
s∼S

[(SixA)k = 1 | (vi)k = 0] = 0.

As

Pr
s∼S

[
s(j)

wj
∈
(
1/2i+1, 3/2i+1

]]
= Pr
s∼S

[
s(j) ∈

(
wj/2

i+1, 3wj/2
i+1
]]

=
wj
2i
,

we have
Pr
h∼F
s∼S

[(vi)k 6= 0] = 1−
∏
j∈A

(
1− wj

2in

)
.

We conclude that

Pr
h∼F,
s∼S

[(SixA)k = 1] =
1−

∏
j∈A

(
1− wj

2in

)
2

.
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and letting Li =
∑n
k=1(SixA)k, we get

E
h∼F,
s∼S

[Li] =
n

2

1−
∏
j∈A

(
1− wj

2in

)
We similarly compute an expression for Eh∼F,s∼S,ϕi∼Dp [Zi]. Let ϕi be the restriction of a randomness vector
ϕ ∼ Dε to the entries that are added to SixA when adding ϕ to SxA. We see that

Pr
h∼F,
s∼S,
ϕi∼Dp

[
(SixA + ϕi)k = 1

]
= Pr

h∼F,
s∼S,
ϕi∼Dp

[
(SixA + ϕi)k = 1 | (SixA)k = 1

]
· Pr
h∼F,
s∼S

[
(SixA)k = 1

]

+ Pr
h∼F,
s∼S,
ϕi∼Dp

[
(SixA + ϕi)k = 1 | (SixA)k = 0

]
· Pr
h∼F,
s∼S

[
(SixA)k = 0

]

= (1− p) · Pr
h∼F,
s∼S

[
(SixA)k = 1

]
+ p · Pr

h∼F,
s∼S

[
(SixA)k = 0

]

= (1− p) · 1

2

1−
∏
j∈A

(
1− wj

2in

)+ p ·

(
1−

1−
∏
j∈A

(
1− wj

2in

)
2

)

=
1

2
−
(

1

2
− p
)∏
j∈A

(
1− wj

2in

)
showing that

E
h∼F,
s∼S,
ϕi∼Dp

[Zi] =
n

2

1− (1− 2p)
∏
j∈A

(
1− wj

2in

) .

3.8.2 Omitted Proofs for Concentration Bounds for Number of Ones in Sketch

Lemma 3.4. For i = 0, ..., log(u)− 1 let Zi = ‖Six+ ϕi‖0. For any 0 < γ < 1, we have with probability at

least 1− 6 log(u)e−
γ2p3n

62·3 that for all i = 0, ..., log(u)− 1 simultaneously:

(1− γ) E
h∼F,
s∼S,
ϕi∼Dp

[Zi] < Zi < (1 + γ) E
h∼F,
s∼S,
ϕi∼Dp

[Zi].

Before proving Lemma 3.4, we mention the following lemma:

Lemma 3.6. Let Li = ‖SixA‖0. For any 0 < γ′ < 1, we have with probability at least 1− 4 log(u)e−2γ′2n

E
h∼F,
s∼S

[Li]− 2γ′n ≤ Li ≤ E
h∼F,
s∼S

[Li] + 2γ′n

for all i = 0, ..., log(u)− 1 simultaneously.

Proof. Let A be the input set and w the corresponding weight vector. Let vi ∈ Zn≥0 be a vector such that
for each k ∈ [n]

(vi)k =
∑
j∈A

1

[
s(j)

wj
∈
(
1/2i+1, 3/2i+1

]]
· 1 [h(j) = k]
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so (vi)k is the number of candidates for entry k in the sketch at level i. Let Vi = ‖vi‖0 =
∑n
k=1 1[(vi)k 6= 0].

Vi is a sum of negatively associated random variables (for definition and argument see Section 4.1 in [53]),

so by Theorem 4.3 in [53], we can use the Hoeffding bound to see that with probability at least 1− 2e−2nγ′2

we have for any i = 0, ..., log(u)− 1

E[Vi]− γ′n ≤ Vi ≤ E[Vi] + γ′n. (3.5)

Let Li = ‖SixA‖0 =
∑n
k=1(SixA)k denote the number of ones in the linear sketch. For fixed Vi, Li is a sum

of independent random variables with (by the principle of deferred decisions)

Pr
[
(SixA)k = 1 | (vi)k 6= 0

]
=

1

2
, Pr

[
(SixA)k = 1 | (vi)k = 0

]
= 0.

So for any fixed Vi = t

E
[
Li | Vi = t

]
=
t

2
. (3.6)

Furthermore, as Li is a sum of independent random variables for a fixed choice of Vi, we can use the Hoeffding
bound: with probability at least 1− 2e−2nγ′2

E
[
Li | Vi = t

]
− γ′n ≤ Li|Vi=t ≤ E

[
Li | Vi = t

]
+ γ′n,

where Li|Vi=t means the value of Li when we assume that Vi = t. Combining this with (3.5) and (3.6) a

union bound gives with probability at least 1− 4e−2nγ′2

E[Vi]− γ′n
2

− γ′n ≤ Li ≤
E[Vi] + γ′n

2
+ γ′n. (3.7)

Simultaneously, (3.5) and (3.6) gives

E[Vi]− γ′n
2

≤ E[Li] ≤
E[Vi] + γ′n

2
, (3.8)

which implies

2 E[Li]− γ′n ≤ E[Vi] ≤ 2 E[Li] + γ′n. (3.9)

Note that in the union bound from (3.7), we already assumed that (3.5) was satisfied, so (3.9) is trivially
satisfied under the union bound without changing the probability guarantees. Hence, inserting (3.9) into
(3.7), we have

2 E[Li]− 2γ′n

2
− γ′n ≤ Li ≤

2 E[Li] + 2γ′n

2
+ γ′n. (3.10)

which finally shows that with probability at least 1− 4e−2nγ′2 we have

E[Li]− 2γ′n ≤ Li ≤ E[Li] + 2γ′n.

A union bound over the log(u) values of i concludes the proof.

We are now ready to prove Lemma 3.4.

Proof of Lemma 3.4. Fix i. Let Li = ‖SixA‖0 and Zi = ‖SixA + ϕi‖0. We let Zi|Li=t be the number of

ones in SixA + ϕi, assuming that Li = t. For any fixed value t ∈ {0, ..., n} of Li, we have

E
ϕi∼Dp

[
Zi|Li=t

]
= (1− p) · t+ p(n− t) = np+ (1− 2p)t. (3.11)
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By Lemma 3.6, with probability at least 1− 4 log(u)e−2γ′2n we have for all i = 0, ..., log(u)− 1

E
h∼F,
s∼S,
ϕi∼Dp

[Zi] ≥ np+ (1− 2p)

 E
h∼F,
s∼S

[Li]− 2γ′n

 (3.12)

E
h∼F,
s∼S,
ϕi∼Dp

[Zi] ≤ np+ (1− 2p)

 E
h∼F,
s∼S

[Li] + 2γ′n

 (3.13)

Furthermore, for any fixed Si, let Zi|Si denote the number of ones in SixA + ϕi, conditioned on this

choice of Si. We note that fixing Si is equivalent to fixing Li as Li is uniquely determined by Si and the
input. Zi|Si is a sum of independent random variables, where the randomness comes from the perturbation.

So for any 0 < γ∗ < 1, a Chernoff bound gives

Pr
ϕi∼Dp

[
Zi|Si > (1 + γ∗) E

[
Zi|Si

]
∨ Zi|Si < (1− γ∗) E

[
Zi|Si

] ]
≤ 2e

−γ∗2 E

[
Zi|

Si

]
/3

(3.14)

where E
[
Zi|Si

]
is over ϕi ∼ Dp. By (3.11), Eϕi∼Dp

[
Zi|Si

]
≥ np for any choice of Si, so 2e−γ

∗2pn/3 is an

upper bound on (3.14). Moreover, (3.14) holds for all i = 0, ..., log(u)− 1 simultaneously with probability at

most 2 log(u)e−γ
∗2pn/3. We conclude that

Pr
ϕi∼Dp

[
∀i : (1− γ∗) E

[
Zi|Si

]
< Zi|Si < (1 + γ∗) E

[
Zi|Si

] ]
≥ 1− 2 log(u)e−γ

∗2pn/3 (3.15)

Combining (3.12), (3.13) and (3.15) and letting γ′ = γ∗, we have by a union bound that for all levels i
simultaneously, where the expectation is over h ∼ F and s ∼ S

Zi ≥ (1− γ′) (np+ (1− 2p) (E[Li]− 2γ′n))

Zi ≤ (1 + γ′) (np+ (1− 2p) (E[Li] + 2γ′n)) ,

with probability at least

1−
(

4 log(u)e−2nγ′2 + 2 log(u)e−γ
′2pn/3

)
≥ 1− 6 log(u)e−γ

′2pn/3.

By Lemma 3.3, this is equivalent to

Zi ≥ (1− γ′) (E[Zi]− 2(1− 2p)γ′n) (3.16)

Zi ≤ (1 + γ′) (E[Zi] + 2(1− 2p)γ′n) . (3.17)

where the expectation is over h ∼ F , s ∼ S and ϕi ∼ Dp. We pick a suitable γ′:

γ′ =
γp

6
⇒ 2(1− 2p)γ′n = (1− 2p)

γp

3
n ⇒ 2(1− 2p)γ′n ≤ γ(1− 2p)

3
E[Zi].

Hence, let γ′ = γp
6 . Inserting into (3.16) and (3.17) we have

Zi ≥
(

1− γp

6

)(
E[Zi]−

γ(1− 2p)

3
E[Zi]

)
Zi ≤

(
1 +

γp

6

)(
E[Zi] +

γ(1− 2p)

3
E[Zi]

)
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where E[Zi] is over h ∼ F , s ∼ S and ϕi ∼ Dp.
We conclude that with this choice of γ, with probability at least 1− 6 log(u)e−

γ2p3n

62·3

(1− γ) E
h∼F,
s∼S,
ϕi∼Dp

[Zi] ≤ Zi ≤ (1 + γ) E
h∼F,
s∼S,
ϕi∼Dp

[Zi].

3.8.3 Omitted Proofs for Size of Interval for Input Size

Before proving Lemma 3.5, we give a technical lemma:

Lemma 3.7. For any 0 < γ < 1
2e3

1−2p−1
any value

m̂ ∈

[
2in ln

(
1− 2p

1− 2Zi
(1+γ)n

)
, 2in ln

(
1− 2p

1− 2Zi
(1−γ)n

)]
(3.18)

satisfies

m̂ ≥ (1− η) 2in ln

(
1∏

j∈A
(
1− wj

2in

))

m̂ ≤ (1 + η) 2in ln

(
1∏

j∈A
(
1− wj

2in

))
for

η =
6γ
(

e3

1−2p − 1
)

(1− γ)− 2γ
(

e3

1−2p − 1
)

with probability at least 1− 6 log(u)e−γ
2p3n/108 for the i where ‖w‖12in ∈ [1, 2].

Proof. By Lemma 3.3 ∏
j∈A

(
1− wj

2in

)
=

1− 2 E[Zi]
n

1− 2p

and so by Lemma 3.4, with probability at least 1 − 6 log(u)e−γ
2p3n/108 we have for any 0 < γ < 1 that for

all i = 0, ..., log(u)− 1 simultaneously.

1− 2Zi
(1−γ)n

1− 2p
<
∏
j∈A

(
1− wj

2in

)
<

1− 2Zi
(1+γ)n

1− 2p
. (3.19)

For convenience, we consider the slightly bigger interval – note that if (3.19) is satisfied, then so is this
interval:

1− 2(1+γ) E[Zi]
(1−γ)n

1− 2p
<
∏
j∈A

(
1− wj

2in

)
<

1− 2(1−γ) E[Zi]
(1+γ)n

1− 2p
,

where the left-hand side can be reordered as(
1− 2γ

1− γ

(
1

(1− 2p)
∏
j∈A

(
1− wj

2in

) − 1

))∏
j∈A

(
1− wj

2in

)
(3.20)
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and the right-hand side as(
1 +

2γ

1 + γ

(
1

(1− 2p)
∏
j∈A

(
1− wj

2in

) − 1

))∏
j∈A

(
1− wj

2in

)
. (3.21)

We will bound this interval further using the following claim:

Claim 3.1. Define

β∗ :=
2γ

1− γ

(
e2+ 1

2i−1n

1− 2p
− 1

)
.

Whenever ‖w‖12in < 2, the interval defined by (3.20) and (3.21) is contained in(1− β∗)
∏
j∈A

(
1− wj

2in

)
, (1 + β∗)

∏
j∈A

(
1− wj

2in

)
Proof of Claim. As 2γ

1+γ <
2γ

1−γ , we increase (3.21) to(
1 +

2γ

1− γ

(
1

(1− 2p)
∏
j∈A

(
1− wj

2in

) − 1

))∏
j∈A

(
1− wj

2in

)
.

Observing that when ‖w‖12in ≤ 2

2γ

1− γ

(
1

(1− 2p)
∏
j∈A

(
1− wj

2in

) − 1

)
≤ 2γ

1− γ

e ‖w‖12in
+
‖w‖1
(2in)2

1− 2p
− 1

 ≤ 2γ

1− γ

(
e2+ 1

2i−1n

1− 2p
− 1

)
=: β∗

we have the result.

Applying the claim, we consider the interval:

2in ln

(
1∏

j∈A
(
1− wj

2in

)) ≥ 2in ln

(
1

(1 + β∗)
∏
j∈A

(
1− wj

2in

)) (3.22)

2in ln

(
1∏

j∈A
(
1− wj

2in

)) ≤ 2in ln

(
1

(1− β∗)
∏
j∈A

(
1− wj

2in

)) . (3.23)

We remind the reader that by construction, this interval contains the target interval (3.18).
We consider the ratio between the end-points of the interval defined by (3.22) and (3.23). Observe that

2in ln

(
1

(1−β∗)
∏
j∈A(1−

wj

2in
)

)
2in ln

(
1

(1+β∗)
∏
j∈A(1−

wj

2in
)

) =

ln

(
1∏

j∈A(1−
wj

2in
)

)
− ln(1− β∗)

ln

(
1∏

j∈A(1−
wj

2in
)

)
− ln(1 + β∗)

≤
ln

(
1∏

j∈A(1−
wj

2in
)

)
+ β∗

1−β∗

ln

(
1∏

j∈A(1−
wj

2in
)

)
− β∗

= 1 +
β∗
(

1 + 1
1−β∗

)
ln

(
1∏

j∈A(1−
wj

2in
)

)
− β∗

where the inequality follows from

x

1 + x
≤ ln(1 + x) ≤ x, x > −1.
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For β∗ < 1/2, we have

β∗
(

1 + 1
1−β∗

)
ln

(
1∏

j∈A(1−
wj

2in
)

)
− β∗

<
3β∗

ln

(
1∏

j∈A(1−
wj

2in
)

)
− β∗

<
3β∗

‖w‖1
2in − β∗

Observe that as ‖w‖12in increases, it gets easier to satisfy this inequality. But we remind ourselves of the Claim,

where we required ‖w‖1
2in < 2. So the interval in (3.22) and (3.23) does not necessarily contain the target

interval (3.18) for larger values of ‖w‖12in . Assume further that ‖w‖12in ≥ 1. Then

3β∗

‖w‖1
2in − β∗

<
3β∗

1− β∗
.

So, we conclude that with probability at least 1− 6 log(u)e−γ
2p3n/108, any value in the target interval (3.18)

is within a factor 1 + 3β∗

1−β∗ of 2in ln

((∏
j∈A

(
1− wj

2in

))−1
)

.

Inserting the value of β∗, we obtain an estimate within a factor of

1 +

6γ

(
e
2+ 1

2i−1n

1−2p − 1

)
(1− γ)− 2γ

(
e
2+ 1

2i−1n

1−2p − 1

) < 1 +
6γ
(

e3

1−2p − 1
)

(1− γ)− 2γ
(

e3

1−2p − 1
) .

Thus it suffices that

γ <
1

2e3

1−2p − 1
.

We are now ready to prove Lemma 3.5:

Lemma 3.5. Assume ‖wx‖1 > n > 1, and β > 1
n . With probability at least 1− 6 log(u)e−

γ2p3n
108 there exists

an i ∈ {0, ..., log(u)− 1} such that any element from Ii(p) is a (1 + β)-approximation to ‖wx‖1 for

γ <

(
β − 1

n

)
(1− 2p)

7e3
.

Specifically, i where ‖wx‖12in ∈ [1, 2), gives these guarantees.

Proof. We will choose γ in terms of the accuracy parameter β, such that with high probability any estimate
from the interval [

2in ln

(
1− 2p

1− 2Zi
(1+γ)n

)
, 2in ln

(
1− 2p

1− 2Zi
(1−γ)n

)]
(3.24)

is within a factor (1 + β) of ‖w‖1. We do this in a few steps: First, we show that any value from (3.24) is a
good estimate of

2in ln

(
1∏

j∈A
(
1− wj

2in

)) . (3.25)
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As 2in ln

(
1

e
−‖w‖1

2in

)
= ‖w‖1 and

2in ln

(
1∏

j∈A(1−
wj

2in
)

)
2in ln

(
1

e
−‖w‖1

2in

) ≤
ln

(
e
‖w‖1
2in

+
‖w‖1
(2in)2

)
ln
(
e
‖w‖1
2in

) = 1 +
1

2in

where we used the Taylor expansion of the exponential function, we have

‖w‖1 ≤ 2in ln

(
1∏

j∈A
(
1− wj

2in

)) ≤ (1 +
1

2in

)
‖w‖1.

So a good estimate for (3.25) will allow for a good estimate of ‖w‖1. The technical lemma, Lemma 3.7,

shows that as long as ‖w‖1 is sufficiently large, that is, there is an i such that ‖w‖12in ∈ [1, 2), we get a suitable
estimate for (3.25) with the interval (3.24) with high probability.

Hence, any value from (3.24) is within a factor (1 + β) of ‖w‖1 for

γ <
(β − 1/n)(1− 2p)

7e3
<

β − 1/n

7
(

e3

1−2p − 1
) < β − 1

2in

7
(

e3

1−2p − 1
)

for β > 1
n . We will choose n in terms of β such that this is always satisfied. Clearly, this value of γ is

significantly smaller than the requirement from Lemma 3.7, which concludes the proof.
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Chapter 4

Differentially Private Euclidean
Distance Approximation

This chapter is based on the paper Improved Differentially Private Euclidean Distance Approximation by
Nina Mesing Stausholm [130].

4.1 Introduction

The Euclidean distance between real-valued vectors is an important measure with applications in various
fields such as nearest-neighbor search, clustering, numerical linear algebra, just to mention a few. Matrices
satisfying the Johnson-Lindenstrauss Lemma (Lemma 2.4), the so-called Johnson-Lindenstrauss matrices,
can be used to compute linear sketches of input vectors that allow for estimating the Euclidean distance
between two real-valued input vectors from their sketches: For k×u-sketch matrix S and inputs x, y ∈ Ru held
by different parties, one can estimate the Euclidean distance between x and y as ‖ Sx− Sy ‖22 = ‖ S(x−y) ‖22.
By the Johnson-Lindenstrauss Lemma, this estimate is within a factor (1±β) of ‖x−y‖22 with high probability.
We henceforth use transform and projection interchangeably and refer to random projections satisfying the
Johnson-Lindenstrauss Lemma as Johnson-Lindenstrauss projections, or simply JL projections. We will even
misuse this convention slightly, as we also use this name for projections that preserve Euclidean norm in
expectation, as defined in Definition 4.2.

As the input x may contain sensitive information, we wish to ensure that the released sketch is differen-
tially private and therefore add noise to the sketch Sx. For noise vector ϕ ∼ Dk, we denote by Sx+ ϕ the
noisy counter-part to Sx. The main goal of this chapter is to analyze the privacy and utility guarantees of
the noisy sketch Sx+ ϕ.

That is, for noise distribution D and noise vectors ϕ,ψ ∈ Dk, we analyze whether we can privately and
accurately estimate ‖x− y‖22 from Sx+ϕ and Sy+ψ. The main questions of interest are: How much noise
do we need to add? and What utility guarantees can we achieve? We defined differential privacy in Section
2.1.2 and mention common choices for noise distribution D in Section 4.3.2.

4.1.1 Differentially Private Random Projections

The results presented in this chapter improve on the work of Kenthapadi et al. [96], in which it was shown how
to construct an (ε, δ)-differentially private version of a JL transform allowing for high accuracy estimators for
squared Euclidean distance. The idea applied by Kenthapadi et al. is simple: Let Siid be the i.i.d. normally
distributed JL transform where each entry is drawn from the standard Normal distribution. For input vector
x ∈ [0, 1]u, add Gaussian noise to each entry of Siidx.

Kenthapadi et al. prove Theorems 4.1 and 4.2. We remark that these results extend naturally to x, y ∈ Ru.
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Theorem 4.1 ([96]). Let Siid be a k×u-projection matrix with i.i.d. entries from the standard Normal dis-
tribution and let x, y ∈ [0, 1]u be input vectors. Let ϕ,ψ ∼ N (0, σ2)k be noise vectors. If σ ≥ 4/ε

√
log(1/δ),

ε < ln(1/δ) and k > 2(ln(u) + ln(2/δ)), then Siidx+ ϕ is (ε, δ)-differentially private.

Note 4.1. Kenthapadi et al. show that for k > 2 ln(u) + 2 ln(1/δ′), the `2-sensitivity of Siid is greater than 2
with probability at most δ′. We will assume that the `2-sensitivity of Siid is computed exactly in an initializing
step, as discussed in Section 4.2.1, and hence avoid this assumption on k. From [89, 92] we know that for
any β, p ∈ (0, 1/2) k = Θ

(
β−2 log(1/p)

)
is optimal in the non-private case. We use this value of k and

discuss the optimal k for the noisy construction in Section 4.6.2. We also remark that the σ in Theorem 4.1
can be exchanged with σ ≥ ∆2ε

−1
√

2 log(1.25/δ) by a later result from [63] (See Lemma 4.2), where ∆2 is
the (exact) `2-sensitivity of Siid.

Theorem 4.2 ([96]). Let Siid be a k × u-projection matrix with i.i.d. entries from the standard Normal
distribution and x, y ∈ [0, 1]u be input vectors. Let ϕ,ψ ∼ N (0, σ2)k be noise vectors, where σ is independent
of the realization of Siid. Define

Êiid := ‖(Siidx+ ϕ)− (Siidy + ψ)‖22 − 2kσ2.

Then

1. Êiid is an unbiased estimator for ‖x− y‖22.

2. Var
[
Êiid

]
= 2

k‖x− y‖
4
2 + 8σ2‖x− y‖22 + 8σ4k.

Note 4.2. Letting σ be independent of the realization of Siid might lead to complete loss of privacy if the
`2-sensitivity of Siid is much higher than 1, as argued in Section 4.2.1. Hence, we let σ be a function of the
exact `2-sensitivity of Siid, ∆2, as discussed in Note 4.1.

4.1.2 Contributions

An immediate idea to achieve a speed-up is to apply the techniques of Kenthapadi et al. to a JL transform,
which is faster than the i.i.d. normally distributed JL transform. We show such a result for a private
Fast Johnson-Lindenstrauss Transform (FJLT) [3] in Section 4.5.2, but remark that the privacy issue of
Kenthapadi et al. mentioned in Note 4.2 carries over if we simply exchange the i.i.d. normally distributed JL
transform for the FJLT. We discuss how to address this issue in Section 4.5 to obtain a differentially private
version of FJLT, where σ does not depend on the `2-sensitivity of the transform (which could be very large).
Kenthapadi et al. leave open the question of whether we can obtain better results with Laplace noise. We
answer this question by proving that we can indeed obtain an ε-differentially private estimator for squared
Euclidean distances, which has better variance for certain parameters. Specifically, we show the following
main theorem:

Theorem 4.3. For any 0 < β, p < 1/2 and any integer u > 0 there exists a random k × u-projection S
for k = Θ

(
β−2 log(1/p)

)
with sparsity s = O

(
β−1 log(1/p)

)
and a distribution D over R such that for any

x, y ∈ Ru and ϕ,ψ ∼ Dk we define:

ÊSJLT := ‖(Sx+ ϕ)− (Sy + ψ)‖22 −
2ks

ε2
.

Then

1. ÊSJLT is an unbiased estimator for ‖x− y‖22.

2. Var
[
ÊSJLT

]
≤ 2

k‖x− y‖
4
2 +O

(
s
ε2 ‖x− y‖

2
2 + s2

ε4 k
)
.

3. The sketch (S, Sx+ ϕ) is ε-differentially private.
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4. For a data stream, we can update the sketch (S, Sx+ ϕ) in time O(s).

5. Sx+ ϕ can be computed in time O(s‖x‖0 + k). Given Sx+ ϕ and Sy + ψ, ÊSJLT can be computed in
time O (k).

The noise distribution D will depend on the sparsity of S, but it is crucial that D is otherwise independent
of S. We state our improvements over the work of Kenthapadi et al. [96]:

• Recall that the projection Siid of Kenthapadi et al. has constant `2-sensitivity with high probability.
Under this assumption, we combine Theorems 4.1, 4.2 and Note 4.1 to see that

Var[Êiid] =
2

k
‖x− y‖42 +O

(
log(1/δ)

ε2
‖x− y‖22 +

log2(1/δ)

ε4
k

)
,

and so ÊSJLT improves over Êiid in terms of variance whenever δ < e−s = pO(1/β) (see Section 4.7).
In the case where Siid has higher sensitivity, our results give an even better improvement.

• Kenthapadi et al. have an additional initialization cost of O(uk) to compute the sensitivity of the
projection matrix. We refer the reader to Section 4.2.1 for a detailed discussion.

• Our estimator ÊSJLT is more efficient as the update time, i.e., time to compute Sx+ϕ, is O(s‖x‖0 + k)
rather than O(k‖x‖0 + k) for s = o(k).

• Rather than approximate differential privacy, we achieve pure differential privacy (See Section 2.1.2 for
comments on the difference).

Our improved efficiency in Theorem 4.3 relies on the sparsity of the Sparser JL transforms by Kane & Nelson
[93], henceforth referred to as the SJLT. We remark that the results of Kenthapadi et al. extend naturally to
these JL transforms, and thus they would obtain the same efficiency for δ > pO(1/β). We do, although, give
the analysis proving that these transforms can indeed be used. Using a SJLT instead of the i.i.d. normally
distributed transform, the work of Kenthapadi et al. would also avoid the initialization cost.

Related to our analysis for the SJLT, we remark that our main result is, in fact, a special case of an even
more general result: we give a class of length preserving linear transformations that allow for efficient, private
estimators for Euclidean distance with a high level of utility. The FJLT and SJLT are merely examples of
such linear transformations. We define what is meant by length preserving in section 4.3.3 and prove our
general, technical results in Section 4.4. In Section 4.5 we give two differentially private versions of FJLT,
and in Section 4.6, we prove Theorem 4.3 by applying the technical results to the SJLT with noise from the
Laplace distribution. Finally, we compare the work of Kenthapadi et al. with our private FJLT and SJLT
in Section 4.7.

4.2 Related Work

Differential privacy is usually achieved by adding random noise to the output of a query to obfuscate the
exact result before publishing the result. This idea is easily extended to vector outputs by simply adding
noise to each entry of the output vector. This technique has been studied extensively in previous work; see
for example [84, 104, 110, 119].

We consider a distributed setting, where party i adds noise ϕi ∼ Dk to the projection Sxi of input vector
xi and releases the noisy projection Sxi + ϕi for future distance estimation. All parties must use the same
randomized matrix S and noise drawn from the same distribution D. It is crucial that the projection matrix
is public and only the noise be kept secret.
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4.2.1 Versions of Johnson-Lindenstrauss Transformations

We refer to the classical JL transform by Indyk & Motwani [87] as the i.i.d. normally distributed JL
transform. As the name suggests, the random projection matrix consists of i.i.d. entries from the standard
Normal distribution.

The sparsity of the random projection, i.e., the number of non-zero entries per column, is an important
tool in speeding up dimensionality reduction. Ailon & Chazelle [3] presented a JL transform with a sparser
projection matrix with a mixture of normally distributed entries and 0s. This transform is commonly known
as The Fast Johnson-Lindenstrauss Transform or, in short, FJLT. We describe the transform in detail in
Section 4.5.1. The sparsity not only affects the sensitivity of the transformation (see Definition 4.1) but also
the time required to compute the projection of an input vector x. For a random projection S with sparsity s,
we can compute Sx in time O(s‖x‖0). Kane & Nelson [93] show that the JL transform of Dasgupta et al. [43]
requires sparsity s = Ω̃(β−1 log2(1/p)), and Nelson & Nguyen showed that this sparsity is optimal up to a
factor O(log(1/β)) [116]. Kane & Nelson [93] also give two sparser constructions with s = Θ(β−1 log(1/p))
for embedding into k = Θ(β−2 log(1/p)) dimensions. These transformations are commonly known as The
Sparser JL Transforms and we will henceforth refer to them as SJLT. We describe SJLT in Section 4.6.1.

Differentially Private JL Construction

Kenthapadi et al. [96], which was also discussed in Section 4.1.1, give a private estimator for Euclidean
distance relying on the i.i.d. normally distributed JL transform. A drawback of their construction is that
the `2-sensitivity is only 1 in expectation, so the sensitivity might not be small. This is the case if the
random projection has even a single very large entry. The authors suggest drawing noise calibrated to a
low sensitivity projection matrix independently of the actual projection matrix Siid. However, with a small
probability, Siid does not have low sensitivity, in which case the noise is not ensured to provide differential
privacy. Kenthapadi et al. ”hide” the probability of drawing a high-sensitivity projection under δ, but for
a fixed Siid, either the noise provides privacy, or certain inputs would always be distinguishable, even in
the presence of noise calibrated to low sensitivity. An alternative solution is to compute the sensitivity of
the fixed Siid and calibrate the noise to the actual sensitivity. Hence, initialization requires time O(uk).
Kenthapadi et al. state without proof that their results extend to the JL transformations from [1, 43]. Xu
et al. [147] extend the work of [96] with experimental comparisons with JTree [32], PrivBayes [150], PriView
[122] and PrivateSVM [124].

4.2.2 Differentially Private Linear Transformations

Mir et al. (PODS11) [110] suggest a general framework for generating pan-private linear transforma-
tions by initializing with noise from the exponential mechanism. The work argues how to create a ε-
pan private estimator for (squared) Euclidean distance with multiplicative error (1 + γ) and additive error
poly(log u, ε−1, γ−1, log(q−1)) + O(Z), with probability at least 1 − q, where Z is an upper bound on the
entries of the input vector. The technique used by Mir et al. can be used for private dimensionality reduction
but is computationally inefficient as the sketch relies on the exponential mechanism for noise addition.

In an earlier (unpublished) version of the same work, [109], Mir et al. analyze the cropped second moment
for a parameter τ , defined for input vector x ∈ Zu as

∑u
i=1 min{x2

i , τ}. In this work, Mir et al. show a 2ε-
differentially private estimator with additive error Oε(τ

√
u) with high probability. Differential privacy is

achieved by an application of Randomized Response [141]. As our error depends on ‖x− y‖2 and
√
k <
√
u,

we see an improvement when x and y are sparse. The problems are not directly comparable as the cropped
second moment of Mir et al. applies to integer inputs, whereas we consider inputs over the reals.

4.2.3 When Data is Known in Advance

If input data is known in advance, there are other techniques to achieve differential privacy. A curator with
access to all data can compute the exact distances (up to the error incurred by the JL embedding) and add
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noise precisely calibrated to this distance. This technique often incurs less noise but is not applicable in our
setting, as data is split among several parties and may not all be available at once.

Blocki et al. [20] show that, as long as the projection matrix is kept secret, the i.i.d. normally distributed
JL transform allows for differentially private estimates of distances with the accuracy guarantees from the
Johnson-Lindenstrauss Lemma. Upadhyay [136] proves that this technique does not generally work to
preserve privacy for sparser JL projections. As we consider a distributed setting, keeping the projection
matrix secret is unattainable. Bhaskar et al. [17] introduce noiseless privacy where the output is always
exact, rather than a noisy approximation. The privacy guarantees are similar to differential privacy but rely
on assumptions about the distribution of the data and auxiliary information, whereas differential privacy
aims for a higher level of generality.

Representing Noise from Continuous Noise Distributions

We will assume that noise is drawn from either the continuous Laplace or Gaussian distribution, which,
however, may introduce practical issues. Mironov [111] described how privacy might be lost due to floating-
point error when sampling noise from a continuous distribution. As an alternative to the continuous Laplace
distribution, Mironov suggests the Snapping mechanism which incurs an additional error of approximately
∆1/ε compared to noise from Lap(∆1/ε), where ∆1 is the `1-sensitivity of the query.

[47] improve over the Snapping Mechanism, by drawing noise from a discrete distribution, differing from

the Laplace distribution by at most a factor (1 + 1+2/ε
2k

) for a fixed integer k, which controls the accuracy of
the discretization. It suffices to use k ∈ [10, 45]Z.

A discrete, ”hole-free” alternative to the Gaussian distribution, requiring only expected constant time is
suggested in [47]. The distribution builds on the Binomial distribution with parameters n and p = 1/2 and
the work of [24] to give a distribution which for large n differs from the Gaussian distribution by at most
O(log1.5(n)/

√
n).

In a very recent paper, Canonne et al. [27] describe a discretization of the Gaussian distribution supported
on Z whose variance is at most that of the corresponding continuous Gaussian distribution, and hence allows
for identical or slightly better utility. Simultaneously, the discretization has sub-Gaussian tails compared to
the corresponding continuous Gaussian distribution and essentially the same privacy guarantees. We refer
to the discussion in [27] for further reading on discretizations of the Laplace and Gaussian distributions.

4.2.4 Lower bounds

McGregor et al. [103] show that any protocol for estimating Hamming distance (and so for inner product,
which again leads to a protocol for estimating squared Euclidean distance) of two binary k-dimensional
vectors in a differentially private manner incurs an additive error of Ω̃(

√
k), which is contrasted by the

observation that simple Randomized Response [141] allows for error O(
√
k). The error lower bound implies

a Ω̃(k) lower bound for the variance of the noisy estimator. In contrast, our variance of the noise added
(we may disregard the variance introduced by the JL projection, as this error occurs even in the non-private
version) depends on ‖x− y‖22 ≤ u and k (for binary input vectors).

Independently from the work of McGregor et al., Mir et al. [110] show a similar lower bound of additive
error Ω(

√
k) for estimating inner product for binary vectors in a pan-private setting. The lower bound by

McGregor et al. implies a lower bound for pan-private algorithms, which is weaker than the lower bound
of Mir et al. in the case of single-pass algorithms and dynamic data. Hardt & Talwar [82] show that an
ε-differentially private algorithm for the second frequency moment F2 requires an additive error factor of
Ω(1/ε), which is comparable to our result (up to polynomial and logarithmic factors).
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4.3 Preliminaries

4.3.1 Sensitivity

We consider a setting where the inputs are vectors x, y ∈ Ru. Hence, two vectors x and y are neighbors (see
Definition 2.2) if ‖x− y‖1 ≤ 1.

Recall Definition 2.3, where we defined the sensitivity of a general query. We now restrict this definition
to queries that are linear transformation:

Definition 4.1 (`p-sensitivity of transformation [96]). For p ≥ 1, the `p-sensitivity of a linear transformation
S : Ru → Rk is

∆p(S) = max
x,y∈Ru: ‖x−y‖1≤1

‖Sx− Sy‖p = max
1≤j≤u

(
k∑
i=1

|Si,j |p
)1/p

= max
1≤j≤u

‖S·,j‖p

where S·,j is the jth column of S.

Note 4.3. The definition follows from the observation that any vector of `1-norm 1 (which is the case for
neighboring vectors) can be represented as a convex linear combination of basis vectors.

4.3.2 Mechanisms In Differential Privacy

Recall the two fundamental techniques in differential privacy, the Laplace and Gaussian mechanisms as
defined in Lemmas 2.3 and 2.5. We will use these mechanisms extensively in our analysis and repeat them
here in terms of linear transforms for convenience:

Lemma 4.1 (Laplace Mechanism [60]). For linear transformation S ∈ Rk×u and input x ∈ Ru, the Laplace
Mechanism with parameter λ outputs Sx + ϕ for ϕ ∼ Lap(0, λ)k. Let ∆1 be the `1-sensitivity of S. The
Laplace Mechanism with parameter ∆1ε

−1 preserves ε-differential privacy.

Lemma 4.2 (Gaussian Mechanism [57, 63]). For linear transform S ∈ Rk×u and input x ∈ Ru, the Gaussian
Mechanism with parameter σ outputs Sx + ϕ for ϕ ∼ N (0, σ2)k. Let ∆2 be the `2-sensitivity of S. The
Gaussian Mechanism with parameter σ ≥ ∆2ε

−1
√

2 log(1.25/δ) preserves (ε, δ)-differential privacy.

4.3.3 Length Preserving Property

Our technical results in Section 4.4 rely on linear transforms with the Length Preserving Property (LPP):

Definition 4.2 (Length Preserving Property (LPP)). A random k × u-projection S satisfies the Length
Preserving Property if for any x ∈ Ru we have

ES
[
‖Sx‖22

]
= ‖x‖22.

Note that if S satisfies LPP, then S also preserves Euclidean distances and inner products, as

〈x, y〉 =
‖x‖22 + ‖y‖22 − ‖x− y‖22

2
.

4.4 Supporting Lemmas

We now show our general, technical lemmas which will be useful for proving Theorem 4.3. Let S be a random
k×u-matrix with LPP as defined in Definition 4.2 and let x, y ∈ Ru. Let D be a zero-mean distribution and
ϕ,ψ ∼ Dk noise vectors. Let ϕ∗ ∼ D. We define

Êgen := ‖(Sx+ ϕ)− (Sy + ψ)‖22 − 2kED[ϕ2
∗].

Our technical results are as follows:
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Lemma 4.3. We have

1. Êgen is an unbiased estimator for ‖x− y‖22.

2. The variance of Êgen is

Var
[
Êgen

]
= Var

[
‖Sx− Sy‖22

]
+ 8 ED[ϕ2

∗]‖x− y‖22 + 2kED[ϕ4
∗] + 2kED[ϕ2

∗]
2

Proof. See Section 4.9.1.

Hence, the variance of Êgen is close to the variance of the non-private estimator but has an additional
noise term depending on the output dimension k and the Euclidean distance of the input vectors. The
following result describes the privacy guarantees of Êgen:

Lemma 4.4. Let ∆1 and ∆2 be the `1- and `2-sensitivities of S, respectively. Let δ > 0 be given and define

m := min
{

∆1,∆2

√
ln (1/δ)

}
.

There is a distribution D such that

1. The sketch (S, Sx+ ϕ) is differentially private.

2. Var
[
Êgen

]
= Var

[
‖Sx− Sy‖22

]
+O

(
m2

ε2 ‖x− y‖
2
2 + m4

ε4 k
)
.

3. Given Sx and Sy, the estimate Êgen can be computed in time O(k).

Proof. We show that it suffices to let D be either the Normal or Laplace distribution for well-chosen param-
eters. We start with the following useful note:

Note 4.4. Let n!! be the product of the numbers 1, ..., n that have the same parity as n. For L ∼ Lap(λ)
and G ∼ N (0, σ2), we have

∀n ∈ N : ED[Ln] =
n!

(λ−1)n
and for even n: ED[Gn] = (n− 1)!!σn.

By Lemma 4.2, the noisy projection Sx + ϕ is (ε, δ)-differentially private for D = N (0, σ2) with σ ≥
∆2

ε

√
2 ln (1.25/δ). By the post-processing property of differential privacy, Êgen is also (ε, δ)-differentially

private. From Lemma 4.3 and Note 4.4

Var
[
Êgen

]
= Var

[
‖Sx− Sy‖22

]
+O

(
∆2

2 ln
(

1
δ

)
ε2

‖x− y‖22 +
∆4

2 ln2
(

1
δ

)
ε4

k

)
. (4.1)

Similarly, by Lemma 4.1 Êgen is ε-differentially private for D = Lap(∆1/ε), and from Lemma 4.3 and
Note 4.4 we get

Var
[
Êgen

]
= Var

[
‖Sx− Sy‖22

]
+O

(
∆2

1

ε2
‖x− y‖22 +

∆4
1

ε4
k

)
. (4.2)

Finally, we can draw noise from the Laplace or the Normal distribution in constant time.

Note 4.5. As seen in the proof of Lemma 4.4, letting D = Lap(∆1/ε) gives m = ∆1 and letting D = N (0, σ2)
for σ ≥ ∆2ε

−1
√

2 ln(1.25/δ) gives m = ∆2

√
ln(1/δ). We wish to choose the D which minimizes Var[Êgen].

disregarding constants, (4.2) is upper bounded by (4.1) when

∆1 < ∆2

√
ln(1/δ) ⇔ δ < e−∆2

1/∆
2
2 . (4.3)

Hence, when (4.3) is satisfied, we let D be the Laplace distribution – that is, D = Lap(∆1/ε) and otherwise
let D = N (0, σ2) with σ ≥ ∆2ε

−1
√

2 log(1.25/δ).
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4.5 Private Fast Johnson-Lindenstrauss Transform

We now discuss a private version of the Fast Johnson-Lindenstrauss transform (FJLT) by Ailon & Chazelle
[3]. We first remind the reader of the non-private transform in Section 4.5.1 and then give two private
versions in Section 4.5.2.

4.5.1 Description of (non-private) Fast Johnson-Lindenstrauss Transform (FJLT)

FJLT [3] is a random distribution of linear mappings Φ : Ru → Rk with k = O(log(1/p)/β2), such that for
β, p ∈ (0, 1/2), with probability at least 1− p

(1− β)k‖x‖22 ≤ ‖Φx‖22 ≤ (1 + β)k‖x‖22.
For given values of u, β, p, we describe how to obtain the random mapping Φ as the product of three real-
valued matrices, P,H and D:

• D is a random u × u-diagonal matrix with Djj drawn independently from {−1,+1} with probability
1/2.

• H is a u× u-normalized Hadamard matrix such that for f, j ∈ [u]

Hfj =
1√
u

(−1)〈f−1,j−1〉

where 〈f, j〉 is the dot-product between vectors expressing f and j in binary representation.

• P is a random k × u-matrix whose entries are independently either normally distributed or 0. Specifi-
cally, for

q = min

{
Θ

(
log2(1/p)

u

)
, 1

}
we let Pif be drawn (independently) from N (0, q−1) with probability q and Pif = 0 with probability
1− q for i ∈ [k] and f ∈ [u].

The transform Φ is defined as
Φ := PHD.

To formalize, we get the following lemma:

Lemma 4.5 (Lemma 2.1 from [3]). Let β, p ∈ (0, 1/2) and let Φ be a random k × u-projection matrix as
described above. Let x ∈ Ru. With probability at least 1− p, the following two events occur:

• (1− β)k‖x‖22 ≤ ‖Φx‖22 ≤ (1 + β)k‖x‖22.

• The mapping Φ : Ru → Rk requires time

O

(
u log u+ uq

log(1/p)

β2

)
, for q = min

{
Θ

(
log2(1/p)

u

)
, 1

}
.

Proof. See [3].

We will henceforth concern ourselves with the normalized FJLT, 1/
√
k · Φ, such that

(1− β)‖x‖22 ≤ 1/k‖Φx‖22 ≤ (1 + β)‖x‖22.

Lemma 4.6. The normalized FJLT satisfies LPP (see Definition 4.2).

Proof. See Section 4.9.2.

Lemma 4.7. Let x, y ∈ Ru and let Φ be the FJLT as described above. Then

Var[1/k‖Φx− Φy‖22] ≤ 3

k
‖x− y‖42.

Proof. The proof follows directly from Lemma 4.11 in Section 4.9.2.
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4.5.2 Private FJLT

We now argue how to construct a differentially private version of FJLT by adding Gaussian noise to the
input.

If we simply exchange the i.i.d. normally distributed JL transform for FJLT in the work of Kenthapadi
et al. [96], we get the following result.

Corollary 4.1. Let Φ be a random k×u-FJLT and let x, y ∈ Ru be input vectors. Let ∆2 be the `2-sensitivity
of Φ and let ϕ,ψ ∼ N (0, σ2)k for σ ≥ ∆2ε

−1
√

2 log(1.25/δ) be noise vectors. Define

ÊFJLTo :=
1

k
‖(Φx+ ϕ)− (Φy + ψ)‖22 − 2kσ2

• ÊFJTLo is an unbiased estimator for ‖x− y‖22.

• The estimator has variance

Var
[
ÊFJLTo

]
≤ 3

k
‖x− y‖42 +O

(
kσ4 + σ2‖x− y‖22

)
.

• The sketch (Φ,Φx+ ϕ) is (ε, δ)-differentially private.

• The sketch Φx+ ϕ can be computed in time

O

(
max

{
u log u,

uq log(1/p)

β2

})
, for q = min{Θ(log2(1/p)/u), 1}.

Proof. That the estimator is unbiased and the variance follow from Lemmas 4.3, 4.6 and 4.7. Privacy follows
from Lemmas 4.2 and 4.4. Running time follows from Lemmas 4.5 and 4.4.

Note 4.6. The `2-sensitivity of the (normalized) projection is concentrated around 1, which justifies the
choice of Gaussian noise. Although the `2-sensitivity of the normalized FJLT is concentrated around 1, the
sensitivity of Φ could (with a small probability) be very large, so the sketch Φx + ϕ suffers from the same
initialization cost as the work of Kenthapadi et al. (see Section 4.2.1).

We now introduce a private version of FJLT, where we perturb the input. This version avoids the issue
described in Note 4.6, but will inevitably introduce error depending on the input size.

Lemma 4.8. Let Φ be a random k × u-FJLT and let x, y ∈ Ru be input vectors. Let ϕ,ψ ∼ N (0, σ2)u for
σ ≥ ε−1

√
2 log(1.25/δ) be noise vectors. Define

ÊFJLTi :=
1

k
‖Φ(x+ ϕ)− Φ(y + ψ)‖22 − 2uσ2

• ÊFJTLi is an unbiased estimator for ‖x− y‖22.

• The estimator has variance

Var
[
ÊFJLTi

]
≤ 3

k
‖x− y‖42 +O

(
u2σ4

k
+ uσ2‖x− y‖22

)
.

• The sketch (Φ,Φ(x+ ϕ)) is (ε, δ)-differentially private.

• The sketch Φ(x+ ϕ) can be computed in time

O

(
max

{
u log u,

uq log(1/p)

β2

})
, for q = min{Θ(log2(1/p)/u), 1}.
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Proof. For proofs that the estimator is unbiased and for the variance, see Section 4.9.3. We remark that the
factor u on the last term in the variance is a by-product of applying Φ to the noise. Privacy follows directly
from the Gaussian mechanism (see Lemma 4.2), as the `2-sensitivity is at most 1 (as we perturb the input
vectors). As noise can be added in time O(u), the time required to compute the sketch follows from Lemma
4.5.

Note 4.7. By spherical symmetry of the Normal distribution, Φ(x+ϕ) and Φx+Pϕ, where P is defined in
Section 4.5.1, are identically distributed. Hence, one could add the same amount of noise after the Hadamard
transform to get a differentially private sketch – that is, compute P (HDx+ϕ). Thus, for a given projection
P , suppose column j is all zeros, then we can immediately set ϕj = 0. This way, we may save a bit of
randomness in an application.

4.6 Private Sparser Johnson-Lindenstrauss Transform

We now turn to the question of perturbation using Laplace noise rather than Gaussian noise. We present
and analyze a private sketch based on the SJLT and conclude Theorem 4.3 in Section 4.6.2. The main
observation about this sketch is that we perturb the output vectors rather than the input vectors, so the
amount of noise depends on k rather than u while avoiding the initialization cost that was inherent to the
work of Kenthapadi et al. as well as Corollary 4.1. We compare the work of Kenthapadi et al., our private
FJLT from Lemma 4.8 and our private SJLT from Theorem 4.3 in Section 4.7.

Theorem 4.3 is proven by combining the technical Lemmas 4.3 and 4.4 with the SJLT. These transforms
are more efficient than the suggestions from [96] due to their sparsity. We remark that this is just one
example of linear transformations where our results can be applied. It should also be noted that the results
of Kenthapadi et al. are transferable to the SJLT, although the results were only proven for the i.i.d. normally
distributed JL transform, whereas we give the analysis here.

4.6.1 Description of (non-private) Sparser Johnson-Lindenstrauss Transforms
(SJLT)

We first describe the SJLT from [93]. We focus on the c)-construction and remark that similar arguments
applies for the b)-construction. Let k = Θ(β−2 log(1/p)) and let x ∈ Ru be an input vector. Let h1, ..., hs :
[u] → [k/s] and ϕ1, ..., ϕs : [u] → {−1,+1} be independent, random hash functions from O(log(1/p))-wise
independent families. Define ξri(j) = 1[hr(j) = i]. Then E[ξri(j)

2] = E[ξri(j)] = s
k . The projection matrix

S is defined by

S(i,r),j =
1√
s
ϕr(j)ξri(j)

for i = 1, ..., k/s and r = 1, ..., s. Hence, entry i′ = i · r ∈ [k] in the resulting embedding Sx can be described
as

(Sx)i′ = (Sx)(i,r) =
1√
s

u∑
j=1

ϕr(j)ξri(j)xj .

We can think of Sx as a vector consisting of s blocks, each of length k/s. The ith block describes the
projection of x under hi and ϕi.

Lemma 4.9. The SJLT as described above satisfy LPP from Definition 4.2.

Proof. The proof is a simple calculation and can be found in Section 4.9.4.

Lemma 4.10. Let x, y ∈ Ru and let S be the SJLT as described above. Then

Var
[
‖Sx− Sy‖22

]
≤ 2

k
‖x− y‖42.

Proof. The proof can be found in Section 4.9.4.
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4.6.2 Private SJLT

We are now ready to prove our main theorem, Theorem 4.3. Combining Lemmas 4.3, 4.9 and 4.10, we obtain
the following corollary.

Corollary 4.2. Let S be a random k × u-SJLT and let x, y ∈ Ru be input vectors. Let ϕ,ψ ∼ Dk be noise
vectors where each entry is drawn from a zero-mean distribution D. Then

ÊSJLTD := ‖(Sx+ ϕ)− (Sy + ψ)‖22 − 2kED[ϕ2
∗]

is an unbiased estimator for ‖x− y‖22 with variance

Var
[
ÊSJLTD

]
≤ 2

k
‖x− y‖42 + 8 ED

[
ϕ2
∗
]
‖x− y‖22 + 2k

(
ED[ϕ4

∗] + ED
[
ϕ2
∗
]2)

. (4.4)

We have yet to choose D to ensure differential privacy of this estimator as well as argue about the
efficiency. We start by discussing the optimal value of the output dimension, k.

Optimal Projection Dimension

For the non-private SJLT, the optimal projection dimension is k = Θ
(
β−2 log(1/p)

)
. One may ask what k

is optimal in the private case. The analysis and our optimal k are very similar to the findings in [96]: we

see that the variance in (4.4) is minimized for k = Θ

(
‖x−y‖22√

E[ϕ4
∗]+E[ϕ2

∗]
2

)
. By the same argument as in [96],

generally, no fixed value of k will be optimal for the entire input domain, although there might be exceptions,
when certain properties of the data are known. As in the work of Kenthapadi et al., if we have input domain
X, then we may let ν = maxx∈X{‖x‖22} to obtain k = Θ(νε2/∆2

1) for D = Lap(∆1/ε). Note that k might
not be optimal for all input vectors. We assume that ν is unknown and may be very large – in particular,
we consider vectors over the reals – and thus proceed with k = Θ(β−2 log(1/p)).

Efficiency

Let S be a SJLT with sparsity s = O
(
β−1 log(1/p)

)
and let input x ∈ Ru be given. The embedding Sx

can be computed in time O(s‖x‖0). Assuming that we sample from N (0, σ2) and Lap(λ) in constant time,
random noise vector ϕ ∼ D for D = Lap(∆1/ε) or D = N (0, σ2) for σ ≥ ∆2ε

−1
√

2 log(1.25/δ) can be added
in time O(k) to give Sx+ϕ. From [47] we know that we can at least sample from discretizations in expected
constant time, so this assumption seems reasonable. For given Sx+ϕ and Sy+ψ, the estimator ÊSJLT can
be computed in time O(k).

Putting Everything Together

The SJLT as described in Section 4.6.1, where k = Θ(β−2 log(1/p)) and s = O(β−1 log(1/p)), has `1-
sensitivity ∆1 =

√
s and `2-sensitivity ∆2 = 1. Hence, consider Corollary 4.2 with D = Lap(

√
s/ε). Lemma

4.1 ensures that ÊSJLT is ε-differentially private. Combining with Section 4.6.2 finishes the proof of Theorem
4.3. If instead we let D = N (0, σ2) for σ ≥ ε−1

√
2 ln(1.25/δ) in Corollary 4.2, ÊSJLT is (ε, δ)-differentially

private and achieves the same variance as the work of Kenthapadi et al., while we gain a speed-up as well
as avoid the initialization cost. Finally, we remark that by Note 4.5, we minimize the variance of ÊSJLT by
letting D = Lap(

√
s/ε) whenever δ < e−s.

4.7 Comparison

We now compare Lemma 4.8 and Theorem 4.3 with the work of Kenthapadi et al. We first compare the
running times to see for what parameters the private FJLT is faster than the private SJLT and then compare
the variances for the two methods to get the speed-variance trade-off. Finally, we compare with the results
of Kenthapadi et al.

51



Recall that our private FJLT can be computed in time

O

(
max

{
u log u,

log3(1/p)

β2

})
,

and the private SJLT can be computed in time bounded byO(su) (for dense vectors) where s = O
(
log(1/p)β−1

)
.

Observing that

O(su) > O(u log u) ⇔ u < eO(s) =
1

pO(1/β)

and

O(su) > O

(
log3(1/p)

β2

)
⇔ u > O

(
log2(1/p)

β

)
,

we conclude that our private FJLT is indeed faster than the private SJLT whenever

O

(
log2(1/p)

β

)
< u <

1

pO(1/β)
. (4.5)

We now turn to comparing the variances of the private versions of FJLT and SJLT: Recall from Lemma
4.8 that the private FJLT has variance

Var
[
ÊFJLTi

]
≤ 3

k
‖x− y‖42 +O

(
uσ2‖x− y‖22 +

u2σ4

k

)
.

while, as seen in Theorem 4.3, the private SJLT has variance

Var
[
ÊSJLT

]
≤ 2

k
‖x− y‖42 +O

(
s

ε2
‖x− y‖22 +

s2

ε4
k

)
.

For simplicity, we will disregard the variance incurred by the transforms and limit ourselves to considering
the terms incurred by the noise addition. The private SJLT, in particular, achieves a better variance than
the private FJLT whenever each of the error terms incurred by the noise is bounded by the corresponding
error term from the FJLT. That is:

O

(
u2σ4

k

)
= O

(
u2 log2(1/δ)

ε4k

)
> O

(
s2k

ε4

)
and

O
(
uσ2‖x− y‖22

)
= O

(
u log(1/δ)

ε2
‖x− y‖22

)
> O

( s
ε2
‖x− y‖22

)
.

Treating each of the inequalities separately, we analyze for what values of δ this is the case:

O

(
u2 log2(1/δ)

ε4k

)
> O

(
s2k

ε4

)
⇔ log(1/δ) > O

(
sk

u

)
⇔ 1

eO(sk/u)
> δ

and

O

(
u log(1/δ)

ε2
‖x− y‖22

)
> O

( s
ε2
‖x− y‖22

)
⇔ log(1/δ) > O

( s
u

)
⇔ 1

eO(s/u)
> δ.

Hence, in particular, the private SJLT has smaller variance than the private FJLT when

δ < min
{

1/eO(s/u), 1/eO(sk/u)
}

= 1/eO(sk/u) = 1/e
O

(
log2(1/p)

β3u

)
= p

O
(

log(1/p)

β3u

)
.
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The variance of the estimator from Theorem 4.2 by Kenthapadi et al. was

Var[Êiid] =
2

k
‖x− y‖42 +O

(
σ2‖x− y‖22 + σ4k

)
.

An argument similar to the one above proves that the variance of our private SJLT improves over the variance
of Kenthapadi et al. when δ < e−s = pO(1/β). Clearly, Kenthapadi et al. always achieve better variance than
our private FJLT due to the dependence on u, which was inherent from perturbing the input rather than
the output, and we may assume k < u.

Hence, we see a trade-off in running time versus variance for certain values of input dimension u.
To sum up the above discussion, suppose that δ < pO(1/β). Then the private SJLT obtains the best

variance out of all the methods. If u satisfies (4.5), then the private FJLT achieves the best running time,
and otherwise, the private SJLT improves over the private FJLT in terms of both variance and running time.

4.8 Open Problems

One interesting question is why we get the separation between Laplace and Gaussian noise depending on
the size of δ: if δ is sufficiently small, then Laplace noise is preferable over Gaussian noise. This observation
suggests that there exists a differentially private mechanism, which adds optimal noise for the entire param-
eter space, i.e., a mechanism which adds noise from a distribution achieving error at most that incurred by
Laplace and Gaussian noise (simultaneously) for all δ and all ε < 1.

4.9 Technical Details

In this section, we give the technical details and proofs omitted in the previous sections.

4.9.1 Omitted Proofs for Supporting Lemmas

Lemma 4.3. We have

1. Êgen is an unbiased estimator for ‖x− y‖22.

2. The variance of Êgen is

Var
[
Êgen

]
= Var

[
‖Sx− Sy‖22

]
+ 8 ED[ϕ2

∗]‖x− y‖22 + 2kED[ϕ4
∗] + 2kED[ϕ2

∗]
2

Proof. We start by showing 1). For simpler notation, we define z := x − y. By independence and since
ED[ϕi] = 0 for all i,

ES,D

[∥∥(Sx+ ϕ)− (Sy + ψ)
∥∥2

2

]
= ES,D

[
k∑
i=1

((Sx+ ϕ)i − (Sy + ψ)i)
2

]

= ES,D

[
k∑
i=1

(
(Sz)2

i + (ϕi − ψi)2 + 2(ϕi − ψi)(Sz)i
)]

= ES

[
k∑
i=1

(Sz)2
i

]
+ 2

k∑
i=1

ED
[
ϕ2
∗
]

= ‖z‖22 + 2kED
[
ϕ2
∗
]

where we in the last step used that S has the LPP. So clearly, re-inserting z = x− y

ES,D

[∥∥(Sx+ ϕ)− (Sy + ψ)
∥∥2

2
− 2kED

[
ϕ2
∗
] ]

= ‖x− y‖22.
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We turn to proving 2):

Var
[
Êgen

]
= ES,D

[
Ê2
gen

]
− ES,D

[
Êgen

]2
= ES,D

[
Ê2
gen

]
− ‖x− y‖42, (4.6)

so we analyze the first term:

ES,D

[
Ê2
gen

]
= ES,D

[(∥∥(Sx+ ϕ)− (Sy + ψ)
∥∥2

2
− 2kED

[
ϕ2
∗
])2
]

= ES,D

[∥∥(Sx+ ϕ)− (Sy + ψ)
∥∥4

2

]
+ 4k2 ED

[
ϕ2
∗
]2

− 4kED
[
ϕ2
∗
]

ES,D

[∥∥(Sx+ ϕ)− (Sy + ψ)
∥∥2

2

] (4.7)

The last term in (4.7) equals

4kED
[
ϕ2
∗
] (
‖x− y‖22 + 2kED

[
ϕ2
∗
])

= 4kED
[
ϕ2
∗
]
‖x− y‖22 + 8k2 ED

[
ϕ2
∗
]2

(4.8)

Claim 4.1. The first term in (4.7) equals

ES,D

[∥∥(Sx+ ϕ)− (Sy + ψ)
∥∥4

2

]
= ES

[
‖S(x− y)‖42

]
+ 4(k + 2) ED

[
ϕ2
∗
]
‖x− y‖22 + 2kED[ϕ4

∗]

+ 2k(1 + 2k) ED
[
ϕ2
∗
]2

The proof of the claim is straightforward but tedious and thus left out here. It is proven formally at the
end of this section.

Inserting (4.8) and Claim 4.1 into (4.7), we get

ES,D

[
Ê2
gen

]
= ES,D

[(∥∥(Sx+ ϕ)− (Sy + ψ)
∥∥2

2
− 2kED

[
ϕ2
∗
])2
]

= ES
[
‖S(x− y)‖42

]
+ 4(k + 2) ED

[
ϕ2
∗
]
‖x− y‖22 + 2kED[ϕ4

∗] + 2k(1 + 2k) ED
[
ϕ2
∗
]2

+ 4k2 ED
[
ϕ2
∗
]2 − 4kED

[
ϕ2
∗
]
‖x− y‖22 − 8k2 ED

[
ϕ2
∗
]2

= ES
[
‖S(x− y)‖42

]
+ 8 ED

[
ϕ2
∗
]
‖x− y‖22 + 2kED[ϕ4

∗] + 2kED
[
ϕ2
∗
]2
.

Inserting this expression into (4.6) proves that the variance is

Var
[
Êgen

]
= ES

[
‖S(x− y)‖42

]
+ 8 ED

[
ϕ2
∗
]
‖x− y‖22 + 2kED[ϕ4

∗] + 2kED
[
ϕ2
∗
]2 − ‖x− y‖42

= Var
[
‖S(x− y)‖22

]
+ 8 ED

[
ϕ2
∗
]
‖x− y‖22 + 2kED[ϕ4

∗] + 2kED
[
ϕ2
∗
]2
,

again using that S satisfies LPP.
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Proof of Claim 4.1

Proof. For a simpler notation, we define z := x− y. By simply unfolding the expression, we see that

ES,D

[∥∥(Sx+ ϕ)− (Sy + ψ)
∥∥4

2

]
=

k∑
i,`=1

ES
[
(Sz)2

i (Sz)
2
`

]
+

k∑
i,`=1

(
ED
[
ϕ2
i

]
+ ED

[
ψ2
i

])
ES
[
(Sz)2

`

]
+ 0

+

k∑
i,`=1

ES
[
(Sz)2

i

] (
ED
[
ϕ2
`

]
+ ED

[
ψ2
`

])
+

k∑
i=1

ED
[
(ϕi − ψi)4

]
+
∑
i6=`

ED
[
(ϕi − ψi)2

]
ED
[
(ϕ` − ψ`)2

]
+ 2

k∑
i=1

ES [(Sz)i] ED
[
(ϕi − ψi)3

]
+ 0 + 2

k∑
`=1

ED
[
(ϕ` − ψ`)3

]
ES [(Sz)`]

+ 4

k∑
i=1

ED
[
(ϕi − ψi)2

]
ES
[
(Sz)2

i

]
+ 4

∑
i 6=`

ED [(ϕi − ψi)(ϕ` − ψ`)]︸ ︷︷ ︸
=0

ES [(Sz)i(Sz)`]

where we used that E[ϕi] = E[ψi] = 0 for all i = 1, ..., k and that the noise is drawn independently of S.
Recalling that ED[ϕ2

i ] = ED[ψ2
i ] = ED[ϕ2

∗] for all i, we obtain

ES,D

[∥∥(Sx+ ϕ)− (Sy + ψ)
∥∥4

2

]
=

k∑
i,`=1

ES
[
(Sz)2

i (Sz)
2
`

]
+ 4kED

[
ϕ2
∗
]
‖z‖22 + k

(
2 ED[ϕ4

∗] + 6 ED[ϕ2
∗]

2
)

+
∑
i6=`

4 ED
[
ϕ2
∗
]2

+ 2

k∑
i=1

ES [(Sz)i]
(
ED
[
ϕ3
∗
]
− ED

[
ϕ3
∗
])

+ 2

k∑
`=1

ES [(Sz)`]
(
ED
[
ϕ3
∗
]
− ED

[
ϕ3
∗
])

+ 4

k∑
i=1

2 ED
[
ϕ2
∗
]

ES
[
(Sz)2

i

]
which simplifies to

= ES
[
‖Sz‖42

]
+ 4kED

[
ϕ2
∗
]
‖z‖22 + 2kED[ϕ4

∗] + 6kED[ϕ2
∗]

2 + 4(k2 − k) ED
[
ϕ2
∗
]2

+ 8 ED
[
ϕ2
∗
]
‖z‖22

= ES
[
‖Sz‖42

]
+ 4(k + 2) ED

[
ϕ2
∗
]
‖z‖22 + 2kED[ϕ4

∗] + 2k(1 + 2k) ED
[
ϕ2
∗
]2

Re-inserting z = x− y, we conclude that

ES,D

[∥∥(Sx+ ϕ)− (Sy + ψ)
∥∥4

2

]
= ES

[
‖S(x− y)‖42

]
+ 4(k + 2) ED

[
ϕ2
∗
]
‖x− y‖22 + 2kED[ϕ4

∗]

+ 2k(1 + 2k) ED
[
ϕ2
∗
]2
.

4.9.2 Omitted Proofs for FJLT

Primitives

This section will give some primitives that will be useful in the next section. Non-trivial arguments can be
found in Section 4.9.2. We let Φ = PHD be the FJLT transform as described in Section 4.5.1 and x, y ∈ Ru
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be any real vectors. Let X ∼ N (0, q−1). Then for any i, n ∈ [k] and j, ` ∈ [u]

EP [Pij ] = 0

EP
[
P 2
ij

]
= q · EX

[
X2
]

= 1

EP
[
P 4
ij

]
= q · EX

[
X4
]

= q · 3q−2 =
3

q

ED[Djj ] = 0

ED[D2
jj ] = D2

jj = 1

E[Φij ] =

u∑
f=1

EP [Pif ]Hfj ED [Djj ] = 0

EΦ[ΦijΦn`] =


EΦ[Φij ] EΦ[Φn`] = 0, i 6= n, j 6= `

EP [(PH)ij ] EP [(PH)nj ] = 0, i 6= n, j = `

EΦ[Φij ] EΦ[Φi`] = 0, i = n, j 6= `

EΦ[Φ2
ij ] = 1, i = n, j = `

EΦ[Φ2
ijΦ

2
n`] =


1, i 6= n
3
qu + 1− 3

u , i = n, j 6= `
3
qu + 3− 3

u , i = n, j = `

(4.9)

EΦ[ΦijΦi`ΦnvΦnw] =


EΦ[Φ2

ijΦ
2
nv], j = `, v = w

EΦ[Φ2
ijΦ

2
i`], i = n, (j = v, ` = w) ∨ (j = w, ` = v)

0, otherwise

EΦ[(Φx)i(Φy)n] =

u∑
j,`=1

xjy` EΦ[ΦijΦn`] =

{
0, i 6= n∑u
j=1 xjyj , i = n

EΦ[(Φx)2
i (Φy)2

n] = ‖x‖22‖y‖22, i 6= n (4.10)

EΦ[(Φx)2
i (Φy)2

i ] =
3

u

(
u

3
+

(
1

q
− 1

))(
‖x‖22‖y‖22 + 2〈x, y〉2

)
− 6

u

(
1

q
− 1

) u∑
j=1

x2
jy

2
j (4.11)

Arguments for the Primitives Stated Above:

Argument for Equation (4.9)

We use that

EΦ[Φ2
ijΦ

2
n`] =

u∑
f,g,h,s=1

EP [PifPigPnhPns]HfjHgjHh`Hs` ED[D2
jjD

2
``]

and so for i 6= n
u∑

f,h=1

EP
[
P 2
if

]
EP
[
P 2
nh

]
H2
fjH

2
h` = 1
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and for i = n

u∑
f,g,h,s=1

EP [PifPigPnhPns]HfjHgjHh`Hs` =

u∑
f=1

EP [P 4
if ]H2

fjH
2
f` +

u∑
f 6=h=1

EP [P 2
if ] EP [P 2

ih]H2
fjH

2
h`

+ 2

u∑
f 6=`=1

EP [P 2
if ] EP [P 2

ig]HfjHgjHf`Hg`

= EP [P 4
if ]/u+ (u2 − u)/u2 + 2(〈Hj , H`〉2 − 1/u)

= EP [P 4
if ]/u+ 1− 3/u+ 2〈Hj , H`〉2

=

{
EP [P 4

if ]/u+ 1− 3/u, j 6= `

EP [P 4
if ]/u+ 3− 3/u, j = `

because 〈Hj , H`〉 =

{
0, j 6= `

1, j = `.

Argument for Equations (4.10) and (4.11)

We used that

EΦ[(Φx)2
i (Φy)2

n] =

u∑
j,v=1

x2
jy

2
v EΦ[Φ2

ijΦ
2
nv] + 2

u∑
j 6=`=1

x2
jy

2
` EΦ[ΦijΦi`ΦnjΦn`]

where we for i 6= n get ‖x‖22‖y‖22 and for i = n get

u∑
j=1

x2
jy

2
j EΦ[Φ4

ij ] +

u∑
j 6=v=1

x2
jy

2
v EΦ[Φ2

ijΦ
2
iv] + 2

u∑
j 6=`=1

xjx`yjy` EΦ[Φ2
ijΦ

2
i`]

=

u∑
j=1

x2
jy

2
j

(
3

qu
+ 3− 3

u

)
+

u∑
j 6=v=1

x2
jy

2
v

(
3

qu
+ 1− 3

u

)
+ 2

u∑
j 6=`=1

xjx`yjy`

(
3

qu
+ 1− 3

u

)

=

u∑
j=1

x2
jy

2
j

(
3

qu
+ 3− 3

u

)
+

‖x‖22‖y‖22 − u∑
j=1

x2
jy

2
j

( 3

qu
+ 1− 3

u

)

+ 2

〈x, y〉2 − u∑
j=1

x2
jy

2
j

( 3

qu
+ 1− 3

u

)

=
3

u

(
u

3
+

(
1

q
− 1

))(
‖x‖22‖y‖22 + 2〈x, y〉2

)
− 6

u

(
1

q
− 1

) u∑
j=1

x2
jy

2
j

Proof of FJLT Satisfying LPP

Lemma 4.6. The normalized FJLT satisfies LPP (see Definition 4.2).

Proof. Applying the primitives from above, we get

EΦ

[
1

k
‖Φx‖22

]
=

1

k
EΦ

[
k∑
i=1

(Φx)2
i

]
=

1

k

k∑
i=1

u∑
j,`=1

EΦ [ΦijΦi`]xjx` =
1

k

k∑
i=1

u∑
j=1

EΦ

[
Φ2
ij

]
x2
j = ‖x‖22.
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Variance under FJLT

For convenience, we prove the following result, as it will be useful in this form for several other proofs. Note
that Lemma 4.7 follows directly from Lemma 4.11.

Lemma 4.11. Let k × u-matrix Φ = PHD, where Pij is N (0, q−1) with probability q and and 0 otherwise.
For input vector ϕ ∼ Du for a real-valued distribution D:

Var[‖Φϕ‖22] ≤ 3

k
Eϕ
[
‖ϕ‖22

]
.

For x ∈ Ru, we get

Var[‖Φx‖22] ≤ 3

k
‖x‖22.

Proof.

Var[‖Φϕ‖22] = EΦ,ϕ[‖Φϕ‖42]− EΦ,ϕ[‖Φϕ‖22]2 =

k∑
i,n=1

EΦ,ϕ

[
(Φϕ)2

i (Φϕ)2
n

]
− k2 Eϕ

[
‖ϕ‖42

]
=

k∑
i=1

EΦ,ϕ

[
(Φϕ)4

i

]
+

k∑
i 6=n=1

EΦ

[
(Φϕ)2

i (Φϕ)2
n

]
− k2 Eϕ

[
‖ϕ‖42

]
=

9k

u

(
u

3
+

(
1

q
− 1

))
Eϕ
[
‖ϕ‖42

]
− 6k

u

(
1

q
− 1

)
Eϕ
[
‖ϕ‖44

]
− k2 Eϕ

[
‖ϕ‖42

]
= 3k

(
2

3
+

3

u

(
1

q
− 1

))
Eϕ
[
‖ϕ‖42

]
− 6k

u

(
1

q
− 1

)
Eϕ
[
‖ϕ‖44

]
.

which again implies

Var

[
1

k
‖Φϕ‖22

]
=

3

k

(
2

3
+

3

u

(
1

q
− 1

))
Eϕ
[
‖ϕ‖42

]
− 6

uk

(
1

q
− 1

)
Eϕ
[
‖ϕ‖44

]
≤

3 Eϕ
[
‖ϕ‖42

]
k

(
2

3
+

1

u

(
1

q
− 1

))
≤ 3

k
Eϕ
[
‖ϕ‖42

]
when q ≥ 1

u/3+1 .

4.9.3 Omitted Proofs for Private FJLT

Estimator and Variance for Private FJLT

Lemma 4.12. We have

1. ÊFJLTi is an unbiased estimator for ‖x− y‖22.

2. Var[ÊFJLTi ] ≤ 3
k‖x− y‖

4
2 +O

(
u2σ4

k + uσ2‖x− y‖22
)

.

Proof. We repeatedly apply the primitives of Section 4.9.2 and Section 4.9.2.
We start by proving 1). Observe that

E
[
‖Φ(x+ ϕ)− Φ(y + ψ)‖22

]
= E

[
‖Φ(x− y) + Φ(ϕ− ψ)‖22

]
= E

[
‖Φ(x− y)‖22

]
+ E

[
‖Φ(ϕ− ψ)‖22

]
= k‖x− y‖22 + kEϕ,ψ

[
‖ϕ− ψ‖22

]
Since ϕ,ψ ∼ N (0, σ2)u, we have ϕ− ψ ∼ N (0, 2σ2)u and so

Eϕ
[
‖ϕ− ψ‖22

]
=

u∑
j=1

Eϕ,ψ[(ϕj − ψj)2] = 2uσ2.

58



We conclude that
ÊFJLTi = 1/k‖Φ(x+ ϕ)− Φ(y + ψ)‖22 − 2uσ2

is an unbiased estimator for ‖x− y‖22.
We turn to proving 2). Note that

Var
[
1/k‖Φ(x− y) + Φ(ϕ− ψ)‖22 − 2uσ2

]
=

1

k2
Var

[
‖Φ(x− y) + Φ(ϕ− ψ)‖22

]
,

so it suffices to consider the RHS. For readability, we will do the analysis for x and ϕ, and eventually
substitute x for x− y and ϕ for ϕ− ψ, recalling that if ϕ ∼ N (0, σ2), then ϕ− ψ ∼ N (0, 2σ2).

For any x, ϕ ∈ Ru

EΦ,ϕ

[
‖Φx+ Φϕ‖22

]2
=
(
EΦ

[
‖Φx‖22

]
+ EΦ

[
‖Φϕ‖22

])2
= EΦ

[
‖Φx‖22

]2
+ EΦ

[
‖Φϕ‖22

]2
+ 2 EΦ

[
‖Φx‖22

]
EΦ

[
‖Φϕ‖22

]
By the triangle inequality, we see that

EΦ,ϕ

[
‖Φx+ Φϕ‖42

]
= EΦ,ϕ

[(
‖Φx+ Φϕ‖22

)2] ≤ EΦ,ϕ

[(
‖Φx‖22 + ‖Φϕ‖22 + 2‖Φx‖2‖Φϕ‖2

)2]
= EΦ

[
‖Φx‖42

]
+ EΦ,ϕ

[
‖Φϕ‖42

]
+ 6 EΦ,ϕ

[
‖Φx‖22‖Φϕ‖22

]
Where the last equality follows from the zero-meaned ϕ leading to several terms canceling out.

Hence, the variance is bounded by

Var
[
‖Φx+ Φϕ‖22

]
≤ EΦ

[
‖Φx‖42

]
+ EΦ,ϕ

[
‖Φϕ‖42

]
+ 6 EΦ,ϕ

[
‖Φx‖22‖Φϕ‖22

]
− EΦ

[
‖Φx‖22

]2 − EΦ,ϕ

[
‖Φϕ‖22

]2
− 2 EΦ

[
‖Φx‖22

]
EΦ,ϕ

[
‖Φϕ‖22

]
which again implies

Var
[
1/k‖Φx+ Φϕ‖22

]
≤ VarΦ

[
1/k‖Φx‖22

]
+ VarΦ,ϕ

[
1/k‖Φϕ‖22

]
+

6

k2
EΦ,ϕ

[
‖Φx‖22‖Φϕ‖22

]
− 2

k2
EΦ

[
‖Φx‖22

]
EΦ,ϕ

[
‖Φϕ‖22

] (4.12)

For the last term we have

EΦ

[
‖Φx‖22

]
EΦ,ϕ

[
‖Φϕ‖22

]
= 2k2‖x‖22 Eϕ[‖ϕ‖22] = 2k2uσ2‖x‖22

and for the second to last term, we get:

EΦ,ϕ

[
‖Φx‖22‖Φϕ‖22

]
=

k∑
i,n=1

EΦ,ϕ[(Φx)2
i (Φϕ)2

n] =

k∑
i=1

EΦ,ϕ[(Φx)2
i (Φϕ)2

i ] +

k∑
i 6=n=1

EΦ,ϕ[(Φx)2
i (Φϕ)2

n]

=
3k

u

(
u

3
−
(

1− 1

q

))(
‖x‖22 E

[
‖ϕ‖22

]
+ 2 E

[
〈x, ϕ〉2

])
+

6k

u

(
1− 1

q

) u∑
j=1

x2
j E
[
ϕ2
j

]
+ (k2 − k)‖x‖22 Eϕ[‖ϕ‖22]

=
3k

u

(
u

3
−
(

1− 1

q

))(
‖x‖22 E

[
‖ϕ‖22

]
+ 2‖x‖22 Eϕ[ϕ2

∗]
)

+
6k

u

(
1− 1

q

)
‖x‖22 E

[
ϕ2
∗
]

+ (k2 − k)‖x‖22 Eϕ[‖ϕ‖22]

= k

(
k − 3

u

(
1− 1

q

))
‖x‖22uσ2 + 2k‖x‖22σ2

= k‖x‖22σ2

(
ku+ 2− 3

(
1− 1

q

))
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Inserting into (4.12) and applying Section 4.9.2, we see that

Var[1/k‖Φx+ Φϕ‖22] ≤ 3

k
‖x‖42 +O

(
u2σ4

k

)
+

6

k
‖x‖22σ2

(
ku+ 2− 3

(
1− 1

q

))
− 4uσ2‖x‖22

=
3

k
‖x‖42 +O

(
u2σ4

k

)
+

2

k
‖x‖22σ2

(
ku+ 6 + 9

(
1

q
− 1

))
Substituting x for x− y and ϕ for ϕ− ψ proves that

Var[1/k‖Φ(x+ ϕ)− Φ(y + ψ)‖22 − 2uσ2] ≤ 3

k
‖x− y‖42 +O

(
u2σ4

k
+ uσ2‖x‖22 +

σ2

qk
‖x‖22

)
Recalling that q = min

{
Θ
(

log k
u

)
, 1
}

we get

3

k
‖x− y‖42 +O

(
u2σ4

k
+ uσ2‖x‖22

)
concluding the proof.

4.9.4 Omitted Proofs for SJLT

Proof of SJLT Satisfying LPP

Lemma 4.9. The SJLT as described above satisfy LPP from Definition 4.2.

Proof. We show the result here for the c)-construction. A similar proof shows the result for the b)-
construction.

ES
[
‖Sx‖22

]
= ES

k/s∑
i=1

s∑
r=1

(Sx)2
(i,r)

 =
1

s
Eh,ϕ

k/s∑
i=1

s∑
r=1

 u∑
j=1

ϕr(j)ξri(j)xj

2


=
1

s
ES

k/s∑
i=1

s∑
r=1

u∑
j,`=1

ϕr(j)ϕr(`)ξri(j)ξri(`)xjx`

 =
1

s

u∑
j=1

x2
j

k/s∑
i=1

s∑
r=1

Eh [ξri(j)] = ‖x‖22

because ϕr(j) and ϕr(`) are independent for j 6= ` and Eϕ[ϕr(j)] = 0.

Proof of Variance of (non-private) SJLT

The following lemma will be useful throughout this section. The proof is immediate from the definition of
ξ.

Lemma 4.13.

Eξ[ξri(j)ξtn(`)] =



Eξ[ξri(j)] Eξ[ξtn(`)], j 6= `

Eξ[ξri(j)
2], r = t, i = n, j = `

Eξ[ξri(j)] Eξ[ξti(j)], r 6= t, i = n, j = `

0, r = t, i 6= n, j = `

Eξ[ξri(j)] Eξ[ξtn(j)], r 6= t, i 6= n, j = `

=



s2/k2, j 6= `

s/k, r = t, i = n, j = `

s2/k2, r 6= t, i = n, j = `

0, r = t, i 6= n, j = `

s2/k2, r 6= t, i 6= n, j = `

where we recalled that
hr(j) = i ∧ hr(j) = n, ⇔ i = n.
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We now prove Lemma 4.10. We state it here for convenience.

Lemma 4.10. Let x, y ∈ Ru and let S be the SJLT as described above. Then

Var
[
‖Sx− Sy‖22

]
≤ 2

k
‖x− y‖42.

Proof. Throughout the proof, we will apply Lemma 4.13 without further comment. By linearity of S and
since S satisfies LPP, it is sufficient to show that for x ∈ Ru

Var
[
‖Sx‖22

]
= ES

[
‖Sx‖42

]
−
(
ES
[
‖Sx‖22

])2
= ES

[
‖Sx‖42

]
− ‖x‖42 ≤

2

k
‖x‖42.

We will consider the first term:

ES
[
‖Sx‖42

]
= ES


k/s∑
i=1

s∑
r=1

(Sx)2
(i,r)

2
 = ES


k/s∑
i=1

s∑
r=1

 u∑
j=1

1√
s
xjϕr(j)ξri(j)

2


2
=

1

s2
ES


k/s∑
i=1

s∑
r=1

u∑
j,`=1

xjx`ϕr(j)ϕr(`)ξri(j)ξri(`)

2


(4.13)

Letting

a =

k/s∑
i=1

s∑
r=1

u∑
j=1

x2
jξri(j), and b =

k/s∑
i=1

s∑
r=1

∑
j 6=`

xjx`ϕr(j)ϕr(`)ξri(j)ξri(`).

we can express (4.13) as

1

s2
ES

[
(a+ b)

2
]

=
1

s2
ES
[
a2 + b2 + 2ab

]
(4.14)

The proofs of the following claims are straightforward but tedious, and thus we leave them out here. They
can be found later in this section.

Claim 4.2.

ES
[
a2
]

= s2‖x‖42.

Claim 4.3.

ES
[
b2
]

=
2s2

k

(
‖x‖42 − ‖x‖44

)
.

Claim 4.4.

2 ES [ab] = 0

Inserting Claims 4.2-4.4 into (4.14), we conclude that

ES
[
‖Sx‖42

]
= ‖x‖42 +

2

k

(
‖x‖42 − ‖x‖44

)
finally proving that

Var
[
‖Sx‖22

]
=

2

k

(
‖x‖42 − ‖x‖44

)
≤ 2

k
‖x‖42.
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Proof of Claims

Throughout this section, we apply Lemma 4.13 repeatedly without further comment.

Claim 4.2.
ES
[
a2
]

= s2‖x‖42.

Proof.

Eh


k/s∑
i=1

s∑
r=1

u∑
j=1

x2
jξri(j)

2
 =

k/s∑
i,n=1

s∑
r,t=1

u∑
j,`=1

x2
jx

2
` Eh [ξri(j)ξtn(`)]

=

k/s∑
i,n=1

s∑
r,t=1

u∑
j=1

x4
j Eh [ξri(j)ξtn(j)] +

k/s∑
i,n=1

s∑
r,t=1

u∑
j 6=`=1

x2
jx

2
` Eh [ξri(j)ξtn(`)]

=

k/s∑
i=1

s∑
r=1

u∑
j=1

x4
j

s

k
+

k/s∑
i=1

s∑
r 6=t=1

u∑
j=1

x4
j

s2

k2
+

k/s∑
i 6=n=1

s∑
r=1

u∑
j=1

x4
j · 0

+

k/s∑
i 6=n=1

s∑
r 6=t=1

u∑
j=1

x4
j

s2

k2
+

k/s∑
i,n=1

s∑
r,t=1

u∑
j 6=`=1

x2
jx

2
`

s2

k2

= s‖x‖44 +
s(s2 − s)

k
‖x‖44 +

(
1− s

k

)
(s2 − s)‖x‖44 + s2

(
‖x‖42 − ‖x‖44

)
= s2‖x‖42

Claim 4.3.

ES
[
b2
]

=
2s2

k

(
‖x‖42 − ‖x‖44

)
.

Proof.

Eh,ϕ


k/s∑
i=1

s∑
r=1

∑
j 6=`

xjx`ϕr(j)ϕr(`)ξri(j)ξri(`)

2


=

k/s∑
i,n=1

s∑
r,t=1

∑
j 6=`
v 6=w

xjx`xvxw Eϕ [ϕr(j)ϕr(`)ϕt(v)ϕt(w)] Eh [ξri(j)ξri(`)ξtn(v)ξtn(w)]

We remark that, as j 6= `, we have

Eϕ [ϕr(j)ϕr(`)ϕt(v)ϕt(w)] =

{
1, r = t ∧ ((j = v ∧ ` = w) ∨ (j = w ∧ ` = v))

0, otherwise.

This leaves us with

2

k/s∑
i,n=1

s∑
r=1

∑
j 6=`

x2
jx

2
` Eh [ξri(j)ξri(`)ξrn(j)ξrn(`)] = 2

k/s∑
i=1

s∑
r=1

∑
j 6=`

x2
jx

2
` Eh

[
ξri(j)

2
]

Eh
[
ξri(`)

2
]

= 2

k/s∑
i=1

s∑
r=1

∑
j 6=`

x2
jx

2
`

s2

k2
=

2s2

k

(
‖x‖42 − ‖x‖44

)
where we used that Eh[ξri(j)ξrn(j)] = 0 if i 6= n.
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Claim 4.4.
2 ES [ab] = 0

Proof. Observe that

ES [ab] =

k/s∑
i,v=1

s∑
r,t=1

u∑
j=1
v 6=w

x2
jxvxw Eϕ [ϕt(v)ϕt(w)] Eh [ξri(j)ξtn(v)ξtn(w)] = 0.

because the signs are independent.
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Chapter 5

Noise Distributions for Differential
Privacy

This chapter is based on the paper The Arete Distribution for Differentially Private Noise Addition by
Rasmus Pagh & Nina Mesing Stausholm, which was in submission at the time of writing.

5.1 Introduction

Differential privacy is generally achieved by adding random noise to a query output to perturb the true
value, where the amount of noise is scaled according to the privacy parameter ε. For real-numbered queries
with sensitivity ∆, Laplace distributed noise has become something of a standard for ensuring ε-differential
privacy (see Lemma 2.3), leading to expected error Θ(∆/ε) and variance Θ(∆2/ε2). Geng, Kairouz, Oh, and
Viswanath suggested an alternative to the Laplace mechanism named the Staircase mechanism [69, 70] (see
Lemma 5.4). This mechanism adds noise from the so-called Staircase distribution, which can be parameter-
ized to obtain error Θ(∆e−ε/2) or variance Θ(∆2e−2ε/3), thus outperforming the Laplace mechanism for ε
larger than some constant.

In this chapter, we propose a new noise distribution, the Arete1 distribution, with expected absolute value
and variance, exponentially decreasing in ε, and thus comparable to that of the Staircase distribution up to
constant factors in ε. The Arete distribution is, like the Laplace and Staircase distributions, oblivious of the
data and the query output except for the sensitivity of the query, and we show that a mechanism adding
random noise from the Arete distribution with suitable parameters is ε-differentially private. Figure 5.1
illustrate the shape of each of the three distributions (see Figure 5.2 for a plot of the Arete and Laplace
density functions for ε = 6 and ε = 8). The Arete distribution has a continuous density function implying
that the privacy level decreases more smoothly with sensitivity, in contrast to the Staircase distribution (see
discussion in Section 5.2). Moreover, the Arete distribution is infinitely divisible (see Definition 5.3), and
so we can divide the noise required to achieve differential privacy between multiple players by letting each
player draw independent noise shares, whose sum has the Arete distribution. Specifically, we consider the
shuffle model of differential privacy and secure multiparty aggregation. We argue that the Arete distribution
allows for an improvement to the works of [73, 76] in the sense that we achieve error exponentially decreasing
in ε in a distributed setting. We discuss this further in Section 5.3.

The rest of this chapter is organized as follows: we first give an informal definition of the Arete distribution
along with the definition of the Arete mechanism in Definition 5.2 and our main results: Lemma 5.2 and
Corollary 5.1. In Section 5.2 we discuss how our results relate to previous work and briefly mention how to
extend it to multiple dimensions. In Section 5.3, we discuss how to apply the Arete distribution to achieve

1The name Arete is inspired by the word arête (pronounced ”ah-ray’t”), which is a sharp-crested mountain ridge, while also
a concept from Greek mythology, Arete (pronounced ”ah-reh-’tay”) referring to moral virtue and excellence: the notion of the
fulfillment of purpose or function and the act of living up to one’s full potential [142].
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(a) Laplace distribution (b) Staircase distribution

(c) Arete distribution

Figure 5.1: Figure 2.2 repeated here for convenience. Illustration of the density functions for the Laplace, Staircase and Arete
distributions. The purpose of this figure is to give an intuitive idea of the shapes. See Figure 5.2 for plots showing the densities
of the Arete vs. Laplace distributions for certain parameter settings.

ε-differentially private protocols with low error in a distributed setting. Section 5.4 presents the technical
preliminaries and gives a formal definition of the Arete distribution, as well as the Laplace and Staircase
mechanisms. Finally, Section 5.6.3 contains the proof of our main result, Lemma 5.2.

The Arete Distribution

We here give an informal introduction to the Arete distribution and refer to Section 5.4 for a formal definition
and a recap of the Γ and Laplace distributions. The goal is to approximate the staircase distribution
with an infinitely divisible distribution, so it is instructive to understand the essential properties of the
staircase distribution: Only probability mass e−Ω(ε) is placed in the tails, which can be seen as a piece-wise
uniform version of a scaled Laplace distribution. The majority of the probability mass is placed in a uniform
distribution on an interval around zero of length e−Ω(ε).

Definition 5.1 (Arete distribution, informal). Let independent random variables X1, X2 ∼ Γ(α, θ) and
Y ∼ Laplace(λ). Then Z := X1 − X2 + Y has Arete distribution with parameters α, θ and λ, denoted
Arete(α, θ, λ). When the parameters α, θ and λ are understood from the context, we use fA(t), t ∈ R, to
denote the density function of Z.

Since the Γ and Laplace distributions are continuous, symmetric, and infinitely divisible it follows that
the Arete distribution also has these properties. In Section 5.5.2 we show:

Lemma 5.1. For any choice of parameters α, θ, λ > 0, the Arete(α, θ, λ) distribution is infinitely divisible
and has density fA(t) that is continuous, symmetric around 0, and monotonely decreasing for t > 0.

Next, we discuss the intuition behind the noise and privacy properties of the Arete distribution: For
privacy parameter ε > 0 and sensitivity ∆ > 0 we concern ourselves with distributions D with support S
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and density function fD satisfying

e−ε ≤ fD(t)

fD(t+ a)
≤ eε, ∀t, a ∈ R, |a| ≤ ∆ (5.1)

as this property is sufficient to ensure differential privacy, which is our main goal. We will refer to the
property (5.1) as the differential privacy constraint. In order to minimize the magnitude of the noise, the
goal is to find a distribution with minimal expected (absolute) value while satisfying (5.1).

The difference of two Γ distributed random variables can be parameterized to have similar tails and
to “peak” in an interval around zero of the same width as the staircase distribution. However, this does
not provide differential privacy since the density function has a singularity at zero. To achieve differential
privacy, we add a small amount of Laplace noise that “smooths out” the singularity. In more detail, the
Γ(α, θ)-distribution (see Definition 5.4) with shape α < 1, has most of its probability mass on an interval
(0, O(α)). The difference of two Γ distributions does not satisfy (5.1) for any choice of α < 1, as the density
tends to infinity for values going to zero. To fix this we need to “flatten the curve” of the density function
in the neighborhood of 0. Consider Z ′ := X + Y for independent X ∼ Γ(α, θ) and Y ∼ Exp(λ). The
Exponential distribution, with a suitable choice of parameter λ, is used to flatten the density function of
the Γ distribution close to 0. In order to get a noise distribution that is symmetric around zero, we further
consider Z = X1 + Y1 − (X2 + Y2) for X1, X2 ∼ Γ(α, θ) and Y1, Y2 ∼ Exp(λ). Our definition of the Arete
distribution follows from the fact that if Y1, Y2 ∼ Exp(λ), then Y = Y1 − Y2 ∼ Laplace(λ). We provide an
explicit setting for the parameters α, θ, λ in Lemma 5.2.

Main Results

Let the Arete distribution Arete(α, θ, λ) be as in Definition 5.1 (and formally, Definition 5.7) with density
function fA. In Section 5.6.3 we show the following result:

Lemma 5.2. For every choice of ∆ ≥ 2/e and ε ≥ 20 + 4 ln(∆) there exist parameters α, β, λ > 0 such that:

• For every choice of t, a ∈ R with |a| ≤ ∆, e−ε ≤ fA(t)
fA(t+a) ≤ e

ε:

• For Z ∼ Arete(α, θ, λ), E[|Z|] = O(∆e−ε/4) and Var[Z] = O(∆2e−ε/4).

Parameters α = e−ε/4, θ = 4∆
ε and λ = e−ε/4 suffice.

The following corollary shows that adding noise from the Arete distribution gives an ε-differentially
private mechanism.

Definition 5.2 (The Arete mechanism). Let x ∈ X d be an input and q : X d → R a query with sensitivity
bounded by ∆ ≥ 2/e. Given parameters α, θ, λ, the Arete mechanism MArete(x) samples Z ∼ Arete(α, θ, λ)
and returns q(x) + Z.

Corollary 5.1. The Arete mechanismMArete with parameters as specified in Lemma 5.2 has expected error
O(∆e−ε/4) and is ε-differentially private.

Proof. We refer to Section 5.5.2 for the proof.

Discussion of Large Values of ε

Values of ε larger than one are often used in practice – a few examples of deployments using large values
of ε include Google’s RAPPOR with ε up to 9 and Apple’s MacOS with ε = 6 and iOS10 with ε = 14 [79]
and US Census Bureau with ε up to 19.6 [121].

We acknowledge that the required lower bound on ε in Lemma 5.2 is high, but note that we have not
optimized for constants in our analysis, and in practice, we may achieve differential privacy for significantly
lower ε – that is, bullet 3 in Lemma 5.2 may be satisfied for lower values of ε than 20 + 4 ln(∆) (this claim
can be supported by empirical analysis – see Figure 5.2). In order to get a mechanism for any ε > 0, one
can add noise from the Arete distribution for ε ≥ 20 + 4 ln(∆) and apply the Laplace mechanism for smaller
values of ε. For a thorough discussion of small versus large ε, we refer to [58, 63].

67



(a) Densities for ε = 6 (b) Densities for ε = 8

Figure 5.2: Density functions for Arete distributions that empirically yield ε-differential privacy with ε = 6 and ε = 8,
respectively. The density functions were approximated by rounding the constituent Γ and Laplace distribution values to a
multiple of 0.001 and computing the discrete convolution. Parameters were found using a local search heuristic. For comparison,
Laplace distributions with the same privacy guarantee have been included and are clearly less concentrated around zero.

5.2 Related Work

A fundamental question that presents itself is what we can say about the tradeoff between error and privacy.
Hardt & Talwar [82] study this tradeoff for linear queries, showing a lower bound of Ω(1/ε) for worst-case
expected `2-norm of noise (std. deviation) under the constraint of ε-differential privacy for small ε. Nikolov
et al. [118] extend the work [82] to the tradeoff between error and (ε, δ)-differential privacy. For error
that can be a general function of the added noise, Ghosh, Roughgarden, Sundararajan & Gupte [75, 80]
introduced the Geometric Mechanism for counting queries (integer valued) with sensitivity 1, showing that
the optimal noise has a (symmetric) Geometric distribution with error (std. deviation) Θ(e−ε/2). Brenner &
Nissim [23] extend [75, 80] showing that for general queries there is no optimal mechanism for ε-differential
privacy, while in the high privacy regime, Geng & Viswanath [71] present a (near) optimal mechanism for
integer-valued vector queries for (ε, δ)-differential privacy, achieving error (for single-dimensional queries)
Θ(min{1/ε, 1/δ}) for small ε and δ. Though the geometric mechanism yields optimal error in the discrete
setting and is infinitely divisible [76], it does not seem to generalize to a differentially private, infinitely
divisible noise distribution in the real-valued setting.

Generalizing to real-valued one-dimensional queries with arbitrary sensitivity, Geng & Viswanath [70]
introduced the ε-differentially private Staircase mechanism (see Lemma 5.4), which adds noise from the
Staircase distribution – a geometric mixture of uniform distributions. The density function of the Staircase
distribution, fSC , is a piece-wise continuous step (or ”staircase-shaped”) function, symmetric around zero,
monotonically decreasing, and geometrically decaying. Geng & Viswanath [70] prove that the optimal
ε-differentially private mechanism for single real-valued queries, measuring error as expected magnitude
or variance of the noise, is not Laplace but rather Staircase distributed: while the Laplace mechanism is
asymptotically optimal as ε→ 0, the Staircase mechanism performs better in the low privacy regime (i.e., for
large ε), as the expected magnitude of the noise is exponentially decreasing in ε. Specifically, for sensitivity
∆ and for the parameter setting of γ optimizing for expected noise magnitude, the Staircase mechanism
achieves error Θ(∆e−ε/2). For the choice of γ optimizing for variance, the Staircase mechanism ensures
variance of the noise Θ(∆2e−2ε/3). We remark that the γ optimizing for noise magnitude is not generally
the same a for optimizing for variance. The Laplace distribution has expected noise magnitude Θ(∆/ε) and
variance Θ(∆2/ε2). In comparison, the expected noise magnitude and variance of the Arete distribution
are also exponentially decreasing in ε, specifically O(∆e−ε/4) and O(∆2e−ε/4), respectively, for our choice
of parameters. The expected error and variance mentioned here are for a single parameter setting for both
Laplace and Arete mechanisms.

As we want a noise distribution that is implementable in a distributed setting, we limit our interest to
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(a) Staircase mechanism (b) Arete mechanism

Figure 5.3: Figure 2.3 repeated here for convenience. Illustrations of the worst-case privacy loss of the Staircase and Arete
mechanisms depending on the difference between query outputs. As we have no closed form for the density of the Arete
distribution (see discussion in Note 5.1), we cannot explicitly determine the privacy loss, and so the graph given here is an
approximation.

noise distributions that are oblivious of the input data and the query output. An important property of
the Arete distribution is that the density function is continuous, and so we get a more graceful decrease in
privacy than the Staircase mechanism for inputs that are not quite neighboring. For such inputs, the query
outputs may differ by more than the sensitivity, and the differential privacy requirement (as mentioned in
(5.1)) no longer applies. It is, however, still interesting to study how the level of privacy decreases for inputs
that are almost neighbors. The Staircase mechanism is exactly fitted to the sensitivity of the query such
that differential privacy is guaranteed for neighboring inputs, but for query outputs that differ by more than
the sensitivity, the level of privacy is immediately halved. The privacy level decreases in a smoother fashion
when applying the Arete distribution due to the continuity of the density function (See Figure 5.3). Geng
et al. [69] extend the Staircase mechanism from [70] to queries in multiple dimensions.

Multiple Dimensions

We will limit ourselves to single dimensional queries, but here briefly touch upon two techniques for extending
to multiple dimensions. In order to generalize to d-dimensional queries, we may simply add independent noise
from the Arete distribution to each coordinate of the query output, exactly as we usually do with Laplace
noise (as was also the technique applied in Chapter 4). This strategy results in noise growing with the
number of dimensions, d leading to expected absolute noise magnitude E[‖ϕ‖1] = O(d·E[ϕj ]) = O(d·∆e−ε/4)
and expected (squared) `2-norm of the noise (i.e., variance) E[‖ϕ‖22] = O(d · Var[ϕj ]) = O(d ·∆2e−ε/4) for
ϕj ∼ Arete(α, θ, λ) with parameters α, θ, λ as specified in Lemma 5.2. Geng et al. [69] suggested an approach
to extend the Staircase mechanism to multiple dimensions, where the sampling probability for d-dimensional
noise vector ϕ depends on the `1-norm of ϕ:

fSCmult(ϕ) =

{
a(γ)e−kε, ‖ϕ‖1 ∈ [k∆, (k + γ)∆)

a(γ)e−(k+1)ε, ‖ϕ‖1 ∈ [(k + γ)∆, (k + 1)∆)
, k ∈ Z≥0.

Naturally, the normalizing factor a(γ) is adapted to ensure that fSCmult is still a probability measure. Geng
et al. do not explicitly state the error incurred by this noise addition for general d or how it relates to the
error obtained by adding independent Staircase distributed noise to each coordinate of the query output.
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5.3 Applications

As discussed in Chapter 2, two models are prevalent in differential privacy: the central model and the local
model. In the central model of differential privacy [57], all data is held by a single trusted unit which makes
the result of a query differentially private before releasing it. This is often done by adding noise to the query
result. The central model usually has a very high level of accuracy but requires a high level of trust. Often,
data is split among many curators, and a single trusted curator is not available. This setting is commonly
known as the local model of differential privacy [54, 95]. In this model, each curator must ensure privacy
for their own data and so applies a differentially private mechanism locally, which is then forwarded to an
analyst who combines all reports to compute an approximate answer to the query. For many queries, the
overall error in the local model grows rather quickly as a function of the number of players, significantly
limiting utility. For example, while we can achieve error constant error in the central model [60], a count
query requires O(

√
n) error for the same level of privacy as in the central model, where n is the number of

players [33]. The local model is often attractive for data collection as the collecting organizations are not
liable for storing sensitive user data in this model – a few examples of deployment include Google’s RAPPOR
[65], Apple (several features such as Lookup Hints, Emoji suggestion, etc.) [8] and Microsoft Telemetry [48].

In order to bridge this trust/utility gap, we may imitate the trusted unit from the centralized setting
with cryptographic primitives [139], allowing for differentially private implementations with better utility
than in the local model while having lower trust assumptions than in the centralized model. Cryptographic
primitives ensure that all parties learn only the output of the computation, while differential privacy further
bounds the information leakage from this output, so the combination gives powerful guarantees. We limit our
discussion to the problem of computing the sum of real inputs, which is a basic building block in many other
applications. If we can divide the noise among all players, we can obtain the same accuracy in a distributed
setting as in the central model without assuming access to a trusted aggregator. Luckily, we can divide the
noise between the players if the noise distribution D is infinitely divisible. Thus, the Arete distribution can
be applied in this model.

We discuss differential privacy implementations with two cryptographic primitives: Secure Multiparty
Aggregation and Anonymous Communication but note that such implementations come with assumptions
about the computational power of the analyst, which are accepted by the security community, but limit the
privacy guarantee to computational differential privacy [139].

Secure Multiparty Aggregation

The cryptographic primitive secure multiparty Aggregation, rooted in the work of Yao [149], has often
been combined with differential privacy to solve the problem of private real summation; see for example
[21, 30, 125]. Goryczka et al. [76] give a comparative study of several protocols for private summation in
a distributed setting. These protocols combine common approaches for achieving security (secret sharing,
homomorphic encryption, and perturbation-based) while each party adds noise shares whose sum follows the
Laplace distribution before sharing their data to ensure differential privacy. Continuing their line of work,
we may exchange the Laplace noise in [76] with Arete distributed noise to achieve ε-differentially private
protocols with error exponentially small in ε.

Anonymous Communication

Another line of work that has received much attention over the past few years is the shuffle model of
differential privacy [19, 33, 64]. Along with Google’s Prochlo framework, Bittau et al. [19] introduced the
ESA (Encode Shuffle Analyze) framework where each curator encodes their data before releasing it to a
shuffler. The shuffler randomly permutes the encoded inputs and releases the (private) permuted set of
data to an (untrusted) analyst, who then performs statistical analysis on the encoded, shuffled data. For
recent work on the problem of summation in the shuffle model and a discussion of error/privacy-tradeoff, we
refer to, for example, [11, 12, 72, 73, 74]. Ghazi et al. [73] propose an (ε, δ)-differentially private protocol
for summation in the shuffle model for summing reals or integers where each user sends expected 1 + o(1)
messages. The protocol adds discrete Laplace noise (also sometimes called Geometrically distributed noise)
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and achieves error arbitrarily close to that of the Laplace mechanism (applied in the central model) while
they leave open the problem of achieving error exponentially decreasing in ε in the shuffle model. The Arete
distribution solves this open problem: as the Arete distribution is infinitely divisible, simply exchange the
discrete Laplace noise (the “central” noise distribution in the protocol) with the Arete distribution.

Note. By the post-processing property of differential privacy (Lemma 2.1), we still achieve differential
privacy if more than n players participate, and so we only need to choose the noise shares based on a lower
bound on the number of players in order to ensure differential privacy. Hence, it is not strictly necessary to
know the exact number of players in advance.

5.4 Preliminaries

5.4.1 Probability Distributions

This section states the definitions and basic facts that we need to analyze the Arete distribution. References
to further information can be found in [76].

Definition 5.3 (Infinite Divisibility). A distribution D is infinitely divisible if, for any random variable X
with distribution D, then for every positive integer n there exist n i.i.d. random variables X1, ..., Xn such
that

∑n
i=1Xi has the same distribution as X. The random variables Xi need not have distribution D.

We recall the definitions of the distributions that we use to define the Arete distribution and give a formal
definition of the latter. Whenever the parameters are implicit, we leave them out and simply write fΓ, fL,
fΓ−Γ and fA for the densities of the Γ, Laplace, Γ− Γ and Arete distributions, resp.

Definition 5.4 (The Γ Distribution). A random variable X has Gamma distribution with shape parameter
α > 0 and scale parameter θ > 0, denoted X ∼ Γ(α, θ), if its density function is

fΓ(α,θ)(t) =
e−t/θtα−1

Γ(α)θα
, t > 0.

In the special case α = 1, the random variable X has Exponential distribution with parameter θ.

The Γ-distribution is infinitely divisible: For n independent random variables Xi ∼ Γ(αi, θ), we have
X =

∑n
i=1Xi ∼ Γ (

∑n
i=1 αi, θ). Furthermore, for X ∼ Γ(α, θ) we have E[X] = αθ and Var[X] = αθ2.

Definition 5.5 (The Laplace Distribution). A random variable X has Laplace distribution with location
parameter µ and scale parameter λ > 0, denoted X ∼ Laplace(µ, λ), if its density function is

fL(µ,λ)(t) =
e−|t−µ|/λ

2λ
, t ∈ R.

If µ = 0 we just write Laplace(λ).

If X ∼ Laplace(λ), then |X| ∼ Exp(λ) and E[X] = 0 while E[|X|] = λ. Similarly, Var[X] = 2λ2

while Var[|X|] = λ2. The Laplace distribution is infinitely divisible: For 2n independent random variables
Xi, Yi ∼ Γ(1/n, λ), we have X =

∑n
i=1(µ/n+Xi − Yi) ∼ Laplace (µ, λ).

5.4.2 Differentially Private Mechanisms

Informally, differential privacy promises that an analyst cannot, given a query answer, decide whether the
underlying data contains a specific data record or not. Therefore, differential privacy relies on the notion
of neighboring inputs, i.e., datasets x, y ∈ X d that differ by one data record. The sensitivity of a query
quantifies how much the query output can differ for neighboring inputs and so describes how much difference
the added noise needs to hide. We refer to Section 2.1.2 for the formal definitions of neighboring inputs, the
sensitivity of a query, and differential privacy.

We remind the reader of the Laplace mechanism (Lemma 2.3), here stated for single-dimensional queries.
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Lemma 5.3 (The Laplace Mechanism [60]). For real-valued query q : X d → R and input x ∈ X d, the
Laplace mechanism outputs q(x) +X where X ∼ Lap(λ). If ∆ is the sensitivity of q, the Laplace mechanism
with parameter λ = ∆/ε is ε-differentially private.

Lemma 5.4 (The Staircase Mechanism [70]). Let q : R → R be a real-valued query with sensitivity ∆. Let
random variable X ∼ SC(γ,∆) have Staircase distribution with parameters γ ∈ [0, 1] and ∆ > 0 such that
the density of X is

fSC(t) =


a(γ), t ∈ [0, γ∆)

e−εa(γ), t ∈ [γ∆,∆)

e−kεfSC(t− k∆), t ∈ [k∆, (k + 1)∆), k ∈ N
fSC(−t), t < 0

where a(γ) = 1−e−ε
2∆(γ+e−ε(1−γ)) is a normalization factor. Then for input x ∈ R, the Staircase mechanism

which outputs q(x) +X where X ∼ SC(γ,∆) is ε-differentially private.

For optimal parameter γ, the Staircase mechanism achieves expected absolute error Θ(∆e−ε/2) and
variance Θ(∆2e−2ε/3). We remark that the γ optimizing for expected magnitude of the noise is not the same
as the γ optimizing for variance.

5.5 The Arete Distribution

We now turn to the Arete distribution. The following lemma is well-known from the probability theory
literature:

Lemma 5.5. If X and Y are independent, continuous random variables with density functions fX and fY ,
then Z = X + Y is a continuous random variable where the density is the convolution

fZ(z) =

∫ ∞
−∞

fX(x)fY (z − x)dx=

∫ ∞
−∞

fX(z − x)fY (x)dx.

The following distribution will be useful in defining the Arete distribution:

Definition 5.6 (The Γ − Γ Distribution). Let X1, X2 ∼ Γ(α, θ) be independent and define X := X1 −X2.
We say that X has the Γ− Γ(α, θ) distribution and the density of X is

fΓ−Γ(α,θ)(t) =

∫ ∞
0

fΓ(α,θ)(t+ x)fΓ(α,θ)(x)dx =

{∫∞
0
fΓ(t+ x)fΓ(x)dx, t ≥ 0∫∞

|t| fΓ(t+ x)fΓ(x)dx, t < 0.

where the integrals are reduced to the intervals where fΓ(t+ x)fΓ(x) is non-zero.

Lemma 5.6. The Γ − Γ distribution is infinitely divisible: For 2n independent random variables Xi, Yi ∼
Γ(α/n, θ), we have X =

∑n
i=1(Xi − Yi) ∼ Γ− Γ (α, θ).

Proof. The result follows immediately from infinite divisibility of the Γ-distribution.

Definition 5.7 (The Arete distribution). Let X ∼ Γ− Γ(α, θ) and Y ∼ Laplace(λ) be independent. Define
Z := X + Y , then Z ∼ Arete(α, θ, λ) for α, θ, λ > 0. The density of Z is

fA(α,θ,λ)(t) =

∫ ∞
−∞

fΓ−Γ(α,θ)(t− x)fL(λ)(x)dx =

∫ ∞
−∞

fL(λ)(t− x)fΓ−Γ(α,θ)(x)dx, t ∈ R.

Lemma 5.7. The Arete distribution is infinitely divisible: For 4n independent random variables X1i, X2i ∼
Γ(α/n, θ) and Y1i, Y2i ∼ Γ(1/n, λ), we have X =

∑n
i=1(X1i −X2i + (Y1i − Y2i)) ∼ Arete (α, θ, λ).
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Proof. The result follows immediately from infinite divisibility of the Laplace distribution and Lemma 5.6.

Note 5.1. We remark that we are only interested in 0 < α < 1. Furthermore, we do not explicitly state the
density of the Arete distribution, as there is no simple closed form for the density of the Γ− Γ distribution.
(It can, however, be expressed in terms of Bessel functions – see [102].) A similar intuitive way of defining
our distribution would be to use a symmetric version of the Γ-distribution (two halved Γ-distributions put
back-to-back at zero) instead of the Γ − Γ-distribution. An essential property of our distribution is infinite
divisibility such that we can draw independent noise shares that sum to a random variable following the
Arete distribution. As opposed to our Γ− Γ distribution, it is not clear whether a symmetric Γ-distribution
is infinitely divisible.

5.5.1 Symmetric Density Functions

We observe some simple properties of the Arete distribution, see Section 5.8.1 for the omitted, elementary
proofs.

Lemma 5.8. For f, g : R → R, that are symmetric around 0, i.e., f(x) = f(−x) and g(x) = g(−x), we
have for any t ∈ R ∫ ∞

−∞
f(x)g(t− x)dx =

∫ ∞
−∞

f(x)g(|t| − x)dx.

In particular, the convolution f ∗ g is symmetric around 0.

Lemma 5.9. fΓ−Γ is symmetric around 0.

Corollary 5.2. fA is symmetric around 0.

Proof. The result follows directly from symmetry of the density of the Laplace distribution, fL, and Lemmas
5.8 and 5.9.

5.5.2 Properties of the Arete Distribution

We restate the lemma here for convenience

Lemma 5.1. For any choice of parameters α, θ, λ > 0, the Arete(α, θ, λ) distribution is infinitely divisible
and has density fA(t) that is continuous, symmetric around 0, and monotonely decreasing for t > 0.

Proof. Symmetry of the density function fA is proven in Corollary 5.2 and infinite divisibility in Lemma
5.7. Since fΓ and fL are continuous, fΓ−Γ and fA are also continuous by Lemma 5.5. We prove that fA is
monotonely decreasing, i.e., for |t| ≤ |t′| we have fA(t) ≥ fA(t′). First, we argue that fΓ−Γ is monotonely
decreasing. Recall Definition 5.6 and observe

fΓ−Γ(t) =

∫ ∞
0

fΓ(|t|+ x)fΓ(x)dx, ∀t ∈ R

which is immediate for t ≥ 0 while for t < 0

fΓ−Γ(t) =

∫ ∞
|t|

fΓ(−|t|+ x)fΓ(x)dx =

∫ ∞
0

fΓ(x′)fΓ(x′ + |t|)dx′

where we substituted x′ := x− |t|. So assume |t| ≤ |t′|. Then, since fΓ is monotonely decreasing

fΓ−Γ(t) =

∫ ∞
0

fΓ(|t|+ x)fΓ(x)dx ≥
∫ ∞

0

fΓ(|t′|+ x)fΓ(x)dx = fΓ−Γ(t′).
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We prove that fA is also monotonely decreasing: Assuming that |t| ≤ |t′| we prove that fA(t) ≥ fA(t′).
Recall Definition 5.7 and observe

fA(t) =

∫ ∞
−∞

fΓ−Γ(|t| − x)fL(x)dx =

∫ ∞
−∞

fΓ−Γ(x)fL(|t| − x)dx

which is obvious for t ≥ 0 and since for t < 0:

fA(t) =

∫ ∞
−∞

fΓ−Γ(t− x)fL(x)dx =

∫ ∞
−∞

fΓ−Γ(|t|+ x)fL(x)dx =

∫ ∞
−∞

fΓ−Γ(x′)fL(|t| − x′)dx′

using that fΓ−Γ and fL are symmetric and a substitution with x′ := |t| + x. A similar argument can be
made if the convolution is flipped. We conclude that

fA(t) =

∫ ∞
−∞

fΓ−Γ(|t| − x)fL(x)dx ≥
∫ ∞
−∞

fΓ−Γ(|t′| − x)fL(x)dx = fA(t′)

using that fΓ−Γ is monotonely decreasing.

We finally assume Lemma 5.2 and prove Corollary 5.1, restated here for convenience. The proof of Lemma
5.2 is given in Section 5.6.

Corollary 5.1. The Arete mechanismMArete with parameters as specified in Lemma 5.2 has expected error
O(∆e−ε/4) and is ε-differentially private.

Proof. The expected error bound follows directly from the bound on E[|Z|] in Lemma 5.2. For the claim of
differential privacy, let x, x′ ∈ R with |x− x′| ≤ 1. We show that for any subset S ⊂ R

Pr[MArete(x) ∈ S] ≤ eε Pr[MArete(x
′) ∈ S]. (5.2)

Let noise Z ∼ Arete(α, θ, λ) for parameters α, θ, λ as in Lemma 5.2. Define S′ := S−q(x) = {s−q(x) : s ∈ S},
then:

Pr[MArete(x) ∈ S]

Pr[MArete(x′) ∈ S]
=

∫
S′
fA(z)dz∫

S′
fA(z + q(x′)− q(x))dz

≤
∫
S′
fA(|z|)dz∫

S′
fA(|z|+ |q(x′)− q(x)|)dz

where we used symmetry of fA, the triangle inequality, and the fact that fA(t) is decreasing for t > 0. By
assumption |q(x) − q(x′)| ≤ ∆. Lemma 5.2 says that fA(t)/fA(t + a) ≤ eε for all t ∈ R and a ≤ ∆, and so
we get ∫

S′
fA(|z|)dz∫

S′
fA(|z|+ |q(x′)− q(x)|)dz

≤
∫
S′
eεfA(|z|+ ∆)dz∫

S′
fA(|z|+ |q(x′)− q(x)|)dz

≤ eε.

That we also have Pr[MArete(x
′) ∈ S] ≤ eε Pr[MArete(x) ∈ S] follows by symmetry.

5.6 Proof of Main Lemma

In the remaining part of this section, we prove a number of theoretical lemmas that will help prove our main
result, Lemma 5.2. The bulk of the analysis is the proof of the first bullet point of Lemma 5.2, showing that
the given parameters α, θ, λ > 0 suffice to bound fA(t)/fA(t + a) for all t, a ∈ R, |a| ≤ ∆. We break this
part of the analysis down in this section. The intuition behind the structure is as follows: We first remark
that (to the best of our knowledge) there is no simple expression for the density of the Γ − Γ distribution
(see Note 5.1). Hence, we will show upper and lower bounds for fΓ−Γ and use these to bound the ratio
fA(t)/fA(t+ a). As discussed earlier, we have not optimized for constants, and as our proof includes several
steps of bounding, our analysis may not be tight, thus leading to the high value of ε required in Lemma 5.2.
A tighter analysis will likely allow for a better setting of parameters α, θ, λ, and a smaller ε. We give the
proof of Lemma 5.2 in Section 5.6.3.
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5.6.1 Bounds on Density of Γ− Γ Distribution

We first derive upper and lower bounds on the density function of the Γ−Γ distribution (see Section 5.4 for
definitions).

Lemma 5.10. For any t ∈ R and any ζΓ > 0

fΓ(|t|+ ζΓ)cζΓ ≤ fΓ−Γ(t) ≤ fΓ(|t|) where cζΓ :=

∫ ζΓ

0

fΓ(x)dx .

Proof. Recall Definition 5.6 and Lemma 5.9 and let t ∈ R. For the upper bound, we have

fΓ−Γ(t) =

∫ ∞
0

fΓ(|t|+ x)fΓ(x)dx < fΓ(|t|)
∫ ∞

0

fΓ(x)dx = fΓ(|t|).

For the lower bound, we have for any ζΓ > 0

fΓ−Γ(t) =

∫ ∞
0

fΓ(|t|+ x)fΓ(x)dx ≥
∫ ζΓ

0

fΓ(|t|+ x)fΓ(x)dx ≥ fΓ(|t|+ ζΓ)

∫ ζΓ

0

fΓ(x)dx .

5.6.2 Bounds on Density of Arete Distribution

In this section we show that for ∆ > 0 and setting of parameters α, θ, λ and for large enough ε:

e−ε ≤ fA(t)/fA(t+ ∆) ≤ eε, ∀t ∈ R. (5.3)

We remark that by monotonicity of the density of the Arete distribution, it suffices to show (5.3) to prove that
fA satisfies (5.1): Take any a ∈ R such that |a| ≤ ∆ and suppose without loss of generality that f(t) ≥ f(t+a)

(if this is not the case, substitute t′ := |t|−a, such that f(t′) ≥ f(t′+a)). Then e−ε ≤ f(t)
f(t+a) . We prove that

f(t+a) ≥ f(t+∆) ensuring f(t)
f(t+a) ≤

f(t)
f(t+∆) ≤ e

ε, which finishes the argument: by assumption f(t) ≥ f(t+a)

and so |t| ≤ |t+ a|, further implying that t ≥ −a/2. Hence, as |a| ≤ ∆ we have |t+ ∆| ≥ |t+ a| and so we
conclude that f(t+ a) ≥ f(t+ ∆) as wanted.

Throughout the section we assume that |t| ≤ |t+ ∆| (and so t ≥ −∆/2). For such t, fA(t) ≥ fA(t+ ∆)
and so the first inequality in (5.3) is immediate. Hence, we put our focus toward proving the latter inequality.
If |t+ ∆| ≤ |t|, the result follows by symmetry of fA (Corollary 5.2).

We start with the following lower bound on the density fA:

Lemma 5.11. Let ζΓ and cζΓ be as in Lemma 5.10 and assume λ ≤ ∆/ ln(2) for ∆ > 0. For −∆/2 ≤ t ∈ R

fA(t+ ∆) ≥ fΓ(|t+ ∆|+ ζΓ)cζΓcL where cL := 1/4.

Proof. By Definition 5.7 and Lemma 5.10 we have

fA(t+ ∆) =

∫ ∞
−∞

fΓ−Γ(t+ ∆− x)fL(x)dx ≥
∫ ∞
−∞

fΓ(|t+ ∆− x|+ ζΓ)cζΓfL(x)dx

≥ cζΓ
∫ 2(t+∆)

0

fΓ(|t+ ∆− x|+ ζΓ)fL(x)dx ≥ cζΓfΓ(t+ ∆ + ζΓ)

∫ 2(t+∆)

0

fL(x)dx,

where we used that fΓ(|t + ∆ − x| + ζΓ) ≥ fΓ(|t + ∆| + ζΓ) for x ∈ (0, 2(t + ∆)) and that by assumption
t+ ∆ ≥ ∆/2 allowing us to remove the absolute value signs. Again using that t+ ∆ ≥ ∆/2∫ 2(t+∆)

0

fL(x)dx ≥
∫ ∆

0

fL(λ)(x)dx =
1

2

∫ ∆

0

fExp(λ)(x)dx ≥ 1

4
, λ < ∆/ ln(2)
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where we noticed that on the positive reals, the density function of the Laplace distribution is 1/2 times the
density function of the Exponential distribution, and used that the median of the latter is ln(2)λ, so that
the last inequality is valid as long as ln(2)λ ≤ ∆. Hence,

fA(t+ ∆) ≥ cζΓfΓ(t+ ∆ + ζΓ)1/4.

Defining cL := 1/4 finishes the proof.

The following three lemmas are highly technical and give upper bounds for the ratio fA(t)/fA(t + ∆);
first for large and small |t| separately in Lemmas 5.12 and 5.13 (i.e., for t close to and far from 0, where
”close to/far from” is quantified by a parameter ζu, which we will set in Lemma 5.15). We combine these
results to an upper bound for general t in Lemma 5.14 (still assuming t is s.t. fA(t) ≥ fA(t+ ∆)) and finally
choose parameters to ensure an upper bound of eε in Lemma 5.15, thus satisfying the second inequality of
(5.3). Throughout the next three lemmas we make use the variables ζΓ, cζΓ (from Lemma 5.10) and cL (from
Lemma 5.11), all of which will be handled in the proof of Lemma 5.15.

Lemma 5.12. Let ζu > 0 be given and assume 0 < α ≤ 1. Let ζΓ, cζΓ be as in Lemma 5.10 and cL as in
Lemma 5.11. Assume 1/λ − 1/θ ≥ 1/(ζu +∆ + ζΓ) and λ ≤ ∆/ ln(2) for ∆ > 0. For −∆/2 < t ∈ R with
|t| ≥ ζu we have

fA(t)

fA(t+ ∆)
≤ e(ζΓ +∆)/θ

cζΓ

((
1 +

∆ + ζΓ
ζu

)
+
cζuΓ(α)θα

2λcL
eζu /θ(ζΓ +∆ + ζu)1−α

)
where cζu := 2

∫ ζu
0
fΓ(x)dx.

Proof. The proof can be found in Section 5.8.2.

Lemma 5.13. Let ζu > 0 be given and assume 0 < α ≤ 1. Let ζΓ, cζΓ be as in Lemma 5.10 and cL as in
Lemma 5.11. Assume 1/λ − 1/θ ≥ 1/(∆ + ζΓ) and λ ≤ ∆/ ln(2) for ∆ > 0. For −∆/2 < t ∈ R such that
|t| ≤ ζu we have

fA(t)

fA(t+ ∆)
≤ e(ζΓ +∆)/θ

cLcζΓλ

(
ζu + ζΓ +∆

α
+ Γ(α)θα(ζΓ +∆)1−α

)
Proof. The proof can be found in Section 5.8.2.

The following lemma combines Lemmas 5.12 and 5.13 to give an upper bound for general t > −∆/2:

Lemma 5.14. Let ζΓ, cζΓ be as in Lemma 5.10 and cL as in Lemma 5.11. Assume 0 < α ≤ 1, θ ≤ ζΓ +1,
λ ≤ min{θ/2,∆/ ln(2)} and Γ(α) ≤ 1/α for ∆ > 0. For −∆/2 < t ∈ R

fA(t)

fA(t+ ∆)
≤ 2e(ζΓ +∆)/θeα(αθ + ζΓ +∆)

αcζΓcLλ

Proof. The proof can be found in Section 5.8.2.

Note 5.2. The fact that Γ(α) ≤ 1/α for 0 < α ≤ 1 follows from Euler’s definition of the Gamma function,

Γ(α) =
1

α

∞∏
n=1

(1 + 1
n )α

1 + α
n

,

since (1 + 1
n )α ≤ 1 + α

n for any n > 0 and 0 < α ≤ 1.

We finally choose parameters α, θ, λ ensuring that the ratio e−ε ≤ f(t)/f(t+ ∆) ≤ eε for ε large enough:

Lemma 5.15. Suppose ε ≥ 20+4 ln(∆) for ∆ ≥ 2/e. Let α = e−ε/4, θ = 4∆
ε and λ = e−ε/4. Then for t ∈ R

e−ε ≤ fA(t)

fA(t+ ∆)
≤ eε.

Proof. The proof can be found in Section 5.8.2.
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5.6.3 Putting Things Together

We restate the lemma here for convenience:

Lemma 5.2. For every choice of ∆ ≥ 2/e and ε ≥ 20 + 4 ln(∆) there exist parameters α, β, λ > 0 such that:

• For every choice of t, a ∈ R with |a| ≤ ∆, e−ε ≤ fA(t)
fA(t+a) ≤ e

ε:

• For Z ∼ Arete(α, θ, λ), E[|Z|] = O(∆e−ε/4) and Var[Z] = O(∆2e−ε/4).

Parameters α = e−ε/4, θ = 4∆
ε and λ = e−ε/4 suffice.

Proof. The first bullet with the choice of parameters α = e−ε/4, θ = 4∆/ε and λ = e−ε/4 follow from Lemma
5.15 and monotonicity of fA (Lemma 5.1), as described at the beginning of Section 5.6.2. The second bullet
also follows from Lemma 5.15, as the expected error of a random variable Z = X+Y , where X ∼ Γ−Γ(α, θ)
and Y ∼ Laplace(λ), i.e., Z ∼ Arete(α, θ, λ), is

E[|Z|] = E[|X + Y |] = E[|X1 −X2 + Y |] ≤ 2 E[X1] + E[|Y |] = 2αθ + λ =
8∆e−ε/4

ε
+ e−ε/4 = O

(
∆

ε
e−ε/4

)
where X1, X2 ∼ Γ(α, θ), and similarly, by independence

Var[Z] = Var[X + Y ] = Var[X1 −X2 + Y ] = 2 Var[X1] + Var[Y ] = 2αθ2 + 2λ2 = 2
16∆2e−ε/4

ε2
+ 2e−ε/2

= O

(
∆2

ε2
e−ε/4

)
with our choice of parameters. Finally, for ε ≥ 1/

√
2 (which is significantly smaller than the values of ε that

we are interested in), we may simplify to

E[|Z|] = O
(

∆e−ε/4
)
, Var[Z] = O

(
∆2e−ε/4

)
thus finishing the proof.

5.7 Open Problems

Our analysis of the privacy from this noise distribution involves a sequence of bounds, and so one could
attempt a tighter analysis of the privacy guarantees ensured by the Arete mechanism. Especially we may
ask for the optimal parameters such that the Arete mechanism ensures differential privacy and whether we
can get rid of the assumption on the size of ε (simulations suggest that the constant factors of the Arete
mechanism, with parameters chosen as we have described, can be improved – see Figure 5.2). We remark that
one could also have used other distributions to flatten the Γ-distribution – a Gaussian distribution might be
a natural choice. We leave open the question of what privacy and accuracy guarantees can be achieved with
other choices of distributions. Generally, we leave open the question of finding a noise distribution that is
infinitely divisible and has a continuous density function while permitting a differentially private mechanism
matching the (optimal) error of Θ(∆e−ε/2) from the Staircase mechanism.

5.8 Technical Details

In this section we give the technical details and proofs omitted in the previous sections.
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5.8.1 Omitted Proofs for Symmetric Density Functions

Lemma 5.8. For f, g : R → R, that are symmetric around 0, i.e., f(x) = f(−x) and g(x) = g(−x), we
have for any t ∈ R ∫ ∞

−∞
f(x)g(t− x)dx =

∫ ∞
−∞

f(x)g(|t| − x)dx.

In particular, the convolution f ∗ g is symmetric around 0.

Proof. The statement is immediate for t ≥ 0, so suppose t < 0. Then for any a, b ∈ R∫ −b
−a

f(x)g(t− x)dx =

∫ −b
−a

f(x)g(|t|+ x)dx =

∫ a

b

f(−x)g(|t| − x)dx =

∫ a

b

f(x)g(|t| − x)dx

where the first step is by symmetry of g, the second step follows from integration by substitution, and the
last step is by symmetry of f . In particular, we may let a and b be ±∞.

Lemma 5.9. fΓ−Γ is symmetric around 0.

Proof. We prove that fΓ−Γ(t) = fΓ−Γ(|t|) for all t ∈ R. Clearly, this is the case if t ≥ 0, so suppose t < 0.
By Definition 5.6

fΓ−Γ(t) =

∫ ∞
|t|

fΓ(t+ x)fΓ(x)dx =

∫ ∞
|t|

fΓ(x− |t|)fΓ(x)dx =

∫ ∞
0

fΓ(x)fΓ(|t|+ x)dx = fΓ−Γ(|t|)

where the penultimate step follows from integration by substitution with x− |t|.

5.8.2 Omitted Proofs for Bounds on Density of Arete Distribution

Supporting lemmas

Lemma 5.16. Let ζΓ be as in Lemma 5.10 and ∆ > 0. Assume 0 < α < 1, 1/λ − 1/θ ≥ 1
κ+∆+ζΓ

. Then
∀t ≥ κ ≥ 0

(ζΓ +∆ + t)1−α

et(1/λ−1/θ)
≤ (ζΓ +∆ + κ)1−α

eκ(1/λ−1/θ)
.

Proof. The function

g(t) =
(ζΓ +∆ + t)1−α

et(1/λ−1/θ)

maximized for

t∗ =
1− α− (1/λ− 1/θ)(ζΓ +∆)

1/λ− 1/θ
=

1− α
1/λ− 1/θ

− (ζΓ +∆), 1/λ− 1/θ > 0, 0 < α < 1,

and monotonely decreasing for t ≥ t∗. By assumption

κ ≥ 1

1/λ− 1/θ
− (∆ + ζΓ) ≥ t∗.

and so g(κ) ≤ g(t∗). Furthermore, for all t ≥ κ

g(t) =
(ζΓ +∆ + t)1−α

et(1/λ−1/θ)
≤ (ζΓ +∆ + κ)1−α

eκ(1/λ−1/θ)
= g(κ).
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Proof of Lemma 5.12

Lemma 5.12. Let ζu > 0 be given and assume 0 < α ≤ 1. Let ζΓ, cζΓ be as in Lemma 5.10 and cL as in
Lemma 5.11. Assume 1/λ − 1/θ ≥ 1/(ζu +∆ + ζΓ) and λ ≤ ∆/ ln(2) for ∆ > 0. For −∆/2 < t ∈ R with
|t| ≥ ζu we have

fA(t)

fA(t+ ∆)
≤ e(ζΓ +∆)/θ

cζΓ

((
1 +

∆ + ζΓ
ζu

)
+
cζuΓ(α)θα

2λcL
eζu /θ(ζΓ +∆ + ζu)1−α

)

where cζu := 2
∫ ζu

0
fΓ(x)dx.

Proof of Lemma 5.12. Suppose ζu ≤ |t|. By Lemma 5.10

fA(t)

fA(t+ ∆)
=

∫∞
−∞ fΓ−Γ(t− x)fL(x)dx∫∞

−∞ fΓ−Γ(t+ ∆− x)fL(x)dx
≤

∫∞
−∞ fΓ(|t− x|)fL(x)dx∫∞

−∞ fΓ(|t+ ∆− x|+ ζΓ)cζΓfL(x)dx
. (5.4)

Note that |t+ ∆− x| ≤ |t− x|+ ∆ and

|t− x|α−1 = (|t− x|+ ζΓ +∆)α−1

(
1 +

∆ + ζΓ
|t− x|

)1−α

. (5.5)

So filling in the density fΓ and applying (5.5), we can write (5.4) as

fA(t)

fA(t+ ∆)
≤

∫∞
−∞

1
Γ(α)θα e

−|t−x|/θ(|t− x|+ ζΓ +∆)α−1
(

1 + ∆+ζΓ
|t−x|

)1−α
fL(x)dx

cζΓ
∫∞
−∞ fΓ(|t− x|+ ∆ + ζΓ)fL(x)dx

.

Since
(

1 + ∆+ζΓ
|t−x|

)1−α
is maximized for x → t, we can bound this term as long as x is not too close to t.

Hence, rewind to equation (5.4) and treat the cases where x is far from t and x is close to t separately by
splitting the numerator from (5.4) at the intervals x ∈ (−∞, t − ζu) ∪ (t + ζu,∞) and x ∈ (t − ζu, t + ζu)
(these intervals are well-defined since ζu > 0):

fA(t)

fA(t+ ∆)
≤
∫ t−ζu
−∞ fΓ(|t− x|)fL(x)dx+

∫∞
t+ζu

fΓ(|t− x|)fL(x)dx

cζΓ
∫∞
−∞ fΓ(|t− x|+ ∆ + ζΓ)fL(x)dx

+

∫ t+ζu
t−ζu fΓ(|t− x|)fL(x)dx

cζΓ
∫∞
−∞ fΓ(|t+ ∆− x|+ ζΓ)fL(x)dx

=

∫ t−ζu
−∞ e−|t−x|/θ(|t− x|+ ζΓ +∆)α−1

(
1 + ∆+ζΓ

|t−x|

)1−α
fL(x)dx

cζΓ
∫∞
−∞ e−(|t−x|+∆+ζΓ)/θ(|t− x|+ ∆ + ζΓ)α−1fL(x)dx

+

∫∞
t+ζu

e−|t−x|/θ(|t− x|+ ζΓ +∆)α−1
(

1 + ∆+ζΓ
|t−x|

)1−α
fL(x)dx

cζΓ
∫∞
−∞ e−(|t−x|+∆+ζΓ)/θ(|t− x|+ ∆ + ζΓ)α−1fL(x)dx

+

∫ t+ζu
t−ζu fΓ(|t− x|)fL(x)dx

cζΓ
∫∞
−∞ fΓ(|t+ ∆− x|+ ζΓ)fL(x)dx

where we in the last step again filled in the density function fΓ and applied (5.5) in the first two terms and
left the last term as it was. Note that the constant Γ(α)θα from the density fΓ cancels out in the fraction.

Now (still leaving the last term alone), for the first two terms upper bound the factor(
1 +

∆ + ζΓ
|t− x|

)1−α

≤
(

1 +
∆ + ζΓ
ζu

)1−α
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and pull out e(∆+ζΓ)/θ from the denominator, to see that

fA(t)

fA(t+ ∆)

≤e(∆+ζΓ)/θ

(
1 +

∆ + ζΓ
ζu

)1−α
(∫ t−ζu
−∞

(|t−x|+ζΓ +∆)α−1

e|t−x|/θ
fL(x)dx+

∫∞
t+ζu

(|t−x|+ζΓ +∆)α−1

e|t−x|/θ
fL(x)dx

)
cζΓ
∫∞
−∞

(|t−x|+ζΓ +∆)α−1

e|t−x|/θ
fL(x)dx

+

∫ t+ζu
t−ζu fΓ(|t− x|)fL(x)dx

cζΓ
∫∞
−∞ fΓ(|t+ ∆− x|+ ζΓ)fL(x)dx

≤ 1

cζΓ

e(∆+ζΓ)/θ

(
1 +

∆ + ζΓ
ζu

)
+

∫ t+ζu
t−ζu fΓ(|t− x|)fL(x)dx∫∞

−∞ fΓ(|t+ ∆− x|+ ζΓ)fL(x)dx


where in the last step, we upper-bounded the fraction in the first term by 1/cζΓ and rounded the exponent
(1− α) up to 1 for simpler notation. The following claim handles the last term and finishes the proof:

Claim 5.1. Let ζu > 0 be given. Let ζΓ, cζΓ be as in Lemma 5.10 and cL as in Lemma 5.11. Assume
|t| ≥ ζu, |t| ≤ |t+ ∆|, λ ≤ ∆/ ln(2) and 1/λ− 1/θ ≥ 1/(ζΓ +∆ + ζu). Then∫ t+ζu

t−ζu fΓ(|t− x|)fL(x)dx∫∞
−∞ fΓ(ζΓ +|t+ 1− x|)fL(x)dx

≤ cζuΓ(α)θα

2λcL
e(ζΓ + ζu +∆)/θ(ζΓ +∆ + ζu)1−α

where

cζu := 2

∫ ζu

0

fΓ(x)dx.

Proof of Claim. As |t| > ζu, {0} 6∈ (t− ζu, t+ ζu) and so fL(x) is maximal at x = min{|t− ζu |, |t+ ζu |} =
min{|t|+ ζu, |t| − ζu} = |t| − ζu. Hence∫ t+ζu

t−ζu
fΓ(|t− x|)fL(x)dx ≤ fL(|t| − ζu)

∫ t+ζu

t−ζu
fΓ(|t− x|)dx = fL(|t| − ζu)cζu (5.6)

where we defined

cζu :=

∫ t+ζu

t−ζu
fΓ(|t− x|)dx =

∫ ζu

− ζu
fΓ(|x|)dx = 2

∫ ζu

0

fΓ(x)dx.

Now, consider ∫ t+ζu
t−ζu fΓ(|t− x|)fL(x)dx∫∞

−∞ fΓ(ζΓ +|t+ ∆− x|)fL(x)dx
.

Recalling the assumptions |t| ≤ |t + ∆| and λ ≤ ∆/ ln(2), apply Lemma 5.11 in the denominator and (5.6)
in the numerator, we get∫ t+ζu

t−ζu fΓ(|t− x|)fL(x)dx∫∞
−∞ fΓ(ζΓ +|t+ ∆− x|)fL(x)dx

≤ fL(|t| − ζu)cζu
fΓ(ζΓ +|t+ ∆|)cL

(∗)
≤ cζue

−||t|−ζu |/λΓ(α)θα

2λcLe−(ζΓ +∆+|t|)/θ(ζΓ +∆ + |t|)α−1

≤ cζuΓ(α)θα

2λcL
eζu /λe(ζΓ +∆)/θ (ζΓ +∆ + |t|)1−α

e|t|(1/λ−1/θ)
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where we at (∗) filled in the density functions fΓ and fL and used that |t + ∆| ≤ |t| + ∆. In the last step,
recall |t| > ζu, so |t| − ζu > 0. Applying Lemma 5.16 (recall 0 < α < 1 and the assumption 1/λ − 1/θ ≥
1/(∆ + ζΓ + ζu)) with κ = ζu, we get∫ t+ζu

t−ζu fΓ(|t− x|)fL(x)dx∫∞
−∞ fΓ(ζΓ +|t+ ∆− x|)fL(x)dx

≤ cζuΓ(α)θα

2λcL
eζu /λe(ζΓ +∆)/θ (ζΓ +∆ + ζu)1−α

eζu(1/λ−1/θ)

=
cζuΓ(α)θα

2λcL
e(ζΓ + ζu +∆)/θ(ζΓ +∆ + ζu)1−α.

Proof of Lemma 5.13

Lemma 5.13. Let ζu > 0 be given and assume 0 < α ≤ 1. Let ζΓ, cζΓ be as in Lemma 5.10 and cL as in
Lemma 5.11. Assume 1/λ − 1/θ ≥ 1/(∆ + ζΓ) and λ ≤ ∆/ ln(2) for ∆ > 0. For −∆/2 < t ∈ R such that
|t| ≤ ζu we have

fA(t)

fA(t+ ∆)
≤ e(ζΓ +∆)/θ

cLcζΓλ

(
ζu + ζΓ +∆

α
+ Γ(α)θα(ζΓ +∆)1−α

)
Proof of Lemma 5.13. Suppose |t| < ζu. By Lemmas 5.8 and 5.10 we have

fA(t) = fA(|t|) =

∫ ∞
−∞

fΓ−Γ(x)fL(|t| − x)dx ≤
∫ ∞
−∞

fΓ(|x|)fL(|t| − x)dx.

Note that fL(|t| − x) ≤ fL(t) when ||t| − x| ≥ |t|, which is satisfied whenever x 6∈ (0, 2|t|).

fA(t) = fA(|t|) =

∫ ∞
−∞

fΓ−Γ(x)fL(|t| − x)dx ≤
∫ ∞
−∞

fΓ(|x|)fL(|t| − x)dx

=

∫ 0

−∞
fΓ(|x|)fL(|t| − x)dx+

∫ 2|t|

0

fΓ(|x|)fL(|t| − x)dx+

∫ ∞
2|t|

fΓ(|x|)fL(|t| − x)dx

≤ fL(t)

(∫ 0

−∞
fΓ(|x|)dx+

∫ ∞
2|t|

fΓ(|x|)dx

)
+

∫ 2|t|

0

fΓ(|x|)fL(|t| − x)dx

(∗)
≤ 2fL(t) + 2

∫ |t|
0

fΓ(|x|)fL(|t| − x)dx

= 2fL(t) +
2

Γ(α)θα2λ

∫ |t|
0

e−x/θxα−1e−||t|−x|/λdx

= 2fL(t) +
1

Γ(α)θαλ
e−|t|/λ

∫ |t|
0

ex(1/λ−1/θ)xα−1dx

≤ 2fL(t) +
1

Γ(α)θαλ
e−|t|/θ

∫ |t|
0

xα−1dx

= 2fL(t) +
1

Γ(α)θαλ
e−|t|/θ

|t|α

α

At (∗) we use that fΓ(|x|) is smaller on (t, 2t) than on (0, t). In the last step we used that∫ κ

0

xndx =
κn+1

n+ 1
, n 6= −1.
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Recalling the assumptions |t| ≤ |t+ ∆| and λ ≤ ∆/ ln(2), apply Lemma 5.11 to get

fA(t)

fA(t+ ∆)
≤

2fL(t) + 1
Γ(α)θαλe

−|t|/θ |t|α
α

cLcζΓfΓ(ζΓ +|t+ ∆|)
=

1

cLcζΓ

(
2fL(t)

fΓ(ζΓ +|t+ ∆|)
+

1

Γ(α)θαλ

e−|t|/θ |t|
α

α

fΓ(ζΓ +|t+ ∆|)

)
(∗)
=

1

cLcζΓ

(
2e−|t|/λΓ(α)θα

2λe−(ζΓ +|t+∆|)/θ(ζΓ +|t+ ∆|)α−1
+

Γ(α)θα

Γ(α)θαλ

e−|t|/θ |t|
α

α

e−(ζΓ +|t+∆|)/θ(ζΓ +|t+ ∆|)α−1

)
(∗∗)
≤ 1

λcLcζΓ

(
e−|t|/λΓ(α)θα

e−(ζΓ +|t|+∆)/θ(ζΓ +|t|+ ∆)α−1
+

e−|t|/θ |t|
α

α

e−(ζΓ +|t|+∆)/θ(ζΓ +|t|+ ∆)α−1

)

=
e(ζΓ +∆)/θ

λcLcζΓ

(
e−|t|/λΓ(α)θα

e−|t|/θ(ζΓ +|t|+ ∆)α−1
+

e−|t|/θ |t|
α

α

e−|t|/θ(ζΓ +|t|+ ∆)α−1

)

=
e(ζΓ +∆)/θ

λcLcζΓ

(
Γ(α)θα

(ζΓ +|t|+ ∆)1−α

e|t|(1/λ−1/θ)
+ (ζΓ +|t|+ ∆)1−α |t|α

α

)
.

where we at (∗) filled in the density functions and at (∗∗) used that |t+ ∆| ≤ |t|+ ∆.
Using the identity |t|α = |t|/|t|1−α we see that

fA(t)

fA(t+ ∆)
≤ e(ζΓ +∆)/θ

λcLcζΓ

(
Γ(α)θα

(ζΓ +|t|+ ∆)1−α

e|t|(1/λ−1/θ)
+
|t|
α

(
ζΓ +|t|+ ∆

|t|

)1−α
)

≤ e(ζΓ +∆)/θ

λcLcζΓ

(
Γ(α)θα

(ζΓ +|t|+ ∆)1−α

e|t|(1/λ−1/θ)
+
ζΓ +|t|+ ∆

α

)
≤ e(ζΓ +∆)/θ

λcLcζΓ

(
Γ(α)θα

(ζΓ +|t|+ ∆)1−α

e|t|(1/λ−1/θ)
+
ζΓ + ζu +∆

α

)
,

where in the last two steps, we removed the (1−α)-exponent on the last term and used that |t| ≤ ζu. Finally
applying Lemma 5.16 (recall 0 < α < 1 and the assumption 1/λ− 1/θ ≥ 1/(∆ + ζΓ)) with κ = 0 finishes the
proof:

fA(t)

fA(t+ ∆)
≤ e(ζΓ +∆)/θ

λcLcζΓ

(
Γ(α)θα(ζΓ +∆)1−α +

ζΓ + ζu +∆

α

)
.

Proof of Lemma 5.14

Lemma 5.14. Let ζΓ, cζΓ be as in Lemma 5.10 and cL as in Lemma 5.11. Assume 0 < α ≤ 1, θ ≤ ζΓ +1,
λ ≤ min{θ/2,∆/ ln(2)} and Γ(α) ≤ 1/α for ∆ > 0. For −∆/2 < t ∈ R

fA(t)

fA(t+ ∆)
≤ 2e(ζΓ +∆)/θeα(αθ + ζΓ +∆)

αcζΓcLλ

Proof. We first give the intuition behind the proof: Lemmas 5.12 and 5.13 give upper bounds on the ratio for
certain values of t, assuming 1/λ− 1/θ ≥ max{1/(ζu + ζΓ +∆), 1/(ζΓ +∆)} = 1/(ζΓ +∆). An upper bound
on both of these bounds simultaneously gives us a bound on the ratio, which holds for general t > −∆/2.
We note that

1/λ− 1/θ ≥ 1/(ζΓ +∆) ⇔ λ ≤ θ
θ

ζΓ +∆ + 1
,

so if θ ≤ ζΓ +∆, then λ ≤ θ/2 suffices. Hence, our assumptions λ ≤ θ/2, λ ≤ ∆/ ln(2), θ ≤ ζΓ +∆ and
t > −∆/2 ensure that we can use Lemmas 5.12 and 5.13.
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So, by Lemmas 5.12 and 5.13 we have for −∆/2 < t ∈ R

fA(t)

fA(t+ ∆)
≤ e(ζΓ +∆)/θ(ζu + ζΓ +∆)

cζΓ
max

{
1

αcLλ
,

1

ζu

}
+
e(ζΓ +∆)/θ

cζΓ

Γ(α)θα

λcL
max

{
(ζΓ +∆)1−α,

cζue
ζu /θ

2
(ζΓ +∆ + ζu)1−α

}
.

As, by assumption, θ ≤ ζΓ +∆, we see

θα(ζΓ +∆)1−α < θα(ζu + ζΓ +∆)1−α < ζu + ζΓ +∆

and so we may simplify to

fA(t)

fA(t+ ∆)
≤ e(ζΓ +∆)/θ

cζΓ

(
max

{
1

αcLλ
,

1

ζu

}
(ζu + ζΓ +∆) +

Γ(α)(ζΓ +∆ + ζu)

λcL
max

{
1,
cζue

ζu /θ

2

})
=
e(ζΓ +∆)/θ(ζu + ζΓ +∆)

cζΓ

(
max

{
1

αcLλ
,

1

ζu

}
+

Γ(α)

λcL
max

{
1,
cζue

ζu /θ

2

})
.

Let ζu = αθ (i.e., the mean of the Γ-distribution). Recalling that by definition cL = 1/4 and by
assumption λ ≤ θ/2, so αcLλ ≤ αθ/8 < αθ = ζu:

fA(t)

fA(t+ ∆)
≤ e(ζΓ +∆)/θ(αθ + ζΓ +∆)

cζΓ

(
1

αcLλ
+

Γ(α)

cLλ
max

{
1,
cζue

α

2

})
≤ e(ζΓ +∆)/θ(αθ + ζΓ +∆)

cζΓcLλ

(
1

α
+ Γ(α)eα

)
,

where the last step follows from the observation that 1 ≤ cζu ≤ 2 (recall cζu was defined in Lemma 5.12) and
eα > 1 for α > 0.

By assumption Γ(α) < 1/α, then

1/α+ Γ(α)eα ≤ 2eα

α
and so we conclude

fA(t)

fA(t+ ∆)
≤ 2e(ζΓ +∆)/θeα(αθ + ζΓ +∆)

αcζΓcLλ
.

Proof of Lemma 5.15

Lemma 5.15. Suppose ε ≥ 20+4 ln(∆) for ∆ ≥ 2/e. Let α = e−ε/4, θ = 4∆
ε and λ = e−ε/4. Then for t ∈ R

e−ε ≤ fA(t)

fA(t+ ∆)
≤ eε.

Proof. Suppose |t| ≤ |t+∆|. The first inequality is satisfied as fA(t) ≥ fA(t+∆). Let ζΓ be as in Lemma 5.10.
We turn to prove the latter inequality: In order to apply Lemma 5.14 we make the following assumptions:

θ ≤ ζΓ +∆, λ ≤ θ/2, λ ≤ ∆/ ln(2) and Γ(α) ≤ 1/α. (5.7)

We choose parameters satisfying these assumptions towards the end of the proof.

If ζΓ is at least the median of the Γ-distribution then cζΓ ≥ 1/2. So let ζΓ = αθ be the mean of the
Γ-distribution (the mean is an upper bound on the median of the Γ-distribution [31]), to see

fA(t)

fA(t+ ∆)

(Lemma 5.14)

≤ 2e(∆+ζΓ)/θeα(αθ + ζΓ +∆)

αcζΓcLλ
≤ 2 · (2αθ + ∆)

1/2 · 1/4
e∆/θe2α

αλ
. (5.8)
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Suppose α ≤ 1/2 and recall by assumption θ ≤ ζΓ +∆ = αθ+∆, so θ ≤ ∆/(1−α). Then θ ≤ ∆/(1−α) ≤ ∆/α
and so αθ ≤ ∆. We revise our set of assumptions, to also ensure that αθ ≤ ∆, and so our set of assumptions
is:

θ ≤ ∆

1− α
, λ ≤ min{θ/2,∆/ ln(2)}, α ≤ 1/2 and Γ(α) ≤ 1/α. (5.9)

Under these assumptions we have 2αθ + ∆ ≤ 3∆ and inserting into (5.8), we conclude

fA(t)

fA(t+ ∆)
≤ 48∆

e∆/θe2α

αλ
.

Now define

α = 1/eε/kα , θ =
kθ∆

ε
and λ = 1/eε/kλ

Observing 2α ≤ 1 and ln(48e) < 4.9

fA(t)

fA(t+ ∆)
≤ 48e2α∆eε(1/kθ+1/kα+1/kλ) < eε(1/kθ+1/kα+1/kλ)+4.9+ln(∆).

Hence, we ensure that

fA(t)

fA(t+ ∆)
≤ eε

when the assumptions in (5.9) are satisfied and

ε(1/kθ + 1/kα + 1/kλ) + 5 + ln(∆) ≤ ε ⇔ 1/kθ + 1/kα + 1/kλ ≤ 1− 5 + ln(∆)

ε
. (5.10)

Let kα = kλ = kθ = 4. It is easy to check that the assumptions on θ and α in (5.9) are satisfied
simultaneously for, ε ≥ 4 ln(2) (and we can check that Γ(α) ≤ 1/α numerically). Furthermore, for ε ≥ 4 ln(2),
we require λ ≤ ∆ min{2/ε, 1/ ln(2)} = 2∆/ε and so the assumption on λ is satisfied when ∆ ≥ ελ/2 =
εe−ε/4/2. Observing that ∆ ≥ 2/e ≥ εe−ε/4/2, we conclude that the assumptions in (5.9) are satisfied for
ε ≥ 4 ln(2) and ∆ ≥ 2/e. The inequality in (5.10) is satisfied for

3/4 ≤ 1− 5 + ln(∆)

ε
⇔ 20 + 4 ln(∆) ≤ ε.

Finally, observe that if |t| ≥ |t+ ∆|, the result follows by symmetry of fA (Corollary 5.2).
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Chapter 6

Conclusion and Open Problems

”Can anything harm us, mother, after the
night-lights are lit?”
”Nothing, precious,” she said; ”they are the
eyes a mother leaves behind her to guard her
children.”

J. M. Barrie
Peter Pan

As data collection and analysis escalates, it becomes increasingly relevant to understand how to per-
form accurate and private analysis over distributed data. Private data analysis allows us to gain valuable
knowledge without leaking sensitive information. In this thesis, we have seen two new differentially private
sketches for efficiently and accurately estimating Euclidean distance and (weighted) cardinality for the sym-
metric difference between two sets. We have seen formal proofs for the privacy, accuracy, and efficiency
guarantees (which are comparable to known lower bounds) of the sketches and corresponding estimators.
Moreover, we have seen a new noise distribution, the Arete distribution, which is symmetric around zero
and monotonically decreasing for t ≥ 0. We have described a new mechanism, the Arete mechanism, for
real-valued queries adding noise from this distribution and provided a parameter setting ensuring that this
mechanism is ε-differentially private. We have proven that the Arete mechanism achieves error comparable
to the (optimal) Staircase mechanism. Simultaneously, the Arete distribution stands out compared to the
Staircase distribution due to two desirable properties: (1) It has a continuous density function, thus ensuring
a smooth decrease in privacy for inputs that are not quite neighboring, and (2) it is infinitely divisible, and
so allows for combination with cryptographic techniques to permit accurate statistical analysis when input
data is distributed among many participants.

Concluding each chapter, we have explored open problems related to the contributions presented. A key
question concerning differentially private analysis over distributed data (mentioned in Chapter 3) is how
to combine differentially private linear sketches such that one can analyze (functions of) the whole dataset
without a blowup in the noise level. That is, is there a way to combine private sketches while (almost)
preserving the noise level and hence the accuracy guarantees? This question is particularly interesting if
we wish to combine an unknown number of sketches. A closely related question with a whole different
issue is how to continuously release sketches or statistics over the same (updated) dataset while preserving
privacy. This problem, often referred to as continual observation, was proposed by Dwork et al. [61] and
is particularly interesting for streaming data. Continual observation under differential privacy has a vast
number of applications in practice including analysis of user behavior on social media, traffic analysis or
monitoring the spread of a pandemic. Whereas the noise level (and so also the privacy level) increases when
we combine private sketches for distributed datasets, the privacy level deteriorates over time when releasing
several statistics over the same dataset (recall The Fundamental Law of Information Recovery). Hence,
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continuous releases may result in serious data leaks. Several large organizations have faced massive critique
of their data collection for applying privacy techniques developed for single-time use and so not handling this
particular problem sufficiently well – see for example [13, 26, 42, 50, 79]. Differential privacy under continual
observation has gained some attention, but previous works all have rather strict assumptions. Dwork et
al. [61] (and extensions [29, 88]) show how to keep a counter under continual observation in the central
model by adding carefully correlated noise across updates, thereby achieving error polylog in the number of
time steps (the number of times the counter is released). Erlingsson et al. [64] combined the technique from
[61] with shuffling to allow for continual observation in the local model of differential privacy. These works
all require that the number of time steps is known in advance, and the error scales with this number. Joseph
et al. [91] studied a technique where the accuracy guarantees degrade with the number of times the query
result changes ”significantly” and so relies on the assumption that user inputs change infrequently. In case
of more frequent updates, one can use memoization to answer identical queries consistently. This technique
was used in the deployments by Google [65] and Microsoft [48], but has the limitation that memoization is
vulnerable to adversaries asking several correlated queries. So, we ask the question, which may well be one
of the most relevant privacy questions at the moment: How can we continuously release accurate statistics
over streaming data while preserving differential privacy?
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Appendix A

Notation

General
a, b lower case letters refer to vectors and numbers
A,B upper case letters refer to sets, matrices and random variables
A,B upper case curly letters refer to distributions, mechanisms and domains

Â, B̂ hat for estimates

Specific Variables
ε, δ privacy parameters
β accuracy parameter
ϕ,ψ noise vectors
p a probability
U the universe
u the size of the universe and input dimension
S sketch matrix
s sparsity of matrix
σ variance parameter for Normal distribution
λ scale parameter for Laplace/Exponential distribution
α, θ shape and scale parameters for Γ-distribution, resp.
∆ query sensitivity

Functions and set notation
[n] {1, 2, ..., n}
1[P ] indicator function for predicate P
| · | absolute value
‖ · ‖p `p-norm
〈·, ·〉 inner product
A4B symmetric difference between sets A and B

Distributions
X ∼ D Random variable X with distribution D
D (Typically noise) distribution
N (µ, σ2) Normal distribution with mean and variance parameters µ and σ2 > 0, resp.
Lap(µ, λ) Laplace distribution with mean and scale parameters µ and λ > 0, resp.
Γ(α, θ) Gamma distribution with shape and scale parameters α > 0 and θ > 0, resp.
Exp(λ) Exponential distribution with scale parameter λ > 0.
SC(γ,∆) Staircase distribution with parameters 0 < γ < 1, ∆ > 0
Arete(α, θ, λ) Arete distribution with parameters 0 < α < 1, θ > 0, λ > 0
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