
����������
�������

Citation: Polcz, P.; Csutak, B.;

Szederkényi, G. Reconstruction of

Epidemiological Data in Hungary

Using Stochastic Model Predictive

Control. Appl. Sci. 2022, 12, 1113.

https://doi.org/10.3390/app12031113

Academic Editor: Roman Starosta

Received: 21 December 2021

Accepted: 15 January 2022

Published: 21 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Reconstruction of Epidemiological Data in Hungary Using
Stochastic Model Predictive Control
Péter Polcz 1,2,* , Balázs Csutak 1,2 and Gábor Szederkényi 1,2,*

1 Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/a,
H-1083 Budapest, Hungary; csutak.balazs@itk.ppke.hu

2 Systems and Control Laboratory, Institute for Computer Science and Control, Kende u. 13-17,
H-1111 Budapest, Hungary

* Correspondence: polcz.peter@itk.ppke.hu (P.P.); szederkenyi@itk.ppke.hu (G.S.)

Abstract: In this paper, we propose a model-based method for the reconstruction of not directly
measured epidemiological data. To solve this task, we developed a generic optimization-based
approach to compute unknown time-dependent quantities (such as states, inputs, and parameters) of
discrete-time stochastic nonlinear models using a sequence of output measurements. The problem
was reformulated as a stochastic nonlinear model predictive control computation, where the unknown
inputs and parameters were searched as functions of the uncertain states, such that the model output
followed the observations. The unknown data were approximated by Gaussian distributions. The
predictive control problem was solved over a relatively long time window in three steps. First, we
approximated the expected trajectories of the unknown quantities through a nonlinear deterministic
problem. In the next step, we fixed the expected trajectories and computed the corresponding
variances using closed-form expressions. Finally, the obtained mean and variance values were
used as an initial guess to solve the stochastic problem. To reduce the estimated uncertainty of the
computed states, a closed-loop input policy was considered during the optimization, where the
state-dependent gain values were determined heuristically. The applicability of the approach is
illustrated through the estimation of the epidemiological data of the COVID-19 pandemic in Hungary.
To describe the epidemic spread, we used a slightly modified version of a previously published and
validated compartmental model, in which the vaccination process was taken into account. The mean
and the variance of the unknown data (e.g., the number of susceptible, infected, or recovered people)
were estimated using only the daily number of hospitalized patients. The problem was reformulated
as a finite-horizon predictive control problem, where the unknown time-dependent parameter, the
daily transmission rate of the disease, was computed such that the expected value of the computed
number of hospitalized patients fit the truly observed data as much as possible.

Keywords: dynamical systems; state estimation; model predictive controller; epidemiological models

1. Introduction

The recent and still ongoing COVID-19 pandemic has brought unprecedented chal-
lenges for most countries to protect human lives and operate the economy and society
at an acceptable level at the same time [1,2]. In supporting the related difficult decisions,
dynamical modeling of the epidemic process has had a key importance in all developed
societies [3]. Depending on the modeling goal, a wide range of computational techniques is
available to describe, forecast [4], and even control the epidemic process [5]. Here, we can
only mention a few selected references from the related extensive literature. The majority
of the modeling solutions are based on deterministic compartmental description derived
from susceptible–exposed–infected–recovered (SEIR)-type models [6–8]. Due to the rapidly
increasing computing power, agent-based models have also become popular for modeling
epidemics and studying control possibilities [9,10]. Logistic wavelets were used in [11] to
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compute the possible cumulative number of people infected with COVID. The application
of artificial intelligence and machine learning has also been successful in COVID-related
modeling and prediction [12–14].

The online tracking of informative epidemic parameters and variables proved to be
essential for the continuous monitoring and evaluation of the situation, making predictions,
or planning interventions. A key parameter in such analyses is the time-varying reproduc-
tion number (Rt) which is the population-level transmission potential of the disease at time
t, which is known to be non-trivial to estimate [15]. Therefore, several different computa-
tional approaches have been proposed to track this quantity for epidemic outbreaks [16,17].
In [18], the authors fit a stochastic compartmental model defined by a random walk to esti-
mate the time-dependent reproduction number of the COVID-19 epidemic in Wuhan from
publicly available datasets. A discrete-time Hawkes process was used for the estimation of
Rt in [19], which allowed the detection of events such as restrictions and their relaxation.
The estimation of other non-measured variables such as the number of people in latent or
asymptomatic stages is also a relevant problem in data reconstruction [20]. In [21], a state
estimator with proven convergence was proposed to implement model predictive control
(MPC) satisfying complex constraints for an eight-compartment model of the COVID-19
pandemic. Essentially the same model was used in [22] for an inversion-based estimation
of Rt from Hungarian data. Similar to [21], an MPC approach was presented in [23] to
determine optimal social distancing rules (and hence, Rt) to mitigate the epidemic.

The majority of the data analysis approaches use primarily the daily infected data
possibly together with the recovery statistics. However, it is well known that only a
fraction of the true cases are detected, which also depends on the testing intensity [24–26].
Moreover, the recording of recoveries is also often not immediate and sometimes not precise
enough as well. Therefore, similar to [22,27], we used the official data on the daily number
of hospitalized people in Hungary, assuming that current testing rules and protocols in
hospitals give sufficiently reliable and timely information. The basic system theoretic idea
behind our proposed solution is that the transmission parameter β, which is closely related
to Rt, can be considered as an input of a nonlinear system describing epidemic spread, and
its estimation can be traced back to a trajectory-tracking control problem, where the output
to be tracked is the true reported number of hospitalized people. A straightforward choice
for the solution is MPC, where we can computationally handle model nonlinearities and
parametric uncertainties [28].

The theory of optimization- and prediction-based simultaneous state and parameter
estimation is well founded in the literature [29–32], and it is applied in a wide spectrum of
sciences, e.g., in geosciences [30], in medicine [33], in agriculture [34,35], in aerospace [36],
or in meteorology [37]. The classical approaches [30,37] use variational principles and con-
sider continuous-time models. Due to its simplicity and transparency, the MPC approaches
with discrete-time model descriptions are widely used to solve optimal filtering problems,
e.g., [32–35] addressed model predictive data assimilation, i.e., optimal state/parameter
reconstruction to minimize the deviation between the measurement and model output.
In [36], an optimal design parameter was computed through a constrained MPC for a small
satellite system, which provides constraint satisfaction during operation time. Furthermore,
optimal dosing of cancer chemotherapy was addressed in [33] by solving a predictive
control problem with joint state and parameter estimation.

In general, the nonlinear MPC (NMPC) approaches result in a cumbersome optimiza-
tion problem, especially when the model equations are stochastic. However, the available
sequential convex programing approaches [38,39], the algorithmic differentiation tech-
niques [40,41], and the numerical software tools [42,43] exploit the special structure of
a typical MPC problem and provide an efficient toolkit to solve the nonlinear problems
precisely in a reasonable time. Among the several approaches to cope with stochastic
dynamics [44], we mention two groups of techniques, which are popular in control theory.
First, the particle-based approaches [45–49] with scenario trees allow coping with general
(not necessarily Gaussian) models. Secondly, the tube-based approaches [50–53] approxi-
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mate each predicted state and input by a Gaussian distribution. Therefore, the dynamic
equations in these references are recast as a deterministic mean-variance recursion.

In this paper, we propose a generic optimization-based approach to reconstruct epi-
demiological data through the approximation of unknown time-dependent quantities (such
as the state, unknown input, or parameter) of a class of discrete-time nonlinear stochastic
dynamical models by a sequence of Gaussian distributions. The problem was formulated
as a single stochastic NMPC (SNMPC) computation. However, the solution of an SNMPC
over a relatively large prediction horizon is challenging. Therefore, the problem was solved
in multiple steps. First, we approximated the expected input and state trajectories through a
nonlinear deterministic problem. If the expected values of the unknown quantities are fixed,
the variance matrix of the joint distribution is well defined. An optional state feedback gain
computation is proposed to reduce the solution’s conservatism, i.e., the estimated standard
deviation of the unknown quantities. Finally, the computed mean and variance values
serve as an initial solution for the SNMPC problem, which ensures a fast convergence for
the nonlinear optimization.

The paper is organized as follows. First, we describe the applied compartmental model
for the COVID-19 epidemic spread in Section 2. Then, we introduce our computational
approach in two steps in Sections 3 and 4. The numerical results with a discussion are
presented in Section 5.

Notations and Abbreviations

All random variables are distinguished from the deterministic variables in notation
by the accent •̂. Namely, x̂ is a random variable, whereas, x is deterministic. When x̂ is
normally distributed with expected value µ and variance Σ, we write that x̂ ∼ N (µ, Σ).
When x̂ ∼ N (µ, σ2) is a scalar-valued Gaussian variable, the confidence intervals µ± 1σ =
[µ − 1σ, µ + 1σ] and µ ± 2σ = [µ − 2σ, µ + 2σ] of probability levels 68.2% and 95.4%
are called the 1σ and 2σ confidence intervals, respectively. The value of a time series x :
{0, 1, . . . } → Rn at time instant k is denoted by xk. Each constant or variable, which denotes
a given number of people, is denoted by a boldface letter, e.g., N constitutes the number
or people in a community or the population of a country. When A ∈ Rn×m is a matrix,
He{A} stands for A> + A, where A> is the transposition of A. Let x = (x1, x2, . . . , xn)

denote x =
(

x>1 x>2 . . . x>n
)>

. The matrix-valued functions ∂ f
∂x : Rn+m → Rp×n and

∂ f
∂(x,y) : Rn+m → Rp×(n+m) (with arguments (x, y) ∈ Rn+m) denote the Jacobian of function

f : Rn+m → Rp with respect to (w.r.t.) x ∈ Rn and (x, y) ∈ Rn+m, respectively. Furthermore,
the value of ∂ f

∂x at x0 ∈ Rn and y0 ∈ Rm is referred to as ∂ f
∂x (x0, y0) ∈ Rp×n. The Euclidean

norm of a vector x ∈ Rn is ‖x‖, whereas the weighted norm of x w.r.t. the symmetric
and positive definite matrix Q is referred to as ‖x‖Q, namely ‖x‖2

Q = x>Q x. Finally, let
Ib

a = {a, a + 1, . . . , b} denote the set of integers between a and b.

2. Compartmental Model of the Spread of the COVID-19 Epidemic in Hungary

In this section, we present the compartmental model describing our knowledge on the
dynamics of disease spreading.

2.1. Transitions between the Phases of the Disease

To capture the spread and the evolution of the COVID-19 epidemic, we considered
a modified version of the compartmental model introduced in [21]. This model divides
the population of N individuals into eight classes, representing the different stages of the
illness. The compartments of the model correspond to the following subsets/groups of
the population: susceptible individuals (S), infected people in the latent (L) and the pre-
symptomatic (P) phases, infected people in the main sequence of the disease (A, I), infected
people who need hospital treatment (H), and finally, the recovered (R) and deceased
(D) people. The main phase of the disease is further divided into those who remain
asymptomatic (A) and those who produce symptoms (I).
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In this work, the model of [21] was complemented with a new compartment (U)
comprising all individuals who became immune through vaccination. The members of this
compartment are governed by the daily number of vaccinated people (V). A discrete-time
(DT) version of the augmented continuous-time model was obtained through the explicit
Euler method with a 1 d-long sampling period. The dynamic equations are given as follows:

Sk+1 = Sk − βk(Pk+Ik+δAk)Sk/N − ν Sk
Sk+Rk

Vk,

Lk+1 = Lk + βk(Pk+Ik+δAk)Sk/N − α Lk,

Pk+1 = Pk + α Lk − ζ Pk,

Ik+1 = Ik + γ ζ Pk − ρIIk,

Ak+1 = Ak + (1−γ) ζ Pk − ρA Ak,

Hk+1 = Hk + ρI η Ik − λ Hk,

Rk+1 = Rk + ρI(1−η) Ik + ρA Ak + (1−µ) λ Hk − ν Rk
Sk+Rk

Vk,

Dk+1 = Dk + µ λ Hk,

Uk+1 = Uk + ν Vk.

(1a)

(1b)

(1c)

(1d)

(1e)

(1f)

(1g)

(1h)

(1i)

The transitions between the compartments are illustrated in Figure 1. It is worth mention-
ing that the recovered’s compartment R contains the recovered people who are not yet
vaccinated. To represent all the recovered people including the vaccinated, we can consider
the following additional equation:

R(all)
k+1 = R(all)

k + ρI(1−η) Ik + ρA Ak + (1−µ) λ Hk, (2)

which clearly does not affect the dynamics of other states.

L

H D

A

S

R U

P

I

Figure 1. Transition graph of the epidemic model. Compartments and transitions are represented by
the nodes and edges, respectively.

The detailed worldwide [54] and local serological [55] and dynamical [7,20,56,57]
analysis results provide estimates for the average lengths of the phases of the illness and
the probabilities of transitions between the compartments. These parameters are aligned
with the Hungary-specific data and were presented in detail in [21]. After infection, the
latent period of the disease (L) usually lasts approximately α−1 = 2.5 d. This period is
followed by a pre-symptomatic phase (P) of ζ−1 = 3 d. A person in the main sequence
of the disease (I or A) remains infectious for about ρ−1

I = ρ−1
A = 4 d. The empirical

probability of producing symptoms in the main sequence is γ = 0.6; furthermore, an
η = 0.076 portion of the symptomatic cases require hospitalization. The average length
of a hospital treatment is λ−1 = 10 d. A hospitalized patient dies with a probability of
µ = 0.205, or recovers. The recovered people are assumed to be immune to reinfection.
We assumed that the disease is transmitted by the members of compartments P, A, and
I, such that the relative infectiousness of the asymptomatic individuals (A) is δ = 0.75,
compared to those who produce symptoms (I). The transmission rate β of the disease is the
most prominent parameter of the epidemic spread, which is typically time-dependent. The
nominal values of the above-mentioned model parameters and their assumed uncertainty
are collected in Table 1. For simplicity, each uncertain parameter was assumed to have a
normal distribution, such that its nominal value (µ) is the expectation and its uncertainty
(±a%) gives the 2σ confidence interval with the standard deviations σ = aµ/200.
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Table 1. Presumed model parameters with their short description and their estimated uncertainty.

Description Nominal Value Uncertainty

The population of Hungary N = 9.8× 106

Inverse of . . . (1/day)
latent period α = 1/2.5 ±20%
presymptomatic infectious period ζ = 1/3 ±30%
infectious period of symptomatic individuals ρI = 1/4 ±25%
infectious period of asymptomatic individuals ρA = 1/4 ±25%
average length of hospitalization λ = 1/10 ±10%

Relative infectiousness of asymptomatic δ = 0.75 ±10%
Probability of developing symptoms γ = 0.6 ±10%
Hospitalization probability of symptomatic cases η = 0.076 ±10%
Probability of fatal outcome (if already hospitalized) µ = 0.205 ±10%
Effectiveness of vaccination ν = 0.75 ±10%

Here, we examined the evolution of the epidemic in a fixed time window between
1 March 2020 (k = 0) and 30 June 2021 (k = T). This interval contains the first three waves
of the epidemic in Hungary. Subscript k ∈ {0, 1, . . . , T} denotes the number of days elapsed
in the given time window of length T + 1.

2.2. Vaccination Model

For simplicity, our vaccination model assumed that only susceptible and recovered
people are eligible for vaccination, and we neglected those rare cases when the shot is given
during an unidentified infection. Based on the serological test data [58], our model assumed
that a subject becomes immune TV = 21 d after the first dose with an average probability
of ν = 0.75. Correspondingly, variable Vk in (1) denotes the number of individuals who
received the first dose of vaccine on day k− TV. In our model,

an individual is said to be immune to the disease if he/she will not be infected within the
modeled time horizon.

With this simplification, the people in the R and U compartments do not transmit the
disease any more, as well as those who are still in the hospital. It is worth remarking
that a positive IgG test does not necessarily ensure immunity in this sense. Serological
tests suggest that even a relatively high IgG level does not exclude the possibility of
reinfection [59].

On the other hand, we assumed that the willingness of the susceptible and recov-
ered patients to vaccinate is roughly the same. Namely, the proportion of susceptible
and recovered people vaccinated coincides with the proportion of all susceptibles and
recovereds on each day. Therefore, the model counts with ν SkVk/(Sk + Rk) susceptible
and ν RkVk/(Sk + Rk) recovered individuals who achieved immunity at time k. It is worth
remarking that the value of Vk is known, but cannot be manipulated as the computations
were performed on past data of the epidemic spread. Correspondingly, V : k 7→ Vk can
be considered as a preliminarily known input, or a scheduling variable [60], or a measured
disturbance [36,61]. The official European vaccination data including Hungary are available
at [62]. Official Hungarian COVID-related data with additional analyses are also available
at [63].

2.3. Computing the Reproduction Number

To give meaningful estimates from an epidemiological perspective, we computed the
basic and the time-dependent effective reproduction numbers. The basic reproduction
number, namely the average number of new infections generated by a single infected
individual in a fully susceptible population, can be given by the following closed-form
expression [21]:
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R0 = β

(
1
ζ
+

γ

ρI
+

δ(1− γ)

ρA

)
, (3)

It must be noted that using R0 = 2.2, an early estimate for Hungary commonly used in
the literature, and expressing the transmission rate β from the equation, a nominal value of
β = 1/3 can be given. However, as this parameter is highly influenced by the circumstances
varying in time (e.g., the stringency of restrictions, new variants of the virus, etc.), it is
considered to be a time-dependent parameter and estimated as such (the corresponding R0
being calculated afterwards).

The time-dependent effective reproduction number Rt shows the average number of
infections caused by a single individual, given the state of the model at time t (thus, taking
into account the time-varying nature of beta and the decrease of the susceptible population).
This is calculated as follows,

Rt = βt

(
1
ζ
+

γ

ρI
+

δ(1− γ)

ρA

)
St

N
with t ∈ {0, 1, . . . , T} (4)

It can be a base for comparison between different epidemic-handling strategies, incorpo-
rating the strictness of the restrictions as well. In accordance with the traditional notation
“Rt”, we used t ∈ IT

0 (instead of k) as the time parameter of the time-dependent reproduc-
tion number.

Inspired by [21], we considered the daily transmission rate βk of the disease an un-
known time-dependent parameter. The past values of βk were computed such that the
evolution of the epidemic spread matched the available observations.

2.4. Available Measurements

It is commonly stated in the literature [24,25] that the daily number of infected people is
not well observable, as the measurement relies on aggressive and exhaustive contact tracing
and testing strategies [64,65]. Though it is reasonable to assume that testing is wide-spread
and quick enough in the hospitals, the registered numbers of hospitalized patients [66] are
still influenced by practical considerations. The limited healthcare capacity on weekends
and holidays usually results in a lower number of performed and documented tests, as well
as in a delayed hospital discharge. Therefore, following the common engineering practice,
we applied a 7 d-long moving average filter to the published data (HOff,raw

k ) [66] to avoid
biased estimates caused by these administrative inaccuracies. The smoothed time series
HOff

k is formally calculated as:

HOff
k = 1

min(3,T−k)+min(3,k)+1 ∑
min(3,T−k)
i=−min(3,k) HOff,raw

k+i . (5)

Obviously, the 7 d-long sliding window must be truncated at both ends of the series.
Finally, the filtered hospitalization data were considered as the single available processed
measurement, which reveal relevant information about the time-evolution of the process.

3. Optimization-Based Reconstruction of Past Epidemiological Data
State-Space Model Representation and Problem Statement

In Section 2.1, we presented the dynamic Equation (1) of the epidemic spread. We in-
troduced a possible vaccination model in Section 2.2, where Vk acts as a measured disturbance
input of the dynamical model. In Section 2.3, we explained why parameter βk can be con-
sidered as an unknown input of the system. Finally, in Section 2.4, we proposed to consider
the hospitalization data (H) as the model output. These “ingredients” allowed us to embed
the epidemic spread model into the following discrete-time state-space representation:

xk+1 = f (xk, uk, θ, vk), yk = Cxk, (6)

where xk =
(
Sk, Lk, Pk, Ik, Ak, Hk, Rk, Dk, Uk

)
∈ Rn is the state, uk = βk ∈ Rm is the

unknown input, θ =
(
α, ζ, ρI , ρA, λ, δ, γ, η, µ, ν

)
∈ Rp is the vector of model parame-
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ters, vk = Vk ∈ Rq is a measured disturbance, and yk = Hk ∈ Rs is the output with
C = (0 0 0 0 0 1 0 0 0).

In [22], we presented two possible linear time-invariant (LTI) methods to reconstruct
the past states xk+1 and the unknown inputs uk using the measured output yk, k = IT−1

0 .
Both techniques in [22] rely on the dynamic inversion of the LTI subsystem of Model (1).
In this paper, we revisited the unknown input filtering problem and reformulated it as
an optimal predictive tracking control problem. Namely, we computed an optimal input
sequence uk, k = IT−1

0 such that the output yk of the system follows the reference signal
rk = HOff

k , which contains the past output measurements, i.e., the daily number of hospi-
talized patients (HOff

k ). The simultaneous unknown input and state reconstruction can be
formulated as the following optimization task.

Problem 1 (NMPC for epidemiological data reconstruction with fixed model parameters).
Given the dynamical model (6) with initial condition x0, a vector of constants θ, a measured
disturbance vk, and a reference output trajectory rk+1 to track (k ∈ IT−1

0 ), we looked for a sequence
of inputs uk and states xk+1 that solve the state recursion (6), satisfy the constraint uk ∈ U , and
minimize the following weighted cost function:

J(X, U) = ∑T−1
k=0 ‖Cxk+1 − rk+1‖2

Q + ∑T−2
k=0 ‖uk+1 − uk‖2

R, (7)

where X =
(

x1 . . . xT
)

and U =
(
u0 . . . uT−1

)
collect the free decision variables of the optimiza-

tion, Q, R are positive definite weight matrices, and U is a closed subset of the input space Rm.

In Problem 1, we formulated a data assimilation problem in the form of a nonlinear
model predictive controller (NMPC) computation. The available numerical optimization
tools [40–43] make it possible to solve Problem 1 precisely in a reasonable time. From an
epidemiological point of view, the first term of the cost function (7) minimizes the deviation
of the computed number of hospitalized patients from the official data, whereas the second
term minimizes the slope of the transmission rate of the pathogen. In this way, the NMPC
design provides an optimal smooth solution for the unknown transmission rate function
β : {0, . . . , T − 1} → U = [0.06, 1], which does not have sudden changes.

Remark 1. The daily transmission rate of the disease βk is an unknown time-dependent (but,
supposedly not abruptly varying) parameter. During an outbreak of the epidemic, the number of
infected people is not negligible, namely the sum Pk + Ik + δAk is significant. In this case, the
transmission rate function β : k 7→ βk influences the overall dynamics significantly and determines
the shape of the epidemic wave. Therefore, parameter βk is generally well identifiable from the
measurements during an outbreak of the epidemic, and it becomes uncertain when the number of
infectious people is small.

The unknown input filtering task becomes complicated when the model parameters
and the initial state (from which the state reconstruction was performed) are probabilistic
variables. In the next section, we address the stochastic extension of Problem 1.

4. Statistical Analysis for Normally Distributed Model Parameters
4.1. Gaussian Assumptions

In this section, we allowed the model parameters to vary in time (θ̂ : k 7→ θ̂k), but we
assumed that the parameter process θ̂ is a collection of independent identically distributed
(i.i.d.) Gaussian random variables:

θ̂k ∼ N (µθ , Σθ) for all k = 0, 1, . . . , T − 1, (8)

where µθ is the expected value of θ̂k corresponding to the values presented in Section 2.1
and the diagonal Σθ is its variance. The expected value of the parameter vector contains
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the nominal values from Table 1, whereas the variances are determined such that the
uncertainty intervals from Table 1 resemble the 2σ confidence intervals. Moreover, we
assumed that the initial state, from which the prediction was performed, is itself a random
variable, namely:

x̂0 ∼ N
(
µx

0 , Σx
0
)
. (9)

Consequently, every further state and output are random variables, which obey the follow-
ing stochastic recursion and output equation:

x̂k+1 = f (x̂k, ûk, θ̂k, vk), ŷk = Cx̂k. (10)

Due to the nonlinear terms in the state transition function f , the distribution of the
predicted states x̂k becomes more and more complicated as we look forward in time
(k = 1, 2, . . . ). Therefore, it is very inefficient to compute or at least approximate the non-
Gaussian probability density functions of the predicted states for the nonlinear stochastic
model (10). As is commonly done in the literature (see, e.g., [50–53]), we performed a
tube-like trajectory estimation. With this technique, each predicted state x̂k is described by
the first two moments, the expected value µx

k , and the variance Σx
k , namely the states are

approximated by normal distributions:

x̂k ∼ N (µx
k , Σx

k ) for all k = 0, 1, 2, . . . (11)

4.2. Closed-Loop Control Policy

In the literature [44], the values of the optimal control input u are often searched as
functions of the states as follows:

ûk = µu
k − K(µx

k )(x̂k − µu
k ), (12)

where µu
k are free decision variables and K is (not necessarily a closed-form) function of

the expected state. Thus, the control input is inherently a random variable and is normally
distributed as the state (11) itself is approximated by a Gaussian. If Σxθ

k = (Σθx
k )> denotes

the covariance between x̂k and θ̂k, the joint distribution of x̂k, ûk, and θ̂k is:x̂k
ûk
θ̂k

 ∼ N (µk, Σk), where µk =

µx
k

µu
k

µθ

, Σk =
(
?
)>( Σx

k Σxθ
k

Σθx
k Σθ

)(
I −K>(µx

k ) 0
0 0 I

)
. (13)

Remark 2 (Nonlinear state-dependent input policy). When K = 0, the optimal tracking
problem is said to be an open-loop MPC problem [67], whereas K 6= 0 results in a so-called closed-
loop MPC problem [51], where the optimal input policy is parameterized by the state. A stabilizing
state feedback (12) is typically useful when the predicted states are random variables, and their
actual realizations may deviate from the predicted expectations. When the prediction model is
stochastic, a sequence of deterministic input values (K = 0) may result in a diverging sequence
of state variances, and hence in a conservative (overly cautious) prediction. When the input is
parameterized by the state (K 6= 0), the adaptability of the input may reduce the uncertainty of
the predicted states significantly if the feedback function (12) is determined appropriately. In this
sense, the gain function quantifies the trade-off between the uncertainty of the state and the input.
Unfortunately, it is not straightforward to compute a stabilizing gain function K for the nominal
model (6). Later, in Section 4.5, we demonstrate that a reference state trajectory (if available) makes
it possible to compute the values of K separately in each operating reference state through a classical
LTI state feedback approach, e.g., a pole placement or a linear quadratic regulator (LQR) design ([68]
Section 6.4.2).

4.3. Probabilistic Cost and Input Constraint

Problem 1 with the stochastic state Equation (10) and the joint distribution (13) results
in a stochastic optimal control problem, where both the cost function (7) and the input
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constraint are probabilistic. Therefore, the inputs and the states are meant to be found such
that they minimize the expected cost, namely:

J(M, S, V) = ∑T−1
k=0

∥∥Cµx
k+1 − rk+1

∥∥2
Q + ∑T−2

k=0

∥∥µu
k+1 − µu

k

∥∥2
R (14)

+ ∑T−1
k=0 Tr

(
Q C Σx

k+1 C>
)
+ ∑T−2

k=0 Tr
(

R K(µx
k+1)Σx

k+1 K>(µx
k+1)

)
+ ∑T−2

k=0 Tr
(

R K(µx
k )Σx

k K>(µx
k )− R He

{
K(µx

k+1) Cov(x̂k+1, x̂k)K>(µx
k )
})

.

where M =
(
µx

1 . . . µx
T
)
, S =

( Σx
1 ... Σx

T
Σθx

1 ... Σθx
T

)
, and V =

(
µu

0 . . . µu
T−1
)
. (15)

The expanded Formula (14) of the expectation of cost (7) is derived in Appendix A.

Remark 3. The term Cov(x̂k+1, x̂k) = Cov( f (x̂k, ûk, vk, θ̂k), x̂k) in (14) is typically a non-
quadratic function of the mean and the variance of the joint distribution (13). This term introduces
a potential difficulty to the optimization, which is addressed later in Section 4.4.

The conditions on the input can be formulated as chance constraints of the form
Pr(ûk ∈ U ) ≥ pu, where pu denotes the probability level of the confidence set U . When ûk
comprise a single input and the input domain U is an interval, the chance constraint
Pr(ûk ∈ [u, u]) ≥ pu is equivalent to the following deterministic interval constraint [51]:

µu
k ∈ [u + c, u− c], with c = Φ−1( pu+1

2 )
√

K(µx
k )Σx

k K>(µx
k ), (16)

where Φ : R→ (0, 1) denotes the (cumulative) distribution function of the standard normal
distribution N (0, 1). This technique for the reformulation of a probabilistic condition is
referred to as constraint tightening [69].

4.4. Linear Approximation of the State Dynamics around the Expectation

In the literature, there exist different stochastic sample-based optimization approaches
for a predictive optimal controller design; see, e.g., [45–50]. However, these approaches
are computationally tractable only for a shorter prediction horizon. Alternatively, we have
the possibility to formulate deterministic recursions for the first two moments of the state
vector, e.g., [51] proposed the state transition function f to be approximated by its first-
order Taylor polynomial around the expected values µk = (µx

k , µu
k , µθ) of the probabilistic

variables (x̂k, ûk, θ̂k), namely:

x̂k+1 ≈
∂ f

∂(x,u,θ) (µk, vk)

( x̂k
ûk
θ̂k

)
+ f (µk, vk)−

∂ f
∂(x,u,θ) (µk, vk) µk. (17)

This approach leads to a deterministic mean-variance (“µΣ”) dynamics, which is typically
nonlinear in the free variables µx

k and µu
k .


µx

k+1 = f (µk, vk),

Σxθ
k+1 = ∂ f

∂(x,u,θ) (µk, vk)
(

I −K>(µx
k ) 0

0 0 I

)>( Σxθ
k

Σθ

)
,

Σx
k+1 = ∂ f

∂(x,u,θ) (µk, vk)Σk

(
∂ f

∂(x,u,θ) (µk, vk)
)>

.

(18a)

(18b)

(18c)

Note that the linear Taylor approximation of x̂k+1 allowed us to express the non-
quadratic term in the cost function (14) as follows:

Cov(x̂k+1, x̂k) =
∂ f

∂(x,u,θ) (µk, vk)
(

I −K>(µx
k ) 0

0 0 I

)>( Σx
k

Σθx
k

)
(19)
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The dynamic equations in (18) constitute a possible deterministic prediction model for Sys-
tem (10) and result in the following nonlinear optimal predictive control problem.

Problem 2 (µΣ-NMPC for unknown-input state reconstruction). Given the dynamical mod-
el (18) with an initial state distribution (9), an i.i.d. parameter process (8), a measured disturbance
vk, an input policy (12) with a fixed gain function K, and a reference output trajectory rk+1 to track
(k ∈ IT−1

0 ), we looked for a sequence of deterministic values µu
k , state moments µx

k+1, Σx
k+1, and

covariance matrices Σxθ
k+1 with Σxθ

0 = 0, which solve (18), satisfy the input constraint (16), and
minimize the cost (14). The free variables of the optimization are collected in (15).

Problem 2 is a stochastic data assimilation problem, reformulated as an optimal predictive
tracking problem with a deterministic nonlinear µΣ-prediction model (10). Henceforth,
we refer to Problem 2 as a Gaussian or mean-variance NMPC problem (µΣ-NMPC). In
general, the variance dynamics (18b,c) significantly increase the complexity of the control
problem. If n and p denote the dimension of the state x̂k and the parameter θ̂k, respectively,
the equations in (18) comprise np + n(n + 1)/2 separate scalar equations, whereas the
deterministic model (6) constitutes a system of n scalar equations. Therefore, the µΣ-NMPC
in Problem 2 is typically (at least) an order of magnitude more demanding than the ordinary
NMPC in Problem 1. However, an appropriate initial guess for the solution of µΣ-NMPC
may reduce the computational complexity of the optimization substantially by providing a
fast convergence of the solution.

4.5. Initial Solution for the µΣ-NMPC Problem

In this section, we compute a pseudo-optimal (i.e., feasible, but not necessarily op-
timal) solution of Problem 2, which satisfies the dynamic equations (10) and the input
constraint (16), but it does not necessarily minimize the cost (14). The computed solution
can be considered an initial value for the µΣ-NMPC problem. The solution relies on three
observations.

First, observe that the mean equation in (18a) resembles the deterministic state recur-
sion in (6) as the mean dynamics is not affected by the variances nor the state-dependent
feedback gain K(µx

k ). Therefore, Problem 2 simplifies to Problem 1 if we neglect the vari-
ances (S = 0) and their dynamics (18b,c) from the optimization. Accordingly, a possible
guess for the expectation (M, V), which solves the mean Equation (18a), can be given by
the optimal solution (X∗, U∗) of Problem 1 with initial condition x0 ← µx

0 and parameter
vector θ ← µθ .

Secondly, we note that the gain function K depends (by design) on the expected states
only. This allows computing an appropriate gain Kk at each operating point x∗0 = µx

0 , x∗k ,
k ∈ IT−1

1 along the computed mean solution. We determined Kk through the DT version of
the LQR design applied to the controllable modes of the pair (Ak, Bk), where:

Ak =
∂ f
∂x (µk, vk), Bk =

∂ f
∂u (µk, vk). (20)

Through a sequence of DT-LQR computations, we selected a static feedback gain matrix Kk
at each time instant k, which minimizes the quadratic cost:

∑∞
t=k

(
x>t QLQR

k xt + u>t RLQR
k ut

)
, with ut = −Kk xt. (21)

For a DT-LTI state-space model xt+1 = Akxt + Bkut (with t = 0, 1, 2, . . . , but a fixed k), the
constant gain matrix Kk can be computed through simple linear algebra operations ([68]
Section 6.4.2), which were implemented in function dlqr of the Control System Toolbox [70]
for MATLAB. When selecting the weight matrices QLQR

k and RLQR
k of the LQR problem at

time k ∈ IT−1
0 , we needed to take into consideration that the value of Kk quantifies the

trade-off between the uncertainty of x̂k+1 and ûk. If the locally stabilizing gain has a higher
value, the input ûk is more adaptive (hence, more uncertain), but the uncertainty of x̂k+1
is smaller. However, the chance constraint (16) does not allow the uncertainty of ûk to
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increase beyond any bounds. Therefore, the gain should be selected carefully, such that it
generates an input distribution satisfying (16). If the first computed value for Kk does not
result in an admissible input distribution, we are allowed to compute Kk multiple times
with a gradually decreasing value for RLQR

k .
Finally, with the knowledge of µk, vk, K(µx

k ) = Kk, k ∈ IT−1
0 , Σx

0 , and Σxθ
0 = 0, we com-

puted the variances according to (18b,c), which give the value of S in (15). If the expected
values and K are fixed, the variances are well-defined by the variance Equation (18b,c). By
construction, the tuple (M, S, V) is a feasible solution for Problem 2 as it satisfies both the
µΣ-Equation (18) and the input constraint (16). The computed solution is a good initial
guess for the optimal solution of Problem 2. In Algorithm 1, we summarize the proposed
operations with a single input uk ∈ R and a simple LQR weight selection.

Algorithm 1 Computing a pseudo-optimal solution for Problem 2.

1: Fix x̂0 ∼ N (µx
0 , Σx

0), Σxθ
0 ← 0, µθ , and Σθ . (Optionally, fix µu

0 .)
2: Collect data vk and rk+1, then solve Problem 1 to obtain µx

k and µu
k , where k ∈ IT−1

0 .
3: for k ∈ IT−1

0 do
4: i← 1.
5: repeat
6: Compute Kk for the pair (Ak, Bk) given in (20) through a DT-LQR design

with weight matrices QLQR ← In and RLQR
k ← 2i−1 ; i← i + 1.

7: until condition (16) is met. (If no such Kk is found, let Kk ← 0.)
8: Compute Σxθ

k+1, Σx
k+1, as given in (18b) and (18c), respectively, using K(µx

k ) = Kk.
9: end for

Remark 4. From the authors’ experience, the computationally demanding µΣ-NMPC optimization
for Model (1) will generally not result in a significantly lower expected cost (14) compared to the
computed pseudo-optimal solution (M, S, V).

5. Results and Discussion

In this section, we present the numerical results we obtained through the MPC-
based reconstruction of the unknown epidemiological data. The results were computed
in the MATLAB environment with the Control System Toolbox [70]. For algorithmic
differentiation, we used CasADi [40,41]. To solve nonlinear MPC problems, we used
IPOPT [42], an interior point line search algorithm, with the MUltifrontal Massively Parallel
sparse direct Solver (MUMPS) [71,72]. The MPC implementations are available online in
the public repository [73].

To compute the unknown epidemiological data, we followed the operations of Algorithm 1
to find a pseudo-optimal solution for the µΣ-NMPC in Problem 2. On 1 March 2020 (k = 0),
we assumed a susceptible and almost healthy population, with a small uncertainty as follows:

µx
0 = (N− 40 10 10 10 10 0 0 0 0)>, Σx

0 = diag(7, 1, 1, 1, 1, 1, 1, 1, 0). (22)

We note that the effect of the initial number of infected people on the reconstructed
state vanishes after a transient period due to the stability properties of the compartmental
model (1). Furthermore, we considered pairwise independent random parameters with µθ

and a diagonal Σθ as presented in Table 1. We fixed the initial value for β to µu
0 = 1/3 [21].

We solved the ordinary NMPC in Problem 1 to find the candidate mean functions for x̂ and û.
Then, we computed the gain matrices and the variances of the joint distribution (13). Using
the obtained feasible solution as an initial guess, we solved the µΣ-NMPC in Problem 2. We
learned that the local optimum (M∗, S∗, V∗) found for Problem 2 is qualitatively the same
as the initial guess (M, S, V). The relative difference in the cost obtained by the optimal
and the pseudo-optimal solution is negligible, namely:

J(M,S,V)−J(M∗ ,S∗ ,V∗)
J(M∗ ,S∗ ,V∗) ≈ 7.1× 10−7, where J(M∗, S∗, V∗) ≈ 17,075.129. (23)
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If X,X∗ ∈ R(n+m+np+n(n+1)/2)·T−1 denote the vectors of independent variables of (M, S, V)
and (M∗, S∗, V∗), respectively, the relative difference between X and X∗ is:

‖X−X∗‖ / ‖X∗‖ ≈ 2.86× 10−11, where ‖X∗‖ ≈ 3.1978× 1011. (24)

In Table 2, we present the dimensional differences between the ordinary NMPC and
the µΣ-NMPC if the length of time window is T = 487 d. In Figure 2, we illustrate the
computed marginal distributions of the transmission rate of the pathogen and the daily
numbers of people in the different stages of the disease. The expectation for the states are
presented in Plot 1 of Figure 2, which were computed through the ordinary NMPC design
in Problem 1. In each of Plots 2–12 of Figures 2 and 3, the time evolution of the marginal
distributions of scalar quantities are visualized, such that the shaded dark and light areas
highlight the 1σ and 1σ confidence intervals, respectively. The shape of the epidemic curves
clearly show the three waves of the epidemic until summer 2021.

Table 2. Computational complexity of Problems 1 and 2 illustrated through the epidemiological data
assimilation case study. In this comparison, the cumulative number of recovered people R(all) as an
additional state variable is not considered. Accordingly, the number of state variables is n = 9, the
number of uncertain parameters is p = 10, and the number of inputs and the measured disturbances
are m = 1 and q = 1, respectively. ? The processing time was measured on a laptop PC with Intel
Core i7-4710MQ CPU at 2.50 GHz and 16 GB of RAM.

Quantitative Properties of the Optimization Problem 1 Problem 2

Total number of variables 4869 70,614
Number of variables with only lower bounds 4383 4383
Number of variables with lower and upper bounds 486 486
Total number of equality constraints 4383 70,128
Number of nonzeros in the Lagrangian Hessian 10,826 386,575
Number of iterations 212 74
Elapsed time (s) ? 8 1187

As was noted in Remark 1, the daily transmission rate becomes uncertain when
the number of infectious people reduces significantly. In this case, the input constraint
with the computed gain Kk may be violated; therefore, we increased the input weight
RLQR

k to obtain a lower gain Kk. These heuristic operations to compute an admissible
gain were relevant only when the third wave of the epidemic suddenly dropped after
the end of April 2021. The scaled logarithm of the input weights on each day k are
illustrated in Plot 2 of Figure 2. In Plot 3 of Figure 2, we present the reconstructed number
of hospitalized patients in comparison with the official (i.e., reference) data. Plots 4, 5,
and 6 of Figure 2 illustrate three derived probabilistic quantities ẑk = h(x̂k, ûk, θ̂), namely
the time-dependent effective reproduction number (4) ([ẑk]1 = Rk), the number of all
infected people ([ẑk]2 = L̂k + P̂k + Îk + Âk + Ĥk), and the number of daily new infections

([ẑk]3 = β̂k (P̂k + Îk + δ̂ Âk)
Ŝk
N ). The first and third coordinates of ẑk are nonlinear functions

of random variables. Therefore, the mean and the variance of ẑk were approximated by the
first-order Taylor polynomial of function h, namely,

ẑk ≈ ∂h
∂(x,u,θ) (µk)

( x̂k
ûk
θ̂k

)
+ h(µk)− ∂h

∂(x,u,θ) (µk) µk ∼ N
(

h(µk) , ∂h
∂(x,u,θ) (µk) Σk

(
∂h

∂(x,u,θ) (µk)
)>)

. (25)

The yellow curve in Plot 4 illustrates the estimated reproduction number published online
by Atlo Team in [74].
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Figure 2. Reconstructed epidemiological data computed for System (1) with Gaussian model param-
eters: expected value of states (Plot 1), transmission rate of the pathogen (Plot 2), time-dependent re-
production number (Plot 4), number of reconstructed hospitalized patients compared to the recorded
data (Plot 3), sum of all infected compartments (Plot 5), and the daily new infections (Plot 6). The
gray dotted vertical grid lines show the first days of the months.
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Plot 7. People in the latent phase (L̂)
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Plot 8. People in the presympt. phase (P̂)
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Plot 9. Infected people with sympts. (Î)
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Plot 10. Asymptomatic people (Â)
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Plot 11. Deceased people (D̂)
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Plot 12. Recovered and immune people

Immune through recovery or vac. (R̂ + Û)

All recovered (R̂(all))

Recovered but not vaccinated (R̂)

Figure 3. Unknown epidemiological data computed for System (1) with Gaussian model parameters:
number of people in the different phases of the disease (Plots 7–10), number of deceased people (Plot
11), and number of recovered and/or immune people (Plot 12). The gray dotted vertical grid lines
emphasize the first days of the months.

In Plot 12 of Figure 3, we present three uncertain time series, namely the number
of recovered, but not yet vaccinated people (blue), the cumulative number of recovered
people (red), and the cumulative number of immune people (green).
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In Figures 2 and 3, we can observe the successfully suppressed first wave with a
dramatic effect of the strict lockdown introduced in March 2020. As a result, the disease
was mainly confined to closed institutions such as certain hospital wards and elderly homes.
This policy could not be maintained in the autumn of 2020, and therefore, a substantially
larger second wave occurred, causing a huge burden on the healthcare system. Therefore,
further restrictions (online education in secondary schools, closure of certain public spaces,
banning of most gatherings, and curfew from 8 p.m. to 5 a.m.) had to be introduced in
the first half of November 2020. These measures had the planned effect in terms of the
significant reduction of the transmission rate, as is visible in Plot 2 of Figure 3. Then, from
January 2021, Rt began to increase again due to the appearance of the more contagious
alpha (B.1.1.7) variant, although all of the former restrictions remained in effect. The alpha
variant caused the largest peak of the epidemic so far in the spring of 2021 with a maximum
of 12,553 hospitalized people on 30 March 2021. Further restrictions had to be introduced
on 8 March 2021, where the main component was the closing of all schools. Together with
the intensive vaccination in the first half of 2021, this made the decrease in the number of
infected people definitely fast. The ratio of the peaks of the estimated β in February 2021
and December 2020 was approximately 1.62, which matches well with literature reports
(1.4–1.8) in the U.K. [75]. We note that we can compare these data since they were estimated
under the same restriction level. Plot 12 in Figure 3 shows the estimated number of people
gaining immunity by infection and/or vaccination. According to this estimation, more
than 30% of the population might have gone through the COVID infection until the end of
June 2021. This suggests an approximately 26% detection rate. This is significantly lower
than the value of certain European countries such as Germany, Italy, or Spain, reaching or
sometimes exceeding 50%, but the number of performed tests per population has also been
much lower in Hungary than in the mentioned countries [76].

6. Conclusions

In this paper, we proposed an optimization-based data assimilation approach to
compute the unknown inputs and states of discrete-time compartmental epidemic models
with uncertain normally distributed parameters. We started from the assumption that
the joint state input parameter distribution is Gaussian. Then, a deterministic mean-
variance recursion was developed, which made it possible to formulate the stochastic
data assimilation problem as a single model predictive control design with a nonlinear
mean-variance prediction model. We noted and demonstrated that the resulting µΣ-NMPC
is computationally intensive, but its local optimum can be well approximated by a more
efficient ordinary NMPC and further closed-form variance computations.

We proposed simple heuristics to predict appropriate feedback gains, which realize
state-dependent control actions along the prediction horizon. In this way, a trade-off can
be made between the uncertainty of the computed states and inputs as the predicted con-
trol action is scheduled by the deviation between the actual realization of the state and
its predicted expectation. As the approach does not make a difference between the un-
known parameters and inputs, the joint state observation, change detection, and parameter
estimation are also possible.

Through the finite horizon predictive control computation, we estimated the unknown
data of the past evolution of the COVID-19 epidemic spread within a fixed time window in
Hungary. Among the unknown quantities, we considered the daily number of people in
the different phases of the disease and the transmission rate of the pathogen, which highly
depends on the actual social distancing rules, mobility restrictions, and virus mutations.
The unknown time series were computed such that the expected value of the computed
number of hospitalized patients fit the truly observed data as much as possible. Compared
to our previous results [21,22], we considered an augmented and uncertain compartmental
epidemiological model with normally distributed random model parameters and a simple
vaccination model as well.
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The main limitations of this study were the following. The length of hospital treatment
was considered to be constant in the model, since no data have been published on the daily
new hospital admissions with COVID-19, from which this parameter could be tracked
efficiently. Moreover, no representative nationwide serological testing in Hungary has been
organized since the summer of 2020. Such a result would definitely be helpful in making the
estimate on the number of immune people more precise. Finally, the waning of immunity
after infection or vaccination was also not taken into consideration in the model. However,
such an extension does not affect the applicability of the proposed MPC-based estimation.

With a few modifications, the approach can be applied to compute multiple uncertain
possibly time-dependent parameters, but also for the prediction of the future behavior of
the epidemic spread. The proposed methodology is able to extract and reconstruct detailed
information from the whole time horizon of the epidemic process beyond giving estimates
for the cumulative number of infected and recovered people. Future work will be focused
on the analysis of other European countries.
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Appendix A

In this section, we prove that the expected value of the cost:

J(X, U) = ∑T−1
k=0 ‖Cx̂k+1 − rk+1‖2

Q + ∑T−2
k=0 ‖ûk+1 − ûk‖2

R, (borrowed from (7))

can be expressed as:

J(M, S, V) = ∑T−1
k=0

∥∥Cµx
k+1 − rk+1

∥∥2
Q + ∑T−2

k=0

∥∥µu
k+1 − µu

k

∥∥2
R (borrowed from (14))

+ ∑T−1
k=0 Tr

(
Q C Σx

k+1 C>
)
+ ∑T−2

k=0 Tr
(

R K(µx
k+1)Σx

k+1 K>(µx
k+1)

)
+ ∑T−2

k=0 Tr
(

R K(µx
k )Σx

k K>(µx
k )− R He

{
K(µx

k+1) Cov(x̂k+1, x̂k)K>(µx
k )
})

.

The proof is given in multiple steps, but it is essentially based on a simple observation,
which allows expressing the expectation of the squared weighted norm of a random variable
x̂ as follows:

E
(
‖x̂‖2

Q
)
= ‖µx‖2

Q + Tr(Q Σx) (A1)

To prove (A1), first, consider the following chain of identities:

Q Σx = Q Var(x̂) = Cov(Q x̂, x̂) = E(Q x̂ x̂>)−Q µx (µx)>. (A2)

Then, we take the trace of the quantities in (A2) to obtain:

Tr(Q Σx) = E(x̂>Q x̂)− (µx)>Q µx. (A3)

Equality (A1) is a direct consequence of (A3). Accordingly, the squared weighted norm of
the output error at time k + 1 can be expressed as follows:

‖Cx̂k+1 − rk+1‖2
Q =

∥∥Cµx
k+1 − rk+1

∥∥2
Q + Tr

(
Q C Σx

k+1 C>
)
. (A4)

Secondly, the input variation cost is expressed as follows:

E
(
‖ûk+1 − ûk‖2

R
)
=
∥∥µu

k+1 − µu
k
∥∥2

R + Tr
(

R Var(ûk+1 − ûk)
)
. (A5)

The variance term in (A5) is further developed as follows:

Var(ûk+1 − ûk) = Var(ûk+1 − K(µx
k+1)(x̂k+1 − µx

k+1)− ûk + K(µx
k )(x̂k − µx

k )) (A6)

= Var(K(µx
k+1)x̂k+1 − K(µx

k )x̂k) (A7)

= Var(K(µx
k+1)x̂k+1) + Var(K(µx

k )x̂k)

−He
{

Cov(K(µx
k+1)x̂k+1, K(µx

k )x̂k)
}

(A8)

= K(µx
k+1)Σx

k+1 K>(µx
k+1) + K(µx

k )Σx
k K>(µx

k )

−He
{

K(µx
k+1) Cov(x̂k+1, x̂k)K>(µx

k )
}

(A9)

Finally, the output error (A4) and the input variation error (A5) with the variance expres-
sion (A9) give the expected value (14) of the random cost (7).
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