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Abstract—Nowadays, the shortage of energy and environmen-
tal pollution are considered as relevant problems due to the
high amount of traditional automotive vehicles with internal
combustion engines (ICEs). Electric vehicle (EV) is one of the
solutions to localize the energy source and the best choice for
saving energy and provide zero emission vehicles. However,
their main drawback when compared to conventional vehicles
is their limited energy storage capacity, resulting in poor driving
ranges. In order to mitigate this issue, the scientific community
is extensively researching on energy optimization and prediction
strategies to extend the autonomy of EV. In general, such
strategies require the knowledge of the route profile, being of
capital importance to identify whether the vehicle is on route or
not.

Considering this, in this paper, a route tracking diagnosis
strategy is proposed and tested. The proposed strategy relies on
the information provided by the Google Maps API (Application
Programming Interface) to calculate the vehicles reference route.
Additionally, a Global Positioning System (GPS) device is used
to monitor the real vehicle position. The proposed strategy is
validated throughout simulation, Driver in the Loop (DiL) test
and experimental tests.

Index Terms—BEY, PHEYV, energy consumption estimation,
optimization, tracking diagnosis

I. INTRODUCTION

During the last decades, the revolution in the automotive
industry has generalized the purchase of internal combustion
engine (ICE) based vehicles for personal use. Such significant
increase of the vehicle fleet has become a serious problem,
as it implies a considerable increase of pollution in urban
areas [1]. Consequently, the legislation has become restrictive
in a great number of city centres. As a consequence, end users
are looking for alternative powertrain solutions, being battery
electric vehicles (BEVs) and plug-in hybrid electric vehicles
(PHEVs) the current preferred options.

One of the most important barriers that prevents the
widespread of electrified vehicles is their limited energy stor-
age capacity, which results in poor driving ranges. In order
to overcome this limitation, a significant amount of research
is being carried out regarding efficient energy management.
These strategies aim to predict the vehicle energy consumption
during the whole trip to optimize the control of the drivetrain
components [2]. In this context, a variety of forecasting meth-
ods have been developed to meet this target. For example, The
research studies conducted in [3]-[5] focus on driving pattern
identification (speed profile, acceleration or roadway grade)
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Fig. 1: General diagram of the main factors that have influence on an
energy prediction strategy.

to estimate the energy consumption. In [6], methods for the
characterization of the driver influence are conducted. Other
studies include the journey planning information (traffic signs,
traffic flow) [7], or propose advance driver assistance systems
to minimize the energy consumption along the route [8]-[10].

All these energy prediction approaches rely on the knowl-
edge of the route profile to estimate the amount of energy
consumed during a trip. In order to obtain an accurate energy
prediction, these techniques need to be complemented with a
route tracking diagnosis strategy. This information is valuable
for the energy prediction strategy to update the route profile
and characteristics if the vehicle is out of the reference route.

Considering all the previous, a geo-fence based route track-
ing diagnosis strategy is proposed and tested in this paper.
The proposed strategy relies on the information provided by
the Google Maps API (application programming interface) to
calculate the vehicle’s reference route. Additionally, a Global
Positioning System (GPS) device is used to monitor the real
vehicle position. The proposed strategy is validated throughout
simulation and experimental tests.

II. IMPACT FACTORS OF AN ENERGY PREDICTION
STRATEGY

The processes required for accurately estimate the energy
consumption in an EV are not straightforward. The influence
of various factors such as the driver behaviour, weather, traffic
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Fig. 2: General diagram of the proposed geo-fence strategy.

congestion and vehicle characteristics affect the prediction al-
gorithms and, therefore, cannot be neglected [11], [12]. In this
context, a general diagram of the main impact factors that have
influence on energy prediction algorithms are summarized in
figure 1. In the following, the three main aspects that influence
the vehicle power consumption are introduced.

A. Route information

Route information is one of the most significant factors
that influence the vehicle energy prediction. This includes
both basic route information (speed and altitude profile), and
also advanced data such as traffic flow, traffic signals or
environmental information (weather conditions, wind speed,
etc.) [13]. In order to get the required information, live data
can be collected using cloud platforms such as Google, and
such data can be gathered in a database for further analysis
during the desired time interval.

B. Vehicle information

Apart from route information, a good knowledge of the ve-
hicle dynamic performance is required to achieve an adequate
energy consumption estimation, i.e., by means of an adequate:

(a) Vehicle parametrization;
(b) Vehicle real data acquisition through a controller area
network (CAN) protocol.

It is important to point out that an accurate vehicle
parametrization is required to simulate its performance [2],
[14], [15]. A vehicle simulation model aims to determine the
required torque for a given speed profile:

Twh,eel = Twheel(FRoll + FAero + FInertia + FGrade)a (1)

where Froi, Faero, Frnertia and Fgrqde are the rolling
resistance, aerodynamic resistance, inertia forces and grade
forces, respectively. These last four can be defined as:

FRoll = ﬂagMcara (2)

v2Cy A
Fpero = =521, 3)
Flnertm - {Mcar(l + Mrot)}acara (4)
FGT'ade = McaT'Sin(tan((s))a (5)

where, M, is the total vehicle mass; v is the speed (m/s); ag
is the gravity acceleration; p is the rolling friction coefficient;
p is the air density; Cy is the drag coefficient; A is the vehicle
cross section; M., is the equivalent mass of the rotating parts
of the car, a.,, is the car acceleration and § is the grade slope
of the route profile.

On the other hand, vehicle CAN Bus data such and battery
state of charge (SoC), and DC-link current and voltage status
are required to monitor the vehicle performance online.

C. Driving style

The driving style of the driver has a great impact on the
energy consumption of the vehicle. In this context, driving
styles can be classified as follows [16]-[18]:

(a) Steady driving;
(b) General driving;
(c) Radical driving.

D. Energy consumption estimation algorithm requirements

An energy estimation strategy should be based on the
aforementioned pillars (subsections II-A, II-B, II-C). It is of
great importance to remark that the more impact factors are
considered, the more accurate will be the conducted energy
prediction.

As a knowledge of the route information is mandatory,
it is important to ensure that the vehicle is following the
route calculated at the beginning by the energy estimation
(and optimization) algorithm. Thus, these techniques should
rely on a route-tracking diagnosis, in order to provide further
reliability to the prediction calculations as, if the vehicle
deviates from the defined route, the new route should be
recalculated to obtain a good energy consumption estimation.

The main goal of a route-tracking diagnosis is to carry out,
efficiently, out-of-track detections.

In the following, a geo-fence based route-tracking strategy
is proposed and fully validated.

III. PROPOSED GEO-FENCE BASED ROUTE-TRACKING
STRATEGY

A general diagram of the proposed geo-fence strategy is
shown in figure 2. The strategy relies information provided by
the Google Maps API to determine the reference profile of the
route. A polygon shape virtual barrier (fence) is then created
around it. Finally, a GPS based feedback tracking strategy is
presented to determine whether the vehicle is inside or outside
the boundaries of the predefined route.
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Fig. 3: Boundary determination around a reference location.

A. Fence generation

The route profile provided by the Google Map API is
expressed in both latitude and longitude coordinates. For each
of them, the distance of the virtual fence is firstly determined
within the proposed algorithm. The procedure is shown in
figure 3, where the boundaries P1, P2 and P3, P4 represent
the reference location displacement along the longitude and
latitude axes, respectively.

The relationship between meters and decimal degrees can
be achieved by applying the following:

Latitude (lat) : 1° = 111.12 km, (6)

O_

E erim
Longitude (long) : 1° = —2" cos(lat) km,  (7)

360°

where E,.,;m is the Equatorial perimeter and is defined as
Eperim = 40074, 78 km. A conservative fence distance of 50
m has been considered in this particular application, due to
the constraints of current GPS technology precision.

Once the boundaries P1, P2, P3 and P4 are determined, a
rectangle shaped fence is created between two consecutive lo-
cations of the reference route profile (figure 4(a)). The general
procedure to assign the polygon vertices is the following:

e A corresponds to the boundary located at the highest
latitude value;

e B corresponds to the boundary located at the highest
longitude value;

e C corresponds to the boundary located at the lowest
latitude value;

e D corresponds to the boundary located at the lowest
longitude value.

Two particular scenarios have been considered. The first one
corresponds to the situation where the consecutive locations
remain at the same longitude, i.e., vertical direction (figure
4(b))). Under this circumstance, the polygon vertices are
assigned as follows:

e A corresponds to the P4 located at the highest latitude;

e B is the highest longitude located P 3;
o D is assigned to the P4 located at the lowest longitude;
e C corresponds to the P3 located at the lowest latitude.

The second and last particular situation considers two con-
secutive locations at the same latitude, i.e., horizontal direction
(figure 4(c)). Here, A and B are the P1 boundaries with the
lowest and highest longitudes, respectively. Similarly, D and C
are the P2 boundaries with the lowest and highest longitude,
respectively.

B. Tracking strategy

An Out-of-track detection strategy has been implemented to
monitor and track the vehicle real route. As stated before and
based on a GPS location feedback, the proposed strategy aims
to notify the energy prediction system if the vehicle trajectory
remains out of the reference track for a defined period of time.

The proposed method aims to determine if a certain location
P (GPS position) lies inside or outside the boundary area
(polygon based fence), as shown in the example depicted in
figure 5. The resolution of the geometrical problem consists
on two steps:

1) The determination of the rectangle side equations AB,
BC, CD and DA.

2) The projection of the point P into a line. It can be
concluded that the GPS position P lies inside of the
fence when the following is fulfilled:

(BCY < Py < DAy) & (CDX < Px < ABx), (8)

where BCly is the projection of the BC segment on the
y-axis, DAy is the projection of the segment DA on the
y-axis, C' Dx is the projection of the segment CD on the
x-axis, AByx is the projection of the segment AB on the
x-axis, and Px and Py are the projections of P on the
z- and y-axes, respectively.

Additionally, the algorithm determines the vehicle direction,
comparing the distance between the GPS position and the next
closest reference at different time intervals.

The proposed strategy includes a counter to register consec-
utive out-of-track situations in order to discriminate incorrect
position measurements and prevent false positives. When the
incremental counter reach a determined value, an out-of-track
indicator is enabled.

IV. SIMULATION RESULTS

As a first step, the proposed geo-fence strategy has been
implemented in the Matlab/Simulink simulation environment.
Simulation results are shown in figure 6. In such figure, the
polygonal fence detailed in section III-A has been included in
green.

The analysis of the results of the tracking strategy are shown
in table I for a given validation test case. When the GPS
locations are outside the fence (figure 6 and table I, position
numbers 6, 7, 11, 12 and 13), the tracking strategy increases
the out-of-track indicator counter. The counter is reset once
the GPS position remains inside the fence.
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V. DRIVER IN THE LOOP (DIL) VALIDATION

As a second step, the proposed geo-fence strategy has been
implemented and validated in a Driver in the Loop (DiL)
test platform, using a vehicle multibody dynamics model
simulation tool (DynaCar(®)) [19] (see figure 7).

The reference route including the corresponding boundaries,
and the trajectory performed by the vehicle simulation model
are shown in figure 8. Additionally, the geo-fence strategy DiLL
results are shown in figure 9. At the begining of the test, the
vehicle remains in the reference route, therefore the geo-fence
determines that the system is on-Track (see figure 9(a)). When
the vehicle exceeds the first time the reference boundaries,
a counter implemented to register consecutive Out-of-Track
situations increments its value (see figure 9(b)). During this
situation, the Out-of-Track indicator is not enabled because
the vehicle reacts and returns to the reference trajectory. The
vehicle remains on-Track untill ¢ = 11s. At this time, the
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Fig. 6: Simulation results of the proposed geo-fence route tracking strategy.

vehicle drives in the opposite direction so the geo-fence strat-
egy increments the Out-of-Track counter. When the counter
detects 35 consecutive Out-of-Track situations, the Out-of-
Track indicator is enabled (see figure 9(c)) alerting the energy
prediction strategy.

VI. EXPERIMENTAL RESULTS

An electronic device powered by an ARM Cortex processor
running open software operation system (Linux) has been used
for the geo-fence algorithm experimental validation. A fully
open source hardware has been selected, i.e., the Beaglebone
Black Wireless platform. This device contains the Octavo
Systems OSD335x System-in-Package, which integrates the
Texas Instruments Sitara ARM Cortex-A8 AM335x Processor,
DDR3 memory, TPS65217C PMIC, TL5209 LDO, and all
needed passive components into an small package. All this
allows for a vastly simplified final system design. A G-STAR
IV GPS device is used and plugged to the Beaglebone Black
USB port. The experimental platform is shown in figure 10.



TABLE I Tracking strategy analysis (simulation results).

[ GPS position | Fence [ Out-of-Track counter ]
1 Inside 0
2 Inside 0
3 Inside 0
4 Inside 0
5 Inside 0
6 Outside 1
7 Outside 2
8 Inside 0
9 Inside 0
10 Inside 0
11 Outside 1
12 Outside 2
13 Outside 3
14 Inside 0
15 Inside 0

Fig. 7: Hardware in the Loop setup.

Regarding the firmware, the well-known model based design
(MBD) approach has been followed in Simulink for the devel-
opment of the proposed geo-fence algorithm. The framework
has been developed in Python, which allows to easily manage
high level task such as CAN bus and wireless communication
trough bluetooh, wifi or 3G, web services iteration (Google
Maps) and GPS.

For the experimental validation, the proposed strategy has
been embedded in the Beaglebone Black target, and the GPS
speed was set to around 5 km/h. In this context, figure 11
shows experimentally obtained validation results. The selected
path, from A to B, shows 8 blue tickers, indicating the desired
route (i. e., route profile provided by Google Map API). Data
of 32 GPS locations was taken, obtaining the out-of-track
experimental results shown in table II. From this experimental
test, it can be seen that, until GPS location number 17 is
reached, all the positions are located inside the virtual fence
described in section III-A. From GPS location 17 to 20, the
GPS trajectory is considered out of the reference trajectory, as
shown in table II.

Taking into account the GPS device average speed, the
execution time of the task running in the Beaglebone and the
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Fig. 9: Hardware in the Loop simulation results

GPS refresh data (1 Hz), it can be concluded that the out-of-
track counter is increased in each location in around 6-7 times.
At GPS location 21, the system remains inside the virtual fence
of the desired route trajectory, so the out-of-track counter is
reset.

VII. CONCLUSIONS

In this paper, a review of current EV energy consumption
estimation algorithms has been carried out, and the importance
of relying on out-of-route detection algorithms has been con-
firmed. Additionally, a geo-fence based route-tracking strategy
has been proposed.
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Fig. 10: Experimental platform: GPS device and BeagleBone Hardware.

TABLE II Tracking strategy analysis (experimental results).

[ GPS pos. | Fence [ Counter | GPS pos. | Fence | Counter |

1 Inside 0 17 Outside 6
2 Inside 0 18 Outside 13
3 Inside 0 19 Outside 19
4 Inside 0 20 Outside 26
5 Inside 0 21 Inside 0
6 Inside 0 22 Inside 0
7 Inside 0 23 Inside 0
8 Inside 0 24 Inside 0
9 Inside 0 25 Inside 0
10 Inside 0 26 Inside 0
11 Inside 0 27 Inside 0
12 Inside 0 28 Inside 0
13 Inside 0 29 Inside 0
14 Inside 0 30 Inside 0
15 Inside 0 31 Inside 0
16 Inside 0 32 Inside 0

DiL and experimental results show that the proposed method
can provide accurate information related with the direction
and the real position of the vehicle in the desired route. The
proposed solution is capable of being executed in a low cost
device. As cost is a major concern of the automotive sector,
the proposal can be considered adequate. In the future, the
geo-fence based route-tracking algorithm will be integrated in
a real vehicle, testing its operation through real driving routes.
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