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Motor learning mediated by motor training has in the past been explored for
rehabilitation. Myoelectric interfaces together with exoskeletons allow patients to receive
real-time feedback about their muscle activity. However, the number of degrees of
freedom that can be simultaneously controlled is limited, which hinders the training of
functional tasks and the effectiveness of the rehabilitation therapy. The objective of this
study was to develop a myoelectric interface that would allow multi-degree-of-freedom
control of an exoskeleton involving arm, wrist and hand joints, with an eye toward
rehabilitation. We tested the effectiveness of a myoelectric decoder trained with data
from one upper limb and mirrored to control a multi-degree-of-freedom exoskeleton
with the opposite upper limb (i.e., mirror myoelectric interface) in 10 healthy participants.
We demonstrated successful simultaneous control of multiple upper-limb joints by all
participants. We showed evidence that subjects learned the mirror myoelectric model
within the span of a five-session experiment, as reflected by a significant decrease in the
time to execute trials and in the number of failed trials. These results are the necessary
precursor to evaluating if a decoder trained with EMG from the healthy limb could foster
learning of natural EMG patterns and lead to motor rehabilitation in stroke patients.

Keywords: motor learning, myoelectric interface, multi-DoF exoskeleton control, rehabilitation, stroke

INTRODUCTION

A voluntary movement is the result of complex mechanisms in which the central nervous system
recruits groups of muscles in a coordinated way, with different activation patterns and temporal
profiles that are encoded at the spinal or brainstem levels (Tresch et al., 1999; d’Avella et al.,
2003; Bizzi et al., 2008; Bizzi and Cheung, 2013). Local brain damage due to stroke frequently
affects the initiation of motor commands and/or their descending flow to the spinal cord. This
leads to disrupted recruitment or to abnormal development of muscle-activation patterns and
so, to pathological muscle coordination in the limbs opposite to the injured hemisphere. Motor
recovery after stroke is characterized by neuroplastic changes involving a structural and functional
reorganization of the brain (Shmuelof and Krakauer, 2011; Ramos-Murguialday et al., 2013). This
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implies the recruitment of intact cortical motor structures
adjacent to the injury, which generate commands to the
compromised muscles that are relevant for the intended task
(Krakauer, 2006). However, the brain networks involved in
motor learning and recovery processes and the underlying neural
mechanisms are not yet well understood (Hosp and Luft, 2011;
Takeuchi and Izumi, 2013). Nonetheless, there is evidence that
the brain and the lower sensorimotor circuitry can change or
reorganize itself in response to sensory input, experience and
learning (Chan et al., 2006; Cramer et al., 2007; Kleim and
Jones, 2008). A remaining challenge, however, is how to foster
the relearning of natural muscle activation patterns in order to
achieve effective motor recovery.

Motor leaning is a complex process that comprises motor
adaptation and skill acquisition (Shadmehr and Wise, 2005;
Krakauer, 2006; Krakauer and Mazzoni, 2011; Wolpert et al.,
2011). Motor adaptation occurs implicitly, presumably over a
short period and as a response to the error between what the brain
predicts and the observed outcome. Motor skill acquisition is
instead related to the ability to accurately execute the movement
and may need a more extensive training period to occur (Kitago
and Krakauer, 2013). The relationship of motor skill acquisition
and adaptation to motor recovery is still unclear. Several studies
have confirmed that functional recovery mediated by motor
training entails a learning process in patients with motor
impairment (Chan et al., 2006; Krakauer, 2006, 2015; Piron et al.,
2010; Arya et al., 2011; Dipietro et al., 2012; Reinkensmeyer et al.,
2016). However, training paradigms still need to be optimized
to become truly effective (Krakauer, 2006; Arya et al., 2011). In
recent years, technological advances and rehabilitation strategies
have explored methods to elicit learning as a means to achieve
motor recovery. For instance, rehabilitation robots allow intense
task training, precise control of timing and the use of visual
and proprioceptive feedback, which enhances motor learning
(Kwakkel et al., 1997; Reinkensmeyer et al., 2004; Prange et al.,
2006; Marchal-Crespo and Reinkensmeyer, 2009).

Electromyographic (EMG) signals have been widely explored
for the control of rehabilitation robots, as they offer a direct
measurement of the motion intention of a person (Scheme and
Englehart, 2011; Song et al., 2013; Ison et al., 2016; Vujaklija et al.,
2018). However, several factors have hindered the exploitation
of myoelectric interfaces and held up its transfer to commercial
applications (Ison et al., 2014a). One of the main problems is the
lack of systems that can simultaneously control several degrees
of freedom (DoFs) in real-time. In the last few years, some
studies have expanded from simple cursor control (Itou et al.,
2001; Radhakrishnan et al., 2008) to the simultaneous control
of multi-DoF external (non-wearable) robots in real-time (de
Rugy et al., 2013; Pistohl et al., 2013; Ison and Artemiadis, 2015;
Ison et al., 2016). However, the control of wearable prostheses
or exoskeletons adds one more level of complexity, since human
motor control mechanisms are difficult to model and mechanical
constraints and dynamics of the robot might hinder control
proficiency (Sartori et al., 2018). For these reasons, myoelectric
interfaces for controlling wearable robots have mostly been
validated for two DoF control, with only one example of a higher-
order system with five DoFs simultaneously to perform up to

three pairs of motions (Fougner et al., 2014; Tang et al., 2014;
Muller-Putz et al., 2015; Amsuess et al., 2016; Lu et al., 2017).

Another concern in myoelectric applications is that most
systems are usually validated in one single session, or those with
longer paradigms are focused on recalibrating or adapting the
mapping every new session as a way to optimize the learning
process. However, Ison and colleagues recently demonstrated
that using a fixed mapping between the EMG and the output
control command could induce learning and the creation of novel
muscle activation patterns or synergies in healthy individuals.
Moreover, these synergies were retained after 1 week, facilitating
the generalization to new tasks and the increase in performance
over time without the need of recalibrating the decoder (i.e.,
changing the mapping) (Antuvan et al., 2014; Ison et al., 2014b;
Ison and Artemiadis, 2015). This implies that the utilization of
dynamic mappings may not be as critical as suggested in recent
research. Based on these studies, we believe that hemiplegic
stroke patients could reshape the pathological muscle activity
of their paretic limb by learning a fixed mapping or model
built with EMG activity of their healthy upper limb (i.e., a
mirror myoelectric decoder), as suggested in Sarasola-Sanz et al.
(2018). Whether such changes in the muscle activation patterns
of the impaired limb of stroke patients would lead to functional
recovery has not been proven yet. However, we hypothesize
that reducing agonist-antagonist muscle-pair co-activations and
spasticity through training with the mirror myoelectric decoder
might yield a positive clinical outcome.

In this study, we investigated the viability of using a novel
EMG decoding strategy to control an upper limb multi-joint
exoskeleton in real-time during functional tasks, based on a
mirror model from the contralateral arm (Sarasola-Sanz et al.,
2018). The potential of this paradigm for the continuous
decoding of multi-DoF functional movements was already
proved offline (Sarasola-Sanz et al., 2015, 2017, 2018). Moreover,
we evaluated if the proposed system can be used to elicit motor
learning in 10 healthy participants and to adapt their muscle
activity according to the imposed mirror EMG-to-kinematics
map. Additionally, with a view toward optimizing such a
system in a patient-centered approach to stroke recovery, we
queried participants in the experiments about their perceptions
of different features of the system.

MATERIALS AND METHODS

Subjects
Ten able-bodied volunteers (five females and five males, age:
20–33, all right-handed) without any known neuromuscular
impairment participated in this study. All of them gave
written consent to the procedures as approved by the Ethics
Committee of the Faculty of Medicine of the University of
Tübingen, Germany.

Experimental Setup and Protocol
The IS-MORE robotic exoskeleton (Tecnalia, Donostia-San
Sebastian, Spain) is a seven-DoF robotic exoskeleton for the
proximal (upper and forearm) and the distal (wrist and fingers)
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segments of the upper limb [more details in Sarasola-Sanz
et al. (2015)]. The exoskeleton allows movements in seven
DoFs that are completely free and can take any position at
any time: Movement and rotation of the forearm in a 2D
horizontal plane (px, py, θxy), pronation and supination of the
wrist (φwrist), and flexion and extension of the thumb (δthumb),
the index (ψindex) and the group of the middle, ring and pinky
fingers (α3fingers), measured as the angle of rotation with respect
to the metacarpophalangeal joints. The exoskeleton lies on a
70 cm × 50 cm mat on top of which the user performs gravity-
compensated movements. Four shelves of different color placed
around the mat define the four targets that the participants have
to reach (see Figure 1B and Supplementary Video 1).

Volunteers were asked to sit on a chair in front of the
workspace and wear the exoskeleton on their right or left upper
limb for a single decoder calibration session and for four closed-
loop control sessions, respectively. For each participant, a posture
in which they could keep their arm relaxed was selected at
the beginning of the calibration session and defined as the
“Rest” position. Similarly, four target poses (i.e., the position and
orientation of the arm around each target and the angle of the
wrist and the fingers) were also defined according to each subject’s
range of motion.

All the participants underwent five sessions on five
consecutive days: the calibration session (S1) used to train
an EMG decoder with the right arm, and four closed-loop
control sessions (S2–S5) in which subjects performed targeted
movements controlling the seven DoFs of the robot with
EMG activity of the left arm, interpreted by the mirror
decoder obtained in S1.

In the calibration session (S1) participants performed five
blocks of “compliant movements” with the exoskeleton on their
right arm, during which they had to follow the movement
driven by the exoskeleton in an active way. They were constantly
reminded to adhere to the pace and trajectory of the exoskeleton
without counteracting the movement, although we could not
control if this was really happening. The EMG was continuously
visualized on a screen and checked by a therapist to control for
co-contraction activity. However, we did not include any sensor
that could quantitatively inform us about counteracting forces.
We found the pace and movement range that felt comfortable
for subjects and assumed that as the movement was repeated
several times, they could get used to the pace and trajectories
followed by the exoskeleton, which were not modified during the
whole calibration session. These blocks of compliant movements
with the right arm were referred to as calibration blocks (CBs;
see Figure 1A). Each block was comprised of eight trials, each
consisting of an outward (toward the target) and an inward
(toward the “Rest” position) movement. Subjects were instructed
to supinate the wrist and open their hand while approaching the
target, and to pronate the wrist and close their hand while going
back to the “Rest” position. Auditory cues were used to instruct
subjects about the target position as well as to mark the beginning
and end of each movement. An inter-trial rest interval of 3 s was
included to avoid muscle fatigue and to allow the participants to
prepare for the next trial. The data recorded during S1 was used
to calibrate the myoelectric decoder.

In sessions S2–S5, participants performed two reference
blocks (RBs), one at the beginning and one at the end of the
session, and five training blocks (TBs) with their left arm. The RBs
included compliant movements, the same as those performed
during the calibration blocks, and served to help participants to
get a reference for the trajectory the exoskeleton should ideally
follow during the subsequent TBs. These trials also served to
assess the adaptation of their EMG activity patterns as a result
of the training within each session and along the intervention.
In the TBs, the movement of the exoskeleton was determined
by the weighted sum of two components [see Equation (1)]: a
component based on the EMG activity of the subject, and an
assistive component that would always redirect the exoskeleton
toward the required position. From the eight trials included in
each training block, six were randomly set to an assistance level
of 30% (i.e., 70% of the velocity of the exoskeleton was based on
EMG activity and 30% on assistive target directed velocities). The
remaining two were catch trials assigned with assistance levels
of 10 and 60% and randomly placed within the block of 8. The
three different levels of assistance (catch trials plus main trials)
served to evaluate the influence of the amount of assistance on
the myoelectric control.

In every outward or inward movement, subjects were given
30 s to move as far as they could in the required direction. If
they were unable to reach the target or the “Rest” position after
the timeout, they would be presented with the next target. As
a way of motivation, a piece of classical music with increasing
intensity over time was played during each movement. Since
the movements of the distal DoFs were finer and it was found
that they were more difficult to control than the proximal
DoFs (Sarasola-Sanz et al., 2015), the trials were considered to
be completed when the target position of the three proximal
DoFs (i.e., position and orientation of the arm px, py, and
θxy) was reached, independent of the angle of the wrist and
the fingers. Nonetheless, even though the task accomplishment
depended solely on the proximal DoFs’ position, participants
were not informed of this fact. Subjects could control the
movement in the seven-DoFs and received feedback in all of
them. Therefore, in these training blocks, participants received
visual and proprioceptive feedback of their EMG activity by
means of the velocity modulation of the seven DoFs of the
exoskeleton and an auditory reward if the target was reached.

After each trial, subjects were asked to rate the difficulty of the
previous movement on a scale from 0 to 10, with 0 representing
the lowest difficulty and 10 the highest. Similarly, the opinion of
the participants regarding several aspects of the platform, such
as the comfort of the setup, the difficulty of the task, the quality of
the control and the functioning of the exoskeleton, was collected
with a feedback questionnaire that they were asked to fill out at
the end of each session.

Data Acquisition and Processing
Two high-density arrays of 24 channels each (Tecnalia-Serbia,
Belgrade, Serbia) were placed over the extensor and flexor
muscles of the forearm to record the muscular activity with high
spatial resolution. Differential signals were computed from each
closest-neighbor pair of electrodes along the diagonals and axial

Frontiers in Neuroscience | www.frontiersin.org 3 March 2022 | Volume 16 | Article 764936

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-764936 March 5, 2022 Time: 14:41 # 4

Sarasola-Sanz et al. Learning a Mirror Myoelectric Mapping

FIGURE 1 | (A) Block structure of the calibration (S1) and closed-loop control sessions (S2–S5). The different assistance levels are indicated by different γ levels
being γ0 = 0, trials with control independent of EMG (i.e., 100% assistance) and γi = 0.7, 0.4, or 0.9 (70, 40, or 90% EMG control, respectively). After each trial,
participants were asked to rate how difficult they found it, (indicated by the Q letter), followed by rest intervals of 2–3 s. (B) Experimental setup indicating the four
targets and the rest position, as well as the robotic exoskeleton and the way assistive (Vassist ) and EMG (VEMG) components of x- and y-DoFs were combined to
compute the net component sent to the exoskeleton [see Equation (1)].

directions, resulting in a total of 110 bipolar channels collected
from the forearm muscles. In addition, six standard bipolar
electrodes (Myotronics-Noromed, Kent, WA, United States)
were used to record the EMG activity from the Abductor Pollicis
Longus, the Biceps, the Triceps, and the Frontal, Middle and
Posterior Portions of the Deltoid. The reference and ground
electrodes were located over the olecranon and the clavicle,
respectively. The location of the electrodes on the left and right
upper limbs was symmetrical (e.g., the more medial electrodes on
the right arm were matched with the corresponding more medial
electrodes on the left arm). The positions on the left arm were
marked with permanent markers to mitigate the effects of varying
electrode positions across sessions.

The EMG activity was acquired at 1,000 Hz (Brain Products
GmbH, Gilching, Germany), band-pass filtered (10–450 Hz), and
comb-filtered (50 Hz and harmonics). Kinematics of the seven-
DoFs were collected at 20 Hz and low-pass filtered (1.5 Hz).

Feature Extraction and Decoder
Calibration
Five time-domain features (mean of absolute value, variance,
waveform length, root-mean-square error and the logarithm of
the variance) were extracted from each EMG channel in windows
of 200 ms. The resulting matrix of features was normalized to zero
mean and unit variance using the mean and standard deviation
computed from the whole calibration data set.

A channel selection process was applied to the high-density
EMG channels to reduce the dimensionality of the feature input
set. We followed an iterative cross-validation process (Sarasola-
Sanz et al., 2017) to select a set of 10–50 channels. The kinematics
collected during the calibration session were mirrored by flipping
the sign of those DoFs that would have opposite directions for

each arm (e.g., the sign of the velocity vx along the x-axis
toward the right or left side of the participant was flipped, while
the velocity vy along the y-axis perpendicular to the participant
body on the 2D workspace was kept with the same sign). Once
the EMG channels were selected and the features extracted, a
myoelectric decoder was calibrated for each DoF with all the
feature set and the corresponding flipped kinematics (linear or
angular velocity), and then kept fixed throughout the subsequent
closed-loop control sessions. The decoding algorithm was a
ridge regression, which has proven to outperform other linear
algorithms for myoelectric applications (Sarasola-Sanz et al.,
2015). The regularization parameter λ was fixed at 104, a value
that was empirically found to attain a good bias-variance tradeoff.

Myoelectric Control Paradigm
During the myoelectric control, the features extracted from
the produced EMG in real-time were normalized based on the
previous minute of data and fed to the myoelectric decoder,
which predicted the velocity of each DoF [VEMG of Equation
(1) below]. This output velocity was smoothed with a recursive
moving average filter that contained the last ten outputs and gave
more relevance to the most recent ones (i.e., linearly increasing
weights from the past to the most recent outputs). This filtering
step ensured a smoother control of the exoskeleton and prevented
unwanted jerky movements due to noise or non-stationarities
in the EMG signal.

We implemented a partially assisted control scheme to avoid
initial frustration due to the complexity of the task. Hence, the
velocity for each DoF that was sent to the exoskeleton and that
described its movement during the trial periods was determined
by the following equation (see Figure 1B):

Vnet = (1− γ) · Vassist + γ · VEMG (1)
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Where Vnet is the velocity sent to each DoF of the exoskeleton;
Vassist is the assistive component that redirects the exoskeleton
toward the target [computed with a Linear Quadratic Regulator
(LQR) (Shanechi et al., 2016)], and hence, partially corrects any
possible deviation due to an erroneous EMG control; VEMG is
the velocity predicted by the mirror decoder from the EMG
activity exerted by the left arm; and γ ∈ [0, 1] is the weight
determining the influence of each component on the net velocity
command sent to the exoskeleton (e.g., γ = 0.7 during the
trials with 30% of assistance). Therefore, the closed-loop control
was established by linking the movement volition detected from
the EMG signals with the actual movement of the exoskeleton
attached to their left limb. Subjects were continuously provided
with information about their EMG muscle activations in the form
of velocity modulation. Hence, they had to understand and learn
the mapping between their EMG activity and the changes in
the trajectory and speed of the movement. Based on this visual
and proprioceptive feedback, they had to produce EMG patterns
similar to those encoded in the reference model, mirrored from
the opposite arm, in order to bring the exoskeleton toward the
target position as quickly and as smoothly as possible.

The calibration and reference blocks were fully assisted (γ = 1).
As in the TBs, the LQR control theory framework was used for the
trajectory estimation in the CB and RB blocks. The average trial
time was 13.5 ± 1.1 s, depending on the distance to the target
defined for each participant, according to their range of motion.

Performance Metrics
The following five metrics were selected to evaluate different
aspects of the EMG-decoding and of the participants’
performance during the myoelectric control:

• Execution time (percentage): represents the percentage of
the total time allowed per movement (i.e., 30 s) that the
participants took to reach the target.
• Timeouts (percentage): represents the percentage of trials

that were not accomplished because the participants ran out
of time before they reached the target.
• Spectral Arc Length (SPARC): measures the smoothness of

the movement in each DoF, being more reliable and less
noise-sensitive than other commonly used path smoothness
metrics (Balasubramanian et al., 2015); the closer to zero the
SPARC value, the smoother the trajectory.
• Correlation coefficient (CC): reflects the coherence of the

assistive (Vassist) and the EMG (VEMG) velocity components
that are summed to send a net command to the exoskeleton.
• Normalized root-mean-square-error (NRMSE):

measures the difference between the assistive velocity
component (Vassist) and the EMG-based predicted velocity
component (VEMG ).

Although SPARC, CC, and NRMSE were computed for each
DoF individually, they were analyzed in three different ways,
i.e., by averaging: (1) across all the DoFs (∗_all); (2) across the
DoFs of the upper arm and forearm only (∗_proximal); and
(3) across the DoFs of the wrist and the hand only (∗_distal).
Assessing the performance of the proximal and the distal DoFs

separately allowed us to investigate whether the fact that the task
completion was dependent only on the proximal DoFs influenced
the learning process and the control over the different segments
of the arm, i.e., reinforcement and instrumental learning effects.

The first three metrics (i.e., Execution time, Timeouts, and
SPARC) are behavioral metrics and represent the ability of
the participants to control the exoskeleton with their EMG
activity, while whereas we considered the last two to be
electrophysiological metrics (i.e., CC and NRMSE) that measure
the ability of the subjects to match the movement template of
the assistive control via the EMG decoder (i.e., to modulate their
EMG activity patterns to produce kinematics that are aligned
with the assistive component). Note that since the movements
during the RBs were fully-assisted and predefined (i.e., the
myoelectric control was not active), the participants did not
have any influence on the execution time nor on the path
smoothness and so, the first three metrics were not computed for
this type of blocks.

Analyses
Using the aforementioned metrics, we performed four analyses to
study the effectiveness, usability and acceptability of the system:

Motor Control
We hypothesized that the subjects would be able to learn
the EMG-to-kinematics model and achieve a more dexterous
control of the exoskeleton, reflected in a positive evolution of
the performance over time. During the TBs, we could analyze
the online muscle activity adaptation to the exoskeleton motor
control, which would reflect sensorimotor adaptation based on
afferent information (visual, proprioceptive, and haptic) about
the ability to reach the target. On the other hand, during
RBs we could analyze the generalization and retention of the
newly learned EMG-to-kinematics map during the training, as
participants were instructed to actively follow the exoskeleton
movements even if their EMG activity had no influence on the
exoskeleton kinematics during these trials. We therefore studied
the motor control performance across and within sessions
separately for TBs and RBs.

For the across session analysis, the performance values
achieved in the TBs or RBs of the four closed-loop control
sessions were concatenated, and a multivariate linear model
was fitted with two variables: one indicating the block number
(TBs: 1–20; RBs: 1–8), and the other one the session number.
The intercept determined the initial performance and the slope
defined the learning rate. Positive slope values indicate an
increase in performance over time for all the metrics except for
the NRMSE, for which it means a decrease.

Similarly, we assessed motor control within sessions. We
averaged the performance of each TB or RB across the closed-
loop control sessions (i.e., averaging all the first blocks of the
four sessions, all the second blocks, etc.). The evolution of the
performance during the TBs was modeled with a first order
univariate polynomial, where the variable represented the block
number (1–5). The mean performance of the two RBs within
session were compared with a Wilcoxon non-parametric test.
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Perception
In this analysis, we studied the correlation between the ratings of
the subjects about the difficulty of each trial and their ability to
control the exoskeleton during that trial (i.e., with the first three
performance metrics: Execution Time, Timeouts, and SPARC).
Thus, for each subject, we computed the three performance
metrics on a trial-by-trial basis and looked for a correlation with
the corresponding ratings (Kendall tau correlation). Finally, after
checking for normality, we applied a one-way repeated measures
analysis of variance (ANOVA) to compare the correlation values
across all the performance metrics and hence, evaluated which
metric was perceived as a better indicator of performance by
the participants.

In addition, we investigated whether the participants
perceived the different assistance levels, despite the fact that
they were not informed about their existence. We computed
the mean rating of all the trials with the same assistance level
(low = 10%, medium = 30%, or high = 60%) for each session
and compared these values with a two-way repeated measures
ANOVA [Factors: assistance level (low, medium, and high) and
session (S2–S5)]. We performed post hoc pairwise comparisons
between the significant sub-factors and controlled for multiple
comparisons using the Bonferroni correction.

Assistance Level – Performance Relationship
We evaluated the variability of the performance as a function of
the assistance level. We expected that a higher level of assistance
would facilitate the control of the exoskeleton, which would be
reflected in a shorter execution time and a smoother trajectory.
We used the first three metrics (i.e., Execution time, Timeouts,
and SPARC) to measure the ability of the subject to control
the exoskeleton during each closed-loop control session (S2–S5)
and for each assistance level (i.e., low = 10%, medium = 30%,
and high assistance = 60%). We compared these values with a
two-way repeated measures ANOVA [Factors: assistance level
(low, medium, and high) and session (S2–S5)]. We performed

post hoc pairwise comparisons and corrected them using the
Bonferroni method.

Feedback Questionnaire
The responses to the feedback questionnaire (see questionnaire
template in Supplementary Material) were numeric, on a range
from 0 (most negative value) to 10 (most positive value). In order
to simplify the analysis, the questions were classified into the
following groups:

• Exoskeleton functioning: evaluated whether the
exoskeleton moved smoothly and at a comfortable speed.
• Exoskeleton hardware: comprised questions about how

comfortable it was to wear and operate the exoskeleton.
• Ease of controlling the exoskeleton (subdivided into

proximal and distal DoFs): participants were asked to rate
how difficult it was for them to control the movement of
the exoskeleton over the proximal and distal DoFs with
their EMG activity.
• Feedback accuracy: evaluated the perception of the

participants about the feedback provided (i.e., whether they
felt that the exoskeleton assisted the movement or instead,
it moved against their will).
• Protocol design, pauses and rest periods: looked for the

opinion of the participants regarding how tired they were
after the training, whether the pauses were long enough, etc.

The average of the responses of all the participants was study their
general perception about the listed features of the system and the
experimental protocol.

RESULTS

All participants could control the seven-DoFs of the exoskeleton
in real-time with the muscle activity of their left arm (see
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FIGURE 2 | Performance measured by Execution time (A) and Timeouts (B) metrics for the 20 training blocks from the closed-loop control session (TB1–TB5 of
S2–S5), for all the participants. Each circle stands for the mean value (in the [0, 1] range) of all the trials per block and per participant. The polynomial model fitted to
the outcome values (in blue) represents the performance trend.
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Supplementary Video 1), with a total of 92.2% of movements
accomplished by all the participants within the 30-s time limit.

Motor Control
We evaluated motor control and investigated the occurrence of
a learning process both across and within sessions. These two
analyses were applied separately to the TBs and the RBs.

The results of the analysis of the TBs across sessions are
illustrated in Figure 2. The linear model fitted to those values
exhibits a significant negative slope for Execution time (p = 0.041,
slope = −0.0023, Figure 2A) and Timeouts (p = 3.35·10−4,
slope = −0.0064, Figure 2B). These negative correlations
demonstrate improved motor control characterized by shorter
time periods needed to reach the target as well as fewer failures
to reach the target over the course of the experiment. Some
participants produced progressively smoother paths over sessions
(see Supplementary Figure 1), although the tendency was
not significant when looking at all the subjects together (see
Supplementary Figures 2A,B). The CC and NRMSE values in
Supplementary Figures 1C–F show that the control of the distal
DoFs was poorer toward the end, as reflected by the significant
(p = 0.032, slope = 8.81·10−4) positive slope of NRMSE values.

However, this did not happen for the proximal DoFs,
noted that the ability of the participants to adapt the EMG
activity was significantly (pCC = 0.0098, slope = 7.60·10−4;
pNRMSE = 0.002, slope = −1.28·10−4) higher for the proximal
DoFs than for the distal DoFs during the closed-loop
myoelectric control (mean CCproximal = 0.355 ± 0.175; mean
CCdistal = 0.141 ± 0.254; mean NRMSEproximal = 0.164 ± 0.020;
mean NRMSEdistal = 0.199 ± 0.028). In the within-session
analysis, there were no learning trends or significant
performance improvements for any of the metrics (see
Supplementary Figure 3).

Perception
The correlation between the performance and the ratings given
by the participants lay within the [0.1, 0.7] range, as can
be observed in Figure 3A. The ANOVA shows a significant
(p < 10−6) difference between the correlation values of the
metrics. Execution time happened to be the most intuitive metric
for the participants to rate the difficulty of the trial, reflected
in significantly higher mean correlation values (Execution time
vs. Timeouts: p = 0.024; vs. SPARC–all: p = 1·10−6; vs.
SPARC-proximal: p = 4·10−6; vs. SPARC – distal: p = 1·10−6)
whereas Timeouts was the metric with the lowest correlation
values (Timeouts vs. Execution time: p = 0.024; vs. SPARC–all:
p = 3·10−6; vs. SPARC-proximal: p = 6·10−6; vs. SPARC – distal:
p = 3·10−6 ).

The mean ratings of the low, medium and high assistance
level trials across all the participants for each session are
presented in Figure 3B. The two-way ANOVA applied to these
values confirms that the participants could perceive the different
assistance levels, as reflected by the significantly different ratings
given to the low, medium and high assistance trials (corrected
pairwise comparisons: low vs. high: p = 2.2·10−5; low vs. medium:
p = 1.2·10−4; medium vs. high: p = 3.5 10−5). Interestingly,
the two-way ANOVA showed a significant (p = 0.002) session

effect and significant pairwise differences between the ratings
of sessions S2 and S5 (p = 0.008) and S3 and S5 (p = 0.019),
meaning that participants found the various assistance level trials
less difficult over sessions.

Assistance Level – Performance
Relationship
As can be seen in Figure 4, higher assistance values led to
higher performance. Indeed, Assistance level had a significant
effect on all the metrics, as reflected by the two-way ANOVA
(Execution time: p = 1.1 10−5; Timeouts: p = 4.9 10−5; SPARC:
p < 10−6). The post hoc comparisons show significant differences
between the three assistance levels, except for the low vs. medium
levels of Execution time and the medium vs. high level of
Timeouts. A decrease of the timeouts over sessions for all the
three assistance levels can also be noticed and was reflected by
a significant (p = 0.015) effect of the session factor in the two-
way ANOVA, although post hoc comparisons did not show any
pairwise differences after Bonferroni correction.

Feedback Questionnaire
Figure 5 illustrates the average responses of the participants
to the questionnaires filled out at the end of each closed-loop
control session. It shows satisfactory response values (in the range
[6.3, 8.0]) that remained stable across sessions for the questions
related to the exoskeleton functioning and hardware as well
as the protocol design. Additionally, participants reported an
increasing ease in controlling the exoskeleton over the sessions.
From these values, a noticeable difference between the proximal
and distal DoFs can be detected too, with the control over the
proximal DoFs being apparently more intuitive than the distal
DoFs. However, the responses about the control over the distal
DoFs show that participants also found the control of those DoFs
easier toward the later sessions. The reason for this might be
that participants were not told that the trial accomplishment
depended only on the position of the proximal DoFs. Thus,
they probably associated the reduction in execution time and
number of timeouts over sessions with a better control of both
proximal and distal DoFs. Finally, the ratings for the feedback
accuracy were slightly more positive over sessions with mean
values ranging from 6.1 to 6.9.

DISCUSSION

In this study, we presented and validated a myoelectric interface
intended for the upper limb rehabilitation of stroke patients. The
system includes a ridge regression algorithm, a subject-specific
myoelectric mirror model, fixed within and across sessions, and
high-resolution EMG recordings.

This is the first myoelectric system that has been successfully
used to simultaneously control a seven-DoF exoskeleton in real-
time, including proximal and distal joints. It has previously
been demonstrated that training functional tasks, involving
coordinated proximal and distal joint movements of the arm,
might facilitate the activation of more affected distal muscles
in patients with motor impairment, and ease the transfer of
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the acquired skills to activities of daily living (Takeuchi and
Izumi, 2012; Garcia-Cossio et al., 2013). However, the existing
non-invasive myoelectric systems do not offer the possibility of
training coordinated multi-joint tasks, since they are restricted
to the real-time simultaneous and proportional control of up to
four DoFs (proximal or distal) of an external robot (de Rugy et al.,
2013; Pistohl et al., 2013; Ison and Artemiadis, 2015; Ison et al.,
2016), two DoFs of a prosthesis (Fougner et al., 2014; Amsuess
et al., 2016) or up to five DoFs of an upper-limb exoskeleton
for up to three pairs of elbow or hand movement classification
(Tang et al., 2014; Lu et al., 2017). The difficulty of continuously
and accurately predicting users’ motion intention from EMG
signals and of simultaneously controlling the velocity of several
DoFs of an exoskeleton in real-time has limited its clinical and
commercial use. This study goes a step further and addresses the
challenge of integrating the visual and proprioceptive feedback
provided by a multi-DoF exoskeleton, which constitutes a key
feature of rehabilitation therapies and is a rather difficult task
than controlling an external robot or a simple visual artifact.
Thus, in this exploratory study, we evaluated if the provided

feedback and assistance levels would feel natural for the users and
were good enough to learn the mapping and achieve successful
control of the multi-DoF interface over time. The results prove
that our mirror myoelectric system allows safe, smooth and
continuous control of a seven DoF exoskeleton in real-time.

This study was limited to the training of a predefined set of
movements and target positions. Despite there were no space
restrictions other than the size of the workspace, participants
were explicitly asked to avoid exploratory free movements and
to reach the targets following the shortest and fastest possible
trajectory, as shown in the reference blocks at the beginning
of each session. In a longitudinal intervention with patients,
allowing them to explore different strategies would be interesting
and parameters such as the target positions, range of motion,
assistance level and tasks could be adapted according to their
evolution. Hence, this is an uncontrolled study limited to
specific conditions, as we were seeking to initially prove the
safety, usability and effectiveness of our system in healthy
participants. In this initial validation, we demonstrated that this
mirror interface and training strategy can induce learning of
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a mapping based on natural EMG patterns (independent of
what EMG patterns the other arm had, i.e., ignoring interlimb
differences) and so, might be a valid method to elicit relearning
of healthy EMG patterns during functional task training in
stroke patients. Nevertheless, this remains to be tested in a
controlled clinical trial.

The results of the analysis across sessions demonstrate that
the participants learned the mirror mapping and operated the
myoelectric interface in a progressively more efficient way over
the training period (see Figure 2). The kinematics predicted
from the EMG activity defined a more direct and accurate
movement toward the aimed position, reflected in higher speeds
and in turn, lower time periods needed to reach a target. This
was confirmed by the progressively more positive responses
in subjects’ responses to the feedback questionnaire regarding
feedback accuracy and ease in controlling the exoskeleton (see
Figure 5) and the lower difficulty ratings over sessions (see
Figure 3B). The performance also varied according to the
assistance level. As expected, the higher the assistance, the shorter
the execution time, the smaller the percentage of timeouts and
the smoother the path. This difference could also be perceived by
the participants, as revealed by the significantly different ratings
given for the trials of each assistance level. More importantly,
it was demonstrated that even during the trials with only 10%
assistance, participants could successfully control the velocity
of a seven-DoF exoskeleton with their EMG during a complex
functional task. Indeed, they produced significantly (p = 0.015)
fewer timeouts during the trials of any of the three assistance

levels over the course of the experiment (see Figure 4B), and
reported progressively less difficulty (p = 0.002) to perform the
trials with any assistance level (see Figure 3B). Furthermore, the
participants rated satisfactorily the usability and comfort of the
system and provided us with useful information to adapt and
optimize the system for future experiments. Therefore, the results
are encouraging and have relevant implications for its future
application to a rehabilitation scenario with stroke patients.

There is a trend toward a degradation of the control (i.e.,
smaller CC and larger NRMSE values) of the distal DoFs
over the course of the intervention (see Figure 2). Conversely,
performance of the proximal DoFs improved over time. This
difference goes in line with the results found in previous offline
studies in healthy and stroke patients (Sarasola-Sanz et al., 2015,
2017). One reason for the difference between the proximal
and distal DoFs performance could be that the movements
of the distal DoFs were finer and more difficult to control
than the proximal DoFs, as reported by the participants in the
feedback questionnaire and by the significantly (pCC = 0.0098;
pNRMSE = 0.002) lower mean performance of the distal DoFs
compared to the proximal ones. In addition, the fact that the
task completion condition was based only on the proximal DoF
position could have influenced the performance. Despite the
fact that participants could control and receive feedback on
the distal DoFs, they were never informed whether the target
position was successfully reached on those DoFs or not. This
lack of information might have impeded the occurrence of
a learning process (based on reinforcement learning, i.e., on
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reward), reflected in a more accurate control over the distal DoFs.
This supports the importance of receiving contingent sensory
feedback (i.e., exoskeleton moving according to muscle activity)
and reward (i.e., beep indicating task completion) of the DoFs
being controlled for motor control (Todorov and Jordan, 2002;
Scott, 2004; Ramos-Murguialday et al., 2013). Furthermore, there
is a significant increase in variability in CC and NRMSE values in
the distal DoFs during RBs (see Supplementary Figures 3B,D),
which suggests implicit motor exploration or different motor
control strategies.

The concepts of skill acquisition and motor adaptation and
their relationship with motor recovery is still unclear (Kitago
and Krakauer, 2013). Dipietro et al. (2012) suggested that an
internal map of the trained task is built by the brain during
motor recovery, following a process more similar to motor
skill acquisition than motor adaptation. Others have stated
that repeated adaptation can lead to learning a new and more
permanent motor skill that can cause long-lasting changes in the
motor cortex and the cerebellum (Bastian, 2008). The results of
our study demonstrate that four training sessions sufficed for
healthy individuals to learn the imposed mapping and achieve
proficient myoelectric control. However, from these results we
cannot conclude whether the observed learning was the result of
an adaptation or a skill acquisition process. The metrics assessing
the myoelectric control (i.e., CC and NRMSE) during the RBs
partially reflect the observed significant behavioral changes,
indicating an intrinsically effective generalization and retention
of the imposed mirror EMG-to-kinematics map. This is of great
importance as this might open a new door to efficient re-learning
of correct EMG activation patterns. However, our results were
not significant and in the distal DoFs, which were not rewarded
during the training, the effects were mixed and inconclusive.
A larger number of participants or sessions might be needed to
find significant effects during the training.

It should also be noticed that some of the participants
may have partially or completely relied on strategies such as
the reduction of interaction forces to accomplish the trials
in a shorter time over blocks. The absence of sensors to
measure such parameters is a limitation of the study that will
be addressed in future experiments. The introduced assistance
levels also helped the participants to navigate toward the target
and some participants might have relied on this component
and completely relaxed their muscles. However, the introduced
assistance components were not big enough to reach the target
within the timeout time in the absence of voluntary EMG
contractions and the experimenter controlled that the subjects
actively tried to bring the exoskeleton toward the target at all
times. In a rehabilitation scenario, one could rely on the active
involvement of participants since the outcome greatly depends
on their engagement. Alternatively, a movement detection (e.g.,
rest vs. movement-decoder gating the exoskeleton continuous
EMG control) could be implemented in order to always ensure
a voluntary activation. Additionally, it would also be necessary
to assess the generalization of the gains to untrained tasks and
the long-term effects of the training in order to determine which
specific motor learning process occurred during the intervention.
Nevertheless, the observed multi-DoF myoelectric control and

positive feedback from the healthy population encourage the
transfer of this rehabilitation system to the clinical stage.

This mirror decoder has been designed for the rehabilitation
of stroke patients, as they typically keep the motor abilities of one
of their limbs intact or mostly intact. The system takes advantage
of this characteristic by using the muscle activation patterns of
their intact limb as a reference mapping for patients to learn to
move their paretic limb through the correct recruitment of their
muscles. Higher decoding accuracies could probably be achieved
when building the decoder by correlating EMG activity of their
paretic arm with the intended movement. However, training with
such decoder could indeed reinforce the pathological patterns of
their paretic limb avoiding the relearning of healthy activity and
thus, rehabilitation (Cesqui et al., 2013). It should also be noticed
that using a mapping built with EMG of their intact limb avoids
generalization issues derived from the use of decoders built with
other healthy individuals’ EMG activity, who present different
neurophysiological characteristics (age, sex, arm size, strength,
etc.) (Sarasola-Sanz et al., 2018).

Previous evidence suggests that the learning of a new
neuromotor mapping is associated with the emergence of new
muscle activation patterns or synergies. Moreover, these effects
can persist after a week facilitating the generalization to new
tasks while keeping the same mapping (Ison and Artemiadis,
2015). Other studies have also emphasized the importance of
error strategies, guidance and feedback for muscle activation
modulation and motor learning (Patton et al., 2006; Emken et al.,
2007; Sigrist et al., 2015; Marchal-Crespo et al., 2017). They
demonstrated that guidance and feedback improve motor task
learning and that errors should not be reduced or eliminated
to induce learning, but instead they should be shown and
in some cases, even amplified (Marchal-Crespo et al., 2017).
Therefore, based on the results, we believe that training with
this closed-loop system that provides the necessary assistance
and the appropriate response stimuli (i.e., contingent feedback
about the paretic EMG activity), stroke patients will be able to
learn the fixed mapping of healthy activity imposed by the mirror
decoder. Whether this learning process leads to the formation
of new and healthy muscle synergies in the paretic arm and
consequently to motor rehabilitation, remains to be investigated
in the stroke population.

Many patients classified by standard scales as having
completely paralyzed joints (i.e., no visually perceived
movement) nevertheless retain significant residual muscle
activity, which could be decoded and used to control external
devices (Ramos-Murguialday et al., 2015). One of the limitations
of the system presented here is that patients with no residual
muscle activity could not benefit from it. However, patients
without decodable muscle activity could initially train with
brain-machine-interfaces (BMIs) until they recover enough EMG
activity (Ramos-Murguialday et al., 2013; Balasubramanian et al.,
2018) to profit from myoelectric interfaces or from hybrid-BMIs,
with a shared brain and muscle control (Sarasola-Sanz et al.,
2017). Despite its limitations, our approach opens the doors
of rehabilitation to many stroke patients who retain minimal
EMG activity but cannot benefit from other therapies such as
constraint induced movement therapy and bilateral arm training
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(Birbaumer et al., 2008) that require residual movement of
the paretic limb.
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